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Abstract

We study the problem of computing possible and necessary winners for partially
specified weighted and unweighted tournaments. This problem arises naturally in
elections with incompletely specified votes, partially completed sports competitions,
and more generally in any scenario where the outcome of some pairwise compar-
isons is not yet fully known. We specifically consider a number of well-known solu-
tion concepts—including the uncovered set, Borda, ranked pairs, and maximin—and
show that for most of them possible and necessary winners can be identified in poly-
nomial time. These positive algorithmic results stand in sharp contrast to earlier
results concerning possible and necessary winners given partially specified preference
profiles.

1 Introduction

Many multi-agent situations can be modeled and analyzed using weighted or unweighted
tournaments. Prime examples are voting scenarios in which pairwise comparisons between
alternatives are decided by majority rule and sports competitions that are organized as
round-robin tournaments. Other application areas include webpage and journal ranking,
biology, psychology, and AI (also see [6], and the references therein). More generally, tour-
naments and tournament solutions are used as a mathematical tool for the analysis of all
kinds of situations where a choice among a set of alternatives has to be made exclusively on
the basis of pairwise comparisons.

When choosing from a tournament, relevant information may only be partly available.
This could be because some preferences are yet to be elicited, some matches yet to be played,
or certain comparisons yet to be made. In such cases, it is natural to speculate which are
the potential and inevitable outcomes on the basis of the information already at hand.

For complete tournaments, a number of attractive solution concepts have been pro-
posed (see, e.g., [6, 17]). Given any such solution concept S, possible winners of a partial
tournament G are defined as alternatives that are selected by S in some completion of G,
and necessary winners are alternatives that are selected in all completions. By a completion
we here understand a complete tournament extending G.

In this paper we address the computational complexity of identifying the possible and
necessary winners for a number of solution concepts whose winner determination problem
for complete tournaments is tractable. We consider four of the most common tourna-
ment solutions—namely, Condorcet winners (COND), the Copeland solution (CO), the
top cycle (TC ), and the uncovered set (UC )—and three common solutions for weighted
tournaments—Borda (BO), maximin (MM ) and ranked pairs (RP). For each of these solu-
tion concepts, we characterize the complexity of the following problems: deciding whether
a given alternative is a possible winner (PW ), deciding whether a given alternative is a
necessary winner (NW ), and deciding whether a given subset of alternatives equals the set

∗A previous version of this paper has been accepted at AAMAS-2012. New results include speeding
up pseudo-polynomial time algorithms to strongly polynomial time for PWSBO (Thm. 8) and PWSMM

(Thm. 12).



S PWS NWS PWSS

COND in P [16] in P [16] in P (Thm. 1)
CO in P (Thm. 2)a in P (Thm. 2)a in P (Thm. 2)
TC in P [16]a in P [16] in P (Thm. 3)
UC in P (Thm. 4) in P (Thm. 5) NP-C (Thm. 6)

BO in P (Thm. 7)a in P (Thm. 9) in P (Thm. 8)
MM in P (Thm. 10)a in P (Thm. 11) in P (Thm. 12)
RP NP-C (Thm. 13) coNP-C (Thm. 14) NP-C (Cor. 1)

a This P-time result contrasts with the intractability of the same problem for partial preference
profiles [16, 25].

Table 1: Complexity of computing possible winners (PW) and necessary winners (NW) and
of checking whether a given subset of alternatives is a possible winning set (PWS) under
different solution concepts given partial tournaments.

of winners in some completion (PWS ). These problems can be challenging, as even un-
weighted partial tournaments may allow for an exponential number of completions. Our
results are encouraging, in the sense that most of the problems can be solved in polynomial
time. Table 1 summarizes our findings.

Similar problems have been considered before. For Condorcet winners, voting trees and
the top cycle, it was already shown that possible and necessary winners are computable in
polynomial time [16, 19, 20]. The same holds for computing possible Copeland winners that
were considered in the context of sports tournaments [8].

A more specific setting that is frequently considered within the area of computational
social choice differs from our setting in a subtle but important way that is worth being
pointed out. There, tournaments are assumed to arise from pairwise majority comparisons
on the basis of a profile of individual voters’ preferences.1 Since a partial preference profile
R need not conclusively settle every majority comparison, it may give rise to a partial
tournament only. There are two natural ways to define possible and necessary winners for a
partial preference profile R and solution concept S. The first is to consider the completions
of the incomplete tournament G(R) corresponding to R and the winners under S in these.
This is covered by our more general setting. The second is to consider the completions of
R and the winners under S in the corresponding tournaments.2 Since every tournament
corresponding to a completion of R is also a completion of G(R) but not necessarily the other
way round, the second definition gives rise to a stronger notion of a possible winner and
a weaker notion of a necessary winner. Interestingly, and in sharp contrast to our results,
determining these stronger possible and weaker necessary winners is computationally hard
for many voting rules [16, 25].

In the context of this paper, we do not assume that tournaments arise from majority
comparisons in voting or from any other specific procedure. This approach has a number of
advantages. Firstly, it matches the diversity of settings to which tournament solutions are
applicable, which goes well beyond social choice and voting. For instance, our results also
apply to a question commonly encountered in sports competitions, namely, which teams can
still win the cup and which future results this depends on (see, e.g., [8, 14]). Secondly, (par-
tial) tournaments provide an informationally sustainable way of representing the relevant
aspects of many situations while maintaining a workable level of abstraction and concise-

1See, e.g., [1, 2, 15, 24, 25] for the basic setting, [3] for parameterized complexity results, [12, 13] for
probabilistic settings, and [7, 26] for settings with a variable set of alternatives.

2These two ways of defining possible and necessary winners are compared (both theoretically and exper-
imentally) in [16, 20] for three solution concepts: Condorcet winners, voting trees and the top cycle.



ness. For instance, in the social choice setting described above, the partial tournament
induced by a partial preference profile is a much more succinct piece of information than
the preference profile itself. Finally, specific settings may impose restrictions on the feasible
extensions of partial tournaments. The positive algorithmic results in this paper can be
used to efficiently approximate the sets of possible and necessary winners in such settings,
where the corresponding problems may be intractable. The voting setting discussed above
serves to illustrate this point.

2 Preliminaries

A partial tournament is a pair G = (V,E) where V is a finite set of alternatives and
E ⊆ V × V an asymmetric relation on V , i.e., (x, y) ∈ E implies (y, x) /∈ E. If (x, y) ∈ E
we say that x dominates y. A (complete) tournament T is a partial tournament (V,E) for
which E is also complete, i.e., either (x, y) ∈ E or (y, x) ∈ E for all distinct x, y ∈ V . We
denote the class of complete tournaments by T .

Let G = (V,E) be a partial tournament. Another partial tournament G′ = (V ′, E′) is
called an extension of G, denoted G ≤ G′, if V = V ′ and E ⊆ E′. If E′ is complete, G′ is
called a completion of G. We write [G] for the set of completions of G, i.e., [G] = {T ∈ T :
G ≤ T}.

For each x ∈ V , we define the dominion of x in G by D+
G(x) = {y ∈ V : (x, y) ∈ E},

and the dominators of x in G by D−G(x) = {y ∈ V : (y, x) ∈ E}. For X ⊆ V , we let
D+

G(X) =
⋃

x∈X D+
G(x) and D−G(X) =

⋃
x∈X D−G(x).

For given G = (V,E) and X ⊆ V , we further write EX→ for the set of edges obtained
from E by adding all missing edges from alternatives in X to alternatives not in X, i.e.,

EX→ = E ∪ {(x, y) ∈ X × V : y /∈ X and (y, x) /∈ E}.

We use EX← as an abbreviation for EV \X→, and respectively write Ex→, Ex←, GX→,
and GX← for E{x}→, E{x}←, (V,EX→), and (V,EX←).

Let n be a positive integer. A partial n-weighted tournament is a pair G = (V,w)
consisting of a finite set of alternatives V and a weight function w : V ×V → {0, . . . , n} such
that for each pair (x, y) ∈ V ×V with x 6= y, w(x, y)+w(y, x) ≤ n. We say that T = (V,w) is
a (complete) n-weighted tournament if for all x, y ∈ V with x 6= y, w(x, y) +w(y, x) = n. A
(partial or complete) weighted tournament is a (partial or complete) n-weighted tournament
for some n ∈ N. The class of n-weighted tournaments is denoted by Tn. Observe that with
each partial 1-weighted tournament (V,w) we can associate a partial tournament (V,E) by
setting E = {(x, y) ∈ V : w(x, y) = 1}. Thus, (partial) n-weighted tournaments can be seen
to generalize (partial) tournaments, and we may identify T1 with T .

The notations G ≤ G′ and [G] can be extended naturally to partial n-weighted tour-
naments G = (V,w) and G′ = (V ′, w′) by letting (V,w) ≤ (V ′, w′) if V = V ′ and
w(x, y) ≤ w′(x, y) for all x, y ∈ V , and [G] = {T ∈ Tn : G ≤ T}.

For given G = (V,w) and X ⊆ V , we further define wX→ such that for all x, y ∈ V ,

wX→(x, y) =

{
n− w(y, x) if x ∈ X and y /∈ X,

w(x, y) otherwise,

and set wX← = wV \X→. Moreover, wx→, wx←, GX→, and GX← are defined in the obvious
way.

We use the term solution concept for functions S that associate with each (complete)
tournament T = (V,E), or with each (complete) weighted tournament T = (V,w), a choice
set S(T ) ⊆ V . A solution concept S is called resolute if |S(T )| = 1 for each tournament T .



In this paper we will consider the following solution concepts: Condorcet winners (COND),
Copeland (CO), top cycle (TC ), and uncovered set (UC ) for tournaments, and maximin
(MM ), Borda (BO), and ranked pairs (RP) for weighted tournaments. Of these only ranked
pairs is resolute. Formal definitions will be provided later in the paper.

3 Possible & Necessary Winners

A solution concept selects alternatives from complete tournaments or complete weighted
tournaments. A partial (weighted) tournament, on the other hand, can be extended to a
number of complete (weighted) tournaments, and a solution concept selects a (potentially
different) set of alternatives for each of them.

For a given solution concept S, we can thus define the set of possible winners for a partial
(weighted) tournament G as the set of alternatives selected by S from some completion of G,
i.e., as PWS (G) =

⋃
T∈[G] S(T ). Analogously, the set of necessary winners of G is the set

of alternatives selected by S from every completion of G, i.e., NWS (G) =
⋂

T∈[G] S(T ). We

can finally write PWSS (G) = {S(T ) : T ∈ [G]} for the set of sets of alternatives that S
selects for the different completions of G.

Note that NWS (G) may be empty even if S selects a non-empty set of alternatives for
each tournament T ∈ [G], and that |PWSS (G)|may be exponential in the number of alterna-
tives of G. It is also easily verified that G ≤ G′ implies PWS (G′) ⊆ PWS (G) and NWS (G) ⊆
NWS (G′), and that PWS (G) =

⋃
G≤G′ NWS (G′) and NWS (G) =

⋂
G≤G′ PWS (G′).

Deciding membership in the sets PWS (G), NWS (G), and PWSS (G) for a given solution
concept S and a partial (weighted) tournament G is a natural computational problem. We
will respectively refer to these problems as PWS , NWS , and PWSS , and will study them
for the solution concepts mentioned at the end of the previous section.3

For complete tournaments T we have [T ] = {T} and thus PWS (T ) = NWS (T ) = S(T )
and PWSS (T ) = {S(T )}. As a consequence, for solution concepts S with an NP-hard
winner determination problem—like Banks, Slater, and TEQ—the problems PWS , NWS ,
and PWSS are NP-hard as well. We therefore restrict our attention to solution concepts for
which winners can be computed in polynomial time.

For irresolute solution concepts, PWSS may appear a more complex problem than PWS .
We are, however, not aware of a polynomial-time reduction from PWS to PWSS . The
relationship between these problems may also be of interest for the “classic” possible winner
setting with partial preference profiles.

4 Unweighted tournaments

In this section, we consider the following well-known solution concepts for unweighted tour-
naments: Condorcet winners, Copeland, top cycle, and uncovered set. Weighted tourna-
ments will then be considered in Section 5.

4.1 Condorcet Winners

Condorcet winners are a very simple solution concept and will provide a nice warm-up.
An alternative x ∈ V is a Condorcet winner of a complete tournament T = (V,E) if it
dominates all other alternatives, i.e., if (x, y) ∈ E for all y ∈ V \ {x}. The set of Condorcet
winners of tournament T will be denoted by COND(T ); obviously this set is always either
a singleton or empty.

3Formally, the input for each of the problems consists of an encoding of the partial (n-weighted) tourna-
ment G and, for partial n-weighted tournaments, the number n.



It is readily appreciated that the possible Condorcet winners of a partial tournament
G = (V,E) are precisely the undominated alternatives, and that a necessary Condorcet
winner of G should already dominate all other alternatives. Both properties can be verified
in polynomial time.

Each of the sets in PWSCOND(G) is either a singleton or the empty set, and determining
membership for a singleton is obviously tractable. Checking whether ∅ ∈ PWSCOND(G)
is not quite that simple. First observe that ∅ ∈ PWSCOND(G) if and only if there is an
extension G′ of G in which every alternative is dominated by some other alternative. Given
a particular G = (V,E), we can define an extension G′ = (V,E′) of G by iteratively adding
edges from dominated alternatives to undominated ones until this is no longer possible.
Formally, let

E0 = E and Ei+1 = Ei ∪ {(x, y) ∈ Xi × Yi : (y, x) /∈ Ei},

where Xi and Yi denote the dominated and undominated alternatives of (V,Ei), respectively.

Finally define E′ =
⋃|V |

i=0Ei, and observe that this set can be computed in polynomial time.
Now, for every undominated alternative x of G′ and every dominated alternative y of G′,

we not only have (x, y) ∈ E′, but also (x, y) ∈ E. This is the case because in the inductive
definition of E′ only edges from dominated to undominated alternatives are added in every
step. It is therefore easily verified that PWSCOND(G) contains ∅ if and only if the set of
undominated alternatives in G′ is either empty or is of size three or more. We have shown
the following easy result.

Theorem 1. PWCOND , NWCOND , and PWSCOND can be solved in polynomial time.

The results for PWCOND and NWCOND also follow from Proposition 2 of Lang et al. [16]
and Corollary 2 of Konczak and Lang [15]. We further note that Theorem 1 is a corollary
of corresponding results for maximin in Section 5.2. The reason is that a Condorcet winner
is the maximin winner of a 1-weighted tournament, and a tournament does not admit a
Condorcet winner if and only if all alternatives are maximin winners.

4.2 Copeland

Copeland’s solution selects alternatives based on the number of other alternatives they
dominate. Define the Copeland score of an alternative x in tournament T = (V,E) as
sCO(x, T ) = |D+

T (x)|. The set CO(T ) then consists of all alternatives that have maximal
Copeland score. Since Copeland scores coincide with Borda scores in the case of 1-weighted
tournaments, the following is a direct corollary of the results in Section 5.1.

Theorem 2. NWCO , PWCO , and PWSCO can be solved in polynomial time.

PWCO can alternatively be solved via a polynomial-time reduction to maximum network
flow (see, e.g., [8], p. 51).

4.3 Top Cycle

A subset X ⊆ V of alternatives in a (partial or complete) tournament (V,E) is domi-
nant if every alternative in X dominates every alternative outside X. The top cycle of a
tournament T = (V,E), denoted by TC (T ), is the unique minimal dominant subset of V .

Lang et al. have shown that possible and necessary winners for TC can be computed
efficiently by greedy algorithms ([16], Corollaries 1 and 2). For PWSTC , we not only have
to check that there exists a completion such that the set in question is dominating, but also
that there is no smaller dominating set. It turns out that this can still be done in polynomial
time.



Theorem 3. PWSTC can be solved in polynomial time.

Proof sketch. Consider a partial tournament G = (V,E) and a set X ⊆ V of alternatives.
If X is a singleton, the problem reduces to checking whether X ∈ PWSCOND(G). If X is of
size two or if one of its elements is dominated by an outside alternative, X /∈ PWSTC (G).
Therefore, we can without loss of generality assume that |X| ≥ 3 and (y, x) /∈ E for all
y ∈ V \ X and x ∈ X. The Smith set of a partial tournament is defined as the minimal
dominant subset of alternatives [22].4 It can be shown that there exists a completion T ∈
[G] with TC (T ) = X if and only if the Smith set of the partial tournament (X,E|X×X)
equals the whole set X. Since Brandt et al. [4] have shown that the Smith set of a partial
tournament can be computed efficiently, the theorem follows.

4.4 Uncovered Set

Given a tournament T = (V,E), an alternative x ∈ V is said to cover another alternative
y ∈ V if D+

T (y) ⊆ D+
T (x), i.e., if every alternative dominated by y is also dominated by x.

The uncovered set of T , denoted by UC (T ), then is the set of alternatives that are not
covered by some other alternative. A useful alternative characterization of the uncovered
set is via the two-step principle: an alternative is in the uncovered set if and only if it can
reach every other alternative in at most two steps.5 Formally, x ∈ UC (T ) if and only if for
all y ∈ V \ {x}, either (x, y) ∈ E or there is some z ∈ V with (x, z), (z, y) ∈ E. We denote
the two-step dominion D+

E(D+
E(x)) of an alternative x by D++

E (x).
We first consider PWUC , for which we check for each alternative whether it can be

reinforced to reach every other alternative in at most two steps.

Theorem 4. PWUC can be solved in polynomial time.

Proof. For a given partial tournament G = (V,E) and an alternative x ∈ V , we check
whether x is in UC (T ) for some completion T ∈ [G].

Consider the graph G′ = (V,E′′) where E′′ is derived from E as follows. First, we let
D+(x) grow as much as possible by letting E′ = Ex→. Then, we do the same for its two-step

dominion by defining E′′ as E′D
+

E′ (x)→. Now it can be shown that x ∈ PWUC (G) if and
only if V = {x} ∪D+

E′′(x) ∪D++
E′′ (x).

A similar argument yields the following.

Theorem 5. NWUC can be solved in polynomial time.

Proof. For a given partial tournament G = (V,E) and an alternative x ∈ V , we check
whether x is in UC (T ) for all completions T ∈ [G].

Consider the graph G′ = (V,E′′) with E′′ defined as follows. First, let E′ = Ex←. Then,

expand it to E′′ = E′D
−
E′ (x)→. Intuitively, this makes it as hard as possible for x to beat

alternatives outside of its dominion in two steps. Then it can be shown that x ∈ NWUC (G)
if and only if V = {x} ∪D+

E′′(x) ∪D++
E′′ (x).

For all solution concepts considered so far—Condorcet winners, Copeland, and top
cycle—PW and PWS have the same complexity. One might wonder whether a result like
this holds more generally, and whether there could be a polynomial-time reduction from
PWS to PW . The following result shows that this is not the case, unless P=NP.

Theorem 6. PWSUC is NP-complete.

This can be shown by a rather intricate reduction from Sat. We have to omit the
construction due to space constraints but a sketch is presented in the appendix.

4For complete tournaments, the Smith set coincides with the top cycle.
5In graph theory, vertices satisfying this property are often called kings.



5 Weighted Tournaments

We now turn to weighted tournaments, and in particular consider the solution concepts
Borda, maximin, and ranked pairs.

5.1 Borda

The Borda solution (BO) is typically used in a voting context, where it is construed as
based on voters’ rankings of the alternatives: each alternative receives |V | − 1 points for
each time it is ranked first, |V | − 2 points for each time it is ranked second, and so forth;
the solution concept then chooses the alternatives with the highest total number of points.
In the more general setting of weighted tournaments, the Borda score of alternative x ∈ V
in G = (V,w) is defined as sBO(x,G) =

∑
y∈V \{x} w(x, y) and the Borda winners are the

alternatives with the highest Borda score. If w(x, y) represents the number of voters that
rank x higher than y, the two definitions are equivalent.

Before we proceed further, we define the notion of a b-matching, which will be used in
the proofs of two of our results. Let H = (VH , EH) be an undirected graph with vertex
capacities b : VH → N0. Then, a b-matching of H is a function m : EH → N0 such
that for all v ∈ VH ,

∑
e∈{e′∈EH :v∈e′}m(e) ≤ b(v). The size of b-matching m is defined as∑

e∈EH
m(e). It is easy to see that if b(v) = 1 for all v ∈ VH , then a maximum size b-

matching is equivalent to a maximum cardinality matching. In a b-matching problem with
upper and lower bounds, there further is a function a : VH → N0. A feasible b-matching
then is a function m : EH → N0 such that a(v) ≤

∑
e∈{e′∈EH :v∈e′}m(e) ≤ b(v).

If H is bipartite, then the problem of computing a maximum size feasible b-matching
with lower and upper bounds can be solved in strongly polynomial time ([21], Chapter 21).
We will use this fact to show that PWBO and PWSBO can both be solved in polynomial
time. While the following result for PWBO can be shown using Theorem 6.1 of [14], we give
a direct proof that can then be extended to PWSBO .

Theorem 7. PWBO can be solved in polynomial time.

Proof sketch. Let G = (V,w) be a partial n-weighted tournament, x ∈ V . We give a
polynomial-time algorithm for checking whether x ∈ PWBO(G), via a reduction to the
problem of computing a maximum size b-matching of a bipartite graph.

Let Gx→ = (V,wx→) denote the graph obtained from G by maximally reinforcing x, and
s∗ = sBO(x,Gx→) the Borda score of x in Gx→. From Gx→, we then construct a bipartite
graph H = (VH , EH) with vertices VH = V \ {x} ∪ E<n, where E<n = {{i, j} ⊆ V \ {x} :
w(i, j) + w(j, i) < n},6 and edges EH = {{v, e} : v ∈ V \ {x} and v ∈ e ∈ E<n}. We
further define vertex capacities b : VH → N0 such that b({i, j}) = n − w(i, j) − w(j, i) for
{i, j} ∈ E<n and b(v) = s∗ − sBO(v,Gx→) for v ∈ V \ {x}.

Now observe that in any completion T = (V,w′) ∈ [Gx→], w′(i, j) + w′(j, i) = n for all
i, j ∈ V with i 6= j. The sum of the Borda scores in T is therefore n|V |(|V | − 1)/2. Some
of the weight has already been used up in Gx→; the weight which has not yet been used up
is equal to α = n|V |(|V | − 1)/2−

∑
v∈V sBO(v,Gx→). We claim that x ∈ PWBO(G) if and

only if H has a b-matching of size at least α.

This idea can be extended to a polynomial-time algorithm for PWSBO where we use
a similar construction for a given G = (V,w), a candidate set X ⊂ X and a tar-
get Borda score s∗. Binary search can be used to efficiently search the interval I =
[maxx∈X sBO(x,G), n(|V | − 1)] of possible target scores. The full proof is omitted.

6Note that w(i, j) = wx→(i, j) for alternatives i, j ∈ V \ {x}.



Theorem 8. PWSBO can be solved in polynomial time.

We conclude this section by showing that NWBO can be solved in polynomial time as
well.

Theorem 9. NWBO can be solved in polynomial time.

Proof. Let G = (V,w) be a partial weighted tournament, x ∈ V . We give a polynomial-time
algorithm for checking whether x ∈ NWBO(G).

Let G′ = Gx←. We want to check whether some other alternative y ∈ V \ {x} can
achieve a Borda score of more than s∗ = sBO(x,G′). This can be done separately for each
y ∈ V \ {x} by reinforcing it as much as possible in G′. If for some y, sBO(y,G′

y→
) > s∗,

then x /∈ NWBO(G). If, on the other hand, sBO(y,G′
y→

) ≤ s∗ for all y ∈ V \ {x}, then
x ∈ NWBO(G).

Since the Borda and Copeland solutions coincide in unweighted tournaments, the above
results imply that PWCO and NWCO can be solved in polynomial time. The same is true
for PWSCO , because the Copeland score is bounded by |V | − 1.

5.2 Maximin

The maximin score sMM (x, T ) of an alternative x in a weighted tournament T = (V,w), is
given by its worst pairwise comparison, i.e., sMM (x, T ) = miny∈V \{x} w(x, y). The maxi-
min solution, also known as Simpson’s method and denoted by MM , returns the set of all
alternatives with the highest maximin score.

We first show that PWMM is polynomial-time solvable by reducing it to the problem of
finding a maximum cardinality matching of a graph.

Theorem 10. PWMM can be solved in polynomial time.

Proof sketch. We show how to check whether x ∈ PWMM (G) for a partial n-weighted tour-
nament G = (V,w). Consider the graph Gx→ = (V,wx→). Then, sMM (x,Gx→) is the best
possible maximin score x can get among all completions of G. If sMM (x,Gx→) ≥ n

2 , then we
have sMM (y, T ) ≤ wx→(y, x) ≤ n

2 for every y ∈ V \{x} and every completion T ∈ [Gx→] and
therefore x ∈ PWMM (G). Now consider sMM (x,Gx→) < n

2 . We will reduce the problem of
checking whether x ∈ PWMM (G) to that of finding a maximum cardinality matching, which
is known to be solvable in polynomial time [11]. We want to find a completion T ∈ [Gx→]
such that sMM (x, T ) ≥ sMM (y, T ) for all y ∈ V \ {x}. If there exists a y ∈ V \ {x} such
that sMM (x,Gx→) < sMM (y,Gx→), then we already know that x /∈ PWMM (G). Otherwise,
each y ∈ V \ {x} derives its maximin score from at least one particular edge (y, z) where
z ∈ V \ {x, y} and w(y, z) ≤ sMM (x,Gx→). Moreover, it is clear that in any completion, y
and z cannot both achieve a maximin score of less than sMM (x,Gx→) from edges (y, z) and
(z, y) at the same time.

Construct the following undirected and unweighted graph H = (VH , EH) where VH =
V \ {x} ∪ {{i, j} ⊆ V : i 6= j}. Build up EH such that: {i, {i, j}} ∈ EH if and only if i 6= j
and wx→(i, j) ≤ sMM (x,Gx→). In this way, if i is matched to {i, j} in H, then i derives a
maximin score of less than or equal to sMM (x,Gx→) from his comparison with j. Clearly,
H is polynomial in the size of G. Then, the claim is that x ∈ PWMM (G) if and only if there
exists a matching of cardinality |V | − 1 in H.

For NWMM we apply a similar technique as for NWBO : to see whether x ∈ NWMM (G),
we start from the graph Gx← and check whether some other alternative can achieve a higher
maximin score than x in a completion of Gx←.



Theorem 11. NWMM can be solved in polynomial time.

We conclude the section by showing that PWSMM can be solved in polynomial time.
The proof proceeds by identifying the maximin values that could potentially be achieved
simultaneously by all elements of the set in question, and solving the problem for each of
these values using similar techniques as in the proof of Theorem 10. Only a polynomially
bounded number of problems need to be considered.

Theorem 12. PWSMM can be solved in polynomial time.

5.3 Ranked Pairs

The method of ranked pairs (RP) is the only resolute solution concept considered in this
paper. Given a weighted tournament T = (V,w), it returns the unique undominated al-
ternative of a transitive tournament T ′ on V constructed in the following manner. First
order the (directed) edges of T in decreasing order of weight, breaking ties according to
some exogenously given tie-breaking rule. Then consider the edges one by one according to
this ordering. If the current edge can be added to T ′ without creating a cycle, then do so;
otherwise discard the edge.7

It is readily appreciated that this procedure, and thus the winner determination problem
for RP , is computationally tractable. The possible winner problem, on the other hand, turns
out to be NP-hard. This also shows that tractability of the winner determination problem,
while necessary for tractability of PW , is not generally sufficient.

Theorem 13. PWRP is NP-complete.

Proof sketch. Membership in NP is obvious, as for a given completion and a given tie-
breaking rule, the ranked pairs winner can be found efficiently.

NP-hardness can be shown by a reduction from Sat. For a Boolean formula ϕ in
conjunctive normal-form with a set C of clauses and set P of propositional variables, we
construct a partial 8-weighted tournament Gϕ = (Vϕ, wϕ) as follows. For each variable
p ∈ P , Vϕ contains two literal alternatives p and p̄ and two auxiliary alternatives p′ and p̄′.
For each clause c ∈ C, there is an alternative c. Finally, there is an alternative d for which
membership in PWRP (Gϕ) is to be decided.

In order to conveniently describe the weight function wϕ, let us introduce the following
terminology. For two alternatives x, y ∈ Vϕ, say that there is a heavy edge from x to y if
wϕ(x, y) = 8 (and therefore wϕ(y, x) = 0). A medium edge from x to y means wϕ(x, y) = 6
and wϕ(y, x) = 2, and a light edge from x to y means wϕ(x, y) = 5 and wϕ(y, x) = 3.
Finally, a partial edge between x and y means wϕ(x, y) = wϕ(y, x) = 1.

We are now ready to define wϕ. For each variable p ∈ P , we have heavy edges from p to
p̄′ and from p̄ to p′, and partial edges between p and p′ and between p̄ and p̄′. For each clause
c ∈ C, we have a medium edge from c to d and a heavy edge from the literal alternative
`i ∈ {p, p̄} to c if the corresponding literal `i appears in the clause c. Finally, we have heavy
edges from d to all auxiliary alternatives and light edges from d to all literal alternatives.
For all pairs x, y for which no edge has been specified, we define wϕ(x, y) = wϕ(y, x) = 4.

Observe that the only pairs of alternatives for which wϕ is not fully specified are those
pairs that are connected by a partial edge. It can be shown that alternative d is a possible

7The variant of ranked pairs originally proposed by Tideman [23], which was also used by Xia and
Conitzer [25], instead chooses a set of alternatives, containing any alternative that is selected by the above
procedure for some way of breaking ties among edges with equal weight. We do not consider this irresolute
version of ranked pairs because it was recently shown that winner determination for this variant is NP-
hard [5]. As mentioned in Section 3, this immediately implies that all problems concerning possible or
necessary winners are NP-hard as well.



ranked pairs winner in Gϕ if and only if ϕ is satisfiable. Intuitively, choosing a completion
w′ of wϕ such that w′(p′, p) is large and w′(p̄′, p̄) is small corresponds to setting the variable
p to “true.”

Since the ranked pairs method is resolute, hardness of PWSRP follows immediately.

Corollary 1. PWSRP is NP-complete.

Computing necessary ranked pairs winners turns out to be coNP-complete. This is
again somewhat surprising, as computing necessary winners is often considerably easier than
computing possible winners, both for partial tournaments and partial preference profiles [25].

Theorem 14. NWRP is coNP-complete.

Proof sketch. Membership in coNP is again obvious. For hardness, we give a reduction from
UnSat that is a slight variation of the reduction in the proof of Theorem 13. We introduce
a new alternative d∗, which has heavy edges to all alternatives in Vϕ except d. Furthermore,
there is a light edge from d to d∗. It can be shown that d∗ is a necessary ranked pairs winner
in this partial 8-weighted tournament if and only if ϕ is unsatisfiable.

6 Discussion

The problem of computing possible and necessary winners for partial preference profiles has
recently received a lot of attention. In this paper, we have investigated this problem in a
setting where partially specified (weighted or unweighted) tournaments instead of profiles
are given as input. We have summarized our findings in Table 1.

A key conclusion is that computational problems for partial tournaments can be signif-
icantly easier than their counterparts for partial profiles. For example, possible Borda or
maximin winners can be found efficiently for partial tournaments, whereas the corresponding
problems for partial profiles are NP-complete [25].

While tractability of the winner determination problem is necessary for tractability of
the possible or necessary winners problems, the results for ranked pairs in Section 5.3 show
that it is not sufficient. We further considered the problem of deciding whether a given
subset of alternatives equals the winner set for some completion of the partial tournament.
The results for the uncovered set in Section 4.4 imply that this problem cannot be reduced
to the computation of possible or necessary winners, but whether a reduction exists in the
opposite direction remains an open problem.

Partial tournaments have also been studied in their own right, independent of their
possible completions. For instance, Peris and Subiza [18] and Dutta and Laslier [10] have
generalized several tournament solutions to incomplete tournaments by directly adapting
their definitions. In this context, the notion of possible winners suggests a canonical way to
generalize a tournament solution to incomplete tournaments. The positive computational
results in this paper are an indication that this may be a promising approach.

Furthermore, we have not examined the complexity of computing possible and necessary
winners for some attractive tournament solutions such as the minimal covering set, the
bipartisan set [17] and weighted versions of the top cycle and the uncovered set [9].

An interesting related question that goes beyond the computation of possible and neces-
sary winners is the following: when the winners are not yet fully determined, which unknown
comparisons need to be learned, or which matches should be played? The construction of
a policy tree defining an optimal protocol minimizing the number of questions to be asked
or the number of matches to be played, in the worst case or on average, is an even more
challenging issue that we leave for further research.
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