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Abstract

In a voting system, sometimes multiple new alternatives will join the election after the voters’
preferences over the initial alternatives have been revealed. Computing whether a given alter-
native can be a co-winner when multiple new alternatives join the election is called thepossible
co-winner with new alternatives (PcWNA)problem, introduced by Chevaleyre et al. [5, 6]. In
this paper, we show that the PcWNA problems areNP-complete for the Bucklin, Copeland0,
and Simpson (a.k.a. maximin) rule, even when the number of new alternatives is no more than
a constant. We also show that the PcWNA problem can be solved in polynomial time for plu-
rality with runoff. For the approval rule, we define three different ways to extend a linear order
with new alternatives, and characterize the computationalcomplexity of the PcWNA problem
for each of them.

1 Introduction

In many real-life situations, a set of voters have to choose acommon alternative out of a set that
can grow during the process. For instance, when a committee want to decide which proposal should
be granted, some applications might arrive late (due to unexpected delay in mailing system, etc).
Suppose that we have already elicited the preference of the voters (members in the committee) on
the initial proposals. It is important for the applicants toknow whether they are already out (so
that they can submit the same proposal to other founding sources right away without waiting for the
committee members to make the final decision). A recent paperby Chevaleyre et al. [5] considers
the following problem:suppose that the voters’ preferences about a set of initial alternatives have
already been elicited, and we know that a given numberk of new alternatives will join the election;
we ask who among the initial alternatives can possibly win the election in the end. This problem
is a special case of thepossible winner problem[9, 12, 11, 3, 4, 2], restricted to the case where the
incomplete profile consists of a collection of full rankingsover the initial alternatives (nothing being
known about the voters’ preferences about the new alternatives), somehow dual of another special
case of the problem where the incomplete profile consists of acollection of full rankings over all
alternatives for a subset of voters (nothing being known about the remaining voters’ preferences),
which itself is equivalent to the coalitional manipulationproblem. The problem is also related to
control by adding candidates [1], as discussed in [5].

Chevaleyre et al. [5, 6] investigated the complexity of computing possible winners with new al-
ternatives, and laid the focus on scoring rules, obtaining both polynomiality andNP-completeness
results, depending on the scoring rule used and the number ofnew alternatives. Their results, how-
ever, did not go beyond scoring rules. Here we go further and give results for several other common
rules, especially some common rules that are based onpairwise elections. After giving some back-
ground in Section 2, each of the following sections is devoted to the PcWNA problem for a specific
voting rule. In Section 3, we focus on approval voting. Sincethe notion of a complete profile (includ-
ing the new alternatives) extending a partial profile over the initial alternatives is not straightforward,
we propose three possible definitions, which we think are thethree most reasonable definitions. We
show that PcWNA problems are trivial for two of these definitions, andNP-complete for the third
one. In Sections 4, 5 and 6 we show that the problem isNP-complete for, respectively, the Bucklin
rule, the Copeland rule, and the Simpson (a.k.a. maximin) rule, and finally in Section 7 we focus



on plurality with runoff, for which the problem is inP (due to the space constraint, the proof of this
result is omitted).

2 Preliminaries

Let C be the set ofalternatives(or candidates), with|C| = m. Let I(C) denote the set of votes.
Most often, the set of votes is the set of all linear orders over C. An n-profileP is a collection ofn
votes for somen ∈ N, that is,P ∈ I(C)n. A voting ruler is a mapping that assigns to each profile
a set of winning alternatives, that is,r is a mapping from{∅} ∪ I(C) ∪ I(C)2 ∪ . . . to 2C . Some
common voting rules are listed below. For all of them (exceptthe approval rule),I(C) is the set of
all linear orders overC; for the approval rule, the set of votes is the set of all subsets of C, that is,
I(C) = {S : S ⊆ C}.
(Positional) scoring rules: Given ascoring vector~v = (v(1), . . . , v(m)), for any voteV ∈ L(C)
and anyc ∈ C, lets(V, c) = v(j), wherej is the rank ofc in V . For any profileP = (V1, . . . , Vn), let
s(P, c) =

∑n
i=1 s(Vi, c). The rule will selectc ∈ C so thats(P, c) is maximized. Some examples of

positional scoring rules areBorda, for which the scoring vector is(m−1, m−2, . . . , 0); l-approval
(l ≤ m), for which the scoring vector isv(1) = . . . = v(l) = 1 andvl+1 = . . . = vm = 0; and
plurality, for which the scoring vector is(1, 0, . . . , 0).
Approval : Each voter submits a set of alternatives (that is, the alternatives that are “approved”
by the voter). The winner is the alternative approved by the largest number of voters. Note that
the approval rule is different from thel-approval rule, in that for thel-approval rule, a voter must
approvel alternatives, whereas for the approval rule, a voter can approve an arbitrary number of
alternatives.
Bucklin : The Bucklin score of an alternativec is the smallest numbert such that more than half of
the votes rankc among topt positions. The alternatives that have the lowest Bucklin score win. (We
do not consider any further tie-breaking for Bucklin.)
Copelandα (0 ≤ α ≤ 1): For any two alternativesci andcj , we can simulate apairwise election
between them, by seeing how many votes preferci to cj , and how many prefercj to ci; the winner
of the pairwise election is the one preferred more often. Then, an alternative receives one point for
each win in a pairwise election,α points for each tie, and zero point for each loss. The alternatives
that have the highest scores win.
Simpson (a.k.a. maximin): LetNP (ci, cj) denote the number of votes that rankci ahead ofcj in P .
The Simpson score of alternativec ∈ C in profileP is defined asSimP (c) = min{NP (c, c′) : c′ ∈
C \{c}}. A Simpson winner forP is an alternativec0 ∈ C such thatSimP (c0) = max{SimP (c) :
c ∈ C}.
Plurality with runoff : The election has two rounds. In the first round, all alternatives are eliminated
except the two with the highest plurality scores. In the second round (runoff), the winner is the
alternative that wins the pairwise election between them.

Let C denote the set of original alternatives, letY denote the set of new alternatives. For any
linear orderV overC, a linear orderV ′ overC ∪ {V } extendV , if in V ′, the pairwise comparison
between any pair of alternatives inC is the same as inV . That is, for anyc, d ∈ C, c ≻V d if and
only if c ≻V ′ d.

Given a voting ruler, an alternativec, and a profileP overC, we are asked whether there exists
a profileP ′ overC ∪ Y such thatP ′ is an extension ofP andc ∈ r(P ′). This problem is called the
possible co-winner with new alternatives (PcWNA)problem [5, 6].

Similarly, we let PWNAdenote the problem in which we are asked whetherc is a possible
(unique) winner, that is,r(P ′) = {c}. Up to now, the PcWNA and PWNA problems are well-
defined for all voting rules studied in this paper (except theapproval rule). For the approval rule, we
will introduce three types of extension, and discuss the computational complexity of the PcWNA
and PWNA problems under these extensions.



In this paper, allNP-hardness results are proved by reductions from the Exact Cover by 3-Sets
problem (denoted by X3C) or the 3-DIMENSIONAL MATCHING problem (denoted by 3DM). An
instanceI = (S,V) of X3C consists of a setV = {v1, . . . , v3q} of 3q elements andt ≥ q 3-sets
S = {S1, . . . , St} of V , i.e., for anyi ≤ t, Si ⊆ V and |Si| = 3. For anyv ∈ V , let dI(v)
denote the number of 3-sets containing elementv in instanceI. Let ∆(I) = maxv∈V dI(v). We
are asked whether there exists a subsetJ ⊆ {1, . . . , t} such that|J | = q and

⋃
j∈J Sj = V (indeed,

the setsSj for j ∈ J form a partition ofV). This problem is known to beNP-complete, even
if ∆(I) ≤ 3 (problem [SP2] page 221 in [8]). In this paper, we will use a special case of 3DM
that is also a special case of X3C, defined as follows.1 GivenA, B, X , whereA = {a1, . . . , aq},
B = {b1, . . . , bq}, X = {x1, . . . , xq}, T ⊆ A × B × X , T = {S1, . . . , St} with t ≥ q. We are
asked whether there existsM ⊆ T such that|M | = q and for any(a1, b1, x1), (a2, b2, x2) ∈ M , we
havea1 6= a2, b1 6= b2, andx1 6= x2. That is,M corresponds to an exact cover ofV = A ∪ B ∪ X .
This problem with the restriction where no element ofA∪B ∪X occurs in more than 3 triples (i.e,
∆(I) ≤ 3) is known to be NP-complete (problem [SP1] page 221 in [8]).

It is straightforward to check that the PcWNA (respectively, PWNA) problems for all voting
rules studied in this paper are in NP, because given an extension of a profileP , it is polynomial to
verify if the given alternativec is a co-winner (respectively, unique winner) for all rules studied in
this paper (again, we discuss the approval rule separately). Therefore, in this paper we only show
NP-hardness proofs.

To prove that the PcWNA and PWNA problems areNP-hard, we first prove that another useful
special case of 3DM (as well as X3C) remainsNP-complete.

Proposition 1 3DM is NP-complete, even ifq is even,t = 3q/2, and∆(I) ≤ 6.

Proof of Proposition 1: Let I = (T, A × B × X) be an instance of 3DM withA = {a1, . . . , aq},
B = {b1, . . . , bq}, X = {x1, . . . , xq}, T ⊆ A × B × X , T = {S1, . . . , St} and∆(I) ≤ 3. We
next show how to build an instanceI ′ = (T ′, A′ × B′ × X ′) of 3DM in polynomial time, with
|A′| = |B′| = |X ′| = q′, T ′ ⊆ A′ × B′ × X ′ and|T ′| = t′ such thatq′ is even,t′ = 3q′/2, and
∆(I ′) ≤ 6.

• If q is odd, then we add to the instance 3 new elements{a′
1, b

′
1, x

′
1} with A′ = A ∪ {a′

1},
B′ = B ∪ {b′1}, X ′ = X ∪ {x′

1} and one new triplet(a′
1, b

′
1, x

′
1).

• Suppose thatq is even. If t > 3q/2, then we add6(t − 3q/2) new elements
{a′

1, . . . , a
′

2(t−3q/2)} to A, {b′1, . . . , b
′

2(t−3q/2)} to B, {x′
1, . . . , x

′

2(t−3q/2)} to X and2(t − 3q/2)

new triples{S′
1, . . . , S

′

2(t−3q/2)}, where for anyi ≤ 2(t − 3q/2), S′
i = (a′

i, b
′
i, x

′
i). If t < 3q/2,

then we add3q/2 − t dummy triples toT by duplicating3q/2 − t triples ofT once each. We note
thatt ≥ q implies thatt ≥ 3q/2 − t.

It is easy to check inI ′, q′ is even,t′ = 3q′/2, and∆(I ′) ≤ 6. The size of the input of the new
instance is polynomial in the size of the input of the old instance. Moreover,I is a yes-instance if
and only ifI ′ is also a yes-instance. �

3 Approval

Since the input of the approval rule is different from the input of other voting rules studied in this
paper, we have to define the set of possible extensions of an approval profile overC. Let PC =
(V1, . . . , Vn) be an approval profile overC, where eachVi is a subset ofC. An extension ofPC over
C ∪ Y is a collection(V ′

1 , . . . , V ′
n) whereV ′

i ⊆ C ∪ Y is an extension ofVi. Now, we have to define
what it means to say thatV ′ ⊆ C ∪ Y is an extension ofV ⊆ C. We can think of three natural
definitions:

1Generally, 3DM is not a special case of X3C.



Definition 1 (extension of an approval vote, definition 1)V ′ ⊆ C ∪ Y is an extension ofV ⊆ C
if V ′ ∩ C = V .

In other words, under this definition,V ′ is an extension ofV if V ′ = V ∪ Y ′, whereY ′ ⊆ Y .
This definition coincides with the definition used in [10] (namely, Definition 4.3) for the control
of approval voting by adding candidates. The problem with Definition 1 is that it assumes that
any alternative approved inV is still approved inV ′. However, in some contexts, extending the
choice with alternatives ofY may change the “approval threshold”. Moreover, since we have more
alternatives, this threshold should either stay the same ormove upwards: some alternatives that were
approved initially may become disapproved. This leads to the following definition of extension:

Definition 2 (extension of an approval vote, definition 2)V ′ ⊆ C ∪ Y is an extension ofV ⊆ X
if one of the following conditions holds: (1)V = V ′; (2) V ′ ∩ Y 6= ∅ andV ′ ∩ C ⊆ V .

Lastly, we may also allow the acceptance threshold to move downwards, even though the set
of alternatives grows, especially in the case where the new alternatives are particularly bad, thus
rendering some alternatives inC acceptable after all. This leads to the third definition of extension:

Definition 3 (extension of an approval vote, definition 3)V ′ ⊆ C ∪ Y is an extension ofV ⊆ C
if one of the following conditions holds: (1)V ′ ∩ C ⊂ V andV ′ ∩ Y 6= ∅; (2) V ⊂ V ′ ∩ C, and
Y \ V ′ 6= ∅; (3) V ′ ∩ C = V .

Under Definition 3, either the threshold moves upward, in which case all alternatives which were
disapproved inV are still disapproved inV ′, and obviously, at least one alternative inY is approved;
or the threshold moves downward, in which case all alternatives that were approved inV are still
approved inV ′, and obviously not all alternatives inY are approved. Note that in the case where
V ′ ∩ C = V , the threshold can have moved upward, or downward, or remained the same2.

Let us give a brief summary of the three definitions of extension. Definition 1 assumes that the
threshold cannot move; Definition 2 assumes that the threshold can stay the same or move upward
(because the set of alternatives grows); and Definition 3 assumes that the threshold can stay the same,
move upward, or move downward. Next, we show an example that illustrates these definitions. Let
C = {a, b, c, d}, Y = {y1, y2}, andV = {a, b}.

• V ′
1 = {a, b} andV ′

2 = {a, b, y1} are extensions ofV under any definition;
• V ′ = {a, y1} is an extension ofV under definitions 2 and 3 but not under definition 1 (the

threshold has moved upward, sinceb was approved inV and is no longer approved inV ′);
• V ′ = {a, b, c, y1} is an extension ofV under definition 3 but neither under definitions 1 nor 2

(the threshold has moved downward, sincec was not approved inV and becomes approved inV ′ –
note that, intuitively,y2 must be a very unfavored alternative for this to happen);

• V ′ = {a, b, c} is an extension ofV under definitions 3 but neither under definitions 1 nor 2,
for the same reason as above;

• V ′ = {a} is not an extension ofV under any of the definitions: to haveb disapproved inV ′

and approved inV , the threshold has to move upward, which cannot be the case ifno alternative of
Y is approved;

• V ′ = {a, b, c, y1, y2} is not an extension ofV under any of the definitions: to havec disap-
proved inV and approved inV ′, the threshold has to move downward, which cannot be the caseof
all alternatives ofY are disapproved;

2The rationale behind Definition 3 is that the threshold may depend on the average quality of candidates, and therefore
may go down after some bas new candidates have been added. Forinstance, suppose a voter hates red meat, and has the
preference relationtofu ≻ fish ≻ chicken ≻ beef ≻ mutton; if the initial set of candidates is{tofu, fish,
chicken}, it is perfectly reasonable that he should approve{tofu, fish }, while he would approve{tofu, fish,
chicken} afterbeef andmutton have been added in the set of candidates. This is perfectly inagreement with the notion
of sincere ballot in approval voting (see,e.g., [7] and references therein).



• V ′ = {a, c, y1} is not an extension ofV under any of the definitions: the threshold cannot
simultaneously move upward and downward.

It is straightforward to check that the PcWNA and PWNA problems are inP for approval under
definition 1: an alternativec ∈ C is a possible (co-)winner inP if and only if it is a (co-)winner for
approval inP (this is because for anyV ∈ P , the scores of alternatives inC will not change from
V to its extensionV ′). However, when we adopt definition 2 of extension, the problems become
NP-complete.

Theorem 1 Under Definition 2, PcWNA and PWNA problems areNP-complete for the approval
rule.

Proof of Theorem 1: We first prove the hardness of the PcWNA problem by a reductionfrom
X3C. For any X3C instanceI = (S,V), we construct the following PcWNA instance.

Alternatives: V ∪ {c} ∪ Y , whereY = {y1, . . . , yt−q}.
Votes: for anyi ≤ t, we have a voteVi = Si; and we have an additional voteVt+1 = {c}. That

is, P = (V1, . . . , Vt, Vt+1).
Suppose the X3C instance has a solution, denoted by{Si1 , . . . , Siq

}. Then, take the following
extensionP ′ of P : for anyj ≤ q, let V ′

ij
= Vij

. For anyi ≤ t such thati 6= ij for anyj ≤ q, we let
V ′

i be a singleton containing exactly one of the new alternatives. LetV ′
p+1 = {c}. For anyv ∈ V ,

becausev appears exactly in oneSij
, v is approved by exactly one voter. So isc. Now, there are

exactlyt − q votesVi wherei is not equal to one of theij ’s. Therefore, the total approval score of
the new alternatives ist− q, and it suffices to approve every new alternative exactly once. Therefore
c is a co-winner inP ′, and thus a possible co-winner inP .

Conversely, supposec is a possible co-winner forP and letP ′ be an extension ofP for which
c is a co-winner. We note thatc is approved at most once inP ′. Therefore, every alternative in
V ∪Y must be approved at most once. Without loss of generality, assume that every voteV ′

i in P ′ is
either of the formVi or of the form{yj} (if not, remove every alternative (except oneyj) from V ′

i ;
c will still be a co-winner in the resulting profile). Since we havet − q new alternatives, each being
approved at most once inP ′, we have at leastq votesV ′

i in P ′ such thatV ′
i = Vi. If we had more

thanq votesV ′
i such thatV ′

i = Vi, then more than3q points would be distributed to3q alternatives
and one of them would get at least 2, which means thatc would not be a co-winner inP ′. Therefore
we have exactlyq votesV ′

i such thatV ′
i = Vi, and3q points distributed to3q alternatives; since

none of them gets more than one point, they get one point each,which implies that the collection of
all Si such thatVi = V ′

i forms an exact cover ofC.
For the PWNA problem, we add one more voteVt+2 = {c} to the profileP . �

Now, let us consider Definition 3. Notice that the profileP ′ where every voter addsc to her
vote (if she was not already voting forc) is an extension ofP , and obviouslyc is a co-winner in
P ′, therefore every alternative ofC is a possible co-winner forP , which means that the problem is
trivial.

4 Bucklin

Theorem 2 The PWNA and PcWNA problems areNP-complete for Bucklin, even when there are
three new alternatives.

Proof of Theorem 2: We prove theNP-hardness of the PcWNA problem by a reduction from the
special case of 3DM mentioned in Proposition 1. Given any 3DMinstance where|A| = |B| =
|X | = q, q is even,t = 3q/2, and no element inA ∪ B ∪ X appears in more than 6 elements inT ,
we construct a PcWNA instance as follows. Without loss of generality, assumeq ≥ 5; otherwise the
instance 3DM can be solved in linear time.
Alternatives: A∪B ∪X ∪Y ∪D∪{c}, whereY = {y1, y2, y3} is the set of new alternatives, and



D = {d1, . . . , d9q2} is the set of auxiliary alternatives.
Votes: For anyi ≤ 2q + 1, we define a voteVi. Let P = (V1, . . . , V2q+1). Instead of defining
these votes explicitly, below we give the properties thatP satisfies. The votes can be constructed in
polynomial time.

(i) For anyi ≤ q, c is ranked in the first position. SupposeSi = (a, b, x). Then, leta, b, x be
ranked in the(3q + 1)th, (3q + 2)th, and(3q + 3)th positions inVi, respectively.

(ii) For any i such thatq < i ≤ 3q/2 = t, c is ranked in the(3q + 4)th position. Suppose
Si = (a, b, x). Then, leta, b, x be ranked in the(3q + 1)th ,(3q + 2)th, and(3q + 3)th positions in
Vi, respectively.

(iii) For any i such that3q/2 < i ≤ 2q + 1, let c be ranked in the(3q + 4)th position, and no
alternative inA ∪ B ∪ X is ranked in the(3q + 1)th, (3q + 2)th, or(3q + 3)th position inVi.

(iv) For anyj ≤ 3q, vj is ranked within top3q + 3 positions for exactlyq + 1 times inP .
(v) For anyd ∈ D, d is ranked within top3q + 4 positions at most once.
The existence of a profileP that satisfies (iv) is guaranteed by the assumption that in the 3DM

instance,q ≥ 5, no element is covered more than 6 times, and there are enoughpositions within top
3q + 3 positions in all votes to fit in all alternatives inC, with each alternative appearsq + 1 times.
We note that there are in total9q2 auxiliary alternatives, and the total number of top3q +4 positions
in all votes is(3q + 4)(2q + 1) < 9q2. Therefore, (v) can be satisfied. It follows that there exists a
profileP that satisfies (i), (ii), (iii), (iv), and (v), and such a profile can be constructed in polynomial
time (by first putting the alternatives to their positions defined in (i), (ii), and (iii), then filling out
the positions using remaining alternatives to meet conditions (iv) and (v)). The Bucklin score ofc is
3q + 4 in P . For anyj ≤ q, the Bucklin score ofaj (resp.,bj , xj ) is at most3q + 3 in P , and for
anyj ≤ 9q2, the Bucklin score ofdj ∈ D is at least3q + 4 in P . Observe that the Bucklin score of
any alternative cannot be decreased in any extension ofP .

Suppose that the 3DM instance has a solution, denoted by{Sj : j ∈ J}, whereJ ⊆ {1, . . . , t}.
For anyj ∈ J , we letV ′

j be the extension ofVj in which y1, y2, y3 are ranked in the(3q + 1)th,
(3q + 2)th, and(3q +3)th positions, respectively. For anyj ∈ {1, . . . , 2q + 1} \ J , we letV ′

j be the
extension ofVj where{y1, y2, y3} are ranked in the bottom positions. LetP ′ = (V ′

1 , . . . , V ′
2q+1). It

follows that inP ′, the Bucklin score ofc is 3q + 4, and the Bucklin score of any other alternative is
at least3q + 4. Therefore,c is a co-winner for Bucklin forP ′, which means that there is a solution
to the PcWNA instance.

Conversely, suppose that there is a solution to the PcWNA instance, denoted byP ′ =
(V ′

1 , . . . , V ′
2q+1). We recall that in order forc to be a co-winner, the Bucklin score of any alter-

native inA∪B ∪X must be at least3q +4 (since the Bucklin score ofc cannot decrease inP ′). We
note that there are only three new alternatives, and the(3q+1)th, (3q+2)th, and(3q+3)th positions
in Vi are occupied by some alternatives inD. It follows that for everya ∈ A and everyi such that
t < i ≤ 2q + 1, it cannot be the case thata is ranked within top3q + 3 positions inVi, anda is
ranked lower than the(3q + 3)th position inV ′

i . Therefore, for everya ∈ A, there existsi ≤ t such
thata is ranked within top3q + 3 positions inVi, and is ranked lower than the(3q + 3)th position
in V ′

i . It follows that in each of suchV ′
i wherea is ranked lower than the(3q + 3)th position, the

new alternatives must be ranked within top3q + 3 positions. Therefore, each new alternative must
be ranked within top3q + 3 positions inV1, . . . , Vt for q times (one for eacha ∈ A). Becausec is
a co-winner, no alternative inY is ranked within top3q + 3 positions inP ′ for more thanq times.
Therefore, in exactlyq votes inP ′, the alternatives inY are ranked within top3q + 3 positions. We
let {V ′

i1 , . . . , V
′
iq
} denote these votes.

We claim that{Si1 , . . . , Siq
} is a solution to the 3DM instance. If not, then there existse ∈

B ∪ X that does not appear in anySij
. However, it follows thate is ranked within top3q + 3

positions for exactlyq times, which means that the Bucklin score ofe is at most3q + 3. Therefore,
the Bucklin score ofe is lower than the Bucklin score ofc. This contradicts the assumption thatc is
a co-winner forP ′. Therefore, the PcWNA problem isNP-hard for Bucklin.



For PWNA, we make the following changes. In conditions (i) and (ii) thatP should satisfy, we
require thata, b, x are in the(3q + 2)th, (3q + 3)th, and(3q + 4)th positions, respectively. �

5 Copeland0
For any profileP , the Copeland score of an alternativec ∈ C in profile P is denoted by
CSP (c) = |{c′ ∈ C : NP (c, c′) > n/2}| (recall that we focus on Copeland0, which means that
the tie in a pairwise election gives 0 point to both participating alternatives). We have the following
straightforward observation.

Property 1 For any profileP ′ overC ∪ {y} that is an extension of profileP , the following inequal-
ities hold:

∀c ∈ C, CSP (c) ≤ CSP ′(c) ≤ CSP (c) + 1 (1)

We prove that a useful restriction of X3C remainsNP-complete.

Proposition 2 X3C is NP-complete, even ift = 2q − 2 and∆(I) ≤ 6.

Proof of Proposition 2: The proof is similar to the proof for Proposition 1. LetI = (S,V) be
an instance of X3C, whereV = {v1, . . . , v3q} andS = {S1, . . . , St}. We next show how to build
an instanceI ′ = (S′,V ′) of X3C in polynomial time, with|V ′| = 3q′ and |S′| ≤ 6 such that
t′ = 2q′ − 2 and∆(I ′) ≤ 6.

• If t < 2q − 2, then we add2q − 2 − t dummy 3-sets toS by duplicating2q − 2 − t sets ofS
once each. It follows fromt ≥ q that2q − 2 − t ≤ q − 2 < t.

• If t > 2q−2, then we add3(t−2q+2) new elementsv′1, . . . , v
′

3(t−2q+2) andt−2q+2 3-sets
{v′1, v

′
2, v

′
3}, . . . , {v

′

3(t−2q+2)−2, v
′

3(t−2q+2)−1, v
′

3(t−2q+2)}.
The size of the input of the new instance is polynomial in the size of the input of the old instance.

Moreover,I is a yes-instance if and only ifI ′ is also a yes-instance. Finally, in the new instanceI ′,
we have:|V ′| = |V| = 3q andt′ = |S′| = t+(2q−2− t) = 2q−2 = 2q′−2 in the first case, while
3q′ = |X ′| = 3q+3(t−2q+2) = 3(t−q+2) andt′ = |S′| = t+(t−2q+2) = 2(t−q+1) = 2(q′−1)
in the second case. Moreover,dI′(v) ≤ 2dI(v) ≤ 6 if v ∈ V , anddI′(v) = 1 if v ∈ V ′ \ V . �

Theorem 3 The PcWNA problem isNP-complete for Copeland0, even when there is one new alter-
native.

Proof of Theorem 3: The proof is by a reduction from X3C. LetI = (S,V), wheret = 2q−2 and
∆(I) ≤ 6 be an instance of X3C as described in Proposition 2. As previously, assumeq ≥ 8; hence
∆(I) ≤ q − 2. For any X3C instance, we construct the following PcWNA instance for Copeland0.
Alternatives: V ∪ D ∪ Y ∪ {c}, whereD = {d1, . . . , dt} andY = {y} is the set of the new
alternative.
Votes: For anyi ≤ t, we define the following2t votes.

Vi = [di ≻ (D \ {di}) ≻ (V \ Si) ≻ c ≻ Si]

V ′
i = [rev(Si) ≻ rev(V \ Si) ≻ rev(D \ {di}) ≻ c ≻ di]

Here the elements in a set are ranked according to the order oftheir subscripts, i.e., ifSi =
{v2, v5, v7}, then the elements are ranked asv2 ≻ v5 ≻ v7. For any setX such thatX ⊂ V
or X ⊂ D, let rev(X) denote the linear order where the elements inX are ranked according to the
reversed order of their subscripts. For example, rev({v2, v5, v7}) = v7 ≻ v5 ≻ v2.

We also define the followingt = 2q − 2 votes.

W1 = . . . = Wq−1 = [V ≻ D ≻ c]



W ′
1 = . . . = W ′

q−1 = [rev(D) ≻ rev(V) ≻ c]

Let P = (V1, V
′
1 , . . . , Vt, V

′
t , W1, W

′
1, . . . , Wq−1, W

′
q−1).

We note that there are3t votes in the instance. We recall that by assumption,3t/2 = 3q− 3. We
make the following observations on the functionNP .

• For anyd ∈ D, d beatsc: this holds becauseNP (c, d) = 1.
• For anyv ∈ V , v beatsc: this holds becauseNP (c, v) = dI(v) ≤ q − 2 < 3q − 3.
• For anyd ∈ D andv ∈ V , d andv are tied: this holds becauseNP (v, d) = t+q−1 = 3q−3.
• For anyv, v′ ∈ V (v′ 6= v), v andv′ are tied: this holds becauseNP (v, v′) = t+q−1 = 3q−3,

because for anyi ≤ q, v ≻ v′ either inVi or in V ′
i .

• For anyd, d′ ∈ D (d′ 6= d), d andd′ are tied: this holds becauseNP (d, d′) = 3q − 3.
From these observations we have the following calculation on the Copeland scores:
• CSP (c) = 0.
• For anyv ∈ V , CSP (v) = 1.
• For anyd ∈ D, CSP (d) = 1.
Now, assume thatI = (S,V) is a yes-instance of X3C; hence, there existsJ ⊂ {1, . . . , t} with

|J | = q and
⋃

j∈J Sj = V . Next, we show how to makec a co-winner by introducing one new
alternativey.

• For anyj ∈ J , we letṼj = [dj ≻ D \ {dj} ≻ V \ Sj ≻ c ≻ y ≻ Sj ] be the completion ofVj .
• For anyi ≤ t, we let Ṽ ′

i = [rev(Si) ≻ rev(V \ Si) ≻ rev(D \ {di}) ≻ c ≻ y ≻ di] be the
completion ofV ′

i .
• For any vote not mentioned above, we puty in the top position.
• Finally, letP ′ denote the profile obtained in the above way.
It follows thaty loses toc in their pairwise election, and for any other alternativec′ ∈ C (c′ 6= y

andc′ 6= c), c′ andy are tied in their pairwise election. Therefore, the Copeland score is 1 forc,
any alternative inV , and any alternative inD; the Copeland score ofy is 0. It follows thatc is a
co-winner.

Next, we show how to convert a solution to the PcWNA instance to a solution to the X3C
instance. LetP ′ = (Ṽ1, . . . , Ṽt, Ṽ

′
1 , . . . , Ṽ ′

t , W̃1, W̃
′
1, . . . , W̃q−1, W̃

′
q−1) be a profile with the new

alternative, such thatc becomes a co-winner according to the Copeland0 rule. We denoteP ′
1 =

(Ṽ1, . . . , Ṽt), P ′
2 = (Ṽ ′

1 , . . . , Ṽ ′
t ) andP ′

3 = (W̃1, W̃
′
1, . . . , W̃q−1, W̃

′
q−1). It follows from the above

observations on Copeland scores of alternatives in profileP and inequalities (1) of Property 1, that
CSP ′(c) = 1, ∀c′ ∈ D ∪ V , CSP ′(c) = 1 and CSP ′(y) ≤ 1.

We now claim the following.
(a) ∀v ∈ V , NP ′(v, y) ≤ 3q − 3, NP ′(y, c) = 3q − 2 and∀d ∈ D, NP ′(d, y) = 3q − 3.

NP ′

2
(c, y) = t = 2q − 2. Moreover, for anyi ≤ q, c ≻ y ≻ di in Ṽ ′

i .
(b) ∀v ∈ V , NP ′

2
∪P ′

3
(v, y) ≥ NP ′

2
∪P ′

3
(c, y).

For (a). Sincec is a co-winner forP ′, c must beaty in their pairwise election. Meanwhile, any
c′ ∈ V ∪ D cannot beaty in their pairwise elections. Therefore, we must have thatNP ′(c, y) ≥
3q − 2, and for anyc′ ∈ V ∪ D, NP ′(c′, y) ≤ 3q − 3. For anydi ∈ D, in profile P ′, we have
thatdi ≻ c except inṼ ′

i , which means thatNP ′(di, y) ≥ NP ′(c, y) − 1 by transitivity in each vote.
Hence,3q− 3 ≥ NP ′(di, y) ≥ NP ′(c, y)− 1 ≥ 3q− 3, which means thatNP ′(di, y) = 3q− 3 and
NP ′(c, y) = 3q− 2. From these equalities, we deduce that∀d ∈ D, NP ′(d, y) = NP ′(c, y)− 1 and
then, for anyi ≤ t, we have thatc ≻ y ≻ di in Ṽ ′

i .
For (b). Since inP ′, v ≻ c except for some votes inP ′

1, we have that for allv ∈ V ,
NP ′

2
∪P ′

3
(v, y) ≥ NP ′

2
∪P ′

3
(c, y).

Let J = {j ≤ t : c ≻ y in Ṽj}. We will prove that|J | = q and∪j∈JSj = V . First, note that
|J | ≤ q because|J | = NP ′

1
(c, y) ≤ NP ′(c, y) − NP ′

2
(c, y) = q from item(a).

Now, for anyv ∈ V let Jv = {j ≤ t : y ≻ v in Ṽj}. We claim: ∀v ∈ V , J ∩ Jv 6= ∅.
Otherwise, there existsv∗ ∈ V with J ∩ Jv∗ = ∅. This means thatc ≻ y impliesv∗ ≻ y in votes in



P ′
1. Hence,NP ′

1
(v∗, y) ≥ NP ′

1
(c, y). By adding this inequality with the inequality in item(b) (let

v = v∗), we obtain thatNP ′(v∗, y) ≥ NP ′(c, y). Now, combining the inequalities in item (a), we
have that3q − 3 ≥ NP ′(v∗, y) ≥ NP ′(c, y) = 3q − 2, which is a contradiction. Therefore, for all
v ∈ V , J ∩ Jv 6= ∅. Finally, since|V| = 3q, |Si| = 3 and|J | ≤ q, we deduce that|J | = q and
J = {j ≤ t : c ≻ y ≻ Sj in Ṽj}. Also, because for allv ∈ V , J ∩ Jv 6= ∅, we have

⋃
j∈J Sj = V .

In conclusion,I = (S,V) is a yes-instance of X3C. This completes theNP-hardness proof for the
PcWNA problem for Copeland0. �

6 Simpson

To prove theNP-hardness of the PcWNA problem for Simpson, we first make the following obser-
vation, whose proof is straightforward.

Property 2 Let P be a profile overC, P ′ be a profile overC ∪ {y}, P ′ is an extensionP . The
following (in)equalities hold:

(i) ∀c ∈ C, SimP ′(c) = min{SimP (c), NP ′(c, y)}.
(ii) ∀c ∈ C, SimP ′(c) ≤ SimP (c).

Theorem 4 PcWNA and PWNA problems areNP-complete for Simpson, even when there is one
new alternative.

Proof of Theorem 4: We first prove theNP-hardness for the PcWNA problem by a reduction
from X3C. LetI = (S,V) with t = 2q − 2 and∆(I) ≤ 6 be an instance of X3C as described in
Proposition 2. Without loss of generality, assumeq ≥ 8; in particular, we deduce∆(I) ≤ q−2. We
define a PcWNA instance for Simpson as follows:
Alternatives: V ∪ {c, d} ∪ {y}, wherey is the new alternative.
Votes: For anyi ≤ t, we define the following vote.Vi = [(V \ Si) ≻ d ≻ c ≻ Si]. For any
j ≤ q − 1, we define the following vote.W1 = · · · = Wq−1 = [c ≻ rev(V) ≻ d]. We also let
Wq = [rev(V) ≻ d ≻ c]. Let P1 = (V1, . . . , Vt), P2 = (W1, . . . , Wq), andP = P1 ∪ P2.

We make the following observation on the Simpson scores of the alternatives beforey is added.
• SimP (c) = q − 1. Indeed,NP (c, d) = q − 1 and∀v ∈ V , NP (c, v) = q − 1 + dI(v) ≥ q.
• SimP (d) ≤ 6 ≤ q − 2. This is because for anyv ∈ V , v is covered by the 3-sets for no more

thanq − 2 times (the assumption of the input X3C instance), which means that inP1, d ≻ v for at
mostq − 2 times, i.e.,NP (d, v) = dI(v) ≤ 6 ≤ q − 2.

• For anyv ∈ V , SimP (v) ≥ q. Actually, NP (v, d) = NP (v, c) = t − dI(v) + q ≥ 3q −
2 − (q − 2) ≥ q. Now, assumev = vi. If i < j, thenNP (v, vj) = NP1

(v, vj) ≥ t − dI(v) ≥
2q − 2 − (q − 2) = q and if j > i, NP (v, vj) = NP2

(v, vj) = q.
Now, assume thatI = (S,V) is a yes-instance of X3C; hence, there is aJ ⊂ {1, . . . , t} with

|J | = q and
⋃

j∈J Sj = V . We show how to makec a co-winner by introducing one new alternative
y.

• For anyj ∈ J , we letV ′
j = [(V \ Sj) ≻ d ≻ c ≻ y ≻ Sj ].

• For anyj ∈ {1, . . . , t} \ J , we letV ′
j = [y ≻ (V \ Sj) ≻ d ≻ c ≻ Sj ].

• For anyj ≤ q − 1, we letW ′
j = [c ≻ y ≻ rev(V) ≻ d].

• Let W ′
q = [y ≻ rev(V) ≻ d ≻ c].

• Finally, letP ′ = (V ′
1 , . . . , V ′

t , W ′
1, . . . , W

′
q).

In P ′, the Simpson score ofy is q− 1 (via c), becauset = 2q− 2, which means thatt− q + 1 =
q − 1; the Simpson score ofc is q − 1 (via d); the Simpson score ofd is no more thanq − 1 (via any
of v ∈ V); and the Simpson score of anyv ∈ V is q − 1 (via y). Therefore,c is a co-winner for the
Simpson rule.

Next, we show how to convert a solutionP ′ to the above PcWNA instance for the Simpson rule
to a solution to the X3C instance. LetP ′ = (V ′

1 , . . . , V ′
t , W ′

1, . . . , W
′
q) with P ′

1 = (V ′
1 , . . . , V ′

t ) and



P ′
2 = (W ′

1, . . . , W
′
q) be a profile such thatc becomes a co-winner according to the Simpson rule

when alternativey is introduced.
We make the following observations.
(a) ∀v ∈ V , NP ′(v, y) ≤ q − 1,
(b) NP ′(y, c) ≤ q − 1 andNP ′(y, d) ≥ q,
(c) y ≻ c in W ′

q.
For item(a): Sincec is a winner, we have that for anyv ∈ V , SimP ′(v) ≤ SimP ′(c). Thus,

using Property 2,SimP (c) = q − 1 andSimP (v) ≥ q. We have the following calculation.

min{NP ′(v, y), q} = SimP ′(v) ≤ SimP ′(c) ≤ SimP (c) = q − 1

For item(b): First from(a), we deduce that for anyv ∈ V , NP ′(y, v) ≥ t + q −NP ′(v, y) > q.
Thus, we obtain:

SimP ′(y) = min{NP ′(y, c), NP ′(y, d)} ≤ SimP ′(c) ≤ SimP (c) = q − 1 (2)

Now, assumeNP ′(y, d) ≤ q − 1. Then,NP ′

2
(d, y) = q − NP ′

2
(y, d) ≥ q − NP ′(y, d) ≥ 1.

Hence, there existsi ≤ q such that inW ′
i , we have that for anyv ∈ V , v ≻ d ≻ y. Moreover,

NP ′

1
(d, y) = t − NP ′

1
(y, d) ≥ 2q − 2 − (q − 1) = q − 1. Let J0 ⊆ {1, . . . , t} (with |J0| = q − 1)

be the subscripts of arbitraryq − 1 votes inP ′
1, whered ≻ y. Because|V| = 3q and |Sj | = 3,

there existsv∗ ∈ V \
⋃

j∈J0
Sj . We deduce that for allj ∈ J0, v∗ ≻ y in V ′

j . In conclusion,
NP ′(v∗, y) ≥ |J0| + 1 = q, which contradicts item(a). Using inequality (2), item(b) follows.

For item(c): Otherwise, by the definition ofWq, we deduce:

∀v ∈ V , NP ′

2
(v, y) ≥ 1 (3)

On the other hand, usingNP ′

1
(y, c) ≤ NP ′(y, c) and item(b), we haveNP ′

1
(c, y) = t −

NP ′

1
(y, c) ≥ t − NP ′(y, c) ≥ t − (q − 1) = q − 1. Let J0 ⊆ {1, . . . , t} (with |J0| = q − 1)

be the subscripts of arbitraryq − 1 votes inP ′
1, wherec ≻ y. We haveV \

⋃
j∈J0

Sj 6= ∅ since
|V| = 3q and|Si| = 3. Hence, there existsv∗ ∈ V \

⋃
j∈J0

Sj such that:

NP ′

1
(v∗, y) ≥ |J0| = q − 1 (4)

Summing up inequalities (3) (letv = v∗) and (4), we get obtain a contradiction with item(a).
From items(b) and(c), we getNP ′

1
(y, c) = NP ′(y, c)−NP ′

2
(y, c) ≤ q − 1− 1 = q − 2. Thus,

NP ′

1
(c, y) = t − NP ′

1
(y, c) ≥ t − (q − 2) = q. Let J denote the subscripts of arbitraryq votes in

P ′
1 wherec ≻ y. We claim

⋃
j∈J Sj = V . Otherwise, there existsv∗ ∈ V \

⋃
j∈J Sj . It follows

that for anyj ∈ J , v∗ ∈ (V \
⋃

j∈J Sj) ⊆ V \ Sj , which means thatv∗ ≻ c ≻ y in Vj . Hence,
NP ′(v∗, y) ≥ NP ′

1
(v∗, y) ≥ |J | = q, which contradicts item(a). In conclusion,I = (S,V) is a

yes-instance of X3C. Therefore, PcWNA isNP-complete for Simpson.
For the PWNA problem, we make the following change. LetWq = [rev(V) ≻ c ≻ d]. Then,

before the new alternative is introduced, the Simpson scoreof c is q. Then, similarly we can prove
theNP-hardness of the PWNA problem. �

7 Plurality with runoff

In this section, we focus on possible co-winners, which means that ties are never broken, neither in
the first round nor in the second round. If a tie occurs in the first round, then all possible compatible
second rounds are considered: for instance, if the plurality scores, ranked in decreasing order, are
x1 7→ 8, x2 7→ 6, x3 7→ 6, x4 7→ 5 . . ., then the set of co-winners contains the majority winner
betweenx1 andx2 and the majority winner betweenx1 andx3.



Proposition 3 Determining whetherc ∈ C is a possible (co-)winner for plurality with runoff is in
P.

The proof does not present any particular difficulty, and dueto the lack of space, we only give a
very brief sketch for the PcWNA problem. It proceeds in two steps as follows. Let�P

M be the weak
majority relation induced by a profileP . Let P be a profile overC. c is a possible co-winner inP if
and only if one of the following two conditions hold:

1. There exists a completionP ′ of P such thatc and somed ∈ C \{c} are possible second round
competitors, andc �P ′

M d.
2. There exists a completionP ′ of P such thatc and somey ∈ Y are possible second round

competitors, andc �P ′

M y.
For each of these two conditions we can find equivalent, polynomial-time computable character-

izations.
For the PWNA problem, the algorithm is similar: we need to make sure that the pairs of alterna-

tives that enter the second round must be(c, d), wherec ≻P
M d.

8 Conclusion

In this paper we have gone much beyond existing results on thecomplexity of the possible
(co-)winner problem with new alternatives. While [5, 6] focused on scoring rules, we have identified
three new rules for which the PcWNA problem isNP-complete (Bucklin, Copeland, and Simpson).
We also showed that the PcWNA problem has a polynomial time algorithm for plurality with runoff,
and as far as approval voting is concerned, we have given three definitions of the extension of a
profile to new alternatives and shown that depending on the chosen definition, the problem can be
trivial or NP-complete. Our NP-completeness proofs and algorithms for the PcWNA problems can
also be extended to the PWNA problems for approval, Bucklin,Simpson, and plurality with runoff.
The results are summarized in the following table.

Voting rule PcWNA PWNA
Borda P [6]

2-approval P [6]
l-approval (l ≥ 3) NP-complete2 [6]

Approval
P (Definition 1)
NP-complete (Definition 2)
Trivial (Definition 3)

Bucklin NP-complete2

Copeland0 NP-complete3 ?
Simpson NP-complete3

Plurality with runoff P

Table 1: Complexity of PcWNA and PWNA problems for some common voting rules.

An obvious and interesting direction for future research isstudying the computational complex-
ity of the PcWNA (PWNA) problems for more common voting rules, including Copelandα (for
someα 6= 0), ranked pairs, and voting trees. Even for Copeland0, the complexity of the PWNA
problem still remains open.

2Even with 3 new alternatives.
3Even with 1 new alternative.
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