
A Combinatorial Algorithm for Strong

Implementation of Social Choice Functions

Clemens Thielen and Stephan Westphal

Abstract

We consider algorithmic aspects of the classical mechanism design problem of im-
plementing social choice functions. We show how an adaption of the well-known
negative cycle criterion for weak implementability can be used to decide the question
of implementability in the strong sense when one restricts to incentive compatible
direct revelation mechanisms. We derive an efficient combinatorial algorithm that
computes the payments of an incentive compatible direct revelation mechanism that
strongly implements a given social choice function in dominant strategies or decides
that none exist.
Our result complements the results obtained in the companion paper of Krumke
and Thielen [3], where a nondeterministic polynomial time algorithm for the more
general problem of deciding of strong implementability via indirect mechanisms is
given. This more general problem is expected to be NP-complete.

1 Introduction

One of the central problems considered in mechanism design is the implementation of social
choice functions. In this problem, there are n selfish agents, which must make a collective
decision from some finite set X of possible social choices (or outcomes). Each agent i has a
private value θi (called the agent’s type) that belongs to a finite set Θi (called the agent’s
type space) and influences the preferences of all agents over the alternatives in X . Formally,
this is modelled by a valuation function Vi : X × Θ → Q for each agent i, which specifies
a valuation Vi(x, θ) that agent i assigns to outcome x ∈ X when the vector of types of all
agents is θ ∈ Θ = Θ1×· · ·×Θn. The type space Θi of agent i is public knowledge, but only
agent i knows the true value of θi. Every agent i reports a claimed value θ′i ∈ Θi (a bid) for
her type, and the resulting collective decision is given by a social choice function f : Θ → X
that maps vectors of bids of the agents to outcomes in X . A mechanism Γ(f,P) in this
setting is given by a payment Pi(θ

′) to each agent i that depends on the vector θ′ of bids
and is used to motivate the agents to report their types truthfully.

When the concept of weak implementation is used, a mechanism is said to implement
the social choice function f if truthfully reporting her type is a dominant strategy for every
agent, i.e., it maximizes the sum of the agent’s valuation and her payment for every possible
behavior of the other agents and for every possible vector θ of true types.† The more robust
concept of implementation called strong implementation (also known as full implementation)
additionally requires that all other dominant strategy equilibria of the mechanism yield the
same outcomes as truthful reporting, so the desired social choices are obtained independently
of the equilibrium that is actually played by the agents.

It is easy to see that weak implementation of a given social choice function can be ex-
pressed as a system of linear inequalities, in which the variables correspond to the payments.
Rochet [6] observed that this system can be interpreted as the problem of finding node po-
tentials in complete, directed graphs on the agents’ type spaces with changes of valuations
as arc weights. Hence, an implementation exists if and only if there is no negative cycle in

†Note that there are also other notions of implementation, e.g., implementation in Bayes Nash equilib-
rium. In this paper, we only consider implementation in dominant strategies.

these graphs. Later, it was shown by Gui et al.[2] that it suffices to consider node potentials
in smaller graphs on the set X of possible outcomes.

In this paper, we show how the above node potential interpretations of the weak imple-
mentability problem can be adapted for deciding also strong implementation. Here, some
of the inequalities in the linear system have to be fulfilled with strict inequality, i.e., a point
in the relative interior of the corresponding polyhedron is sought. We show how such a
point can be found by an efficient combinatorial algorithm that perturbates a node poten-
tial corresponding to a weak implementation such that the reduced cost of some arcs in the
graphs becomes strictly positive, which corresponds to the strict inequalities in the system.
To do so, all arcs whose inequalities are already strictly fulfilled are deleted and depth first
search is used to find nodes with no outgoing arcs, whose potential can then be perturbated.
Furthermore, we use contraction techniques to handle cycles of weight zero. Using these
methods, our algorithm computes the payments of a strong implementation of the given
social choice function or decides that none exist. The running time is linear in |Θ|, which
usually is the largest part of the input. In public project settings, for example, |Θ| can be
quite large, whereas |X | is usually two (the project is either done or not).

We remark that there is also a more general definition of a mechanism, where each
agent i is allowed to bid a value si from an arbitrary set Si of bids instead of just reporting
a claimed value for her type. A classical result known as the Revelation Principle (cf. [4,
p. 871]) states that, when considering weak implementation, it imposes no loss of generality
to restrict to incentive compatible direct revelation mechanisms as defined above. For strong
implementation, it is known that it suffices to consider augmented revelation mechanisms,
in which the set Θi of types of each agent i is a subset of the set Si of her possible bids
(cf. [5] for Bayesian equilibria and the companion paper of Krumke and Thielen [3] for
dominant strategies). Most strongly implementable social choice functions can, however, be
strongly implemented via incentive compatible direct revelation mechanisms. Thus, since the
general problem of deciding strong implementability via augmented revelation mechanisms
is expected to be computationally intractable (until recently, it was not even known to
belong to NP and it is suspected to be NP-complete, cf. [3]), it makes sense to restrict to
incentive compatible direct revelation mechanisms also for strong implementation.

2 The Algorithm

We now present our algorithm for strong implementation of social choice functions. Formally,
the problem is defined as follows:

Definition 1 (The Strong Implementability Problem).
INSTANCE: The number n of agents, the set X of possible social choices, the sets Θi of

possible types of the agents, the valuation functions Vi : X × Θ → Q, and
the social choice function f : Θ → X.

TASK: Compute payments Pi : Θ → Q, i = 1, . . . , n, to the agents such that the
mechanism Γ(f,P) strongly implements f , or decide that none exist.

The encoding length of an instance of Strong Implementability can be calculated as
follows: For every valuation function Vi : X × Θ → Q, we need to store |X | · |Θ| rational
numbers. The social choice function f : Θ → X has encoding length |Θ| · log(|X |). Thus,
the encoding length of an instance of Strong Implementability is in Ω(|X | · |Θ| · n).

We start our analysis by formulating a system of linear inequalities whose solutions
correspond to the values of payment functions Pi needed to implement a social choice func-
tion f . Denoting the (n − 1)-dimensional vector resulting from an n-vector v when the
i-th component is deleted by v−i := (v1, . . . , vi−1, vi+1, . . . , vn), this linear system in the
variables Pi(θ

′), i = 1, . . . , n, θ′ ∈ Θ, can be written as follows:

For all i ∈ N , (θi, θ
′
i) ∈ Θ2

i , and θ−i, θ
′
−i ∈ Θ−i:

Vi(f(θ′i, θ
′
−i), θ) + Pi(θ

′
i, θ

′
−i) ≤ Vi(f(θi, θ

′
−i), θ) + Pi(θi, θ

′
−i) (1)

For all i ∈ N and (θi, θ
′
i) ∈ Θ2

i with f(θi, θ̄−i) 6= f(θ′i, θ̄−i) for some θ̄−i ∈ Θ−i,
there exists θ−i, θ

′
−i ∈ Θ−i such that:

Vi(f(θ′i, θ
′
−i), θ) + Pi(θ

′
i, θ

′
−i) < Vi(f(θi, θ

′
−i), θ) + Pi(θi, θ

′
−i) (2)

Here, the Inequalities (1) encode that truthfully reporting her type is a dominant strat-
egy for each agent i: For every type θi of agent i, reporting θi truthfully is at least as good
as reporting any other possible type θ′i, no matter what the type vector θ−i and the bid
vector θ′−i of the other agents are. Hence, the first half of the system encodes that the social
choice function f is weakly implemented by the mechanism Γ(f,P). For strong implementa-
tion, the payments must additionally satisfy the strict Inequalities (2), which encode that
there are no dominant strategies for any agent that yield outcomes different from the ones
obtained by truthful reporting: If the second condition in the system was violated for some
pair (θi, θ

′
i), bidding θ′i would always be optimal for agent i when her type is θi, and she

could change the outcome by bidding θ′i instead of θi in the case that the vector of types of
the other agents is θ̄−i and they report their types truthfully.

We now reformulate the system in order to be able to solve it efficiently via shortest path
computations in directed graphs. For every agent i ∈ N and every fixed pair (θ−i, θ

′
−i) ∈ Θ2

−i

of a type vector and a bid vector of the other agents, we define a function c
(θ−i,θ

′

−i
)

i : Θ2
i → Q

by
c
(θ−i,θ

′

−i
)

i (θi, θ
′
i) := Vi(f(θi, θ

′
−i), θ) − Vi(f(θ′i, θ

′
−i), θ) ∀ θi, θ

′
i ∈ Θi.

Using this notation, we can rewrite the above system of inequalities as follows:

For all i ∈ N , (θi, θ
′
i) ∈ Θ2

i , and θ−i, θ
′
−i ∈ Θ−i:

Pi(θ
′
i, θ

′
−i) − Pi(θi, θ

′
−i) ≤ c

(θ−i,θ
′

−i
)

i (θi, θ
′
i) (3)

For all i ∈ N and (θi, θ
′
i) ∈ Θ2

i with f(θi, θ̄−i) 6= f(θ′i, θ̄−i) for some θ̄−i ∈ Θ−i,
there exists θ−i, θ

′
−i ∈ Θ−i such that:

Pi(θ
′
i, θ

′
−i) − Pi(θi, θ

′
−i) < c

(θ−i,θ
′

−i
)

i (θi, θ
′
i) (4)

Observe that the left-hand sides of the Inequalities (3) and (4) are independent of the
type vector θ−i of all agents except i. Defining

c
θ′

−i

i (θi, θ
′
i) := min

θ−i∈Θ−i

c
(θ−i,θ

′

−i
)

i (θi, θ
′
i) = min

θ−i∈Θ−i

(

Vi(f(θi, θ
′
−i), θ) − Vi(f(θ′i, θ

′
−i), θ)

)

and

c̄
θ′

−i

i (θi, θ
′
i) := max

θ−i∈Θ−i

c
(θ−i,θ

′

−i
)

i (θi, θ
′
i) = max

θ−i∈Θ−i

(

Vi(f(θi, θ
′
−i), θ) − Vi(f(θ′i, θ

′
−i), θ)

)

for θi, θ
′
i ∈ Θi, we can, thus, rewrite the system of inequalities as

For all i ∈ N , (θi, θ
′
i) ∈ Θ2

i , and θ′−i ∈ Θ−i:

Pi(θ
′
i, θ

′
−i) − Pi(θi, θ

′
−i) ≤ c

θ′

−i

i (θi, θ
′
i) (5)

For all i ∈ N and (θi, θ
′
i) ∈ Θ2

i with f(θi, θ̄−i) 6= f(θ′i, θ̄−i) for some θ̄−i ∈ Θ−i,
there exists θ′−i ∈ Θ−i such that:

Pi(θ
′
i, θ

′
−i) − Pi(θi, θ

′
−i) < c̄

θ′

−i

i (θi, θ
′
i) (6)

Observe that, whenever c
θ′

−i

i (θi, θ
′
i) < c̄

θ′

−i

i (θi, θ
′
i) for some θ′−i ∈ Θ−i, the second condi-

tion follows automatically from the first one for this pair (θi, θ
′
i). Hence, the system reduces

to

For all i ∈ N , (θi, θ
′
i) ∈ Θ2

i , and θ′−i ∈ Θ−i:

Pi(θ
′
i, θ

′
−i) − Pi(θi, θ

′
−i) ≤ c

θ′

−i

i (θi, θ
′
i) (7)

For all i ∈ N and (θi, θ
′
i) ∈ Θ2

i with f(θi, θ̄−i) 6= f(θ′i, θ̄−i) for some θ̄−i ∈ Θ−i

and c
θ̄−i

i (θi, θ
′
i) = c̄

θ̄−i

i (θi, θ
′
i) for all θ̄−i ∈ Θ−i with f(θi, θ̄−i) 6= f(θ′i, θ̄−i),

there exists θ′−i ∈ Θ−i such that f(θi, θ
′
−i) 6= f(θ′i, θ

′
−i) and

Pi(θ
′
i, θ

′
−i) − Pi(θi, θ

′
−i) < c

θ′

−i

i (θi, θ
′
i). (8)

Moreover, for every fixed agent i and θ′−i ∈ Θ−i, consider a pair (θi, θ
′
i) ∈ Θ2

i of types of
agent i such that f(θi, θ

′
−i) = f(θ′i, θ

′
−i) =: x ∈ X . Then we have

c
θ′

−i

i (θi, θ
′
i) = min

θ−i∈Θ−i

(

Vi(f(θi, θ
′
−i), θ) − Vi(f(θ′i, θ

′
−i), θ)

)

= min
θ−i∈Θ−i

(

Vi(x, θ) − Vi(x, θ)

)

= 0

and analogously c
θ′

−i

i (θ′i, θi) = 0. Hence, the Inequalities (7) corresponding to (θi, θ
′
i) imply

that

Pi(θ
′
i, θ

′
−i) − Pi(θi, θ

′
−i) ≤ 0 and Pi(θi, θ

′
−i) − Pi(θ

′
i, θ

′
−i) ≤ 0,

which yields Pi(θ
′
i, θ

′
−i) = Pi(θi, θ

′
−i). Thus, for fixed i and fixed θ′−i ∈ Θ−i, the pay-

ment Pi(θi, θ
′
−i) does in fact only depend on the outcome f(θi, θ

′
−i) chosen when agent i

bids θi. Hence, for every x ∈ X that results as the outcome f(θi, θ
′
−i) for some θi ∈ Θi, we

can define

P
θ′

−i

i (x) := Pi(θi, θ
′
−i) for some θi ∈ Θi with f(θi, θ

′
−i) = x.

Writing
C(θi, θ

′
i) := {θ′−i ∈ Θ−i : f(θi, θ

′
−i) 6= f(θ′i, θ

′
−i)},

we can, thus, write our system of inequalities as

For all i ∈ N , (θi, θ
′
i) ∈ Θ2

i , and θ′−i ∈ Θ−i with f(θi, θ
′
−i) 6= f(θ′i, θ

′
−i):

P
θ′

−i

i (f(θ′i, θ
′
−i)) − P

θ′

−i

i (f(θi, θ
′
−i)) ≤ c

θ′

−i

i (θi, θ
′
i) (9)

For all i ∈ N and (θi, θ
′
i) ∈ Θ2

i with C(θi, θ
′
i) 6= ∅ and c

θ′

−i

i (θi, θ
′
i) = c̄

θ′

−i

i (θi, θ
′
i)

for all θ′−i ∈ C(θi, θ
′
i): There exists θ′−i ∈ C(θi, θ

′
i) such that

P
θ′

−i

i (f(θ′i, θ
′
−i)) − P

θ′

−i

i (f(θi, θ
′
−i)) < c

θ′

−i

i (θi, θ
′
i). (10)

As observed above, the left-hand sides of Inequalities (9) and (10) are now independent of
θi and θ′i as long as the respective outcomes f(θi, θ

′
−i) and f(θ′i, θ

′
−i) do not change. Defining

Kθ′

−i(x) := {θi ∈ Θi : f(θi, θ
′
−i) = x} for every x ∈ X , W (θ′−i) := {x ∈ X : Kθ′

−i(x) 6= ∅},
and

c
θ′

−i

i (x, x′) := min
θi,θ

′

i
∈Θi:

f(θi,θ
′

−i
)=x

f(θ′

i
,θ′

−i
)=x′

c
θ′

−i

i (θi, θ
′
i)

for all x, x′ ∈ W (θ′−i), the system can be written as

For all i ∈ N , θ′−i ∈ Θ−i, and x, x′ ∈ W (θ′−i) with x 6= x′:

P
θ′

−i

i (x′) − P
θ′

−i

i (x) ≤ c
θ′

−i

i (x, x′) (11)

For all i ∈ N and (θi, θ
′
i) ∈ Θ2

i with C(θi, θ
′
i) 6= ∅ and c

θ′

−i

i (θi, θ
′
i) = c̄

θ′

−i

i (θi, θ
′
i)

for all θ′−i ∈ C(θi, θ
′
i): There exists θ′−i ∈ C(θi, θ

′
i) such that θi ∈ Kθ′

−i(x), θ′i ∈

Kθ′

−i(x′) and

P
θ′

−i

i (x′) − P
θ′

−i

i (x) < c
θ′

−i

i (θi, θ
′
i). (12)

Now observe that, whenever θi ∈ Kθ′

−i(x), θ′i ∈ Kθ′

−i(x′), and c
θ′

−i

i (x, x′) < c
θ′

−i

i (θi, θ
′
i)

for some θ′−i ∈ Θ−i, the second condition follows automatically from the first one for this
pair (θi, θ

′
i). Hence, we just have to consider the second condition for the pairs (θi, θ

′
i) for

which c
θ′

−i

i (x, x′) = c
θ′

−i

i (θi, θ
′
i) for all θ′−i ∈ Θ−i, x, x′ with θi ∈ Kθ′

−i(x) and θ′i ∈ Kθ′

−i(x′).
Thus, the system can be rewritten as

For all i ∈ N , θ′−i ∈ Θ−i, and x, x′ ∈ W (θ′−i) with x 6= x′:

P
θ′

−i

i (x′) − P
θ′

−i

i (x) ≤ c
θ′

−i

i (x, x′) (13)

For all i ∈ N and (θi, θ
′
i) ∈ Θ2

i with C(θi, θ
′
i) 6= ∅, c

θ′

−i

i (θi, θ
′
i) = c̄

θ′

−i

i (θi, θ
′
i)

for all θ′−i ∈ C(θi, θ
′
i), and c

θ′

−i

i (x, x′) = c
θ′

−i

i (θi, θ
′
i) for all θ′−i ∈ C(θi, θ

′
i),

x, x′ ∈ W with θi ∈ Kθ′

−i(x) and θ′i ∈ Kθ′

−i(x′): There exists θ′−i ∈ C(θi, θ
′
i)

such that θi ∈ Kθ′

−i(x), θ′i ∈ Kθ′

−i(x′) and

P
θ′

−i

i (x′) − P
θ′

−i

i (x) < c
θ′

−i

i (x, x′). (14)

Finally, the second condition in the system can be reformulated as follows: All conditions
on the pairs (θi, θ

′
i) do in fact only depend on the second value θ′i through the corresponding

outcomes f(θ′i, θ
′
−i). In particular, the values

c
θ′

−i

i (θi, x
′) := c

θ′

−i

i (θi, θ
′
i) for some θ′i ∈ Kθ′

−i(x′)

c̄
θ′

−i

i (θi, x
′) := c̄

θ′

−i

i (θi, θ
′
i) for some θ′i ∈ Kθ′

−i(x′)

are well-defined for all x ∈ W (θ′−i). Defining

C(θi, x
′) := {θ′−i ∈ Θ−i : x′ ∈ W (θ′−i), f(θi, θ

′
−i) 6= x′},

we can, hence, rewrite the system as

For all i ∈ N , θ′−i ∈ Θ−i, and x, x′ ∈ W (θ′−i) with x 6= x′:

P
θ′

−i

i (x′) − P
θ′

−i

i (x) ≤ c
θ′

−i

i (x, x′) (15)

For all i ∈ N , θi ∈ Θi, and x′ ∈ X such that C(θi, x
′) 6= ∅, c

θ′

−i

i (θi, x
′) =

c̄
θ′

−i

i (θi, x
′) for all θ′−i ∈ C(θi, x

′), and c
θ′

−i

i (f(θi, θ
′
−i), x

′) = c
θ′

−i

i (θi, x
′) for all

θ′−i ∈ C(θi, x
′): There exists θ′−i ∈ C(θi, x

′) such that f(θi, θ
′
−i) = x and

P
θ′

−i

i (x′) − P
θ′

−i

i (x) < c
θ′

−i

i (x, x′). (16)

Having reformulated the system as above, we can now solve it efficiently via shortest path
computations. For every agent i and every fixed vector θ′−i ∈ Θ−i of bids of the other agents,

the Inequalities (15) corresponding to i and θ′−i are exactly equivalent to the values P
θ′

−i

i (x),
x ∈ W (θ′−i), defining a node potential in the complete, directed graph Gi(θ

′
−i) on the

set W (θ′−i) with the cost of the arc from outcome x to x′ given as c
θ′

−i

i (x, x′). Thus, we can

compute a solution P
θ′

−i

i (x), x ∈ W (θ′−i), of the Inequalities (15) by computing the shortest
path distances from an arbitrary node x to all other nodes in the graph Gi(θ

′
−i) for every

i ∈ N and every θ′−i ∈ Θ−i. This can be done efficiently with the Bellman-Ford Algorithm
(cf. for example [7]). In the case that one of the graphs Gi(θ

′
−i) contains a negative cycle

(so we cannot compute a node potential in this graph), the Inequalities (15) do not have
a solution, which implies that the given social choice function f cannot be implemented

at all (not even weakly). Otherwise, the shortest path distances P
θ′

−i

i (x), x ∈ W (θ′−i),
computed by the Bellman-Ford Algorithm yield payments Pi(θ

′) solving Inequalities (1) of
the original system (and, thus, weakly implementing the social choice function f) by setting

Pi(θ
′) := P

θ′

−i

i (f(θ′)) for all i = 1, . . . , n, θ′ ∈ Θ.

For strong implementation, we now show how we can modify a solution of the Inequal-
ities (15) obtained by shortest path computations such that it also satisfies the strict In-
equalities (16) and, hence, corresponds to payments P of a mechanism Γ(f,P) that strongly
implements f . This is done via the following procedure:

For every agent i and every θ′−i ∈ Θ−i, we again consider the graph Gi(θ
′
−i) and the

corresponding payments P
θ′

−i

i (x) for x ∈ W (θ′−i). We delete all arcs (x, x′) from Gi(θ
′
−i) for

which the corresponding Inequality (15) is already fulfilled with strict inequality. After doing
so, we also delete all isolated nodes, i.e., all nodes x with empty adjacency list Adj(x). In the
remaining graph, which contains only arcs for which the corresponding Inequality (15) holds
with equality, we then search for a node x with no outgoing arcs, i.e., with Adj+(x) = ∅.
For such a node x, the value

ǫ(x) := min
x′∈W (θ′

−i
)

(

c
θ′

−i

i (x, x′) − P
θ′

−i

i (x′) + P
θ′

−i

i (x)

)

is strictly positive, so we can lower P
θ′

−i

i (x) by ǫ(x)/2 without violating any of the inequalities
in our system. After doing so, all inequalities which were fulfilled with strict inequality before
are still fulfilled with strict inequality, but, additionally, all the inequalities corresponding
to arcs with end node x are now fulfilled with strict inequality, so we can delete these arcs
and the node x from the graph Gi(θ

′
−i).

To find a node x in Gi(θ
′
−i) with Adj+(x) = ∅, we use depth-first search (DFS) starting

with an arbitrary node in the graph. Doing so, we either find a node with no outgoing arcs,
or we discover a directed cycle. In the first case, we lower the payment of the node as in the
procedure described above and continue the DFS-procedure at the node considered before
as long as there are still nodes remaining in the graph. In the case that we find a directed
cycle C, all Inequalities (15) on C are fulfilled with equality and adding them up yields

0 =
∑

(xk,xl)∈C

(

P
θ′

−i

i (xl) − P
θ′

−i

i (xk)
)

=
∑

(xk,xl)∈C

c
θ′

−i

i (xk, xl), (17)

where the first equality follows since C is a cycle. On the other hand, if the strict Inequal-
ity (16) corresponding to i and θ′−i was fulfilled for any arc on C, we would obtain

0 =
∑

(xk,xl)∈C

(

P
θ′

−i

i (xl) − P
θ′

−i

i (xk)
)

<
∑

(xk,xl)∈C

c
θ′

−i

i (xk, xl),

contradicting (17). Hence, the strict Inequality (16) cannot be satisfied for any arc on the
cycle C. In this case, we contract all nodes on C to a single supernode and continue the
DFS-procedure at this new node (see Figure 1).

When the above procedure terminates, every arc (x, x′) in the complete, directed graph
on W (θ′−i) is either contained in a cycle of arcs for which the corresponding Inequalities (15)
are fulfilled with equality (so the Inequality (15) of (x, x′) cannot be made strict in this
graph), or the inequality corresponding to (x, x′) is fulfilled with strict inequality.

Algorithm 1 summarizes the above discussion. For each agent i, the algorithm first
calculates the set A of pairs (θi, x

′) ∈ Θi × X for which some strict Inequality (16) must
hold. Then, for every possible bid vector θ′−i ∈ Θ−i of the other agents, it calculates
the set W (θ′−i) and a node potential in the complete, directed graph on W (θ′−i) via the
Bellman-Ford Algorithm and perturbates this node potential such that each arc (x, x′) is
either contained in a cycle of arcs for which the corresponding Inequalities (15) are fulfilled
with equality, or the inequality corresponding to (x, x′) is fulfilled with strict inequality.
The pairs (θi, x

′) ∈ Θi×X for which some strict Inequality (16) holds are then deleted from
A, and the algorithm continues with the next bid vector θ′−i ∈ Θ−i of the other agents. If
the set A is still nonempty after processing all possible vectors θ′−i ∈ Θ−i, the remaining
pairs (θi, x

′) ∈ A are pairs for which the second condition of the system cannot be satisfied,
so the system does not have a solution. Otherwise, the algorithm continues with the next
agent i. As a node in a graph can represent several outcomes due to previous contractions,
the outcomes corresponding to each node u are stored in a set Outcomes(u).

The DFS-procedure used to find a node x in Gi(θ
′
−i) with Adj+(x) = ∅ is implemented in

the procedure PROCESS-GRAPH (Algorithm 2). π(v) and color(v) denote the predecessor
and the current state (GRAY = already visited, WHITE = not yet visited) of a node v,
respectively. A stack-like data structure S is used to store the nodes to be processed next. It
supports the operations FIRST(S) (returns first element of S), PUSH FRONT(S, v) (inserts
v as first element of S), and REMOVE(S, v) (deletes v from S). More details on depth-first
can be found in Cormen et al. [1].

a b

cd e

s

(a) DFS finds a cycle.

e

s

(b) Contraction of the cy-
cle

e

s

(c) Graph after contrac-
tion

Figure 1: Contraction of a cycle to a supernode

Algorithm 1.

1: for all i ∈ N do

2: for all θ′−i ∈ Θ−i, θi ∈ Θi, x′ ∈ X do

3: c
θ′

−i

i (θi, x
′) := min

θ−i∈Θ−i

(

Vi(f(θi, θ
′
−i), θ) − Vi(x

′, θ)
)

4: c̄
θ′

−i

i (θi, x
′) := max

θ−i∈Θ−i

(

Vi(f(θi, θ
′
−i), θ) − Vi(x

′, θ)
)

5: end for

6: //Calculate the sets C(θi, x
′)

7: for all θ′−i ∈ Θ−i do

8: Kθ′

−i(x) := {θi ∈ Θi : f(θi, θ
′
−i) = x} for x ∈ X .

9: W (θ′−i) := {x ∈ X : Kθ′

−i(x) 6= ∅}
10: for all θi ∈ Θi, x

′ ∈ W (θ′−i) do

11: if f(θi, θ
′
−i) 6= x′ then

12: C(θi, x
′) := C(θi, x

′) ∪ {θ′−i}
13: end if

14: end for

15: end for

16: //Find the set A of pairs (θi, x
′) ∈ Θi × X for which one inequality must be strict

17: A := Θi × X
18: for all θ′−i ∈ Θ−i do

19: for all (x, x′) ∈ W (θ′−i) × W (θ′−i) do

20: c
θ′

−i

i (x, x′) := min
θi∈K

θ′
−i (x)

c
θ′

−i

i (θi, x
′)

21: end for

22: for all θi ∈ Θi, x′ ∈ X do

23: if C(θi, x
′) = ∅, c

θ′

−i

i (θi, x
′) 6= c̄

θ′

−i

i (θi, x
′), or c

θ′

−i

i (f(θi, θ
′
−i), x

′) 6= c
θ′

−i

i (θi, x
′)

then

24: A := A \ {(θi, x
′)}

25: end if

26: end for

27: end for

28: for all θ′−i ∈ Θ−i do

29: Choose x ∈ W (θ′−i) arbitrarily.
30: Apply the Bellman-Ford Algorithm to the complete, directed graph G with node

set W := W (θ′−i), arc costs c(x, x′) := c
θ′

−i

i (x, x′), and start node x.
31: if G contains a negative cycle then

32: STOP: f cannot be implemented at all.
33: else

34: Denote the node potential obtained by the Bellman-Ford Algorithm by P .
35: V (G) := ∅, E(G) := ∅
36: for all (x, x′) ∈ W × W with x 6= x′ do

37: if P (x′) − P (x) = c(x, x′) then

38: V (G) := V (G) ∪ {x, x′}
39: E(G) := E(G) ∪ {(x, x′)}
40: end if

41: end for

42: G := (V (G), E(G))
43: PROCESS-GRAPH(G, W, c, P)
44: end if

45: for all (x, x′) ∈ W × W with x 6= x′ do

46: if P (x′) − P (x) < c(x, x′) then

47: for all θi ∈ Kθ′

−i(x) do

48: A := A \ {(θi, x
′)}

49: end for

50: end if

51: end for

52: for all θ′i ∈ Θi do

53: Pi(θ
′
i, θ

′
−i) := P (f(θ′i, θ

′
−i))

54: end for

55: end for

56: if A 6= ∅ then

57: STOP: No payments Pi(θ
′) exist such that Γ(f,P) strongly implements f .

58: end if

59: end for

60: STOP: The mechanism Γ(f,P) with payments Pi(θ
′) strongly implements f .

Algorithm 2. PROCESS-GRAPH(G, W, c, P)

1: for all u ∈ V (G) do

2: color(u) := WHITE
3: π(u) := NIL
4: Outcomes(u) := {u}
5: end for

6: while w ∈ V (G) exists do

7: S := {w}
8: while S not empty do

9: u =FIRST(S)
10: color(u) := GRAY
11: if Adj+(u) = ∅ then

12: PERTURBATE(u, W, S, c, P)
13: else

14: for all v ∈ Adj+(u) do

15: if color(v) = WHITE then

16: π(v) := u
17: PUSH FRONT(S, v)
18: end if

19: end for

20: for all v ∈ Adj+(u) do

21: if color(v) = GRAY then

22: CONTRACT(u, v, S)
23: break

24: end if

25: end for

26: end if

27: end while

28: end while

Algorithm 3. PERTURBATE(u, W, S, c, P)

1: ǫ := min
x∈ Outcomes(u)

min
x′∈W

c(x, x′) − P (x′) + P (x)

2: for all x ∈ Outcomes(u) do

3: P (x) := P (x) − ǫ/2
4: end for

5: for all w ∈ Adj−(u) do

6: Adj+(w) := Adj+(w) \ {u}
7: end for

8: V (G) := V (G) \ {u}
9: REMOVE(S, u)

Algorithm 4. CONTRACT(u, v, S)

1: C := {v}
2: w := u
3: repeat

4: C := C ∪ {w}
5: w := π(w)
6: until w = v
7: //Introduce new supernode vC

8: V (G) := V (G) ∪ {vC}
9: color(vC) := WHITE

10: π(vC) := π(v)
11: Outcomes(vC) := ∅
12: for all w ∈ C do

13: Outcomes(vC) := Outcomes(vC) ∪ Outcomes(w)
14: Adj+(vC) := Adj+(vC) ∪ (Adj+(w) \ C)
15: Adj−(vC) := Adj−(vC) ∪ (Adj−(w) \ C)
16: REMOVE(S, w)
17: end for

18: for all w ∈ Adj+(vC) do

19: Adj−(w) := Adj−(w) ∪ {vC}
20: Adj−(w) := Adj−(w) \ C
21: end for

22: for all w ∈ Adj−(vC) do

23: Adj+(w) := Adj+(w) ∪ {vC}
24: Adj+(w) := Adj+(w) \ C
25: end for

26: V (G) := V (G) \ C
27: PUSH FRONT (S, vC)

Theorem 1. Algorithm 1 correctly computes the payments P of a mechanism Γ(f,P) that
strongly implements the given social choice function f in dominant strategies or decides that
no such payments exist. The algorithm runs in time O(n · |Θ| · |X |3).

Proof. For every fixed θ′−i ∈ Θ−i, the arc costs c(x, x′) calculated in the algorithm are given
by

c
θ′

−i

i (x, x′) = min
θi∈K

θ′
−i (x)

c
θ′

−i

i (θi, x
′)

= min
θi∈K

θ′
−i (x)

min
θ−i∈Θ−i

(

Vi(f(θi, θ
′
−i), θ) − Vi(x

′, θ)

)

= min
θi,θ

′

i
∈Θi:

f(θi,θ
′

−i
)=x

f(θ′

i
,θ′

−i
)=x′

min
θ−i∈Θ−i

(

Vi(f(θi, θ
′
−i), θ) − Vi(f(θ′i, θ

′
−i), θ)

)

,

which equals the arc costs c
θ′

−i

i (x, x′) used in the discussion above. Hence, correctness of
the algorithm follows from the arguments preceding the algorithm.

The running time can be estimated as follows: For each agent i, the calculation of the
sets C(θi, x

′) and the set A needs time at most O(|Θ−i| · |Θi| · |X |2) = O(|Θ| · |X |2). In the

for-loop starting in Line 28, the application of the Bellman-Ford Algorithm to the graph G in
Line 30 needs time O(|W |3) ≤ O(|X |3). In the procedure PROCESS-GRAPH(G, W, c, P)
in Line 43, at most |W | ≤ |X | contraction or perturbation steps are made since each
such step reduces the number of nodes in the graph by at least one. Each call of the
procedure CONTRACT(u, v, S) needs time at most |W |2 ≤ |X |2 since each adjacency list
and each set Outcomes(·) contains at most |W | nodes and there are at most |W | nodes in the
cycle C. Each call of the procedure PERTURBATE(u, W, c, P) needs time at most |W |2 ≤
|X |2 as well. Thus, the overall time needed for the procedure PROCESS-GRAPH(G, W, c, P)
is at most O(|X |3). Since every iteration of the loop except for the Bellman-Ford Algorithm
and the call of PROCESS-GRAPH(G, W, c, P) needs time at most O(|Θi|·|X |2), this implies
that the overall time required for the for-loop starting in Line 28 is at most O(|Θ−i| · |Θi| ·
|X |3) = O(|Θ| · |X |3). Since there are n agents, we obtain an overall running time of
n · O(|Θ| · |X |2) + n · O(|Θ| · |X |3) = O(n · |Θ| · |X |3) as claimed.

As already shown, the Weak Implementability Problem can be solved in the same way
by just leaving out the steps needed to make sure that the strict inequalities in our system
are fulfilled. Hence, the resulting algorithm solves the Weak Implementability Problem in
time O(n · |Θ| · |X |3).

References

[1] T. H. Cormen, C. Stein, C. E. Leiserson, and R. L. Rivest: Introduction to Algorithms.
3rd edition. MIT Press (2009).

[2] H. Gui, R. Müller, and R. V. Vohra: Dominant strategy mechanisms with multidimen-
sional types. In: Computing and Markets (2005).

[3] S. O. Krumke and C. Thielen: Strong implementation of social choice function in dom-
inant strategies. COMSOC 2010.

[4] A. Mas-Colell, M. D. Whinston, and J. R. Green: Microeconomic Theory. Oxford
University Press (1995).

[5] D. Mookherjee and S. Reichelstein: Implementation via augmented revelation mecha-
nisms. Review of Economic Studies 57(3): pp. 453–475 (1990).

[6] J.-C. Rochet: A necessary and sufficient condition for rationalizability in a quasilinear
context. Journal of Mathematical Economics 16: pp. 191–200 (1987).

[7] A. Schrijver: Combinatorial Optimization, volume 24 of Algorithms and Combinatorics.
Springer (2003).

Clemens Thielen and Stephan Westphal
Department of Mathematics
University of Kaiserslautern
Paul-Ehrlich-Str. 14
67663 Kaiserslautern, Germany
Email: {thielen,westphal}@mathematik.uni-kl.de

