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Abstract

We describe an optimal single-winner preferential voting system, called the “GT
method” because of its use of symmetric two-person zero-sum game theory to deter-
mine the winner. Game theory is used not to describe voting as a multi-player game
between voters, but rather to define when one voting system is better than another
one. The cast ballots determine the payoff matrix, and optimal play corresponds to
picking winners optimally.
The GT method is a special case of the “maximal lottery methods” proposed by
Fishburn [14], when the preference strength between two candidates is measured by
just the margin between them. We suggest that such methods have been somewhat
underappreciated and deserve further study.
The GT system, essentially by definition, is optimal : no other preferential voting
system can produce election outcomes that are preferred more by the voters, on the
average, to those of the GT system. We also look at whether the GT system has
several standard properties, such as monotonicity, Condorcet consistency, etc. We
also briefly discuss a deterministic variant of GT, which we call GTD.
We present empirical data comparing GT and GTD against other voting systems on
simulated data.
The GT system is not only theoretically interesting and optimal, but simple to use
in practice. We feel that it can be recommended for practical use.

1 Introduction

Voting systems have a rich history and are still being vigorously researched. We refer
the reader to surveys and texts, such as Börgers [1], Brams [2], Brams and Fishburn [3],
Fishburn [13], Kelly [18], and Tideman [34], for overviews.

The purpose of this paper is to describe a preferential voting system, called the “GT
method,” to study its properties, and to compare it with some other well-known voting
systems.

The GT method is a special case of the “maximal lottery methods” discussed by Fish-
burn [14] (who references Kreweras [19] as the first to mention them). A lottery assigns
a probability to each candidate; a lottery method outputs such a lottery, and the election
winner is chosen randomly according to those probabilities. Maximal lotteries are those that
voters prefer at least as well as any single candidate or any other lottery. The preference
strength between two lotteries is the expected value of a social evaluation function applied
to the vote differential (margin) between candidates. The GT method has the identity func-
tion as the social evaluation function (i.e., the strength of the social preference between two
candidates is the vote margin between them).

We suggest that such voting systems with probabilistic output have received insufficient
attention, both in the literature and in practice, and that they are really the most natural
resolution of the “Condorcet cycle” paradox that plagues preferential voting systems.

More generally, at a high level, the approach is based on a “metric” or “quantitative”
approach to comparing two voting systems, which is a nice complement to the more usual
“axiomatic” or “property-based” approach common in the literature; the metric approach
enables a simple comparison of any two voting systems, given a distribution on profiles.



Finally, the GT method is easy to use in practice; we discuss some implementation
details.

The contributions of this paper are as follows:

• We define “relative advantage” as a metric to compare two preferential voting systems.

• We define the GT method as the “optimal” preferential voting system with respect
to relative advantage. This includes our proposal for resolving ambiguity when the
optimal mixed strategy is not unique.

• We compare the GT method and various voting systems experimentally and show a
ranking of these systems, relative to GT.

• We propose a deterministic variant of GT, called GTD, which performs nearly as well
as GT, and may be more acceptable to those who object to randomized methods.

2 Preliminaries

Candidates and ballots We assume an election where n voters are to select a single
winner from m alternatives (“candidates”). We restrict attention to preferential voting
systems, where each ballot lists candidates in order of preference. We assume that all ballots
are full (they list all candidates), but it is a simple extension to allow voters to submit
truncated ballots, to write in candidates, or to express indifference between candidates
(details omitted).

Profiles, preference and margin matrices, and margin graphs A collection C of
(cast) ballots is called a profile. A profile is a multi-set; two ballots may list candidates in
the same order.

A profile has an associated preference matrix N—the m×m matrix whose (x, y) entry is
the number of ballots expressing a preference for candidate x over candidate y. Each entry
is nonnegative, and N(x, y) + N(y, x) = n, since all ballots are assumed to be full.

It is also useful to work with the margin matrix M — the m × m matrix defined by
M(x, y) = N(x, y)−N(y, x), so that M(x, y) is the margin of x over y—that is, the number
of voters who prefer x over y minus the number of voters who prefer y over x. The matrix M
is anti-symmetric with diagonal 0; for all x, y we have: M(x, y) = −M(y, x).

From the margin matrix M we can construct a directed weighted margin graph G whose
vertices are the candidates and where there is an edge from x to y weighted M(x, y) whenever
M(x, y) > 0. If M(x, y) = M(y, x) = 0 then voters are, on the whole, indifferent between x
and y, and there is no edge between x and y.

Voting system – social choice function A voting system provides a social choice
function that takes as input a profile of cast ballots and produces as output the name of the
election winner. (In some systems the output may be a set of winners.) The social choice
function may be deterministic or randomized. While most but not all voting systems in the
literature are deterministic, the GT system is randomized. We also describe a deterministic
variant, GTD, of the GT system.

3 Generalized Ties

A Condorcet winner is a candidate x who beats every other candidate in a pairwise com-
parison: for every other candidate y, more voters prefer x to y than prefer y to x. Thus, the



margin matrix M has only positive entries in every off-diagonal position of row x. Equiva-
lently, for each other candidate y, the margin graph contains a directed edge from x to y.

If there is no Condorcet winner, we say that there is a “generalized tie,” since for every
candidate x there exists some other candidate y whom voters like at least as much as x.

The interesting question is then: When there is a generalized tie, how should one do the
“tie-breaking” to pick a single winner?

4 Breaking Ties Using a Randomized Method

We feel strongly that the best way of breaking a generalized tie is to use an appropriate
randomized method. Of course, when there is a clear winner (by which we mean a Condorcet
winner) then a randomized method is not needed. A randomized method is only appropriate
when a tie needs to be broken.

Academic literature on voting systems has often eschewed proposals having a randomized
component. For example, Myerson [26, p. 15] says,

“Randomization confronts democratic theory with the same difficulty as mul-
tiple equilibria, however. In both cases, the social choice ultimately depends on
factors that are unrelated to the individual voters’ preferences (private random-
izing factors in one case, public focal factors in the other). As Riker (1982) has
emphasized, such dependence on extraneous factors implies that the outcome
chosen by a democratic process cannot be characterized as a pure expression of
the voters’ will.”

We would argue that Myerson and Riker have it backwards, since, as we shall see, voting
systems can do better at implementing the voters’ will if they are randomized.

Arbitrary deterministic tie-breaking rules, such as picking the candidate whose name
appears first in alphabetical order, are clearly unfair. And, while much work has gone
into devising clever voting systems that break generalized ties in apparently plausible but
deterministic manners, the result is nonetheless arguably unfair to some candidates.

The strongest reason for using a randomized tie-breaking method is that for any de-
terministic voting system there is another voting system whose outcomes are preferred by
voters on the average, while there exist randomized voting systems which are not so dom-
inated by another system. This is effectively just a restatement of the minimax theorem,
due to von Neumann, that optimal strategies in two-person zero-sum games may need to
be randomized.

It is not a new idea to have a voting system that uses randomization, either in theory or
in practice. Using a randomized method is in fact a common and sensible way of breaking
ties.

Several recent elections have used randomized methods to break ties. In June, 2009,
when the city of Cave Creek, Arizona had a tie between two candidates for a city council
seat, the two candidates drew cards from a shuffled deck to determine the winner1. In
November, 2009, the mayor of Wendell, Idaho, was determined by a coin toss, when the
challenger and the incumbent were tied. In February, 2010, in Sealy, Texas, dice were used
to resolve a tied election for city council membership.

Several previous voting system proposals use randomization to determine the outcome.
For example, the “random dictator” voting system [15, 32] picks a random ballot, and
uses it to name the winner. This method always uses randomization, not just for tie-
breaking. Gibbard [15] proves that if a system is strategy-proof (and satisfies certain natural
conditions), then it must be the random dictator method.

1“Election at a Draw, Arizona Town Cuts a Deck,” NY Times, June 17, 2009.



Sewell et al. [32] propose a randomized voting system based on maximum entropy con-
siderations; this is, however, a social welfare function (it produces a complete ordering, not
just a single winner), not a social choice function. Potthoff [27] proposes a randomized
method for the case of a three-candidate election with a majority cycle. Laffond et al. [21]
propose a randomized method based on game theory for parties to pick platform issues, a
situation attributed by Shubik [33] to Downs [8].

Other voting systems, such as the Schulze method [31], use randomization as a final
tie-breaker.

5 Optimal Preferential Voting Systems

How should one compare a voting system P against another voting system Q? Here P and
Q are (possibly randomized) social choice functions that each take a profile C of cast ballots
and produce an election outcome or winner, P (C) or Q(C).

There is a long list of well-studied properties of voting systems, such as monotonicity,
consistency, etc.; such studies exemplify the “axiomatic” approach to voting systems. One
can certainly ask whether a voting system has these desirable properties. The inference is
usually that a system with more desirable properties is the better system. But this approach
can sometimes give rather conflicting and inconclusive advice.

Here is a more direct approach:

A voting system P is said to be better than a voting system Q if voters tend to
prefer the outcome of P to the outcome of Q.

How can one make this appealing intuition precise?
Let C be an assumed probability distribution on the profiles of cast ballots. (The details

of C will turn out to be not so important, since GT is optimal on each profile C separately.)
Suppose we choose a profile C of cast ballots according to the distribution C and then

play a game GC(P,Q) between P and Q as follows:

• P and Q compute respective election outcomes x = P (C) and y = Q(C).

• The systems are scored as follows: P wins N(x, y) points, and Q wins N(y, x) points.

Note that the net number of points gained by P , relative to the number of points gained
by Q, is just the margin M(x, y) = N(x, y) − N(y, x); more voters prefer P ’s outcome to
Q’s outcome than the reverse if M(x, y) > 0.

Definition 5.1 We say that the relative advantage of voting system P over voting system
Q, denoted AdvC(P,Q), with respect to distribution C on profiles, is

AdvC(P,Q) = EC(M(x, y)/ |C|) (1)

where x = P (C) and y = Q(C), where EC denotes expectation over profiles C chosen
according to the distribution C and with respect to any randomization within P and Q, and
where 0/0 is understood to equal 0 if |C| = 0. When C has all of its support on a single
profile C, we write AdvC(P,Q).

Definition 5.2 We say that voting system P is as good as or better than voting system Q
(with respect to distribution C on profiles), if AdvC(P,Q) ≥ 0 .

Definition 5.3 We say that voting system P is optimal if it is as good as or better than
every other voting system for any distribution C on profiles—equivalently, if for every profile
C and for every voting system Q we have AdvC(P,Q) ≥ 0 .



Intuitively, P will win more points than Q, on the average, according to the extent that
voters prefer P ’s outcomes to Q’s outcomes. If P ’s outcomes tend to be preferred, then P
should be considered to be the better voting system. And if P is as good as or better than
any other voting system, for any distribution on profiles, then P is optimal.

Note that if P is as good as or better than Q on every distribution C on profiles, then P
must be as good or better than Q on each particular profile C, and vice versa, so the details
of distribution C don’t matter.

6 Game Theory

We now describe how to construct an optimal voting system using game theory.
In the game GC(P,Q), the margin M(x, y) is the “payoff” received by P from Q when P

picks x, and Q picks y, as the winner for the election with profile C. The comparison of
two voting systems reduces to considering them as players in a distribution on two-person
zero-sum games—one such game for each profile C.

The theory of two-person zero-sum games is long-studied and well understood, and
optimal play is well-defined. See, for example, the excellent survey article by Raghavan [28].

The expected payoff for P , when P chooses candidate x with probability px and when
Q independently chooses candidate y with probability qy is:∑

x

∑
y

pxqyM(x, y) . (2)

An optimal strategy depends on the margin matrix M . When there is a Condorcet
winner, the optimal strategy will always pick the Condorcet winner as the election winner.
When there is no Condorcet winner, there is a generalized tie, and the optimal strategy is a
mixed strategy. Computing the optimal mixed strategy is not hard; see Section 7. Playing
this optimal mixed strategy yields an optimal preferential voting system—no other voting
system can produce election outcomes that are preferred more by the voters, on average.

We denote by supp(GT (C)) the set of candidates with nonzero probability in the optimal
mixed strategy for the game associated with profile C. (If there is not a unique optimal mixed
strategy, GT uses the most “balanced” optimal mixed strategy, as described in Section 7.)
Intuitively, supp(GT (C)) is the set of “potential winners” for the election with profile C
for the GT voting system. If there is a Condorcet winner x, then supp(GT (C)) = {x};
otherwise, the GT winner is chosen randomly from supp(GT (C)) according to the optimal
mixed strategy probabilities.

7 Computing Optimal Mixed Strategies

One can solve a two-person zero-sum symmetric game with m×m payoff matrix M using
a simple reduction to linear programming. Each solution to the linear program provides an
optimal mixed strategy for the game. (See Raghavan [28, Problem A, page 740] for details.)

When ballots are full and the number of voters is odd, the optimal mixed strategy p∗

is uniquely defined (see Laffond et al. [22]). There are other situations for which there is
a unique optimal mixed strategy. With a large number of voters, one would expect the
optimal mixed strategy to be unique.

In the case when there is not a unique optimal mixed strategy, we propose that GT picks
the unique optimal mixed strategy that minimizes the sum of squares

∑
i p2

i ; this strategy
can be computed easily with standard quadratic programming packages. This approach
then gives a well-defined lottery as output, and treats candidates symmetrically.



8 Selecting the Winner

As we have seen, the GT voting system comprises the following steps:

1. [Margins] Compute the margin matrix M from the profile C of cast ballots.

2. [Optimal mixed strategy] Determine the optimal mixed strategy p∗ for the two-
person zero-sum game with payoff matrix M .

3. [Winner selection] Select the election winner by a randomized method in accordance
with the probability distribution p∗. (If there is a Condorcet winner x, then p∗(x) = 1
and this step is trivial.)

There are of course details that must be taken care of properly with using a randomized
method to select a winner; these details are very similar to those that arise when generating
suitable random numbers of post-election audits; see Cordero et al. [6].

GTD—A Deterministic Variant of GT We now describe a deterministic variant of
the GT voting system, which we call GTD. The optimal mixed strategy is computed as in
GT, but the winner selection then proceeds in a deterministic manner.

Instead of randomly picking a candidate according to this probability distribution, GTD
chooses the candidate with the maximum probability in this optimal mixed strategy. (If
there is more than one candidate with the maximum probability in the optimal mixed
strategy, then the one with the least name alphabetically is chosen.)

The GTD method does not require any randomness—it is a deterministic social choice
function. We expect that in practice it would perform as well as the GT method. However,
since GTD is deterministic, one cannot prove that it is optimal.

9 Properties of the GT Voting System

Although our focus is on comparing voting systems using “relative advantage” instead of
an axiomatic approach, we briefly consider how GT fares with respect to some standard
properties.

Optimality. Optimality is perhaps the most important property of the GT voting system.
No preferential voting system can produce election outcomes that are preferred more
by voters to those of the GT system, on average.

Condorcet winner and loser criteria. Fishburn [14] proves that maximal lotteries sat-
isfy the strong Condorcet property: If the candidates can be partitioned into nonempty
subsets A and B such that, for all a ∈ A and all b ∈ B, more voters prefer a to b
than b to a, then the winner will be a candidate in A. This result implies in particular
that the GT method will always elect a Condorcet winner, if one exists, and will never
elect a Condorcet loser, if one exists. The Condorcet criterion implies the majority
criterion. However, as Schulze [31] notes, the Condorcet criterion is incompatible with
other desired criteria including consistency [36], participation [25], later-no-help, and
later-no-harm [35]2.

Pareto optimality. A voting system satisfies Pareto optimality if whenever there exist
two candidates x and y such that no voter prefers candidate y to x, and at least one
voter prefers x to y, then the voting system never elects y. Fishburn [14] proves that
maximal lottery methods satisfy Pareto optimality (and thus GT does).

2These results are for deterministic voting systems. The notion of consistency, for example, needs to be
redefined for probabilistic voting systems.



Monotonicity. A voting system satisfies monotonicity if, if a voter raises a candidate x
on her ballot without changing the order of other candidates, then the probability
that the voting system elects x does not decrease. The GT system is not monotonic.
This can be seen by analyzing the optimal mixed strategy probabilities of the sim-
plest generalized tie, whose margin graph is a three-cycle. (See Fishburn [14] and
Kaplansky [17, p. 479].)

Independence of clones. A voting system satisfies the independence of clones property
if replacing an existing candidate A with a set of clones does not change the winning
probability for any candidates other than A. (Schulze [31, p. 141] notes some of the
subtleties in the definition of this property, especially when A is already in some sense
tied with other candidates.) The GT voting system satisfies independence of clones,
for a careful definition of the property. (See the full version of this paper for details.)

Reversal symmetry. A voting system satisfies reversal symmetry (see Saari [30]) if it
never elects the same candidate as the winner when each voter’s preferences are re-
versed. The GT voting system satisfies reversal symmetry in cases where the GT
support consists of a unique candidate, which may be the only cases when it makes
sense to consider reversal symmetry.

Manipulability. Our definition of relative advantage allows one to compare two voting
systems based on which voting system’s outcomes are preferred more by the voters,
according to voter preferences as expressed in their ballots. We do not take into
consideration whether voters might be voting strategically.

Unfortunately, Gibbard’s [15] characterization of strategy-proof randomized voting
systems tells us that GT is not strategy-proof. However, the computational hardness
of manipulating GT can be studied, although we have no reason to believe that GT is
computationally easier or harder to manipulate than other preferential voting systems.

10 Empirical Comparison with Other Voting Systems

The approach we are recommending allows one to compare any two voting systems P , Q on
a given distribution C of profiles, by computing the relative advantage AdvC(P,Q) of one
system over the other.

We compared seven voting systems: plurality, IRV, Borda, minimax, the Schulze
method [31], GTD, and GT. We used the margins variant of minimax and the “winning
votes” variant of the Schulze method.

We randomly generated 10,000 profiles for m = 5 candidates, as follows. Each profile had
n = 100 full ballots. Each candidate and each voter was randomly assigned a point on the
unit sphere—think of these points as modeling candidates’ and voters’ locations on Earth.
A voter then lists candidates in order of increasing distance from her location. With this
“planetary” distribution, about 64.3% of the profiles had a Condorcet winner, and about
77.1% of the 10,000 simulated elections had a unique optimal mixed strategy.

We also tried our experiments under the “impartial culture” distribution (i.e., the uni-
form distribution). However, under this distribution there were Condorcet winners almost
all (about 93%) of the time, so we chose another distribution.

The code we used, and detailed output data, is available at http://people.csail.mit.
edu/rivest/gt .

Figure 1 gives the cumulative “point advantage” of each of the seven voting systems
against each other in our experiment. For example, the “16380” entry in row “Schulze,”
column “IRV” means that in an average election, the net number of voters preferring the

http://people.csail.mit.edu/rivest/gt
http://people.csail.mit.edu/rivest/gt


plurality IRV Borda minimax Schulze GTD GT
plurality 0 -23740 -31058 -32030 -32128 -32390 -29978
IRV 23740 0 -14148 -16296 -16380 -15892 -13872
Borda 31058 14148 0 -4546 -4654 -5324 -2522
minimax 32030 16296 4546 0 -58 -1436 -174
Schulze 32128 16380 4654 58 0 -1402 -76
GTD 32390 15892 5324 1436 1402 0 10
GT 29978 13872 2522 174 76 -10 0

Figure 1: Cumulative “point advantages” for our main experiment. Row X column Y
shows the sum, over 10,000 simulated elections with 100 votes each, of the margin of X’s
winner over Y ’s winner. For example, the entry 13872 in row GT, column IRV means
that on average for a random election from our distribution C on profiles, 1.3872% more
of the electorate prefers the GT outcome to the IRV outcome than the reverse; that is,
AdvC(GT, IRV ) = 1.3872%.

Schulze outcome to the IRV outcome is about 1.6380 voters (i.e., 1.6380% of the electorate).
That is, AdvC(Schulze, IRV) ≈ 0.016380.

With this distribution on profiles, there is a clear improvement in quality of output (as
measured by relative advantage compared to GT) as one goes from plurality to IRV to Borda
to minimax to Schulze. GT and GTD are perfect by definition in this metric, but Schulze
is amazingly close. Although GTD and GT are by definition in a dead heat against each
other, GTD appears to be a better competitor against the other systems than GT.

Note that when comparing GT with another voting system, there is no expected net
point gain for GT if the other system picks a candidate that is in supp(GT (C)). Candidates
in supp(GT (C)) have the property that playing any one of them has an expected payoff
equal to zero (the value of the game) against GT. If the other system plays a candidate
outside of supp(GT (C)), GT will have an expected net point gain and the other system will
have an expected loss.

Figure 2 illustrates the number of times each pair of voting systems produced results
that “agree with” each other. The column “GTS” refers to the support of GT; a method
“agrees with” GTS if it produces an output that is in the support of GT. In our view,
level of agreement with the support of GT is an interesting measure of the quality of the
results produced by each voting system. Plurality does quite poorly (agreeing with GTS
only 55.15% of the time), as does IRV (72.99%), but minimax (99.15%) and the Schulze
method (99.51%) have nearly perfect agreement with the support of GT.

Thus, one can perhaps view the evolution of voting system proposals as a continuing
effort to identify candidates that are in the support for the optimal mixed strategy for the
associated two-person game, without quite realizing that this is the natural goal. That is,
voting systems should be (at the minimum) returning winners that are in supp(GT (C)),
the set of potential winners for the GT voting system. To do otherwise does not serve the
voters as well as can be done. However, since determining the support for the optimal mixed
strategy intrinsically involves linear programming, this computation is non-trivial, so we see
a variety of quite complex voting system proposals in the literature, which are, in this view,
just approximate computations for (a member of) supp(GT (C)).

11 Practical Considerations

We believe that the GT voting system is suitable for practical use.



plurality IRV Borda minimax Schulze GTD GT GTS

plurality 10000 5557 4107 4356 4366 4335 4262 5515

IRV 5557 10000 5584 6047 6048 5999 5802 7299

Borda 4107 5584 10000 7854 7874 7813 7193 8913

minimax 4356 6047 7854 10000 9953 8869 8232 9915

Schulze 4366 6048 7874 9953 10000 8895 8246 9951

GTD 4335 5999 7813 8869 8895 10000 8377 10000

GT 4262 5802 7193 8232 8246 8377 10000 10000

GTS 5515 7299 8913 9915 9951 10000 10000 10000

Figure 2: Agreement between pairs of voting systems. Row X column Y gives the number of
times that method X produced an outcome that agreed with the outcome of method Y, in
our 10,000 trials. Here the “GTS method” refers to the support of GT, and a method “agrees
with” GTS if it produces an outcome that is in the support of GT. In our view, frequency of
agreement with GTS (producing outcomes in the support of GT) is an important measure
of the quality of a preferential voting system.

Since the GT voting system depends only on the pairwise preference matrix N , ballot
information can be easily aggregated at the precinct level and the results compactly trans-
mitted to central election headquarters for final tabulation; the number of data items that
need to be transmitted is only O(m2), which is much better than for, say, IRV.

Perhaps the only negative aspects with respect to using GT in practice are that (1) its
game-theoretic rationale may be confusing to some voters and election officials, (2) it is a
randomized method, and may require dice-rolling or other randomized devices in the case
of generalized ties, and (3) it is not so clear how to efficiently audit a GT election. (The
last aspect is common to many preferential voting systems).

12 Other Related Work

Fishburn [12] gives an excellent overview of voting systems with the Condorcet property.
The idea of using a two-player zero-sum game based on a payoff matrix derived from a

profile of ballots is not new; there are several papers that study this and related situations.
Laffond et al. [20] introduce the concept of a “bipartisan set,” which is the support of

the optimal mixed strategy of a two-player “tournament game.” (A tournament game is
based on an unweighted complete directed graph (a tournament) where each player picks a
vertex, and the player picking x wins one point from the player picking y if there is an edge
from x to y.) They show that any tournament game has a unique optimal mixed strategy,
and study the properties of its support.

Laffond et al. [21] propose the use of optimal mixed strategies of a zero-sum two-player
game in the context of tournament games and “plurality games”. (A plurality game is the
weighted version of a tournament game and corresponds to the voting situation we consider
(assuming no margins are zero); the weight of an edge from x to y is the margin M(x, y).)
However, their focus is on the way political parties choose platform issues, whereas our focus
is on “competition” between voting systems rather than between political parties. Our work
should nonetheless be viewed as further explorations along the directions they propose.

Le Breton [4, p. 190] proves a general version of Laffond et al.’s [20] earlier result, showing
that if all edges satisfy certain congruence conditions, then the weighted tournament game
has a unique optimal mixed strategy.

Laslier [23] studies the “essential set” (the support of the optimal mixed strategies in a
symmetric two-party electoral competition game) with respect to the independence of clones



axiom.
Duggan and Le Breton [9] study the “minimal covering set” of a tournament (proposed

by Dutta [10] as a choice function on tournaments), and show that it is the same as Shapley’s
notion of a “weak saddle” for the corresponding tournament game.

De Donder et al. [7] consider various solution concepts for tournament and weighted
tournament games and make set-theoretic comparisons between the corresponding social
choice functions.

Michael and Quint [24] provide further results characterizing when there exists a unique
optimal strategy in tournament and weighted tournament games.

Dutta et al. [11] introduce “comparison functions,” which correspond to general skew-
symmetric matrices, as a framework for generalizing choice functions on tournaments.

13 Open Problems

There are many aspects of the GT method, and of probabilistic voting systems in general,
that deserve further study. Here are a few such open questions:
• For which pairs of voting systems P and Q, and for which distributions C on profiles,

can AdvC(P,Q) be analytically determined? Can one show analytically that GTD
performs better than GT against some well-known voting system?

• Can one lower bound (for some assumed distribution C on profiles) the penalty paid
for being deterministic, consistent, or monotonic (i.e., in terms of the advantage of
GT over systems with the given property)?

• How sensitive are the output probabilities of GT to the input votes? More generally,
how resistant is GT to manipulation, for various notions of manipulation of proba-
bilistic voting systems (e.g., that of [5])?

• Is it possible to modify the Schulze method in a straightforward manner so that it al-
ways chooses a winner in the support of GT, while retaining its deterministic character
and its other desirable properties?

• To what extent would changing the social evaluation function (see Fishburn [14])
change the perceived relative quality of various voting systems (e.g., via simulation
results)?

14 Conclusions

We have described the GT voting system for the classic problem of determining the winner of
a single-winner election based on voters’ preferences expressed as (full or partial) rank-order
listings of candidates.

The GT scheme is arguably optimal among preferential voting systems, in the sense that
no other voting system P can produce election outcomes that on the average are preferred by
voters to those of GT. We feel that optimality is an important criterion for voting systems.

We believe that the GT voting system is suitable for practical use, when preferential
voting is desired. When there is a clear (Condorcet) winner, GT elects that winner. When
there is no Condorcet winner, GT produces a “best” set of probabilities that can be used
in a tie-breaking ceremony. If one is to use preferential ballots, the GT system can be
recommended.

Since the GT system shares some potentially confusing properties, such as non-
monotonicity, with many other preferential voting systems, election authorities might rea-
sonably consider alternatives to the GT system, such as a non-optimal but monotonic pref-



erential voting system like the Schulze method, or non-preferential voting systems such as
approval voting or range voting.

However, we feel that the optimality property of GT makes it worthy of serious consid-
eration when preferential ballots are to be used.
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