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Abstract

We consider the classical mechanism design problem of strongly implementing social
choice functions in a setting where monetary transfers are allowed. In contrast to
weak implementation, where only one equilibrium of a mechanism needs to yield
the desired outcomes given by the social choice function, strong implementation
(also known as full implementation) means that a mechanism is sought in which
all equilibria yield the desired outcomes. For strong implementation, one cannot
restrict attention to incentive compatible direct revelation mechanisms via the Rev-
elation Principle, so the question whether a given social choice function is strongly
implementable cannot be answered as easily as for weak implementation.
When considering Bayes Nash equilibria, the Augmented Revelation Principle states
that it suffices to consider mechanisms in which the set of types of each agent is a
subset of the set of her possible bids. Moreover, given some additional data, such a
mechanism can be constructed by an iterative procedure via selective elimination of
undesired equilibria in finitely (but possible exponentially) many steps. For dominant
strategies as the equilibrium concept, however, no such results have been known so
far. We close this gap by showing a variant of the Augmented Revelation Principle for
dominant strategies and a selective elimination procedure for constructing the desired
mechanisms in polynomially many steps. Using these results, we then show that
strong implementability in dominant strategies can be decided in nondeterministic
polynomial time. This complements the results obtained in the companion paper
by Thielen and Westphal [7], where an efficient polynomial time algorithm for the
problem is given when one restricts to strong implementation by incentive compatible
direct revelation mechanisms.

1 Introduction

Mechanism design is a classical area of noncooperative game theory and microeconomics,
which studies how privately known preferences of several people can be aggregated towards
a social choice. Applications include the design of procedures for elections and for decid-
ing upon public projects. Recently, the study of the Internet has fostered the interest in
algorithmic aspects of mechanism design [5].

In the classical social choice setting considered in this paper, there are n selfish agents,
which must make a collective decision from some finite set X of possible social choices.
Each agent i has a private value θi ∈ Θi (called the agent’s type), which influences the
preferences of all agents over the alternatives in X . Formally, this is modeled by a valuation
function Vi : X × Θ → Q for each agent i, where Θ = Θ1 × · · · × Θn. Every agent i re-
ports some information si from a set Si of possible bids of i to the mechanism designer who
must then choose an alternative from X based on these bids. The goal of the mechanism
designer is to implement a given social choice function f : Θ → X , that is, to make sure
that the alternative f(θ) is always chosen in equilibrium when the vector of true types is
θ = (θ1, . . . , θn). To achieve this, the mechanism designer hands out a payment Pi(θ) to
each agent i, which depends on the bids. Each agent then tries to maximize the sum of her
valuation and payment by choosing an appropriate bid depending on her type. A mecha-
nism Γ = (S1, . . . , Sn, g, P ) is defined by the sets S1, . . . , Sn of possible bids of the agents,



an outcome function g : S1 × · · · × Sn → X , and the payment scheme P = (P1, . . . , Pn).
In the most common concept called weak implementation, the mechanism Γ is said to

implement the social choice function f if some equilibrium of the noncooperative game
defined by the mechanism yields the outcomes specified by f . An important result known
as the Revelation Principle (cf. [2, p. 884]) states that a social choice function is weakly
implementable if and only if it can be truthfully implemented by an incentive compatible
direct revelation mechanism, which means that f can be implemented by a mechanism with
Si = Θi for all i and truthful reporting as an equilibrium that yields the outcome specified
by f . As a result, the question whether there exists a mechanism that weakly implements a
given social choice function f can be easily answered in time polynomial in |Θ| by checking
for negative cycles in complete directed graphs on the agents’ type spaces with changes of
valuations as edge weights (cf. [1, 4, 6]).

The more robust concept of implementation called strong implementation (also known as
full implementation) requires that not only one, but all equilibria of a mechanism yield the
desired outcomes. Hence, a strong implementation does not rely on the implicit assumption
that the agents always play the “desired” equilibrium if there is more than one. For strong
implementation, the Revelation Principle does not hold, so one cannot, in general, restrict
attention to direct revelation mechanisms and truthful implementations when trying to
decide whether a social choice function is strongly implementable.

When considering Bayes Nash equilibria as the equilibrium concept, a generalization
of the Revelation Principle called the Augmented Revelation Principle [3] states that it
suffices to consider augmented revelation mechanisms, in which the set Θi of types of each
agent i is a subset of the set Si of her possible bids. Moreover, it was shown in [3] that one
can always obtain an augmented revelation mechanism that strongly implements a strongly
implementable social choice function f via the selective elimination procedure that starts
with an incentive compatible direct revelation mechanism and some additional data on its
equilibria and iteratively eliminates all the finitely many equilibria that do not yield the
outcomes specified by f . To do so, one of the agents is given a new bid, so her set of
possible bids is enlarged by one element. Since the procedure always stops after finitely
many iterations, this also implies that the sets Si can always be chosen to be finite.

For dominant strategies as the equilibrium concept, however, no such results have been
known so far and it has not even been clear that one can restrict to finite sets of possible bids
or polynomially sized payments. Hence, also the complexity of deciding whether a given
social choice function f is strongly implementable in dominant strategies has remained open.

2 Our Contribution

We prove a variant of the Augmented Revelation Principle for dominant strategy equilibria.
Our result implies that, as in the case of Bayes Nash equilibria, one can always restrict
to augmented revelation mechanisms when trying to decide strong implementability of so-
cial choice functions in dominant strategies. Moreover, we present a selective elimination
procedure for constructing augmented revelation mechanisms in finitely many steps when
dominant strategies are considered. In contrast to the case of Bayes Nash equilibria, where
the number of steps needed for selective elimination of all undesired equilibria of an incentive
compatible direct revelation mechanism can be exponential, we show that our procedure for
dominant strategies always terminates after polynomially many steps, which implies that
only a polynomial number of possible bids for each agent is needed. Based on this result, we
show that the payments in a strong implementation can always be chosen to be of polyno-
mial encoding length and present a method for deciding strong implementability of a given
social choice function in nondeterministic polynomial time. Doing so, we prove the first



upper bound on the computational complexity of this classical mechanism design problem.
We suspect that a matching lower bound can be proved as well, i.e., that deciding strong
implementability of a social choice function in dominant strategies is NP-complete.

3 Problem Definition

We are given n agents identified with the set N = {1, . . . , n} and a finite set X of possible
social choices. For each agent i, there is a finite set Θi of possible types and we write
Θ = Θ1 × · · · × Θn. The true type θi of agent i is known only to the agent herself. Each
agent i has a valuation function Vi : X × Θ → Q, where Vi(x, θ) specifies the value that
agent i assigns to alternative x ∈ X when the types of the agents are θ ∈ Θ. A social choice
function in this setting is a function f : Θ → X that assigns an alternative f(θ) ∈ X to
every vector θ of types.

Definition 1. A mechanism Γ = (S1, . . . , Sn, g, P ) consists of a set Si of possible bids for
each agent i, an outcome function g : S → X and a payment scheme P : S → Qn, where
S := S1 × · · · × Sn.

A strategy for agent i in the mechanism Γ is a function αi : Θi → Si that defines a
bid αi(θi) ∈ Si for every possible type θi of agent i. A strategy profile (in the mechanism Γ)
is an n-tuple α = (α1, . . . αn) containing a strategy αi for each agent i.

Definition 2. Given a mechanism Γ = (S1, . . . , Sn, g, P ), a vector θ ∈ Θ of types of all
agents, and a vector s−i ∈ S−i of bids of all agents except i, the utility from a bid si ∈ Si

for agent i is defined as

UΓ
i (s−i, si|θ) := Vi(g(s−i, si), θ) + Pi(s−i, si).

A bid s̄i ∈ Si of an agent i is called a dominant bid for type θi ∈ Θi if it maximizes the
utility of an agent i of type θi for every possible vector s−i ∈ S−i of bids of the other agents
and every possible vector θ−i ∈ Θ−i of types of the other agents, i.e., if

UΓ
i (s−i, s̄i|θ) ≥ UΓ

i (s−i, si|θ) ∀s−i ∈ S−i, θ−i ∈ Θ−i, si ∈ Si.

A pair (θ, s) ∈ Θ× S of a type vector θ ∈ Θ and bid vector s ∈ S is called a dominant pair
if si is a dominant bid for θi for every i ∈ N . The strategy profile α is a dominant strategy
equilibrium of Γ if (θ, α(θ)) is a dominant pair for every θ ∈ Θ.

Definition 3. The mechanism Γ = (S1, . . . , Sn, g, P ) strongly implements the social choice
function f if Γ has at least one equilibrium and every equilibrium α of Γ satisfies g ◦α = f .
The social choice function f is called strongly implementable if there exists a mechanism Γ
that strongly implements f .

Definition 4. A mechanism Γ = (S1, . . . , Sn, g, P ) is called a direct revelation mechanism if
Si = Θi for all i ∈ N . The direct revelation mechanism (Θ1, . . . ,Θn, f, P ) defined by a social
choice function f and a payment scheme P will be denoted by Γ(f,P ). A direct revelation
mechanism Γ(f,P ) is called incentive compatible if truthful reporting is a dominant strategy
equilibrium of Γ(f,P ).

Definition 5. A mechanism Γ = (S1, . . . , Sn, g, P ) is called augmented revelation mecha-
nism if Si = Θi ∪ Ti for all i ∈ N and arbitrary sets Ti.

Definition 6 (Strong Implementability Problem).
INSTANCE: The number n of agents, the set X of possible social choices, the sets Θi

of possible types of the agents, the valuation functions Vi : X × Θ → Q,
and the social choice function f : Θ → X.

QUESTION: Is f strongly implementable in dominant strategies?



To encode an instance of Strong Implementability, we need to do the following: For every
valuation function Vi : X ×Θ → Q, we need to store |X | · |Θ| rational numbers. The social
choice function f : Θ → X has encoding length |Θ| · log(|X |). Thus, the encoding length of
an instance of Strong Implementability is in Ω(|X | · |Θ| · n).

4 The Augmented Revelation Principle for Dominant

Strategies

In this section, we prove the Augmented Revelation Principle for dominant strategies and
present our selective elimination procedure that, given an incentive compatible direct reve-
lation mechanism Γ(f,P ) and some data on it equilibria, constructs an augmented revelation
mechanism that strongly implements f by an iterative procedure that stops after polyno-
mially many steps.

Theorem 1 (Augmented Revelation Principle for dominant strategies). If a social choice
function f : Θ → X is strongly implementable in dominant strategies, then f can be strongly
implemented in dominant strategies by an augmented revelation mechanism in which truthful
reporting is an equilibrium.

Proof. Given a mechanism Γ = (S1, . . . , Sn, g, P ) that strongly implements f in dominant
strategies, we construct an augmented revelation mechanism Γ̄ = (S̄1, . . . , S̄n,
ḡ, P̄ ) that strongly implements f similar to the proof of the Augmented Revelation Principle
for Bayes Nash equilibria given in [3]. Additionally, we have to define the new payment
scheme P̄ in terms of the given payment scheme P since the proof in [3] focused on the case
without payments.

Given an arbitrary equilibrium α = (α1, . . . , αn) of Γ, we define S̄i := Θi ∪ Ti, where

Ti := {si ∈ Si | si /∈ image(αi)},

and image(αi) = {αi(θi) | θi ∈ Θi} denotes the image of the function αi : Θi → Si. We
consider the functions φi : S̄i → Si given by

φi(s̄i) :=

{
αi(θi) if s̄i = θi for θi ∈ Θi

s̄i if s̄i ∈ Ti

and define the outcome function ḡ : S̄ → X as ḡ := g ◦ φ, where φ = (φ1, . . . , φn). The
payment scheme P̄ : S̄ → Q is defined analogously as P̄ := P ◦ φ.

To show that Γ̄ strongly implements f in dominant strategies, suppose that ᾱ =
(ᾱ1, . . . , ᾱn) is an equilibrium of Γ̄ and again consider the strategy profile α∗ = (α∗

1, . . . , α
∗
n)

in Γ given by α∗
i := φi ◦ ᾱi. As before, we then have g ◦ α∗ = g ◦ φ ◦ ᾱ = ḡ ◦ ᾱ and

P ◦ α∗ = P ◦ φ ◦ ᾱ = P̄ ◦ ᾱ and claim that α∗ is an equilibrium of Γ.
Since every φj : S̄j → Sj is surjective, we can choose s̄j ∈ S̄j with φj(s̄j) = sj for each

j ∈ N and each sj ∈ Sj . Then, for all i ∈ N, θ ∈ Θ, s−i ∈ S−i, and si ∈ Si,

UΓ
i (s−i, α

∗
i (θi)|θ) = Vi(g(s−i, α

∗
i (θi)), θ) + Pi(s−i, α

∗
i (θi))

= Vi(ḡ(s̄−i, ᾱi(θi)), θ) + P̄i(s̄−i, ᾱi(θi))

≥ Vi(ḡ(s̄−i, s̄i), θ) + P̄i(s̄−i, s̄i)

= Vi(g(s−i, si), θ) + Pi(s−i, si)

= UΓ
i (s−i, si|θ),

where the inequality follows since ᾱ is an equilibrium of Γ̄. Thus, α∗ is an equilibrium of
Γ as claimed. So since Γ strongly implements f , it follows that f = g ◦ α∗ = ḡ ◦ ᾱ, i.e.,



the equilibrium ᾱ yields the outcomes specified by f . Hence, it just remains to show that
truthful bidding is an equilibrium of Γ̄. But this follows easily since, for every θ ∈ Θ, we
have ḡ(θ) = (g ◦ φ)(θ) = g(α(θ)) and P̄ (θ) = (P ◦ φ)(θ) = P (α(θ)) and α is an equilibrium
of Γ.

We now present our selective elimination procedure for dominant strategies. To this end,
we need the following definition:

Definition 7. A dominant bid θ̄i ∈ Θi for type θ̃i ∈ Θi of agent i ∈ N in a direct revelation
mechanism Γ(f,P ) can be selectively eliminated if there exists a nonempty subset N̄ ⊆ N \{i}
of the other agents such that the following holds: For S̄j := Θj∪{s̄j} for j ∈ N̄ , S̄j := Θj for
j ∈ N \ N̄ , and S̄ := S̄1 × · · · × S̄n, there exist functions h : S̄ → X and P̄j : S̄ → Q, j ∈ N ,
with h|Θ = f and (P̄j)|Θ = Pj such that:

1. For some θ̃−i ∈ Θ−i and some bid vector θ̄−(N̄∪{i}) ∈ Θ−(N̄∪{i}) of the agents not in

N̄ ∪ {i}

Vi(h(s̄N̄ , θ̄−(N̄∪{i}), θ̃i), θ̃) + P̄i(s̄N̄ , θ̄−(N̄∪{i}), θ̃i)

> Vi(h(s̄N̄ , θ̄−(N̄∪{i}), θ̄i), θ̃) + P̄i(s̄N̄ , θ̄−(N̄∪{i}), θ̄i).

2. For all j ∈ N, θ ∈ Θ, s ∈ S̄ \Θ

Vj(h(s−j , θj), θ) + P̄j(s−j , θj) ≥ Vj(h(s−j , sj), θ) + P̄j(s−j , sj).

A dominant pair (θ, θ′) ∈ Θ2 can be selectively eliminated if the dominant bid θ′i ∈ Θi for
type θi ∈ Θi can be selectively eliminated for some i ∈ N .

Here, each agent j ∈ N̄ is given a new bid s̄j . The function h extends f to the enlarged
set S̄ of possible bids by specifying the outcomes chosen when at least one agent chooses
a non-type message. Similarly, the functions P̄j extend the payment functions Pj to S̄.

The first condition says that, for some type vector θ̃−i ∈ Θ−i of the other agents and
some bid vector θ̄−(N̄∪{i}) of the agents not in N̄ ∪ {i}, agent i can increase her utility by

bidding her true type θ̃i instead of θ̄i in the case that the agents in N̄ choose their new
non-type messages. Thus, θ̄i is not a dominant bid for type θ̃i anymore. On the other hand,
the second condition ensures that all pairs (θ, θ) ∈ Θ2 stay dominant pairs, so truthful
reporting is preserved as an equilibrium.

Definition 8. A dominant pair (θ, θ′) ∈ Θ2 in the direct revelation mechanism Γ(f,P ) is
called bad if f(θ) 6= f(θ′). Γ(f,P ) satisfies the selective elimination condition if every bad
dominant pair can be selectively eliminated.

The idea behind Definition 8 is the following observation, which follows immediately
from the definitions:

Observation 1. A direct revelation mechanism Γ(f,P ) with at least one dominant strategy
equilibrium has a bad dominant strategy equilibrium if and only if there exists a bad dom-
inant pair (θ, θ′) ∈ Θ2 in Γ(f,P ). In particular, an incentive compatible direct revelation
mechanism Γ(f,P ) has a bad dominant strategy equilibrium if and only if there exists a bad
dominant pair (θ, θ′) ∈ Θ2 in Γ(f,P ).

Hence, selectively eliminating all bad dominant pairs will lead to elimination of all bad
equilibria. The difference to the case of Bayes Nash equilibria discussed in [3] is that one
does not need to consider complete equilibria α and check whether they can be selectively



eliminated. Here, one has to consider only bad dominant pairs (θ, θ′) ∈ Θ2. While there are
potentially exponentially many bad equilibria, the number of bad dominant pairs (θ, θ′) ∈ Θ2

is bounded by |Θ|2, which is polynomial in the encoding length of the input. This observation
will play a crucial role when we show that Strong Implementability is in NP when considering
dominant strategies.

Theorem 2. Suppose that the social choice function f : Θ → X is strongly implementable
in dominant strategies. Then there exists an incentive compatible direct revelation mecha-
nism Γ(f,P ) that satisfies the selective elimination condition.

Proof. Theorem 1 states that there exists an augmented revelation mechanism Γ =
(S1, . . . , Sn, g, P ) that strongly implements f in dominant strategies and in which truth-
ful reporting is an equilibrium. In particular, this implies that g|Θ = f , and we claim that
the direct revelation mechanism Γ(f,P|Θ) is as required.

Incentive compatibility of Γ(f,P|Θ) follows directly from the fact that truthful reporting
is an equilibrium in Γ. To show that Γ(f,P|Θ) satisfies the selective elimination condition,

consider a bad dominant pair (θ, θ′) ∈ Θ2 in Γ(f,P|Θ) (if none exists, we are done). Since Γ
strongly implements f , it can have no bad equilibria and, thus, (θ, θ′) cannot be a dominant
pair in Γ. Hence, there must be an agent i, a vector θ̃−i ∈ Θ−i of types of the other agents,
and a vector s̄ ∈ S of bids such that

UΓ
i (s̄−i, s̄i|θi, θ̃−i) > UΓ

i (s̄−i, θ
′
i|θi, θ̃−i).

Moreover, since truthful reporting is an equilibrium in Γ, we know that

UΓ
i (s̄−i, θi|θi, θ̃−i) ≥ UΓ

i (s̄−i, s̄i|θi, θ̃−i),

so we obtain

UΓ
i (s̄−i, θi|θi, θ̃−i) > UΓ

i (s̄−i, θ
′
i|θi, θ̃−i). (1)

Moreover, since (θ, θ′) is a dominant pair in Γ(f,P|Θ), we know that s̄j /∈ Θj for at least one

j 6= i. Hence, the set N̄ := {j 6= i : s̄j /∈ Θj} is nonempty. We now set S̄j := Θj ∪ {s̄j}
for j ∈ N̄ , S̄j := Θj for j ∈ N \ N̄ , and S̄ := S̄1 × · · · × S̄n as in the definition of selective
elimination. The function h : S̄ → X is defined as the restriction of g to S̄ ⊆ S and
it satisfies h|Θ = g|Θ = f . Analogously, the functions P̄j : S̄ → Q are defined as the
restrictions of the Pj to S̄ ⊆ S and we have (P̄j)|Θ = (Pj)|Θ. Defining θ̄j := s̄j ∈ Θj

for all j /∈ (N̄ ∪ {i}), it is now immediate that the dominant bid θ′i for type θi of agent i
can be selectively eliminated, i.e., that Conditions 1 and 2 in the definition of selective
elimination are satisfied: Condition 1 follows directly from (1) and the definitions, and
Condition 2 follows since truthful reporting is an equilibrium in Γ. Thus, the bad dominant
pair (θ, θ′) ∈ Θ2 can be selectively eliminated.

We are now ready to present our selective elimination procedure for constructing aug-
mented revelation mechanisms. This procedure is used to prove the following theorem, which
is states that the selective elimination condition is also sufficient for strong implementability:

Theorem 3. Suppose that there exists an incentive compatible direct revelation mecha-
nism Γ(f,P ) that satisfies the selective elimination condition. Then the social choice func-
tion f : Θ → X is strongly implementable in dominant strategies.

Proof. We start with the direct revelation mechanism Γ(f,P ) and proceed inductively to
selectively eliminate all bad dominant pairs (θ, θ′) ∈ Θ2 in Γ(f,P ) one by one without intro-
ducing any new dominant pairs by augmenting the mechanism appropriately. Since there



can only be finitely many bad dominant pairs, the procedure stops after a finite number
of steps with an augmented revelation mechanism without bad dominant pairs and, thus,
without bad equilibria. In fact, the procedure stops after a polynomial number of steps since
there can only be |Θ|2 many bad dominant pairs in Γ(f,P ).

We describe a representative stage of this iterative procedure. From the previous itera-
tion, we are given an augmentation Γ = (S1, . . . , Sn, g, P

′) of Γ(f,P ) with Si = Θi∪Ti for all
i ∈ N , and θ′ ∈ Θ for every dominant pair (θ, θ′) of Γ. Let (θ, θ′) be a bad dominant pair
of Γ. Let i ∈ N be such that the dominant bid θ′i for type θi of agent i can be selectively
eliminated, and suppose that ∅ 6= N̄ ⊆ N \ {i}, S̄ = S̄1 × · · · × S̄n with S̄j = Θj ∪ {s̄j} for
j ∈ N̄ and S̄j = Θj for j ∈ N \ N̄ , h : S̄ → X , and P̄j : S̄ → Q are as in the definition of

selective elimination. Consider the mechanism Γ̃ = (S̃1, . . . , S̃n, g̃, P̃ ) with

S̃j := Sj ∪ {s̄j} for j ∈ N̄ ,

S̃j := Sj for j ∈ N \ (N̄ ∪ {i}),

S̃i := Si ∪ {CFL}.

Hence, each agent j ∈ N̄ is given a new bid s̄j (a flag), and agent i is given a new counter-

flag CFL. We set g̃|S := g and P̃|S := P ′, i.e., outcomes and payments associated with bids
from the previous stages are left unchanged. Outcomes and payments associated with the
new bids are defined as follows:

1. If the bid vector is in S̄, the outcome and the payments are given by h and the P̄j ,

respectively, i.e., g̃(s) := h(s) for s ∈ S̄ and P̃j(s) := P̄j(s) for s ∈ S̄, j ∈ N. Note that
this definition agrees with the outcomes and payments of the previous stages when
the bid vector is in Θ since g̃|Θ = f and (P̃j)|Θ = P .

2. If some agents ∅ 6= Ñ ⊆ N̄ choose their new bids, agent i does not choose her new

counterflag CFL, but some agents j ∈ ˜̃N ⊆ N \ Ñ choose bids in Tj = Sj \ Θj , then

outcome and payments are as if each agent k ∈ Ñ had chosen a fixed type θ0k ∈ Θk,

but each agent k ∈ Ñ is charged ǫ > 0 for choosing her new bid s̄k if agent i chooses
a bid in Ti = Si \Θi.

3. If at least two agents Ñ ⊆ N̄ , |Ñ | ≥ 2, choose their new bids and agent i chooses CFL,
then outcome and payments are as if agent i had reported a fixed type θ0i ∈ Θi.

4. If no agent in N̄ chooses her new bid, but agent i chooses CFL, then outcome and
payments are as if agent i had reported θ0i ∈ Θi, but agent i is charged ǫ > 0 for
choosing CFL.

5. If exactly one agent k ∈ N̄ chooses her new bid and agent i chooses CFL, then outcome
and payments are as if agent i had reported θ0i ∈ Θi and agent k had reported θ0k ∈ Θk,
but agent k is charged ǫ > 0.

We now have to show that truthful reporting is still an equilibrium in Γ̃, (θ, θ′) is not a
dominant pair anymore, and there are no new dominant bid pairs in Γ̃ (or, equivalently,
no new dominant bids). Note that, since the outcomes and payments associated with bids
from the previous stages are left unchanged, any new dominant bid of an agent would have
to be one of the agent’s new bids.

Claim 1. Truthful reporting is an equilibrium in Γ̃.

Proof. We consider a fixed agent j ∈ N and show that truthful reporting is a dominant
strategy for j in Γ̃.



As long as the other agents bid a vector in S−j∪S̄−j , truthful reporting is always optimal
for agent j among all bids in Sj ∪ S̄j by Condition 2 in the definition of selective elimination
and since truthful reporting is an equilibrium in Γ. When agent j bids a new bid (if she
has one), this can only lead to some agents being charged ǫ as long as the other agents still
bid a vector in S−j ∪ S̄−j . Hence, truthful reporting is always optimal among all bids of
agent j in this case.

If the vector of bids of the other agents is not in S−j ∪ S̄−j , some agents choose new bids

and some agents choose previously added bids. Hence, Case 2 in the definition of Γ̃ applies
when agent i does not choose CFL, and Case 3,4, or 5 applies when agent i chooses CFL. But
outcomes and payments in each of these cases are equivalent to the outcome and payments
resulting from some bid vector in S ∪ S̄, except that some agents are possibly charged ǫ.
Hence, truthful reporting is optimal for agent j by the case considered above.

Claim 2. (θ, θ′) is not a dominant pair in Γ̃.

Proof. Follows immediately from Case 1 in the definition of Γ̃ and the definition of selective
elimination.

Claim 3. There is no dominant bid s̄k for any type θk ∈ Θk of any agent k ∈ N̄ in Γ̃.

Proof. If agent k has type θk and chooses the bid s̄k, consider the situation in which no
other agent j ∈ N̄ \ {k} chooses her new bid and agent i chooses CFL. Then, by Cases 4
and 5 in the definition of Γ̃, agent k could increase her utility by ǫ > 0 by bidding θ0k instead
of s̄k for every possible vector θ−k of types of the other agents.

Claim 4. CFL is not a dominant bid for any type θi ∈ Θi of agent i in Γ̃.

Proof. If agent i has type θi and chooses the bid CFL, consider the situation in which no
agent j ∈ N̄ chooses her new bid. Then, by Case 4 in the definition of Γ̃, agent i could
increase her utility by ǫ > 0 by bidding θ0i instead of CFL for every possible vector θ−i of
types of the other agents.

By inductive application of the claims, the final mechanism obtained after eliminating
all bad dominant pairs (θ, θ′) in Γ(f,P ) has no bad dominant pairs, but truthful reporting is
still an equilibrium. Hence, this mechanism strongly implements f in dominant strategies,
which proves the theorem.

Theorem 4. The social choice function f : Θ → X is strongly implementable in domi-
nant strategies if and only if there exists an incentive compatible direct revelation mecha-
nism Γ(f,P ) that satisfies the selective elimination condition.

Theorem 4 is the main ingredient needed for the proof of our complexity result on Strong
Implementability in the next section. The following lemma resolves one last formal problem
resulting from the definition of selective elimination: Giving all agents in N̄ a new bid could
yield an exponentially large space S̄ of possible bids in the definition of selective elimination.
This can, however, only happen if some of the agents have only one possible type, and the
behavior of such agents cannot impose restrictions on the implementability of a social choice
function since the types of these agents are common knowledge.

Lemma 1. Let Z ⊆ N denote the set of agents whose type space consists of only one
element, i.e., |Θj | = 1 for every j ∈ Z. Consider the instance of Strong Implementa-
bility for the agents in N \ Z given by the valuations V −Z

i : X × Θ−Z → Q defined by
V −Z
i (x, θ−Z) := Vi(x, θ−Z , θZ) and the social choice function f−Z : Θ−Z → X defined by

f−Z(θ−Z) := f(θ−Z , θZ), where θZ is the unique type vector of the agents in Z. Then f is



strongly implementable in dominant strategies if and only if f−Z is strongly implementable
in dominant strategies.

Proof. Suppose that f is strongly implementable in dominant strategies. Then, by Theo-
rem 1, there exists an augmented revelation mechanism Γ = (S1, . . . , Sn, g, P ) that strongly
implements f in dominant strategies and in which truthful reporting is an equilibrium.
Without loss of generality, we assume that N \ Z = {1, . . . , z} with z := |N \ Z| and
consider the mechanism Γ−Z = (S−Z

1 , . . . , S−Z
z , g−Z , P−Z) defined by

S−Z
i := Si for i = 1, . . . , z

g−Z(s1, . . . , sz) := g(s1, . . . , sz, θZ)

P−Z
i (s1, . . . , sz) := Pi(s1, . . . , sz, θZ).

Then α−Z = (α−Z
1 , . . . α−Z

z ) 7−→ (α−Z
1 , . . . , α−Z

z , idΘZ
) = α defines an injective map from

the set of strategy profiles in Γ−Z to the set of strategy profiles in Γ, and α−Z is an
equilibrium in Γ−Z if and only if α is an equilibrium in Γ (here, we use that truthful bidding
is a dominant strategy in Γ for each agent in Z). Moreover, we have g−Z ◦ α−Z = g−Z if
and only if g ◦ α = g. Hence, since Γ strongly implements f , it follows that Γ−Z strongly
implements f−Z .

Conversely, assume that f−Z is strongly implementable and denote an augmented reve-
lation mechanism that strongly implements it in dominant strategies and in which truthful
reporting is an equilibrium by Γ−Z = (S−Z

1 , . . . , S−Z
z , g−Z , P−Z). We define a mecha-

nism Γ = (S1, . . . , Sn, g, P ) for all agents as follows:

Si := S−Z
i for i = 1, . . . , z

Si := Θi = {θi} for i ∈ Z

g(s1, . . . , sz, θZ) := g−Z(s1, . . . , sz)

Pi(s1, . . . , sz, θZ) := P−Z
i (s1, . . . , sz) for i = 1, . . . , z

Pi(s1, . . . , sz, θZ) := 0 for i ∈ Z

Then α = (α1, . . . αz , idΘZ
) 7−→ (α1, . . . , αz) = α−Z defines a bijection between the set of

strategy profiles in Γ and the set of strategy profiles in Γ−Z , and α is an equilibrium in Γ if
and only if α−Z is an equilibrium in Γ−Z . Again, we have g−Z ◦ α−Z = g−Z if and only if
g ◦ α = g. Hence, since Γ−Z strongly implements f−Z , Γ strongly implements f .

Lemma 1 shows that, when trying to decide strong implementability of a social choice
function f in dominant strategies, one can disregard all agents that have only one possible
type by considering the equivalent problem of strong implementability of the social choice
function f−Z . Hence, we may from now on assume that |Θj| ≥ 2 for every agent j ∈ N .
With this assumption, the cardinality of the set S̄ in the definition of selective elimination
is only quadratic in |Θ|:

|S̄| =
∏

j∈N̄

(|Θj |+ 1)
︸ ︷︷ ︸

≤2|Θj |

·
∏

j∈N\N̄

|Θj | ≤ 2|N |−1
︸ ︷︷ ︸

≤
∏

n
j=1 |Θj |

n∏

j=1

|Θj | ≤ (

n∏

j=1

|Θj|)
2 = |Θ|2.

5 Solving Strong Implementability in Nondeterministic

Polynomial Time

In this section, we use our results on augmented revelation mechanisms and selective elimi-
nation to show that Strong Implementability can be decided in nondeterministic polynomial
time when dominant strategies are considered.



Suppose we are given a yes-instance of Strong Implementability, i.e., an instance with a
strongly implementable social choice function f . Theorem 4 then tells us that there exists an
incentive compatible direct revelation mechanism Γ(f,P ) satisfying the selective elimination
condition. We denote the set of all bad dominant pairs (θ, θ′) by D ⊆ Θ2. Similarly, for
each i ∈ N , we denote the set of all pairs (θ̃i, θ̄i) ∈ Θ2

i such that θ̄i is a dominant bid for
type θ̃i of agent i by Di ⊆ Θ2

i .
Since Γ(f,P ) satisfies the selective elimination condition, we know that each bad dom-

inant pair (θ, θ′) ∈ D can be selectively eliminated. Suppose that, for every (θ, θ′) ∈ D,
(

i(θ,θ
′), N̄ (θ,θ′), h(θ,θ′), θ̃

(θ,θ′)

−i(θ,θ
′) , θ̄

(θ,θ′)

−(N̄∪{i(θ,θ′)})

)

is the data which, together with appropriate

payment functions P̄
(θ,θ′)
j for j ∈ N , can be used to selectively eliminate the bad dominant

pair (θ, θ′).
Similarly, suppose that, for every i ∈ N and every pair (θ̃i, θ̄i) ∈ Θ2

i \ Di (i.e., for
every pair (θ̃i, θ̄i) of types of agent i such that θ̄i is not a dominant bid for type θ̃i),(

θ̃
(θ̃i,θ̄i)
−i , θ̄

(θ̃i,θ̄i)
−i

)

is a pair of a type vector and a bid vector of the other agents such that

U
Γ(f,P )

i

(

θ̄
(θ̃i,θ̄i)
−i , θ̃i|θ̃

(θ̃i,θ̄i)
−i , θ̃i

)

> U
Γ(f,P )

i

(

θ̄
(θ̃i,θ̄i)
−i , θ̄i|θ̃

(θ̃i,θ̄i)
−i , θ̃i

)

.

The possible payment functions Pj : Θ → Q of the mechanism Γ(f,P ) and the func-

tions P̄
(θ,θ′)
j : S̄(θ,θ′) → Q are then given by the solutions of the system of linear inequalities

in the variables Pj(θ) for j ∈ N, θ ∈ Θ and P̄
(θ,θ′)
j (s) for j ∈ N, (θ, θ′) ∈ D, s ∈ S̄(θ,θ′) \ Θ

displayed on Page 11. Note that the values P̄
(θ,θ′)
j (s) for s ∈ Θ do not need to appear in

the system since we require that (P̄
(θ,θ′)
j )|Θ = Pj for all j ∈ N, (θ, θ′) ∈ D.

Inequalities (2) and (3) encode exactly which bids θ̄i ∈ Θi are dominant bids for any
type θ̃i of an agent i in Γ(f,P ) (in particular, (3) encodes incentive compatibility of Γ(f,P ))
and (4) corresponds to Condition 1 in the definition of selective elimination. Inequalities (5)
and (6) correspond to Condition 2, where (6) is stated separately since it involves the

variable Pj(s−j , θj) instead of P̄
(θ,θ′)
j (s−j , θj) as in (5).

Note that there are only polynomially many variables and inequalities in this system and
all coefficients have polynomial encoding length. Hence, we can find a relative interior point
of the polyhedron defined by the system, which corresponds to a solution of the original
system with strict inequalities in (2) and (4), in polynomial time (e.g., by using the ellipsoid

method). In particular, this shows that all the values Pj(θ) and P̄
(θ,θ′)
j (s) can be chosen to

have polynomial encoding length, which proves the following Theorem:

Theorem 5. The social choice function f : Θ → X is strongly implementable in
dominant strategies if and only if there exists an incentive compatible direct revela-
tion mechanism Γ(f,P ) of polynomial encoding length that satisfies the selective elimina-
tion condition. In this case, for every (fixed) bad dominant pair (θ, θ′) of Γ(f,P ), the

data (i, N̄ , h, θ̃−i, θ̄−(N̄∪{i})) needed to selectively eliminate (θ, θ′) can be chosen to have
polynomial encoding length.

Using Theorem 5, we can now state our nondeterministic polynomial time algorithm for
Strong Implementability and, thus, prove the main result of this section:

Theorem 6. Strong Implementability ∈ NP.

Proof. Assume that the given social choice function f is strongly implementable in
dominant strategies. Then, by Theorem 5, there exists an incentive compatible di-
rect revelation mechanism Γ(f,P ) of polynomial encoding length that satisfies the selec-
tive elimination condition. Moreover, for every bad dominant pair (θ, θ′) of Γ(f,P ), the



F
o
r
a
ll
i
∈
N
,(
θ̃ i
,θ̄

i
)
∈
Θ

2 i
\
D

i
:

V
i

(

f
(θ̄

(θ̃
i
,θ̄

i
)

−
i

,θ̃
i
),
θ̃(

θ̃
i
,θ̄

i
)

−
i

,θ̃
i

)

+
P
i

(

θ̄(
θ̃
i
,θ̄

i
)

−
i

,θ̃
i

)

−
V
i

(

f
(θ̄

(θ̃
i
,θ̄

i
)

−
i

,θ̄
i
),
θ̃(

θ̃
i
,θ̄

i
)

−
i

,θ̃
i

)

−
P
i

(

θ̄(
θ̃
i
,θ̄

i
)

−
i

,θ̄
i

)

>
0

(2
)

F
o
r
a
ll
i
∈
N
,(
θ̃ i
,θ̄

i
)
∈
D

i
a
n
d
a
ll
θ̃ −

i
,θ̄

−
i
∈
Θ

−
i
,θ

i
∈
Θ

i
:

V
i

(

f
(θ̄

−
i
,θ̄

i
),
θ̃)

+
P
i

(
θ̄ −

i
,θ̄

i

)

−
V
i

(

f
(θ̄

−
i
,θ

i
),
θ̃)

−
P
i

(
θ̄ −

i
,θ

i

)
≥

0
(3
)

F
o
r
a
ll
(θ
,θ

′ )
∈
D
:

V
i(

θ
,
θ
′
)

(

h
(θ

,θ
′
)
(s̄

N̄
(
θ
,
θ
′
)
,θ̄

(θ
,θ

′
)

−
(N̄

(
θ
,
θ
′
)
∪
{
i(

θ
,
θ
′
)
}
)
,θ

i(
θ
,
θ
′
)
),
θ̃(

θ
,θ

′
)

−
i(

θ
,
θ
′
)
,θ

i(
θ
,
θ
′
)

)

+
P̄

(θ
,θ

′
)

i(
θ
,
θ
′
)

(

s̄ N̄
(
θ
,
θ
′
)
,θ̄

(θ
,θ

′
)

−
(N̄

∪
{
i(

θ
,
θ
′
)
}
)
,θ

i(
θ
,
θ
′
)

)

−
V
i(

θ
,
θ
′
)

(

h
(θ

,θ
′
)
(s̄

N̄
(
θ
,
θ
′
)
,θ̄

(θ
,θ

′
)

−
(N̄

(
θ
,
θ
′
)
∪
{
i(

θ
,
θ
′
)
}
)
,θ

′ i(
θ
,
θ
′
)
),
θ̃(

θ
,θ

′
)

−
i(

θ
,
θ
′
)
,θ

i(
θ
,
θ
′
)

)

−
P̄

(θ
,θ

′
)

i(
θ
,
θ
′
)

(

s̄ N̄
(
θ
,
θ
′
)
,θ̄

(θ
,θ

′
)

−
(N̄

∪
{
i(

θ
,
θ
′
)
}
)
,θ

′ i(
θ
,
θ
′
)

)

>
0

(4
)

F
o
r
a
ll
j
∈
N
,(
θ,
θ′
)
∈
D

a
n
d
a
ll
θ
∈
Θ
,s

−
j
∈
S̄
(θ

,θ
′
)

−
j

\
Θ

−
j
,s

j
∈
S̄
(θ

,θ
′
)

j
:

V
j

(

h
(θ

,θ
′ )
(s

−
j
,θ

j
),
θ)

+
P̄

(θ
,θ

′
)

j
(s

−
j
,θ

j
)

−
V
j

(

h
(θ

,θ
′ )
(s

−
j
,s

j
),
θ)

−
P̄

(θ
,θ

′
)

j
(s

−
j
,s

j
)

≥
0

(5
)

F
o
r
a
ll
j
∈
N
,(
θ,
θ′
)
∈
D

a
n
d
a
ll
θ
∈
Θ
,s

−
j
∈
Θ

−
j
,s

j
∈
S̄
(θ

,θ
′
)

j
\
Θ

j
:

V
j

(

h
(θ

,θ
′
)
(s

−
j
,θ

j
),
θ)

+
P
j
(s

−
j
,θ

j
)

−
V
j

(

h
(θ

,θ
′ )
(s

−
j
,s

j
),
θ)

−
P̄

(θ
,θ

′
)

j
(s

−
j
,s

j
)

≥
0

(6
)



data
(

i(θ,θ
′), N̄ (θ,θ′), h(θ,θ′), θ̃

(θ,θ′)

−i(θ,θ
′) , θ̄

(θ,θ′)

−(N̄∪{i(θ,θ′)})

)

needed to selectively eliminate (θ, θ′) can

be chosen to have polynomial encoding length. Now consider the following nondeterministic
algorithm for verifying that f is strongly implementable:

Algorithm 1.

1. Guess the (polynomially many) values Pj(θ).

2. For every i ∈ N , guess the set Di of all pairs (θ̃i, θ̄i) of types θ̃i ∈ Θi and dominant
bids θ̄i ∈ Θi for type θ̃i in Γ(f,P ).

3. Guess the set D ⊆ Θ2 of all bad dominant pairs in Γ(f,P ).

4. For every i ∈ N and every pair (θ̃i, θ̄i) ∈ Θ2
i \Di, guess the pair (θ̃

(θ̃i,θ̄i)
−i , θ̄

(θ̃i,θ̄i)
−i ) of a

type vector and a bid vector of the other agents such that

U
Γ(f,P )

i

(

θ̄
(θ̃i,θ̄i)
−i , θ̃i|θ̃

(θ̃i,θ̄i)
−i , θ̃i

)

> U
Γ(f,P )

i

(

θ̄
(θ̃i,θ̄i)
−i , θ̄i|θ̃

(θ̃i,θ̄i)
−i , θ̃i

)

.

5. For every (θ, θ′) ∈ D, guess the data
(

i(θ,θ
′), N̄ (θ,θ′), h(θ,θ′), θ̃

(θ,θ′)

−i(θ,θ
′) , θ̄

(θ,θ′)

−(N̄∪{i(θ,θ′)})

)

needed to selectively eliminate the bad dominant pair (θ, θ′).

6. Check all the (polynomially many) inequalities in the system displayed on Page 11.

Since all the values Pj(θ) and the data needed for selective elimination of each of the
polynomially many bad dominant pairs (θ, θ′) ∈ D have polynomial encoding length, Algo-
rithm 1 runs in polynomial time, which proves the claim.
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