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Abstract

Judgment aggregation is an area of social choice theory that analyses procedures for
aggregating the judgments of a group of agents regarding a set of interdependent
propositions (modelled as formulas in propositional logic). The judgment aggrega-
tion framework gives rise to a number of algorithmic problems, including (1) com-
puting a collective judgment from a profile of individual judgments (the winner
determination problem), and (2) deciding whether a given agent can influence the
outcome of a judgment aggregation procedure in her favour by reporting insincere
judgments (the manipulation problem). We study the computational complexity
of both these problems for two concrete judgment aggregation procedures that are
complete and consistent and that have been argued to be useful in practice: the
premise-based procedure and (a new variant of) distance-based merging. Our re-
sults suggest that manipulating these procedures is significantly harder than solving
the corresponding winner determination problem.

1 Introduction

Judgment aggregation (JA) is an area of social choice theory that analyses procedures for ag-
gregating the judgments of a group of agents regarding a set of interdependent propositions
(List and Puppe, 2009). In JA, we are given a set of propositional formulas (the agenda)
and ask several agents to report which of these formulas they judge to be true. How should
we aggregate this information into a collective judgment? And under what circumstances
will the collective judgment be consistent? To date, most technical contributions to the JA
literature have been of an axiomatic flavour, establishing characterisations and impossibil-
ity theorems (e.g. List and Pettit, 2002; Dietrich, 2006). In recent work, we have begun to
investigate the computational properties of the JA framework (Endriss et al., 2010). Here,
we want to extend the scope of this work and suggest a framework for analysing the com-
putational complexity of two algorithmic problems associated with concrete JA procedures:
the winner determination problem, i.e., the problem of computing the collective judgment
from a profile of individual judgments, and the manipulation problem.

In the context of voting, a player is said to be able to manipulate a voting rule when
there exists a situation in which voting in a manner that does not truthfully reflect her
preferences will result in an outcome that she prefers to the outcome that would be realised
if she were to vote truthfully (Gaertner, 2006). What would constitute an appropriate
definition of manipulation in the context of JA? This is not immediately clear, because in
JA there is no notion of preference. Here, we follow Dietrich and List (2007) and assume
that a player’s individual judgment set is also her most preferred outcome and amongst
any two outcomes she will prefer the one that is “closer” to that most preferred outcome.
We will measure “closeness” using the Hamming distance. So, we will call an aggregation
procedure F manipulable if it permits a situation where an agent can change the outcome
to a judgment set that is closer to her true judgment set by reporting untruthfully. A
procedure that cannot be manipulated is called strategy-proof.

Dietrich and List (2007) show that F is strategy-proof if and only if it is independent
and monotonic. Thus, for a meaningful study of the computational complexity of strategic
manipulation, we have to restrict attention to rules that are not both independent and



monotonic.1 Furthermore, for this initial study of the subject, we choose to focus on rules
that produce consistent and complete judgment sets. Specifically, we analyse two rules: the
premise-based procedure (Kornhauser and Sager, 1993; Dietrich and Mongin, 2010) and (a
new variant of) distance-based merging (Pigozzi, 2006). For both procedures, we compare
the complexity of manipulation with the complexity of winner determination.

For the premise-based procedure, we show that manipulating the procedure is NP-hard,
while winner determination is possible in polynomial time. Thus, misuse of the procedure
is significantly harder than using it in the intended manner (under the common assumption
that P 6= NP). For distance-based merging, we show that (the decision problem correspond-
ing to) winner determination is in NP and we conjecture that manipulation is Σp

2-complete
(which would place the latter problem at the second level of the polynomial hierarchy).
That is, under the common assumption that the polynomial hierarchy does not collapse,
this would, again, make manipulation considerably harder than winner determination.

The remainder of this paper is organised as follows.2 In Section 2 we recall the framework
of JA and define the winner determination and manipulation problems. The premise-based
procedure is analysed in Section 3 and distance-based merging in Section 4. We conclude
with a brief discussion of related work in Section 5.

2 Judgment Aggregation

In this section we recall the basic formal framework of JA familiar from the literature (List
and Pettit, 2002; Dietrich, 2006; List and Puppe, 2009) and introduce a particular notion
of strategic manipulation originally proposed by Dietrich and List (2007). To make the
problem amenable to a complexity-theoretic investigation, we then formulate manipulation
as a decision problem, and we do the same for the winner determination problem.

2.1 The Basic Framework

We now define the basic framework for JA.3 Let PS be a set of propositional variables,
and LPS the set of propositional formulas built from PS (using the usual connectives ¬,
∧, ∨, →, ↔, and the constants ⊤ and ⊥). If α is a propositional formula, define ∼α, the
complement of α, as ¬α if α is not negated, and as β if α = ¬β. An agenda is a finite
nonempty set Φ ⊆ LPS not containing any doubly-negated formulas that is closed under
complementation (i.e., if α ∈ Φ then ∼α ∈ Φ). Denote with Φ+ the set of positive formulas
in Φ. A judgment set J on an agenda Φ is a subset of the agenda J ⊆ Φ. Define J(ϕ) = 1
if ϕ ∈ J , and J(ϕ) = 0 if ϕ 6∈ J . We call a judgment set J complete if α ∈ J or ∼α ∈ J

for all α ∈ Φ; complement-free if for no α ∈ Φ both α and ∼α are in J ; and consistent

if there exists an assignment that makes all formulas in J true. Denote with J (Φ) the set
of all complete consistent subsets of Φ. Given a set N = {1, . . . , n} of n > 3 agents, denote
with J = (J1, . . . , Jn) a profile of judgment sets, one for each agent.

Definition 1 (Aggregation procedure). A (resolute) aggregation procedure for an agenda
Φ and a set of n individuals is a function F : J (Φ)n → 2Φ.

1Independent and monotonic aggregation procedures are not very attractive: they are either dictatorial
or risk producing inconsistent outcomes unless the agenda is structurally very simple (List and Puppe, 2009).

2We shall assume familiarity with the basics of complexity theory up to the notion of NP-completeness
(see e.g. Papadimitriou, 1994). We also make reference to two complexity classes at the second level of the
polynomial hierarchy: Σp

2
, the class of problems for which a certificate can be verified in polynomial time by

a machine equipped with an NP oracle, and Πp

2
, the class of problems that are complements of those in Σp

2
.

3Following our earlier work (Endriss et al., 2010), to allow for a precise analysis of the computational
aspects of JA, we make slight changes to the standard framework (see e.g. List and Puppe, 2009): e.g., we
allow for tautologies in the agenda and we make a clear distinction between purely “syntactic” and “logical”
criteria (complement-freeness vs. consistency). We also permit irresolute JA procedures.



That is, F maps each profile of individual judgment sets to a collective judgment set. (In
Section 4 we will also introduce an irresolute procedure that returns a set of collective
judgment sets.) An aggregation procedure F , defined on an agenda Φ, is said to be complete
(complement-free, consistent) if F (J) is complete (complement-free, consistent) for every
J ∈ J (Φ). Here, we are only interested in procedures that are complete and consistent
(and thus also complement-free). As discussed at length in the literature, these are not easy
criteria to satisfy. The majority rule, for instance, which accepts a formula if and only if
a majority of agents do, fails to satisfy consistency (Kornhauser and Sager, 1993).

Axioms provide a normative framework in which to state what the desirable (or essential)
properties of aggregation procedures are. Important axioms include anonymity, stating
that the procedure should treat all agents the same; neutrality, requiring symmetry with
respect to propositions; independence, postulating that collective acceptance of ϕ should
only depend on individual acceptance patterns of ϕ; and monotonicity, specifying that ad-
ditional support for a collectively accepted formula ϕ should never cause ϕ to get rejected.4

While all of these axioms are intuitively appealing, several impossibility theorems, estab-
lishing inconsistencies between certain combinations of axioms with other desiderata, have
been proved in the literature. The original impossibility theorem of List and Pettit (2002),
for instance, shows that there can be no consistent and complete aggregation procedure
satisfying anonymity, neutrality, and independence.

2.2 Strategic Manipulation

We now define the notion of strategic manipulation for JA sketched in the introduction. Our
definition is an instance of a more general definition proposed by Dietrich and List (2007),
which is based on the idea that we can induce a preference relation over judgment sets by
assuming that an agent’s true judgment set J is her most preferred outcome, and between
any two outcomes the one that is “closer” to J is preferred. One of the most appealing
choices for such a notion of “closeness” is the Hamming distance.

Definition 2 (Hamming distance). Given an agenda Φ, let J, J ′ ∈ 2Φ be two complete and
complement-free judgment sets for Φ. The Hamming distance H(J, J ′) between J and J ′ is
the number of positive formulas on which they differ:

H(J, J ′) =
∑

ϕ∈Φ+

|J(ϕ) − J ′(ϕ)|

That is, H(J, J ′) is an integer between 0 (complete agreement) and |Φ|
2 (complete disagree-

ment). For example, if the agenda is Φ = {p,¬p, q,¬q, p ∧ q,¬(p ∧ q)}, then the Hamming
distance between J = {¬p, q,¬(p∧q)} and J ′ = {p,¬q,¬(p∧q)} is H(J, J ′) = 2. Intuitively,
if Ji is the true judgment set of agent i, then i “prefers” J over J ′ if H(Ji, J) < H(Ji, J

′).

Definition 3 (Manipulability). Let Φ be an agenda, let F : J (Φ)n → 2Φ be an aggregation
procedure for that agenda, and let J = (J1, . . . , Ji, . . . , Jn) ∈ J (Φ)n be a profile. Then F is
said to be manipulable at J, if there exist an alternative judgment set J ′

i ∈ J (Φ) for some
agent i ∈ N such that H(Ji, F (J ′

i ,J−i)) < H(Ji, F (J)).

That is, by reporting J ′
i rather than her truthful judgment set Ji, agent i can achieve the

outcome F (J ′
i ,J−i) and that outcome is closer (in terms of the Hamming distance) to her

truthful (and most preferred) set Ji than the outcome F (J) that would get realised if she
were to truthfully report Ji. A procedure that is not manipulable at any profile is called
strategy-proof. Dietrich and List (2007) have shown that a JA procedure is strategy-proof if
and only if it is independent and monotonic. Thus, to study the complexity of manipulation,
we have to restrict ourselves to procedures that are either not independent or not monotonic.

4See (List and Puppe, 2009) or (Endriss et al., 2010) for formal presentations of these axioms.



2.3 Strategic Manipulation as a Decision Problem

To study the complexity of strategic manipulation, we formulate manipulation as a deci-
sion problem. We propose the following simple definition, parametrised by the judgment
aggregation procedure F under consideration.

Manipulable(F )
Instance: Agenda Φ, judgment set Ji ∈ J (Φ), partial profile J−i ∈ J (Φ)n−1.
Question: Is there a J ′

i ∈ J (Φ) s.t. H(Ji, F (J ′
i ,J−i)) < H(Ji, F (Ji,J−i))?

That is, agent i is the manipulator and her true judgment set is Ji. The other agents’
judgments are given by J−i. If agent i does not manipulate, then the outcome will be
F (Ji,J−i), and the Hamming distance of this outcome to her most preferred outcome (which
is also Ji) is H(Ji, F (Ji,J−i)). The question we are asking is whether there exists another
judgment set J ′

i that agent i could report instead that would lead to an outcome F (J ′
i ,J−i)

that is closer to Ji in terms of the Hamming distance. That is, we are asking whether she
can manipulate successfully, rather than how.

2.4 Winner Determination as a Decision Problem

Next, we also formulate winner determination as a decision problem:

WinDet(F )
Instance: Agenda Φ, profile J ∈ J (Φ)n, formula ϕ ∈ Φ.
Question: Is ϕ an element of F (J)?

By solving WinDet once for each formula in the agenda, we can compute the collective
judgment set from an input profile (and, vice versa, any algorithm for computing the col-
lective judgment set can be used to solve WinDet).

3 Premise-based Judgment Aggregation

There are two basic (types of) JA procedures that (can be set up so as to) produce consistent
outcomes that have been discussed in the JA literature from its very beginnings, namely the
premise-based (or issue-based) and the conclusion-based (or case-based) procedure (Korn-
hauser and Sager, 1993; Dietrich and Mongin, 2010). The basic idea is to divide the agenda
into premises and conclusions. In the premise-based procedure, we apply the majority rule
to the premises and then infer which conclusions to accept given the collective judgments
regarding the premises;5 under the conclusion-based procedure we directly ask the agents
for their judgments on the conclusions and leave the premises unspecified in the collective
judgment set. That is, the conclusion-based procedure does not result in complete outcomes,
which is why we shall not consider it any further here. The premise-based procedure, on
the other hand, can be set up in a way that guarantees consistent and complete outcomes,
which provides a usable procedure of some practical interest—despite its well-documented
shortcomings (Kornhauser and Sager, 1993; Pigozzi, 2006).

In this section, we first formally introduce the precise variant of the premise-based pro-
cedure we shall analyse. We then study the complexity of the winner determination and
manipulation problems for this procedure. For ease of exposition, throughout this section,
we shall assume that the number of agents n is odd.

5This is what is commonly understood by “premise-based procedure”. Dietrich and Mongin (2010), who
call this rule premise-based majority voting, have also investigated a more general class of premise-based
procedures in which the procedure used to decide upon the premises need not be the majority rule.



3.1 Definition of the Procedure

For many JA problems, it will be natural to divide the agenda into premises and conclusions.

Definition 4 (Premise-based procedure). Let Φ = Φp ⊎Φc be an agenda divided into a set
of premises Φp and a set of conclusions Φc, each of which is closed under complementation.
The premise-based procedure PBP : J (Φ)n → 2Φ for Φp and Φc is the function mapping
each profile J = (J1, . . . , Jn) ∈ J (Φ)n to the following judgment set:

PBP(J) = ∆ ∪ {ϕ ∈ Φc | ∆ |= ϕ},

where ∆ = {ϕ ∈ Φp | #{i | ϕ ∈ Ji} >
n

2
}

If we want to ensure that the PBP always returns judgment sets that are consistent and
complete, then we have to impose certain restrictions:

• If we want to guarantee consistency, we have to impose restrictions on the premises.
It is well-known that the majority rule is guaranteed to be consistent if and only if
the agenda Φ satisfies the so-called median property, i.e., if every inconsistent subset
of Φ has itself an inconsistent subset of size 6 2 (Nehring and Puppe, 2007; List and
Puppe, 2009). This result immediately transfers to the PBP: it is consistent if and
only if the set of premises satisfies the median property.

• If we want to guarantee completeness, we have to impose restrictions on the conclu-
sions: for any assignment of truth values to the premises, the truth value of each
conclusion has to be fully determined.

Deciding whether a set of formulas satisfies the median property is known to be Πp
2-hard

(Endriss et al., 2010). That is, in its most general form, deciding whether the PBP can be
applied correctly is a highly intractable problem (and, as we shall see, a problem that is most
likely considerably harder than either using or manipulating the PBP). For a meaningful
analysis, we therefore restrict attention to the following case. First, we assume that the
agenda Φ is closed under propositional variables: p ∈ Φ for any propositional variable p
occurring within any of the formulas in Φ. Second, we equate the set of premises with the
set of literals. Clearly, the above-mentioned conditions for consistency and completeness are
satisfied under these assumptions.

So, to summarise, the procedure we consider in this section is defined as follows: Under
the assumption that the agenda is closed under propositional variables, the PBP accepts
a literal ℓ if and only if more individual agents accept ℓ than do accept ∼ℓ, and the PBP
accepts a compound formula if and only if it is entailed by the accepted literals. For
consistent and complete profiles, and under the assumption that n is odd, this leads to a
resolute JA procedure that is consistent and complete.

3.2 Winner Determination

Winner determination is a tractable problem for the premise-based procedure:

Proposition 1. WinDet(PBP) is in P.

Proof. Counting the number of agents accepting each of the premises and checking for each
premise whether the positive or the negative instance has the majority is easy. This deter-
mines the collective judgment set as far as the premises are concerned. Deciding whether
a given conclusion should be accepted by the collective now amounts to a model checking
problem (is the conclusion ϕ true in the model induced by the accepted premises/literals?),
which can also be done in polynomial time.



3.3 Strategic Manipulation

Manipulating the premise-based procedure, on the other hand, is intractable:

Theorem 2. Manipulability(PBP) is NP-complete.

Proof. We first establish NP-membership. An untruthful judgment set J ′
i yielding a pre-

ferred outcome can serve as a certificate. Checking the validity of such a certificate means
checking that (a) J ′

i is actually a complete and consistent judgment set and that (b) the
outcome produced by J ′

i is better than the outcome produced by the truthful set Ji. As for
(a), checking completeness is easy. Consistency can also be decided in polynomial time: for
every propositional variable p in the agenda, J ′

i must include either p or ¬p; this admits only
a single possible model; all that remains to be done is checking that all compound formulas
in J ′

i are satisfied by that model. As for (b), we need to compute the outcomes for Ji and
J ′

i (by Proposition 1, this is polynomial), compute their Hamming distances from Ji, and
compare those two distances.

Next, we prove NP-hardness by reducing Sat to Manipulability(PBP). Suppose we
are given a propositional formula ϕ and want to check whether it is satisfiable. We will build
a judgment profile for three agents such that the third agent can manipulate the aggregation
if and only if ϕ is satisfiable. Let p1, . . . , pm be the propositional variables occurring in ϕ,
and let q1, q2 be two additional propositional variables. Define an agenda Φ that contains
all atoms p1, . . . , pm, q1, q2 and their negation, as well as m + 2 syntactic variants of the
formula q1 ∨ (ϕ ∧ q2) and their negation. For instance, if ψ := q1 ∨ (ϕ ∧ q2), we might use
the syntactic variants ψ, ψ ∧⊤, ψ ∧⊤∧⊤, and so forth. The judgment profile J is defined
by the following table (the rightmost column has a “weight” of m+ 2):

p1 p2 · · · pm q1 q2 q1 ∨ (ϕ ∧ q2)
J1 1 1 · · · 1 0 0 ?
J2 0 0 · · · 0 0 1 ?
J3 1 1 · · · 1 1 0 1
F (J) 1 1 · · · 1 0 0 0

The judgments of agents 1 and 2 regarding q1 ∨ (ϕ ∧ q2) are irrelevant for our argument, so
they are indicated as “?” in the table (but note that they can be determined in polynomial
time; in particular, J1(q1 ∨ (ϕ ∧ q2)) = 0 for any ϕ).

If agent 3 reports her judgment set truthfully (as shown in the table), then the Hamming
distance between J3 and the collective judgment set will be 1 + (m + 2) = m + 3. Note
that agent 3 is decisive about all propositional variables (i.e., premises) except q1 (which
will certainly get rejected). Now:

• If ϕ is satisfiable, then agent 3 can report judgments regarding p1, . . . , pm that corre-
spond to a satisfying assignment for ϕ. If she furthermore accepts q2, then all m+ 2
copies of q1 ∨ (ϕ ∧ q2) will get accepted in the collective judgment set. Thus, the
Hamming distance from J3 to this new outcome will be at most m + 2, i.e., agent 3
will have manipulated successfully.

• If ϕ is not satisfiable, then there is no way to get any of the m + 2 copies of q1 ∨
(ϕ ∧ q2) accepted (and q1 will get rejected in any case). Thus, agent 3 has no means
of improving over the Hamming distance of m + 3 she can guarantee for herself by
reporting truthfully.

Hence, ϕ is satisfiable if and only if agent 3 can manipulate successfully, and our reduction
from Sat to Manipulability(PBP) is complete.

Thus, manipulating the premise-based procedure is significantly harder than using it—at
least in terms of worst-case complexity (and under the common assumption that P 6= NP).



4 Distance-Based Judgment Aggregation

Pigozzi (2006) has shown that ideas from belief merging (Konieczny and Pino Pérez, 2002)
can be imported into JA to yield practical aggregation procedures that are complete and
consistent. Specifically, Pigozzi proposes a procedure that works roughly as follows: asso-
ciate with each individual judgment set the model(s) satisfying that judgment set; merge
the resulting set of models to obtain a new collection of models that minimise the sum of the
(minimal) Hamming distances to the individual models; and return a collective judgment
set corresponding to that collection of models. In this section, we introduce a new variant
of this procedure and we study the computational complexity of its winner determination
and manipulation problems.

4.1 A New Procedure: “Syntactic” Distance-based Merging

The merging procedure of Pigozzi (2006) has the drawback of being defined for a somewhat
restricted class of profiles: the agenda is assumed to be closed under propositional vari-
ables and all compound formulas (the integrity constraints) are unanimously accepted (or
rejected) by all agents. Most importantly, the syntactic information contained in the agenda
is discarded by moving the aggregation from the level of formulas to the level of models.
Our own proposal for distance-based merging in JA consists of a syntactic variant of this
procedure, where we merge judgment sets rather than models corresponding to judgment
sets. It is an irresolute procedure, returning a (nonempty) set of collective judgment sets.

Definition 5 (Distance-based procedure). Given an agenda Φ, the distance-based procedure
DBP is the function mapping each profile J = (J1, . . . , Jn) ∈ J (Φ)n to the following set of
judgment sets:

DBP(J) = arg min
J∈J (Φ)

n∑

i=1

H(J, Ji)

A collective judgment set under the DBP minimises the amount of disagreement with the
individual judgment sets. Note that in cases where the majority rule leads to a consistent
outcome, the outcome of the DBP coincides with that of the majority rule (making it
a resolute procedure over these profiles). In all other profiles the consistent judgment sets
that are the closest with respect to the Hamming distance are chosen as collective outcomes.

The DBP can be made resolute by introducing a tie-breaking rule (e.g., a lexicographic
tie-breaking rule). Note that the DBP does not coincide with the procedure of Pigozzi
(2006), even for agendas closed under propositional variables. The main reason is that the
DBP is sensitive to logical correlations between formulas of the agenda: accepting an atom
that is correlated with other formulas in the agenda “counts” more in our procedure than
accepting an independent one. We find this an appealing property for a JA procedure,
since it does not discard the syntactic information contained in the agenda. Also note that
the DBP shares many features with the Kemeny rule for preference aggregation (Kemeny,
1959). We will elaborate more on this similarity in the proof of Lemma 4.

4.2 Winner Determination

Next, we want to analyse the complexity of the winner determination problem for the DBP.
As the DBP is not resolute, we cannot work with the decision problem WinDet(DBP).
The reason is that when there is more than one winning set, each query to WinDet (to
settle the assignment for one formula at a time) may relate to a different winning set. We
therefore formulate a new decision problem specifically for the DBP:



WinDet
⋆(DBP)

Instance: Agenda Φ, profile J ∈ J (Φ)n, formula ϕ ∈ Φ, K ∈ N.
Question: Is there a J⋆ ∈ J (Φ) with ϕ ∈ J⋆ s.t.

∑
J∈J

H(J⋆, J) 6 K?

That is, we ask whether there is a J with Hamming distance at most K that accepts ϕ. To
see that this is an appropriate formulation for a decision problem corresponding to the task
of computing some winning set, note that we can compute a winner using a polynomial
number of queries to WinDet

⋆(DBP) as follows. We first use it to find the smallest K for
which ϕ1 can be accepted, as well as the smallest K for which ∼ϕ1 can be accepted (n ·m is
an obvious upper bound for K, so this can be done with a polynomial number of queries).
Then we accept either ϕ1 or ∼ϕ1, whichever did yield the smaller K (choose either one
in case of a tie). Now leave K fixed for the rest of the process. Next, substitute ϕ1 with
the appropriate truth value throughout J. Then check whether ϕ2 can be accepted yielding
distanceK; if not, ∼ϕ2 must be acceptable with distanceK. Accept the appropriate formula
and make the appropriate substitutions in J; then continue with ϕ3, and so forth.

Unsurprisingly, the DBP is much more complex a procedure than the PBP. Nevertheless,
as we show next, the complexity of winner determination does at least not exceed NP.

Lemma 3. WinDet
⋆(DBP) is in NP.

Proof. We will show that WinDet
⋆(DBP) can be modelled as an integer program (without

an objective function). This proves membership in NP (Papadimitriou, 1981).
Suppose we want to answer an instance of WinDet

⋆(DBP). The number of subformulas
of propositions occurring in the agenda Φ is linear in the size (not cardinality) of Φ. We
introduce a binary decision variable for each of these subformulas: xi ∈ {0, 1} for the ith
subformula. We first write constraints that ensure that the chosen outcome will correspond
to a consistent judgment set (i.e., that J⋆ ∈ J (Φ)). Note that we can rewrite any formula in
terms of negation, conjunction, and bi-implication without resulting in a superpolynomial
(or even superlinear) increase in size.6 So we only need to show how to encode the constraints
for these connectives. The following table indicates how to write these constraints.

ϕ2 = ¬ϕ1 x2 = 1 − x1

ϕ3 = ϕ1 ∧ ϕ2 x3 6 x1 and x3 6 x2 and x1 + x2 6 x3 + 1
ϕ3 = ϕ1 ↔ ϕ2 x1 + x2 6 x3 + 1 and x1 + x3 6 x2 + 1

and x2 + x3 6 x1 + 1 and 1 6 x1 + x2 + x3

Before we continue, consider the following way of rewriting the sum of distances featuring
in the definition of WinDet

⋆(DBP):

∑

J∈J

H(J⋆, J) =
n∑

i=1

∑

ϕ∈Φ+

|J⋆(ϕ) − Ji(ϕ)|

=
1

2
·
∑

ϕ∈Φ

n∑

i=1

|J⋆(ϕ) − Ji(ϕ)|

=
1

2
·
∑

ϕ∈Φ

|n · J⋆(ϕ) −

n∑

i=1

Ji(ϕ)|

We will need to bound this sum from above. Now suppose that variables xi with indices
i ∈ {1, . . . ,m} with m = |Φ| are those that correspond to the propositions that are elements
of Φ. Let ai be the number of individuals that accept the ith proposition in Φ (according

6For instance, any occurrence of A ∨ B can be rewritten as ¬(¬A ∧ ¬B). Note that rewriting a formula
with nested bi-implications in terms of ¬ and ∧ alone may result in an exponential blow-up.



to J). To compute a winner under the DBP, we need to find a consistent judgement set J⋆

(characterised by variables x1, . . . , xm) that minimises the sum |n·x1−a1|+· · ·+|n·xm−am|.
We do this by introducing an additional set of integer variables yi > 0 for i = 1, . . . ,m. We
can ensure that yi = |n · xi − ai| by adding the following constraints:

(∀i 6 m) n · xi − ai 6 yi

(∀i 6 m) ai − n · xi 6 yi

Now the sum 1
2 ·

∑m
i=1 yi corresponds to the Hamming distance between the winning set

and the profile. To ensure it does not exceed K, we can add the following constraint:

1

2
·

m∑

i=1

yi 6 K

Finally, let xi⋆ be the the variable corresponding to the formula ϕ ∈ Φ for which we want to
answer WinDet

⋆(DBP). We can force that ϕ gets accepted by adding one last constraint:

xi⋆ = 1

Now, by construction, the integer program we have presented is feasible if and only if the
instance of WinDet

⋆(DBP) we have started out with should be answered in the positive.

Our proof also produces an algorithm for performing distance-based merging in practice.
Observe that the following integer program (now with an objective function) can be used
to find (some) winning judgment set under the DBP:

min
m∑

i=1

yi subject to all of the above constraints

The solution can be read off from the values of the xi. Note that the implementation
details of the IP solver used will implicitly determine a tie-breaking rule. If required, other
tie-breaking rules can be implemented explicitly.

Next, we show that the upper bound established by Lemma 3 is tight. Here, the similarity
of the DBP to the Kemeny rule in preference aggregation allows us to build on a known
NP-hardness result from the literature (Bartholdi et al., 1989b; Hemaspaandra et al., 2005).

Lemma 4. WinDet
⋆(DBP) is NP-hard.

Proof sketch. We build a reduction from the problem Kemeny Score, as defined by Hemas-
paandra et al. (2005). An instance of this problem consists of a set of candidates C, a profile
of linear orders7 P = (P1, . . . , Pn) over C, a designated candidate c, and a positive integer
K. The Kemeny score of candidate c is given by the following expression:

KemenyScore(c,P) = min{

n∑

i=1

d(Pi, Q) | top(Q) = c}

where d(Pi, Q) is the Hamming distance between preference profiles and top(Q) is the most
preferred candidate. The problem asks whether the Kemeny score of c is less than K.

We now build an instance of WinDet
⋆(DBP) to decide this problem. Define an agenda

ΦC in the following way. First add propositional variables pab for all ordered pairs of
candidates a, b in C; these variables can encode a linear order over C as a binary relation

7Although the Kemeny rule is defined for weak orders, the problem is known to remain NP-complete also
in the case of linear orders (Bartholdi et al., 1989b, Lemma 3).



(where pab stands for a > b). Then addm2 (wherem = |C|) syntactic variants of the formula
pab ∧ pbc → pac for all suitable combinations of ordered pairs of candidates; these formulas
encode the transitivity of the linear order encoded by the first set of variables. Finally, add
an additional variable topc. Given a preference profile P we can build a judgment profile
JP by encoding all strict orders Pi over C in a judgment set JP over ΦC . Due to space
constraints we just show this procedure for a simple example with three candidates:

P = {a > b > c} ⇒ JP = {pab, pbc,¬pca,¬topc, all transitivity constraints}

To conclude, it is sufficient to notice that d(P,Q) = H(JP , JQ) in case P and Q share the
same top candidate, otherwise the difference is 1. It is therefore sufficient to ask a query
to WinDet

⋆(DBP) using JP as a profile, a suitable K ′ as a bound, and topc as the fixed
formula ϕ, to obtain an answer to the initial Kemeny Score instance with parameter
K. The key step is to notice that judgment sets encoding intransitive preferences will
not be considered in the minimisation process, since every disagreement on a transitivity
formula will cause a much greater loss in the Hamming distance than what can be gained
by modifying the variables encoding the candidate rankings.

Putting Lemma 3 and 4 together yields a complete characterisation of the complexity of
winner determination under distance-based merging:

Theorem 5. WinDet
⋆(DBP) is NP-complete.

4.3 Strategic Manipulation

Next, we discuss the complexity of manipulating the DBP. Note that our definition of
manipulation was tailored to resolute aggregation procedures, while the DBP (in its most
general form) is irresolute and may return a set of winners. One interesting line of research to
pursue in future work would be to define appropriate notions of manipulation and strategy-
proofness for irresolute JA procedures. Here, instead, we shall assume that the DBP comes
with a fixed tie-breaking rule (say, a lexicographic rule, or even the tie-breaking rule implicit
in the IP formulation of the procedure given above, for a specific IP implementation). We do
assume that this tie-breaking rule does not increase the complexity of winner determination
beyond NP (this is the case for the two examples mentioned). Let Manipulability(DBPt)
be the manipulation problem for the DBP with such a fixed tie-breaking rule.

Establishing the precise complexity of manipulation for distance-based merging is cur-
rently an open problem. However, we are able to provide an upper bound:

Lemma 6. Manipulability(DBPt) is in Σp
2.

Proof sketch. To show membership in Σp
2 we need to show that it is possible to verify a

certificate in polynomial time on a machine that has access to an NP oracle. Recall from
the first part of the proof of Theorem 2 that an appropriate certificate is a judgment set J ′

i

for the manipulator that is complete and consistent and that produces an outcome that is
closer to the manipulator’s true judgment set Ji than the outcome produced if she reports Ji.
This involves three non-trivial steps, all of which can be resolved by the NP oracle: deciding
consistency of J ′

i is in NP (this is just Sat), and computing the winners for Ji and J ′
i is also

in NP (by Lemma 3). Thus, the certificate can be verified using three calls to the oracle;
the remainder of the computation is clearly polynomial.

We conjecture that the above bound is tight, i.e., that Manipulability(DBPt) is Σp
2-

complete.8 If this conjecture is correct, then manipulation is significantly harder than
winner determination, also in the case of distance-based merging.

8To the best of our knowledge, there are currently no known results on the complexity of the (presumably)
closely related problem of manipulating Kemeny elections.



5 Related Work

We conclude by briefly reviewing some related work regarding (1) alternative notions of
manipulation in JA, (2) other complexity-theoretic questions in JA, (3) manipulation and
strategy-proofness in belief merging, and (4) the complexity of manipulation in voting.

As mentioned earlier, our definition of strategic manipulation in JA is based on the work
of Dietrich and List (2007). This definition crucially rests on the idea that we can induce
a preference ordering over judgment sets from an agent’s true judgment set an a metric
for measuring “closeness”. The Hamming distance is one such metric; Dietrich and List
(2007) also discuss the concept of “closeness-respecting” preferences (and the corresponding
notions of strategic manipulation) in more general terms. Other than that there has been
preciously little work on manipulation in JA to date. One exception is the work of Pigozzi
et al. (2009), who introduce a notion of full manipulability, which asks whether an agent can
change the outcome to fully coincide with her own judgment set by means of an insincere
judgment. But (as clearly recognised by the authors) the guarantee of the absence of full
manipulation is probably a property that is simply too easy to satisfy to lead to interesting
characterisations of JA procedures.

In previous work (Endriss et al., 2010), we have analysed the complexity of another
aspect of the JA framework: for a given set of axioms characterising a class of aggrega-
tion procedures, how hard is it to check whether a given agenda is safe for all procedures
belonging to that class, in the sense that no profile of complete and consistent individual
judgment sets will ever result in a collective judgment set that is not consistent? (Our results
suggest that deciding safety of the agenda is Πp

2-complete for most natural combinations of
the standard axioms.) To the best of our knowledge, this is the only other work on the
computational complexity of JA to date.

The field of belief merging is closely related to judgment aggregation (Konieczny and
Pino Pérez, 2002; Pigozzi, 2006). A definition of strategy-proofness for belief merging op-
erators has been proposed by Everaere et al. (2007), and the same authors have discussed
the problem of manipulation for a range of belief merging operators. While this work does
include the study of the complexity of belief merging, the complexity of manipulation has,
to the best of our knowledge, not yet been addressed in the belief merging literature.

Finally, there are of course close connections between our work and the line of work in
computational social choice that has studied the complexity of both the winner determi-
nation and the manipulation problem for a range of voting rules in depth, starting with
the seminal work of Bartholdi et al. (1989a,b). Some of this work has been reviewed by
Chevaleyre et al. (2007), who give many references. Recent discussion in the literature on
the complexity of manipulation of elections has centred on the question of whether worst-
case results (such as NP-hardness results) are sufficient deterrents against manipulation in
practice (see e.g. Procaccia and Rosenschein, 2007). They probably are not; what is really
needed is a better understanding of the average-case complexity of manipulation. The very
same questions will have to be asked for JA as well; our (worst-case intractability) result
and conjecture are only the first step.

References

J. J. Bartholdi, C. A. Tovey, and M. A. Trick. The computational difficulty of manipulating
an election. Social Choice and Welfare, 6(3):227–241, 1989a.

J. J. Bartholdi, C. A. Tovey, and M. A. Trick. Voting schemes for which it can be difficult
to tell who won the election. Social Choice and Welfare, 6(2):157–165, 1989b.

Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. A short introduction to computational



social choice. In Proc. 33rd Conference on Current Trends in Theory and Practice of
Computer Science (SOFSEM-2007). Springer-Verlag, 2007.

F. Dietrich. Judgment aggregation: (im)possibility theorems. Journal of Economic Theory,
126(1):286–298, 2006.

F. Dietrich and C. List. Strategy-proof judgment aggregation. Economics and Philosophy,
23(3):269–300, 2007.

F. Dietrich and P. Mongin. The premiss-based approach to judgment aggregation. Journal
of Economic Theory, 145:562–582, 2010.

U. Endriss, U. Grandi, and D. Porello. Complexity of judgment aggregation: Safety of
the agenda. In Proc. 9th International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS-2010), 2010.

P. Everaere, S. Konieczny, and P. Marquis. The strategy-proofness landscape of merging.
Journal of Artificial Intelligence Research, 28(1):49–105, 2007.

W. Gaertner. A Primer in Social Choice Theory. LSE Perspectives in Economic Analysis.
Oxford University Press, 2006.

E. Hemaspaandra, H. Spakowski, and J. Vogel. The complexity of Kemeny elections. The-
oretical Computer Science, 349(3):382–391, 2005.

J. Kemeny. Mathematics without numbers. Daedalus, 88:577–591, 1959.
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