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Abstract

We study the problem of coalitional manipulation in elections using the unweighted Borda
rule. We provide empirical evidence of the manipulability of Borda elections in the form of
two new greedy manipulation algorithms based on intuitions from the bin-packing and multi-
processor scheduling domains. Although we have not been able to show that these algorithms
beat existing methods in the worst-case, our empirical evaluation shows that they significantly
outperform the existing method and are able to find optimal manipulations in the vast majority
of the randomly generated elections that we tested. These empirical results provide further
evidence that the Borda rule provides little defense against coalitional manipulation.

1 Introduction
Elections are a well established mechanism to aggregate the preferences of individuals to reach
a consensus decision. New applications of voting and social choice have emerged in the field of
multiagent systems and are used on a daily basis by many people in the form of polls and ratings
systems on the internet. As an election is meant to be a fair way of reaching a decision, it is
important to study the weaknesses of different voting systems with respect to their vulnerability to
manipulation, bribery and control. In this paper we focus on the manipulation problem, where a
coalition of agents votes to ensure a desired outcome rather than reporting their true preferences. It
is assumed that the manipulators act with full knowledge of the votes of the remaining electorate,
but even so, the structure of the voting system may make it difficult to ensure that the desired
candidate wins. No practical voting system can prevent a coalition of enough manipulators from
achieving their goal in all elections. However, some mechanisms may be easier to manipulate than
others. For example, the required size of the coalition may be impractical, especially in real-world
settings where obtaining the cooperation of and coordinating more than two or three people can
be difficult. Even if the number of extra votes isn’t a concern, calculating the required set of
manipulator votes may be computationally infeasible.

In this work we study the voting system based on using the Borda rule to aggregate the votes.
The Borda rule is a positional scoring rule proposed by the French scientist Jean-Charles de Borda
in 1770. Like all positional scoring rules, each voter simply ranks the m candidates according
to their preference. The votes are aggregated by adding a score of m − k to a candidate for
each time it appears kth in a vote. The candidates with the highest aggregated score win the
election. The simplicity of this rule may have contributed to its independent reinvention on at
least one other occasion; political elections in two Pacific island states use slight modifications of
the Borda rule [11]. It is also commonly used in competitions such as the Eurovision song con-
test, the election of the Most Valuable Player in major league baseball, and the Robocup competition.

The susceptibility of Borda elections to manipulation has been strongly suggested by recent
theoretical work. Although the problem is NP-hard if the manipulators’ votes are weighted [6], in
the unweighted case the complexity class is still frustratingly unknown. Xia et al. observe that:

“The exact complexity of the problem [coalition manipulation with unweighted votes]
is now known with respect to almost all of the prominent voting rules, with the glaring
exception of Borda” [17]



A number of recent theoretical results suggest that manipulation may often be computational
easy [5, 10, 15, 16]. Brelsford et al. [3] showed that weighted (and unweighted) Borda manipulation
has a FPTAS, which means that finding a very close to optimal manipulation can be done in poly-
nomial time. Along these lines, Zuckerman et al. [19] gave a simple greedy algorithm to calculate a
manipulation, that in the unweighted case uses at most one more manipulator than is optimal. In ad-
dition, even Borda himself appears to have recognised that his rule was susceptible to manipulation,
having retorted that:

“My scheme is intended only for honest men”, quoted on page 182 of [2]

More recently, strategic voting was identified in the 1991 presidential candidate elections in
the Republic of Kiribati (where a variant of the Borda rule is used) [11]. This suggests that the
manipulability of the Borda rule is not just a theoretical possibility but a practical reality.

The manipulability of voting rules has also been studied empirically [13, 14]. For example,
Walsh studied the Single Transferable Vote rule, which is theoretically NP-hard to manipulate.
However, he provided ample evidence that in practise, elections using this rule are easy to
manipulate [14]. We provide further empirical evidence that the Borda rule provides little defense
to manipulation, by showing that in many elections, an optimal manipulation can be found (and
often verified) in polynomial time. Our starting point is the greedy algorithm of Zuckerman et
al. [19], which decides the vote of each manipulator in turn by reversing the candidates ordered by
current score. Although this algorithm provides a guarantee that in the worst case it only uses one
more manipulator than is optimal, the theoretical analysis does not extend to answer the question
of how frequently it uses this extra manipulator. Perhaps another greedy algorithm exists that finds
the optimal manipulation much more frequently. If so, it could be used in conjunction with that of
Zuckerman et al. to provide a verified optimal solution whenever it finds a solution using one fewer
manipulator. We introduce two new greedy algorithms, based on intuitions from the bin-packing
and multiprocessor scheduling domains, and provide theoretical and empirical comparison between
their performance and that of Zuckerman et al.’s greedy algorithm. The new algorithms result in a
significant improvement over Zuckerman et al.’s algorithm, allowing the optimal manipulation to
be found and verified quickly on 99% of more than 60,000 randomly generated elections.

The paper continues with the definitions and background in Section 2, followed in Section 3 by
our new greedy algorithms. Section 4 presents the experimental results and we conclude in the last
section.

2 Background
In this section we introduce notation and definitions that will be used throughout the paper.

An election is a pair E = (V,m) where m is the number of candidates. We refer to the
distinguished candidate who the manipulators want to win the election as candidate 1 ≤ d ≤ m;
the other m − 1 candidates are then the competing candidates. V is a set of votes, where a vote is
an ordering of the candidates v = c1 > c2 > ... > cm such that

⋃
cj = {1, ..,m}. Given a vote

v, the score of a candidate i under the Borda rule, denoted s(v, i), equals m − k where ck = i. If
V is a set of votes, then the score of a candidate i given by these votes is s(V, i) = Σv∈V s(v, i).
Given an election E = (V,m), the winners are defined as those candidates 1 ≤ i ≤ m such that
s(V, i) is maximal. A manipulation of an election E = (V,m) is a set of manipulator votes M
such that s(V ∪M,d) ≥ s(V ∪M, i) for all i 6= d. We assume that ties are broken in favour of the
manipulators. The manipulation problem is to find a manipulation such that |M | = n is minimized.



Sometimes we will refer to a manipulation using n votes as an n-manipulation.

We define some additional notation that will be helpful in describing our greedy algorithms.

Definition 1 Given an election E = (V,m), a number of manipulators n, the gap of candidate
1 ≤ i ≤ m, is defined as gE,n(i) = s(V, d) + n(m− 1)− s(V, i). If the context is clear, we call the
gap of candidate i simply gi.

Intuitively, the gap of a candidate i is the difference between the score the distinguished candidate
receives after the manipulators have voted, and the score of i before the manipulators vote. Without
loss of generality, we assume that the manipulators always rank d first. Note that if gi is negative for
any i, then there is no n-manipulation.

Definition 2 Given an election E = (V,m), an n-manipulation matrix AE,n is an n ×m matrix
such that all elements of column d are equal to m − 1, each row contains all numbers from 0 to
m− 1 and column i sums to at most gE,n(i) for all 1 ≤ i ≤ m.

It is easy to see that such a matrix represents an n-manipulation of the election, where each column
represents a competing candidate, and each row corresponds to the vote of a distinct manipulator.
We will drop the parameters E and n and refer to matrix A when the context is clear. We use the
notationA(i) to denote the ith column ofA, and sum(A(i)) is defined to be the sum of the elements
in A(i).

Observation 1 Given an election E = (V,m) and a number of manipulators n, if Σm−1
i=1 gE,n(i) <

(n/2)(m− 1)(m− 2) then there is no n-manipulation.

This follows directly from Definition 2, since each of the n manipulator votes contributes a total of
Σm−2

k=0 k = (1/2)(m − 1)(m − 2) score to the scores of the competing candidates. In other words,
there must be enough difference between the original scores of the competing candidates and the
achievable score of the distinguished candidate, otherwise an n-manipulation can not exist. We call
the multiset containing n copies of each 0 ≤ k ≤ m− 2 Sn.

The greedy algorithm of Zuckerman et al. [19] is shown in Figure 1, and from now on will
be referred to as REVERSE. The manipulation matrix A starts off empty, and is augmented row
by row until enough manipulators have been added that the distinguished candidate wins. The
sort procedure puts the distinguished candidate first, and then sorts the competing candidates in
increasing order by their current score, in order to create the next manipulator’s vote.

Example 1. Suppose E = (V, 5) where V contains the votes v1 = 1 > 2 > 3 > 4 > 5, v2 =
2 > 3 > 4 > 1 > 5, v3 = 3 > 4 > 1 > 2 > 5 and v4 = 4 > 1 > 2 > 3 > 5, and d = 5.
Then s(V, 5) = 0, and s(V, i) = 10 for all competing candidates i < 5. In order for candidate 5
to win the election, at least 4 manipulators are required since ΣigE,3(i) = 4 ∗ (4 ∗ 3 − 10) = 8
but (n/2)(m − 1)(m − 2) = 1.5 ∗ 4 ∗ 3 = 18. REVERSE will make the first manipulator vote
w1 = 5 > 1 > 2 > 3 > 4 (ordering the competing candidates arbitrarily), at which point, e.g.,
s(V ∪{w1}, 1) = 10 + 3 = 13. The candidates’ scores are shown in Figure 2 after each iteration of
the while loop. Since s(V ∪ {w1, w2, w3, w4}, 5) = 16, REVERSE finds the optimal manipulation.

3 Greedy Algorithms for Borda Manipulation
The definition of manipulation matrix from Section 2 is a useful abstraction, that suggests a connec-
tion to bin-packing or multiprocessor scheduling [4]. Intuitively, the elements of the manipulators



REVERSE(V,m,d)
1. A[i] ← ∅ for all 1≤i≤m
2. n ← 0
3. while max i{sum(A[i]) + s(V,i)} > sum(A[d]) + s(V,d)
4. w ← sort{i < j⇐⇒ (sum(A[i])+s(V,i) < sum(A[j])+s(V,j) or i=d)}
5. A[i].push(s(w,i)) for all i
6. n ← n + 1
7. return A

Figure 1: The greedy algorithm of Zuckerman et al. [19].

Candidate i 1 2 3 4 5
s(V, i) 10 10 10 10 0

s(V ∪ {w1}, i) 13 12 11 10 4
s(V ∪ {w1, w2}, i) 13 13 13 13 8

s(V ∪ {w1, w2, w3}, i) 16 15 14 13 12
s(V ∪ {w1, w2, w3, w4}, i) 16 16 16 16 16

Figure 2: Scores given by REVERSE, for Example 1.

votes, Sn, must be assigned to the columns of A such that the sum of each column is at most gi.
In the bin-packing problem, a set of objects with sizes between zero and one must be grouped into
a minimum number of bins such that the sum of the objects in each bin is at most one. So in our
case, the set of objects would be Sn, representing the elements whose positions in manipulation
matrix A are initially unknown. One of the main differences is that our matrix A has a constraint on
each row, that it must contain all values from 0 to m − 1, and it is not clear how this translates to
other domains. Luckily, Theorem 3.1 tells us that we don’t have to worry about this constraint. If
a correctly sized matrix B containing n elements equal to j for each 0 ≤ j ≤ m − 1 can be found
such that the column sums are at most the candidate’s gaps and column d contains all the m − 1’s,
then it can always be converted to a manipulation matrix A.

Theorem 3.1 Suppose there exists an n×m matrix B such that the total number of elements in B
equal to k, for each 0 ≤ k ≤ m − 1 is n. Let the sum of the elements in the ith column of B be
gi. Then there is another n×m matrix A with the same set of elements as B and the same column
sums, such that each row contains exactly one element equal to k, for each 0 ≤ k ≤ m− 1.

Proof By induction on n. When n = 1, we have B = [b1,1, ..., b1,m] such that B contains exactly
one element of value k for each 0 ≤ k ≤ m− 1. Therefore, just set A = B.

Assume that the theorem holds for all numbers of rows less than n. We prove that it also holds
for n rows. Let B be an n ×m matrix such that the total number of elements in B equal to k, for
each 0 ≤ k ≤ m− 1 is n. Let the sum of the elements in the ith column be gi.

Define a bipartite graphG = (S∪T,E) such that the set of left-hand vertices is S = {0, ...,m−
1} (these will represent the set of values of the elements of row 1 in A), and the set of right-hand
vertices is T = {1, ...,m} representing the columns ofB. E contains an edge (i, j)k for each i ∈ S,
j ∈ T and 1 ≤ k ≤ n such that i = B(k, j).

Note that there can be up to n edges between two vertices i and j. Since every value appears n
times in B, |{(k, j) : i = B(k, j)}| = n and so the degree of each i ∈ S is exactly n. For each
j ∈ T , the degree will also be n: one edge to each i = B(k, j), 1 ≤ k ≤ n.

Therefore, if we take any P ⊆ S, n|P | edges leave P . Since every vertex in T is also of degree
n, each vertex in the neighbourhood of P , nbhd(P ), can accommodate at most n incoming edges.



Therefore, |nbhd(P )| is not less than |P |. Since the Hall condition holds [8], there is a perfect
matching in G that assigns each value from 0 to m− 1 to a position in the first row of B, as follows.

Let M = {e1, ..., em} ⊆ E be the set of edges in the matching. For each e = (i, j)k ∈ M , let
A(1, j) = i. SinceM is a matching, each i, 0 ≤ i ≤ m−1 appears in exactly one column, and each
column is assigned exactly one element. Therefore, the first row of A is well defined. Also note that
for each column j, A(1, j) appears in the jth column of B.

Let B′ be the matrix defined by taking B and removing one element equal to A(1, j) from each
column j. Then B′ is an n − 1 ×m matrix containing exactly n − 1 elements equal to i for each
0 ≤ i ≤ m − 1, since the elements removed were one of each value. The column sums for B′ are
gj−A(1, j) for all columns j. By the induction hypothesis, there exists an n−1×mmatrixA′ such
that A′ contains the same elements as B′ and the same column sums, but each row of A′ contains
exactly one element equal to i, for 0 ≤ i ≤ m− 1. Given that we’ve already defined the first row of
A, let the remaining n− 1 rows be A′. Then A contains the same set of values as B, with the same
column sums A(1, j) + (gj −A(1, j)) = gj , and every row of A contains exactly one element equal
to i, for each 0 ≤ i ≤ m− 1.

Therefore, by induction, the theorem holds for all n. 2

If a matrix B exists whose column sums are at most the value of the candidates’ gaps, and
sum(B[d]) = gd, then matrix A gives a manipulation, where each row of A defines the vote of one
of the manipulators. Therefore, we can devise algorithms to discoverB and be assured thatA exists.

However, the manipulation problem has two additional differences to bin-packing. First,
the number of objects in each bin must be exactly n, while bin-packing has no such constraint.
Secondly, each of our bins has a different maximum capacity gi. The former constraint has been
studied in the multiprocessor scheduling domain, where the problem is to schedule jobs on a set of
n processors such that the memory resources are never exceeded and the time to complete all jobs
is minimized [9]. Our problem corresponds to the case where each job takes a unit of processing
time. For each element a ∈ Sn, there is a job with memory requirement equal to a. The number of
processors is equal to the number of manipulators n, and the amount of available memory resource
at time step i is equal to gi. We wish to find a schedule that uses m − 1 time steps, which will be
possible if an n-manipulation exists. Krause et al. consider the case where the memory resource
remains constant over time, and present theoretical analysis of a simple scheduling algorithm that
assigns the jobs one at a time to particular time steps. Their scheduler takes the unassigned job with
largest memory requirements and assigns it to a time step (with at least one processor free), that has
the maximum remaining available memory. If no time step exists that can accommodate this job, a
new time step is added.

Our first greedy algorithm is based on this same intuition, where it translates to giving the largest
scores to the competing candidates that have the least score so far. In this it is similar to REVERSE,
but we are now free to pursue this heuristic strictly, while REVERSE for example decides which
candidate the second voter’s m− 2 should be assigned to after the smaller scores of the first manip-
ulator are assigned. This can sometimes be an advantage, but it may also lead the algorithm to make
more serious mistakes, as we will show.

3.1 Largest Score in Largest Gap
Our first greedy algorithm, LSLG is shown in Figure 3. LSLG takes the number of manipulators as
an argument and returns the matrix B (from Theorem 3.1) if it is able to find an n-manipulation. On
line 1, the matrix B (represented as an array of vectors) is initialized so that every column vector
is empty. On line 2, the column corresponding to the distinguished candidate is filled with the
maximum value, m− 1. On line 3, the array S is initialized with the sorted elements of Sn defined



LSLG(V,n,d)
// B[i] is the iˆth column of B

1. B[i] ← ∅ for all 1≤i≤m
// B[d] is filled with n m-1’s

2. B[d] ← {m-1,...,m-1}
// Each score is repeated n times in S

3. S ← {m-2,...,m-2,m-3,...,m-3,...,1,...,1,0,...,0}
4. while S 6= {}

// The column of B that contains fewer than n elements,
// with the lowest sum

5. c ← argmin i{sum(B[i]) + s(V,i) : |B[i]| < n}
6. B[c].push(S[0])
7. S ← S - S[0]
8. if sum(B[d]) + s(V,d) ≥ max i{sum(B[i]) + s(V,i)}
9. return B
10.else
11. return Failure

Figure 3: The greedy algorithm based on placing the largest remaining score in the column of A
with the most room.

in Section 2. Each iteration of the while loop on lines 4-7 removes the first (largest) element of S
and pushes it (on line 6) into the column of B that has the lowest sum so far. Note that we use the
notation |B(i)| to denote the current number of elements in the ith column of B. Once all elements
of S have been assigned, the loop terminates and line 8 checks if a valid manipulation has been
produced. If so, B is returned, and if not, the algorithm reports Failure.

The following proposition shows that this algorithm can sometimes find an optimal manipulation
when REVERSE fails, and this is true for an infinite family of instances.

Proposition 1 Let E = (V,m) be an election such that m > 2 is even, d = m, s(V, d) = 0 and
s(V, i) = m

2 + i for all i 6= d. Then LSLG finds an optimal 2-manipulation, but REVERSE produces
a 3-manipulation.

Proof

First, note that two non-manipulator votes are always sufficient to create such an election. Let
σ =< 1, 2, ...,m− 1 > and let

σ′ =<
m

2
+ 1,

m

2
+ 2, ...,

m

2
+
m

2
− 1, 1, 2, ...,

m

2
>

Then σ + σ′ =

<
(

1 +
m

2
+ 1
)
,
(

2 +
m

2
+ 2
)
, ...,

(m
2
− 1 +

m

2
+
m

2
− 1
)
,
(m

2
+ 1
)
, ...,

(
m− 1 +

m

2

)
>

which gives us m
2 + 2x for 1 ≤ x ≤ m

2 − 1 and m
2 + 2x − 1 for 1 ≤ x ≤ m

2 , or in other words,
m
2 + i for all 1 ≤ i ≤ m− 1 (i.e. all i 6= d).

The first vote generated by REVERSE is r1 = m > 1 > 2 > ... > m − 1, after which
s(V ∪ {r1}, i) = m

2 + m − 1 for all competing candidates, which is larger than the score of the
distinguished candidate s(V ∪ {r1},m) = m− 1. Therefore another manipulator is added, without
loss of generality its vote is r2 = m > 1 > 2 > ....m − 1. The resulting scores of the competing



candidates are s(V ∪ {r1, r2}, i) = m
2 + (m− 1) + (m− i− 1) = (5/2)m− 2− i. So candidate

i = 1 still has larger score than s(V ∪ {r1, r2},m) = 2m− 2. Therefore, REVERSE does not find
a 2-manipulation.

m/2+1

m/2+2

m/2+3

m/2+4

m/2+5

m/2

+

m-2

m/2

+

m-1
m-2

m-2
m-3

m-3
m-4

m/2-1 m/2-2 m/2-2
m/2-3 m/2-3

m/2 m/2-1

0 0

1 2 3 4 5 m-2 m-1

Figure 4: The 2-manipulation generated by LSLG
for the election in Proposition 1

The firstm−1 iterations of LSLGwill place
the kth largest score from S2 into the kth col-
umn of matrix B for 1 ≤ k ≤ m− 1. Note that
the kth largest score is m − 2 − b(k − 1)/2c.
Let Bm−1 be the matrix at this point. Then
sum(Bm−1(i)) + s(V, i) = (m − 2 − b(i −
1)/2c) + m

2 + i for all i < m. The next m− 1
iterations of LSLG will place the kth largest
score from S2 into the kth column of matrix
B for m ≤ k ≤ 2(m − 1). So column i < m
will receive the element m

2 − 1 − d(i − 1)/2e.
Let B2(m−1) be the matrix when the loop ter-
minates. Then sum(B2(m−1)(i)) + s(V, i) =
(m− 2− b(i− 1)/2c) + (m

2 + i) + (m
2 − 1−

d(i−1)/2e) = 2(m−1) for all i < m, while the
achievable score of m is also 2(m− 1). There-
fore, LSLG does find a 2-manipulation. Fig-
ure 4 shows the matrix generated by LSLG (col-
umn d = m is omitted), where the shaded areas
represents the scores s(V, i) for each i < m.

2

Unfortunately, LSLG does not share the guarantee of REVERSE that in the worst case it re-
quires one extra manipulator than is optimal. In fact, Theorem 3.2 shows that the number of extra
manipulators LSLG might require is unbounded.

Theorem 3.2 Let k be positive integer greater than zero and divisible by 36. Let s(V, 1) = 6k,
s(V, 2) = 4k, s(V, 3) = 2k, s(V, 4) = 0 be the scores of four candidates after some non-
manipulators V vote, and let d = 4. Then REVERSE will find the optimal manipulation, using
2k manipulators. However, LSLG requires at least 2k + k/9− 3 manipulators.

Proof First, we should mention that for any k there is a set of votes Vk that gives the specified scores
to the four candidates: Vk is simply 2k votes, all equal to 1 > 2 > 3 > 4. REVERSE will use 2k
manipulators, all voting 4 > 3 > 2 > 1, to achieve a score of 6k for all candidates (the only optimal
manipulation). It remains to argue that LSLG requires more than 2k+k/9−4 manipulators. Assume
for contradiction that we find a manipulation using n = 2k+k/9−4 = 19k/9−4 manipulators. We
will follow the execution of LSLG until a contradiction is obtained. Note that given our definition
of n, since k is divisible by 4 and 9, n−k

2 is an integer.
First, the algorithm will place k 2’s in B[3], at which point sum(B[3]) = 2k + 2k = 4k =

s(Vk, 2). Then it will begin to place 2’s in columns B[2] and B[3] evenly, until all remaining n− k
2’s have been placed into B. At this point, B[2] contains n−k

2 2’s, and the number of 2’s that B[3]
contains is k + n−k

2 = k/2 + n/2 = k/2 + (19k/9− 4)/2 = 14k/9− 2 < 19k/9− 4 = n. So at
this point, B[3] is not full yet and B[2] isn’t either (it has fewer elements than B[3]). Both columns
sum to 4k+ 2(n−k

2 ) = 46k/9− 4 = 5k+ k/9− 4 < 6k. Therefore, the algorithm will start putting
1’s in both B[2] and B[3] evenly, until either their column sums reach 6k or B[3] gets filled. In fact,
B[3] will be filled before its sum reaches 6k, since B[3] requires n−k

2 more elements to be filled, but
at this point, sum(B[2]) = sum(B[3]) = 46k/9− 4 + n−k

2 = 51k/9− 6 = 5k + 2k/3− 6 < 6k.
Now, the algorithm will continue by putting k/3 + 6 1’s into B[2], at which point sum(B[2]) =

51k/9− 6 + k/3 + 6 = 6k. Then the algorithm will start putting 1’s evenly in both B[1] and B[2],



LSLA(V,n)
1. B[i] ← ∅ for all 1≤i≤m

// B[d] is filled with n m-1’s
2. B[d] ← {m-1,...,m-1}

// Each score is repeated n times in S
3. S ← {m-2,...,m-2,m-3,...,m-3,...,1,...,1,0,...,0}
4. while S 6= {}

// The column of B with highest average desired score
5. c ← argmax i{ [g_i-sum(B[i])] / [n-|B[i]|]] : |B[i]| < n}
6. s ← chooseScore(g_c-sum(B[c]), S)
7. B[c].push(s)
8. S ← S - {s}
9. if sum(B[d]) + s(V,d) ≥ max i{sum(B[i]) + s(V,i)}
10. return B
11.else
12. return Failure

chooseScore(g,S)
1. s ← max{s ∈ S : s ≤ g}
2. if s = None
3. s = S[0]
4. return s

Figure 5: The greedy algorithm based on average desired score, for n manipulators.

until either it runs out of 1’s or B[2] is filled. In fact, the 1’s will run out before B[2] is filled, since
B[2] requires n−(n−k

2 + n−k
2 +k/3+6) = 2k/3−6 more elements, which is equal to the number of

remaining 1’s, but these are spread between B[1] and B[2]. So B[2] will get (2k/3−6)/2 = k/3−3
additional 1’s, for a total of sum(B[2]) = 4k + 2(n−k

2 ) + n−k
2 + k/3 + 6 + k/3 − 3 = 19k/3 −

3 > 19k/3 − 12 = 3n. Since sum(B[2]) > 3n there is no manipulation using n = 19k/9 − 4
manipulators. Therefore, LSLG requires at least n+ 1 = 2k + k/9− 3 manipulators. 2

This result shows the weakness of LSLG, that it only considers the relative sizes of the competing
candidates’ current scores. Therefore if two candidates’ column sums ever become equal during
LSLG, they will often be treated equivalently for the remainder of the iterations. In the example
from Theorem 3.2, this is the fatal mistake, since at the point where sum(B[3]) becomes equal to
sum(B[2]), column 3 requires fewer additional elements before it is filled (i.e. |B[2]| < |B[3]|).
Therefore, it is important for column 3 to receive larger elements than column 2. In fact, all of the
largest elements must be taken by column 3, and none given to column 2. However, LSLG will
begin treating the two equal columns the same, distributing the remaining 2’s evenly between B[2]
and B[3]. This observation motivates our second greedy algorihthm.

3.2 Average Desired Score
The second greedy algorithm is based on the idea that it is not enough to simply assign the largest
scores to the columns of B that have the largest gap. Each column of B also requires exactly
n elements in order to be filled, where n is the number of manipulators currently attempted. To
balance these two requirements, we can look at the remaining gap gi − sum(B[i]) and divide it
by the remaining number of scores that must be added to column i, n − |B[i]|. Notice that if we
had n − |B[i]| scores of this average size available (for each i), we could fill every column of B
perfectly. Since we don’t, a sensible heuristic is to put the largest scores in the columns that have



j 1 2 3 4 5 6 7 8
S(V1, j) 67 60 59 58 58 52 52 42
S(V2, j) 41 34 30 27 27 26 25 14

Figure 6: Examples where LSLG beats LSLA by finding the optimal number of manipulators vs.
using one extra.

largest average desired score. This algorithm, called LSLA, is shown in Figure 5.

The structure of LSLA is similar to LSLG, so it will not be explained line by line. Note that
on line 5 of LSLA we need some way to break ties between candidates that have the same average
desired score. We could break ties arbitrarily, but we also consider choosing the candidate i with
minimum |B[i]| since this column needs more additional scores. We found experimentally that the
latter tie breaking policy works better overall, although there are some instances where only the
arbitrary policy finds the optimal manipulation. The procedure chooseScore is used to avoid
violating the maximum column sum gi earlier than necessary. Given an array of unassigned scores
and the size of a column’s remaining gap, it returns the largest unassigned score that fits in the
remaining gap. We found experimentally that this was vital to finding the optimal manipulation in
the majority of cases.

We now compare LSLA to the other two greedy algorithms. LSLA behaves similarly to
REVERSE on the instances from Theorem 3.2, and thus it performs better than LSLG on an infi-
nite family of instances. In fact, in the next section we will see that we have never found an instance
for which REVERSE can find an optimal manipulation but LSLA fails. However, cases do exist
where the simpler greedy algorithm LSLG finds the optimal manipulation and LSLA fails. Two
examples are shown in Figure 6, but analysis of these cases has failed to produce a generalizable
pattern. In the next section we provide further experimental evidence of the superiority of LSLA
compared to the other two algorithms.

4 Empirical Comparison
In this section we compare the performance of REVERSE, LSLG and LSLA from a practical
perspective. Our experimental setup is similar to that of Walsh [14]. We consider two methods of
generating non-manipulator votes, the uniform random votes model and the Polya Eggenberger urn
model [1]. In the uniform random votes model, each vote is drawn uniformly at random from all
m! possible votes. In the urn model, votes are drawn from an urn at random, but we place them
back into the urn along with a other votes of the same type. This model attempts to capture varying
degrees of social homogeneity, or the similarity between voters’ preferences. We set a = m!,
which means that there is a 50% chance that the second vote is the same as the first. It would be
interesting to consider varying the degree of vote similarity by experimenting with different values
of a. In future work we also intend to study votes generated from real-world elections, e.g. [7].
We generated election instances for numbers of candidates m and numbers of non-manipulators p
in {22, ..., 27}. We generated 1000 instances for each pair (m, p). Since the votes were generated
randomly, for small numbers of candidates some duplicate instances were produced. The total
number of distinct Uniform elections obtained was 32679, and the number of distinct Urn elections
was 31530.

In order to determine the optimal number of manipulators exactly, we modeled the manipulation
problem as a constraint satisfaction problem (CSP). The model we used comes directly from the
definition of the manipulation matrix A, Definition 2. In this model, there are n × m − 1 finite
domain variables, with domains equal to {0, ...,m − 2} that represent the unknown elements of A.



m # Inst. REVERSE LSLG LSLA LSLG beat LSLA
4 2771 2611 2573 2771 0
8 5893 5040 5171 5852 2

16 5966 4579 4889 5883 3
32 5968 4243 4817 5879 1
64 5962 3980 4772 5864 3

128 5942 3897 4747 5821 2
Total 32502 24350 26969 32070 11

% 75 83 99 <1

Figure 7: Number of Uniform elections for which each algorithm found an optimal manipulation.

m # Inst. REVERSE LSLG LSLA LSLG beat LSLA
4 3929 3666 2604 3929 0
8 5501 4709 2755 5496 0

16 5502 4357 2264 5477 1
32 5532 4004 2008 5504 0
64 5494 3712 1815 5475 0

128 5571 3593 1704 5565 0
Total 31529 24041 13150 31446 1

% 76 42 99.7 <1

Figure 8: Number of Urn elections for which each algorithm found an optimal manipulation.

There are n ALLDIFF constraints, each over the variables of a row, that ensure each vote is properly
formed. m− 1 constraints over the variables of each column i of A ensure that their sum is at most
gi. Finally, if gi = gj for any two columns i < j, we added a constraint that A[i][0] < A[j][0] over
their row-1 elements. This breaks the symmetry between the two columns and reduces the number
of equivalent solutions to the model. We used the solver Gecode [12] to find a solution to the CSP,
using Domain Over Weighted Degree as the variable ordering heuristic. The timeout for Gecode
was set to one hour, and all experiments were performed on processors of typical contemporary
performance.

We will refer to the number of manipulators used by REVERSE as Nr. We ran the three compet-
ing greedy algorithms, and if this did not determine the optimal manipulation (i.e. none did better
than REVERSE), we checked whether Observation 1 or the fact that gE,Nr−1(i) is negative for some
candidate i allow us to conclude that a (Nr − 1)-manipulation is impossible. If the optimal num-
ber of manipulators was still unknown, we attempted to find an (Nr−1)-manipulation using Gecode.

Uniform Elections Using the combined method described above, we were able to determine
the optimal number of manipulators in 32502 out of the 32679 distinct Uniform elections. The
results are shown in Figure 7, grouped by the number of candidates m. The first column shows
the number of candidates, and the second column shows the number of instances for which
we report results. The next three columns show the number of instances for which each of the
greedy algorithms could find an optimal manipulation. The last column shows the number of
instances on which LSLG found the optimal solution but LSLA did not. These results show
that both LSLG and LSLA provide a significant improvement over REVERSE, solving 83% and
99% of instances to optimality overall. We also notice that REVERSE solves fewer problems to
optimality as the number of candidates increases, while LSLA does not seem to suffer from this
problem as much: LSLA solves 100% of the m = 4 instances and 98% of the 128 candidate
elections. In addition to the results in the table, we mention that in every one of the 32502 instances,



if REVERSE found an n-manipulation either LSLA did too, or LSLA found an (n−1)-manipulation.

Urn Elections We were able to determine the optimal number of manipulators for 31529 out of
the 31530 unique Urn elections. Figure 8 presents the results, in the same format as Figure 7.
REVERSE solves about the same proportion of the Urn instances as it did of the Uniform instances,
76%. However, LSLG performance drops significantly, and is in fact much worse than REVERSE
at 42% of instances solved. This can be explained by the structure of the Urn elections, which
contain many identical votes. This results in a similar pattern of non-manipulator scores to those
in Theorem 3.2 on which LSLG has pathological behavior. Surprisingly, the good performance of
LSLA is maintained. LSLA found the optimal manipulation on more than 99% of the instances,
dominates REVERSE and only lost one instance to LSLG in this set of experiments.

5 Conclusion
We studied the coalitional manipulation problem in elections using the unweighted Borda rule. We
provided insight into the structure of the solutions that allows us to build algorithms that construct
a manipulation in a manner similar to bin-packing rather than constructing an entire vote at each
step. Using this insight, we proposed two new algorithms, LSLG and LSLA. We have provided no
optimality guarantees for these algorithms. In fact, we show that LSLG may require an unbounded
number of additional manipulators relative to the optimal. However, there are infinite families of
instances in which both algorithms can find the optimal but the algorithm proposed by Zuckerman
et al. [19], which does have a worst-case guarantee, can not. In an empirical evaluation performed
over more than 60000 randomly generated instances, LSLA finds the optimal manipulation in more
than 99% of the cases, is never outperformed by REVERSE and in only 12 instances by LSLG.
This result provides further empirical evidence that the unweighted Borda rule can be manipulated
effectively using relatively simple algorithms.

In future work, we intend to determine whether we can provide theoretical optimality guarantees
for LSLA similar to those that are known for REVERSE and theoretically verify the strict dominance
that we observed empirically. Further, we intend to investigate whether we can extend our
algorithms to always find the optimal number of manipulators for these elections. Another question
that arises from this work is whether similar insights can be developed for other scoring rules.
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