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Abstract

In 1876 Charles Lutwidge Dodgson suggested the intriguing voting rule that today
bears his name. Although Dodgson’s rule is one of the most well-studied voting rules,
it suffers from serious deficiencies, both from the computational point of view—it is
NP-hard to approximate the Dodgson score to logarithmic factors—and from the
social choice point of view—it fails basic social choice desiderata such as monotonicity
and homogeneity.
In a previous paper [Caragiannis et al., SODA 2009] we have asked whether there
are approximation algorithms for Dodgson’s rule that are monotonic or homoge-
neous. In this paper we give definitive answers to these questions. We design a
monotonic exponential-time algorithm that yields a 2-approximation to the Dodg-
son score, while matching this result with a tight lower bound. We also present
a monotonic polynomial-time O(log m)-approximation algorithm (where m is the
number of alternatives); this result is tight as well due to a complexity-theoretic
lower bound. Furthermore, we show that a slight variation on a known voting rule
yields a monotonic, homogeneous, polynomial-time O(m log m)-approximation algo-
rithm, and establish that it is impossible to achieve a better approximation ratio
even if one just asks for homogeneity. We complete the picture by studying several
additional social choice properties; for these properties, we prove that algorithms
with an approximation ratio that depends only on m do not exist.

1 Introduction

Social choice theory is concerned with aggregating the preferences of a set of n agents
over a set of m alternatives. It is often assumed that each agent holds a private ranking
of the alternatives; the collection of agents’ rankings is known as a preference profile. The
preference profile is reported to a voting rule, which then singles out the winning alternative.

When there are two alternatives (and an odd number of agents), majority voting is
unanimously considered a perfect method of selecting the winner. However, when there are
at least three alternatives it is sometimes unclear which alternative is best. In the Eighteenth
Century the marquis de Condorcet, perhaps the founding father of the mathematical theory
of voting, suggested a solution by extending majority voting to multiple alternatives [10].
An alternative x is said to beat alternative y in a pairwise election if a majority of agents
prefer x to y, i.e., rank x above y. An alternative that beats every other alternative in
a pairwise election is easy to accept as the winner of the entire election; in the modern
literature such an alternative is known as a Condorcet winner. Unfortunately, there are
preference profiles for which no alternative is a Condorcet winner.

Almost a century after Condorcet, a refinement of Condorcet’s ideas was proposed by
Charles Lutwidge Dodgson (today better known by his pen name Lewis Carroll), despite
apparently being unfamiliar with Condorcet’s work [5]. Dodgson proposed selecting the
alternative “closest” to being a Condorcet winner, in the following sense. The Dodgson
score of an alternative x is the number of exchanges between adjacent alternatives in the

1A slightly different version of the paper appeared in Proceedings of the 10th ACM Conference on
Electronic Commerce (EC 10).



agents’ rankings that must be introduced in order for x to become a Condorcet winner (see
Section 2 for an example). A Dodgson winner is an alternative with minimum Dodgson
score.

Although Dodgson’s rule is intuitively appealing, it has been heavily criticized over
the years for failing to satisfy desirable properties that are considered by social choice
theorists to be extremely basic. Most prominent among these properties are monotonicity
and homogeneity; a voting rule is said to be monotonic if it is indifferent to pushing a winning
alternative upwards in the preferences of the agents, and is said to be homogeneous if it is
invariant under duplication of the electorate. In fact, several authors have commented that it
is somewhat unfair to attribute the abovementioned rule to Dodgson, since Dodgson himself
seems to have questioned it due to its serious defects (see, e.g., the papers by Tideman [21,
p. 194] and Fishburn [11, p. 474]).

To make matters worse, the rise of computational complexity theory, a century after
the conception of Dodgson’s rule, has made it clear that it suffers from yet another serious
deficiency: it is intractable to single out the winner of the election. Indeed, it is the first
voting rule where winner determination was known to be NP-hard [4]; even the computation
of the Dodgson score of a given alternative is NP-hard. The question of the exact complexity
of winner determination under Dodgson’s rule was resolved by Hemaspaandra et al. [13]: it
is complete for the class Θp

2. These results have sparked great interest in Dodgson’s rule
among computer scientists, making it “one of the most studied voting rules in computational
social choice” [6].

In previous work with numerous colleagues [8], we have largely taken the computational
complexity point of view by considering the computation of the Dodgson score as an op-
timization problem. Among other results, we have given two polynomial-time algorithms
that guarantee an approximation ratio of O(log m) to the Dodgson score (where m is the
number of alternatives); this bound is asymptotically tight with respect to polynomial-time
algorithms (unless P = NP).

Taking the social choice point of view, our main conceptual contribution in [8] was the
suggestion that an algorithm that approximates the Dodgson score is a voting rule in its
own right in the sense that it naturally induces a voting rule that selects an alternative with
minimum score according to the algorithm. Hence, such algorithms should be evaluated
not only by their computational properties (e.g., approximation ratio and complexity) but
also by their social choice properties (e.g., monotonicity and homogeneity). In other words,
they should be “socially desirable”. This issue was very briefly explored in the foregoing
paper: we have shown that one of our two approximation algorithms satisfies a weak flavor of
monotonicity, whereas the other does not. Both algorithms, as well as Dodgson’s rule itself,
are neither monotonic (in the usual sense) nor homogeneous, but this does not preclude the
existence of monotonic or homogeneous approximation algorithms for the Dodgson score.
Indeed, we have asked whether there exist such algorithms that yield a good approximation
ratio [8, p. 1064].

In the following, we refer to algorithms approximating the Dodgson score (as well as
to the voting rules they induce) using the term Dodgson approximations. A nice property
that Dodgson approximations enjoy is that a finite approximation ratio implies Condorcet-
consistency, i.e., a Condorcet winner (if one exists) is elected as the unique winner. One
might wish for approximations of the Dodgson ranking (i.e., the ranking of the alternatives
with respect to their Dodgson scores) directly instead of approximating the Dodgson score.
Unfortunately, it is known that distinguishing whether an alternative is the Dodgson winner
or in the last O(

√
m) positions in the Dodgson ranking is NP-hard [8]. This extreme

inapproximability result provides a complexity-theoretic explanation of the discrepancies
that have been observed in the social choice literature when comparing Dodgson’s rule to
simpler polynomial-time voting rules (see the discussion in [8]) and implies that, as long as



we care about efficient algorithms, reasonable approximations of the Dodgson ranking are
impossible. However, the cases where the ranking is hard to approximate are cases where
the alternatives have very similar Dodgson scores. We would argue that in those cases it
is not crucial, from Dodgson’s point of view, which alternative is elected, since they are all
almost equally close to being Condorcet winners. Put another way, if the Dodgson score is
a measure of an alternative’s quality, the goal is simply to elect a good alternative according
to this measure.

Our results and techniques. In this paper we give definitive (and mostly positive)
answers to the questions raised above; our results are tight. Due to lack of space, all proofs
have been omitted.

In Section 3 we study monotonic Dodgson approximations. We first design an algorithm
that we denote by M . Roughly speaking, this algorithm “monotonizes” Dodgson’s rule by
explicitly defining a winner set for each given preference profile, and assigning an alternative
to the winner set if it is a Condorcet winner in some preference profile such that the former
profile is obtained from the latter by pushing the alternative upwards. We prove the following
result.

Theorem 3.1. M is a monotonic Dodgson approximation with an approximation ratio of
2.

We furthermore show that there is no monotonic Dodgson approximation with a ratio
smaller than 2 (Theorem 3.2), hence M is optimal among monotonic Dodgson approxi-
mations. Note that the lower bound is independent of computational assumptions, and,
crucially, computing an alternative’s score under M requires exponential time. This is to be
expected since the Dodgson score is computationally hard to approximate within a factor
better than Ω(log m) [8].

It is now natural to ask whether there is a monotonic polynomial-time Dodgson ap-
proximation with an approximation ratio of O(log m). We give a positive answer to this
question as well. Indeed, we design a Dodgson approximation denoted by Q, and establish
the following result.

Theorem 3.3. Q is a monotonic polynomial-time Dodgson approximation with an
approximation ratio of O(log m).

The result relies on monotonizing an existing Dodgson approximation that is based on
linear programming. The main obstacle is to perform the monotonization in polynomial
time rather than looking at an exponential number of profiles, as described above. Our
main tool is the notion of pessimistic estimator, which allows the algorithm to restrict its
attention to a single preference profile. Pessimistic estimators are obtained by solving a
linear program that is a variation on the one that approximates the Dodgson score.

In Section 4 we turn to homogeneity. We consider Tideman’s simplified Dodgson rule [22,
pages 199-201], which was designed to overcome the deficiencies of Dodgson’s rule. The
former rule is computable in polynomial time, and is moreover known to be monotonic and
homogeneous. By scaling the score given by the simplified Dodgson rule we obtain a rule,
denoted Td′, that is identical as a voting rule, and moreover has the following properties.

Theorem 4.1. Td′ is a monotonic, homogeneous, polynomial-time Dodgson approximation
with an approximation ratio of O(m log m).

Note that the Dodgson score can be between 0 and Θ(nm), so this bound is far from
trivial. The analysis is tight when there is an alternative that is tied against many other
alternatives in pairwise elections (and hence has relatively high Dodgson score), whereas
another alternative strictly loses in pairwise elections to few alternatives (so it has relatively



low Dodgson score). By homogeneity the former alternative must be elected, since its score
does not scale when the electorate is replicated (we elaborate in Section 4). This intuition
leads to the following result which applies to any (even exponential-time) homogeneous
Dodgson approximation.

Theorem 4.2. Any homogeneous Dodgson approximation has approximation ratio at least
Ω(m log m).

In particular the homogeneous upper bound given in Theorem 4.1 (which is achieved by
an algorithm that is moreover monotonic and efficient) is asymptotically tight. The heart of
our construction is the design of a preference profile such that an alternative is tied against
Ω(m) other alternatives; this is equivalent to a construction of a family of subsets of a set U ,
|U | = m, such that each element of U appears in roughly half the subsets but the minimum
cover is of size Ω(log m).

In order to complete the picture, in Section 5 we discuss some other, less prominent,
social choice properties not satisfied by Dodgson’s rule [22, Chapter 13]: combinativity,
Smith consistency, mutual majority, invariant loss consistency, and independence of clones.
We show that any Dodgson approximation that satisfies one of these properties has an
approximation ratio of Ω(nm) (in the case of the former two properties) or Ω(n) (in the
case of the latter three). An Ω(nm) ratio is a completely trivial one, but we also consider
an approximation ratio of Ω(n) to be impractical, as the number of agents n is very large
in almost all settings of interest.

Discussion. Our results with respect to monotonicity are positive across the board. In
particular, we find Theorem 3.1 surprising as it indicates that Dodgson’s lack of monotonicity
can be circumvented by slightly modifying the definition of the Dodgson score; in a sense this
suggests that Dodgson’s rule is not fundamentally far from being monotonic. Theorem 3.3
provides a striking improvement over the main result of [8]. Indeed, if one is interested in
computationally tractable algorithms then an approximation ratio of O(log m) is optimal;
the theorem implies that we can additionally satisfy monotonicity without (asymptotically)
increasing the approximation ratio. Our monotonization techniques may be of independent
interest.

Our results regarding homogeneity, Theorem 4.1 and Theorem 4.2, can be interpreted
both positively and negatively. Consider first the case where the number of alternatives m
is small (e.g., in political elections). A major advantage of Theorem 4.1 is that it concerns
Tideman’s simplified Dodgson rule, which is already recognized as a desirable voting rule,
as it is homogeneous, monotonic, Condorcet-consistent, and resolvable in polynomial time.
The theorem lends further justification to this rule by establishing that it always elects an
alternative relatively close (according to Dodgson’s notion of distance) to being a Condorcet
winner, that is, the spirit of Dodgson’s ideas is indeed preserved by the “simplification” and
(due to Theorem 4.2) this is accomplished in the best possible way.

Viewed negatively, when the number of alternatives is large (an extreme case is a mul-
tiagent system where the agents are voting over joint plans), Theorem 4.2 strengthens the
criticism against Dodgson’s rule: not only is the rule itself nonhomogeneous, but any (even
exponential-time computable) conceivable variation that tries to roughly preserve Dodgson’s
notion of proximity to Condorcet is also nonhomogeneous. We believe that both interpreta-
tions of the homogeneity results are of interest to social choice theorists as well as computer
scientists.

As an aside, note that almost all work in algorithmic mechanism design [18] seeks truthful
approximation algorithms, that is, algorithms such that the agents cannot benefit by lying.
However, it is well known that in the standard social choice setting, truthfulness cannot be
achieved. Indeed, the Gibbard-Satterthwaite Theorem [12, 19] (see also [17]) implies that
any minimally reasonable voting rule is not truthful. Therefore, social choice theorists strive



for other socially desirable properties, and in particular the ones discussed above. To avoid
confusion, we remark that although notions of monotonicity are often studied in mechanism
design as ways of obtaining truthfulness (see, e.g., [3]), in social choice theory monotonicity
is a very basic desirable property in its own right (and has been so long before mechanism
design was conceived).

Future work. In the future, we envision the extension of our agenda of socially desirable
approximation algorithms to other important voting rules. Positive results in this direction
would provide us with tools to circumvent the deficiencies of known voting rules without
sacrificing their core principles; negative results would further enhance our understanding
of such deficiencies. Note that these questions are relevant even with respect to tractable
voting rules that do not satisfy certain properties, but seem especially interesting in the
context of voting and rank aggregation rules that are hard to compute, e.g., Kemeny’s and
Slater’s rules [1, 9, 15]. The work in this direction might involve well-known tractable,
Condorcet-consistent, monotonic, and homogeneous rules such as Copeland and Maximin
(see, e.g., [22]) in the same way that we use Tideman’s simplified Dodgson rule in the current
paper.

2 Preliminaries

We consider a set of agents N = {0, 1, . . . , n−1} and a set of alternatives A, |A| = m. Each
agent has linear preferences over the alternatives, that is, a ranking over the alternatives.
Formally, the preferences of agent i are a binary relation ≻i over A that satisfies irreflexivity,
asymmetry, transitivity and totality; given x, y ∈ A, x ≻i y means that i prefers x to y. We
let L = L(A) be the set of linear preferences over A. A preference profile ≻= 〈≻0, . . . ,≻n−1

〉 ∈ Ln is a collection of preferences for all the agents. A voting rule (also known as a social
choice correspondence) is a function f : Ln → 2A \{∅} from preference profiles to nonempty
subsets of alternatives, which designates the winner(s) of the election.

Let x, y ∈ A, and ≻∈ Ln. We say that x beats y in a pairwise election if |{i ∈ N : x ≻i

y}| > n/2, that is, if a (strict) majority of agents prefer x to y. A Condorcet winner is an
alternative that beats every other alternative in a pairwise election. The Dodgson score of
an alternative x ∈ A with respect to a preference profile ≻∈ Ln, denoted scD(x,≻), is the
number of swaps between adjacent alternatives in the individual rankings that are required
in order to make it a Condorcet winner. A Dodgson winner is an alternative with minimum
Dodgson score.

Consider, for example, the profile ≻ in Table 1; in this example N = {0, . . . , 4}, A =
{a, b, c, d, e}, and the ith column is the ranking reported by agent i. Alternative a loses in
pairwise elections to b and e (two agents prefer a to b, one agent prefers a to e). In order
to become a Condorcet winner, four swaps suffice: swapping a and e, and then a and b, in
the ranking of agent 1 (after the swaps the ranking becomes a ≻1 b ≻1 e ≻1 c ≻1 d), and
swapping a and d, and then a and e, in the ranking of agent 4. Agent a cannot be made a
Condorcet winner with fewer swaps, hence we have scD(a,≻) = 4 in this profile. However,
in the profile of Table 1 there is a Condorcet winner, namely agent b, hence b is the Dodgson
winner with scD(b,≻) = 0.

Given a preference profile ≻∈ Ln and x, y ∈ A, the deficit of x against y, denoted
defc(x, y,≻), is the number of additional agents that must rank x above y in order for x to
beat y in a pairwise election. Formally,

defc(x, y,≻) = max

{

0,

⌈

n + 1

2

⌉

− |{i ∈ N : x ≻i y}|
}

.

In particular, if x beats y in a pairwise election then it holds that defc(x, y,≻) = 0. Note that



0 1 2 3 4
a b e e b
b e b c e
c a c d d
d c a a a
e d d b c

Table 1: An example of the Dodgson score. For this profile ≻, it holds that scD(b,≻) = 0,
scD(a,≻) = 4.

if n is even and x and y are tied, that is, |{i ∈ N : x ≻i y}| = n/2, then defc(x, y,≻) = 1.
For example, in the profile of Table 1 we have that defc(a, b,≻) = 1, defc(a, c,≻) = 0,
defc(a, d,≻) = 0, defc(a, e,≻) = 2.

We consider algorithms that receive as input an alternative x ∈ A and a preference
profile ≻∈ Ln, and return a score for x. We denote the score returned by an algorithm
V on the input which consists of an alternative x ∈ A and a profile ≻∈ Ln by scV (x,≻).
We call such an algorithm V a Dodgson approximation if scV (x,≻) ≥ scD(x,≻) for every
alternative x ∈ A and every profile ≻∈ Ln. We also say that V has an approximation
ratio of ρ if scD(x,≻) ≤ scV (x,≻) ≤ ρ · scD(x,≻), for every x ∈ A and every ≻∈ Ln.
A Dodgson approximation naturally induces a voting rule by electing the alternative(s)
with minimum score. Hence, when we say that a Dodgson approximation satisfies a social
choice property we are referring to the voting rule induced by the algorithm. Observe
that the voting rule induced by a Dodgson approximation with finite approximation ratio
is Condorcet-consistent, i.e., it always elects a Condorcet winner as the sole winner if one
exists.

Let us give an example. Consider the algorithm V that, given an alternative x ∈ A
and a preference profile ≻∈ Ln, returns a score of scV (x,≻) = m · ∑y∈A\{x} defc(x, y,≻).
It is easy to show that this algorithm is a Dodgson approximation and, furthermore, has
approximation ratio at most m. Indeed, it is possible to make x beat y in a pairwise election
by pushing x to the top of the preferences of defc(x, y,≻) agents, and this requires at most
m · defc(x, y,≻) swaps. By summing over all y ∈ A \ {x}, we obtain an upper bound of
scV (x,≻) on the Dodgson score of x. On the other hand, given x ∈ A, for every y ∈ A \ {x}
we require defc(x, y,≻) swaps that push x above y in the preferences of some agent in
order for x to beat y in a pairwise election. Moreover, these swaps do not decrease the
deficit against any other alternative. Therefore,

∑

y∈A\{x} defc(x, y,≻) ≤ scD(x,≻), and by

multiplying by m we get that scV (x,≻) ≤ m · scD(x,≻).

3 Monotonicity

In this section we present our results on monotonic Dodgson approximations. A voting
rule is monotonic if a winning alternative remains winning after it is pushed upwards in
the preferences of some of the agents. Dodgson’s rule is known to be non-monotonic (see,
e.g., [6]). The intuition is that if an agent ranks x directly above y and y above z, swapping
x and y may not help y if it already beats x, but may help z defeat x.

As a warm-up we observe that the Dodgson approximation mentioned at the end of the
previous section is monotonic as a voting rule. Indeed, consider a preference profile ≻ and
a winning alternative x. Pushing x upwards in the preference of some of the agents can
neither increase its score (since its deficit against any other alternative does not increase)
nor decrease the score of any other alternative y ∈ A\ {x} (since the deficit of y against any
alternative in A \ {x, y} remains unchanged and its deficit against x does not decrease).



3.1 Monotonizing Dodgson’s Voting Rule

In the following we present a much stronger result. Using a natural monotonization of
Dodgson’s voting rule, we obtain a monotonic Dodgson approximation with approximation
ratio at most 2. The main idea is to define the winning set of alternatives for a given profile
first and then assign the same score to the alternatives in the winning set and a higher score
to the non-winning alternatives. Roughly speaking, the winning set is defined so that it
contains the Dodgson winners for the given profile as well as the Dodgson winners of other
profiles that are necessary so that monotonicity is satisfied.

More formally, we say that a preference profile ≻′∈ Ln is a y-improvement of ≻ for
some alternative y ∈ A if ≻′ is obtained by starting from ≻ and pushing y upwards in the
preferences of some of the agents. In particular a profile is a y-improvement of itself for any
alternative y ∈ A.

We monotonize Dodgson’s voting rule as follows. Let M denote the new voting rule
we are constructing. We denote by W (≻) the set of winners of M for profile ≻∈ Ln. Let
∆ = maxy∈W (≻) scD(y,≻). The voting rule M assigns a score of scM (y,≻) = ∆ to each
alternative y ∈ W (≻) and a score of

scM (y,≻) = max{∆ + 1, scD(y,≻)}

to each alternative y /∈ W (≻). All that remains is to define the set of winners W (≻) for
profile ≻. This is done as follows: for each preference profile ≻∗∈ Ln and each Dodgson
winner y∗ at ≻∗, include y∗ in the winner set W (≻′) of each preference profile ≻′∈ Ln that
is a y∗-improvement of ≻∗.

Theorem 3.1. M is a monotonic Dodgson approximation with an approximation ratio of
2.

In general, the Dodgson approximation M is computable in exponential time. However,
it can be implemented to run in polynomial time when m is a constant; in this special case
the number of different profiles with n agents is polynomial and the Dodgson score can be
computed exactly in polynomial time [4].

The next statement shows that the voting rule M is the best possible monotonic Dodgson
approximation. Note that it is not based on any complexity assumptions and, hence, it holds
for exponential-time Dodgson approximations as well.

Theorem 3.2. A monotonic Dodgson approximation cannot have an approximation ratio
smaller than 2.

3.2 A Monotonic Polynomial-Time O(log m)-Approximation Algo-

rithm

In the following we present a monotonic polynomial-time Dodgson approximation that
achieves an approximation ratio of O(log m). Given the Ω(log m) inapproximability bound
for the Dodgson score [8], this rule is asymptotically optimal with respect to polynomial-
time algorithms. To be precise, it is optimal within a factor of 4, assuming that problems
in NP do not have quasi-polynomial-time algorithms.

In general, there are two main obstacles that we have to overcome in order to implement
the monotonization in polynomial time. First, the computation of the Dodgson score and the
decision problem of detecting whether a given alternative is a Dodgson winner on a particular
profile are NP-hard problems [4]. We overcome this obstacle by using a polynomial-time
Dodgson approximation R instead of the Dodgson score itself. Even in this case, given
a profile, we still need to be able to detect whether an alternative y ∈ A is the winner



according to R at some profile of which the current profile is a y-improvement; if this is the
case, y should be included in the winning set. Note that, in general, this requires checking an
exponential number of profiles in order to determine the winning set of the current one. We
tackle this second obstacle using the notion of pessimistic estimators; these are quantities
defined in terms of the current profile only and are used to identify its winning alternatives.

In order to define the algorithm R that we will monotonize we consider an alternative
definition of the Dodgson score for an alternative z∗ ∈ A and a profile ≻∈ Ln. Define the
set S≻i

k to be the set of alternatives z∗ bypasses as it is pushed k positions upwards in the
preference of agent i. Denote by S≻i the collection of all possible such sets for agent i, i.e.,

S≻i = {S≻i

k : k = 1, ..., ri(z
∗,≻) − 1},

where ri(z
∗,≻) denotes the rank of alternative z∗ in the preferences of agent i ∈ N (e.g., the

most and least preferred alternatives have rank 1 and m, respectively). Let S =
⋃

i∈N S≻i .
Then, the problem of computing the Dodgson score of alternative z∗ on the profile ≻ is
equivalent to selecting sets from S of minimum total size so that at most one set is selected
among the ones in S≻i for each agent i ∈ N and each alternative z ∈ A \ {z∗} appears in
at least defc(z∗, z,≻) selected sets. This can be expressed by the following integer linear
program:

minimize
∑

i∈N

ri(z
∗,≻)−1
∑

k=1

k · x
(

S≻i

k

)

(1)

subject to ∀z ∈ A \ {z∗},
∑

i∈N

∑

S∈S≻i :z∈S

x(S) ≥ defc(z∗, z,≻)

∀i ∈ N,
∑

S∈S≻i

x(S) ≤ 1

∀S ∈ S, x(S) ∈ {0, 1}
The binary variable x(S) indicates whether the set S ∈ S is selected (x(S) = 1) or not

(x(S) = 0). Now, consider the LP relaxation of the above ILP in which the last constraint
is relaxed to x(S) ≥ 0. We define the voting rule R that sets scR(z∗,≻) equal to the optimal
value of the LP relaxation multiplied by Hm−1, where Hk is the kth harmonic number. In
[8] it is shown that

scD(y,≻) ≤ scR(y,≻) ≤ Hm−1 · scD(y,≻)

for every alternative y ∈ A, i.e., R is a Dodgson approximation with an approximation ratio
of Hm−1.

We now present a new voting rule Q by monotonizing R. The voting rule Q defines a
set of alternatives W (≻) that is the set of winners on a particular profile ≻. Then, it sets
scQ(y,≻) = 2 · scR(y∗,≻) for each alternative y ∈ W (≻), where y∗ is the winner according
to the voting rule R. In addition, it sets scQ(y,≻) = 2 · scR(y,≻) for each alternative
y /∈ W (≻).

In order to define the set W (≻) we will use another (slightly different) linear program
defined for two alternatives y, z∗ ∈ A and a profile ≻∈ Ln. The new LP has the same set
of constraints as the relaxation of (1) used in the definition of scR(z∗,≻) and the following
objective function:

minimize
∑

i∈N

ri(z
∗,≻)−1
∑

k=1

k · x
(

S≻i

k

)

+
∑

i∈N :y≻iz∗

ri(z
∗,≻)−ri(y,≻)−1

∑

k=1

x
(

S≻i

k

)

(2)



We define the pessimistic estimator pe(z∗, y,≻) for alternative z∗ ∈ A with respect to
another alternative y ∈ A \ {z∗} and a profile ≻∈ Ln to be equal to the objective value
of LP (2) multiplied by Hm−1. As will become apparent shortly, the pessimistic estimator
pe(z∗, y,≻′) upper-bounds the score of alternative z∗ under R on every profile ≻ such that
≻′ is a y-improvement of ≻, hence the pessimism with respect to estimating the score of z∗.
These pessimistic estimators will be our main tool in order to monotonize R.

We are now ready to complete the definition of the voting rule Q. The set W (≻)
is defined as follows. First, it contains all the winners according to voting rule R. An
alternative y that is not a winning alternative according to R is included in the set W (≻)
if pe(z, y,≻) ≥ scR(y,≻) for every alternative z ∈ A \ {y}.

Theorem 3.3. Q is a monotonic polynomial-time Dodgson approximation with an approx-
imation ratio of 2Hm−1.

4 Homogeneity

In this section we present our results on homogeneous Dodgson approximations. A voting
rule is homogeneous if duplicating the electorate, that is, duplicating the preference profile,
does not change the outcome of the election. An example (due to Brandt [6]) that demon-
strates that Dodgson’s rule fails homogeneity can be found in Table 2. The intuition is that
if alternatives x and y are tied in a pairwise election, the deficit of x against y does not
increase by duplicating the profile, whereas if x strictly loses to y in a pairwise election then
the deficit scales with the number of copies.

×2 ×2 ×2 ×2 ×2 ×1 ×1
d b c d a a d
c c a b b d a
a a b c c b b
b d d a d c c

Table 2: An example that demonstrates that Dodgson’s rule does not satisfy homogeneity.
A column headed by ×k represents k identical agents. In the above profile, a is the Dodgson
winner with a score of 3. By duplicating the electorate three times we obtain a profile in
which the winner is d with a score of 6.

4.1 The Simplified Dodgson Rule

Tideman [22, pages 199-201] defines the following simplified Dodgson rule and proves that
it is monotonic and homogeneous. Consider a profile ≻∈ Ln. If an alternative is a Con-
dorcet winner, then this alternative is the sole winner. Otherwise, the simplified Dodgson
rule assigns a score to each alternative and the alternative with the minimum score wins.
According to the simplified Dodgson rule, the score of an alternative x is

scTd(x,≻) =
∑

y∈A\{x}

max {0, n − 2 · |{i ∈ N : x ≻i y}|}.

Observe that scTd(x,≻) can be smaller than the Dodgson score of x and, hence, this defi-
nition does not correspond to a Dodgson approximation. For example, in profiles with an
even number of agents, scTd(x,≻) is 0 when x is tied against some alternatives and beats
the rest. Hence, we present an alternative definition of the simplified Dodgson rule as a



Dodgson approximation by scaling the original definition. If an alternative x is a Condorcet
winner, then it has score scTd′(x,≻) = 0. Otherwise:

scTd′(x,≻) = m · scTd(x,≻) + m(log m + 1).

It is clear that this alternative definition is equivalent to the original one of the simplified
Dodgson rule, in the sense that it elects the same set of alternatives. It is also clear that
scTd(x,≻) can be computed in polynomial time, and, as mentioned above, Td is known
to be monotonic and homogeneous. Hence, in order to prove the following theorem it is
sufficient to prove that Td′ is a Dodgson approximation and to bound its approximation
ratio.

Theorem 4.1. Td′ is a monotonic, homogeneous, polynomial-time Dodgson approximation
with an approximation ratio of O(m log m).

4.2 Lower Bound

We next show that Td′ is the asymptotically optimal homogeneous Dodgson approximation
by proving a matching lower bound on the approximation ratio of homogeneous Dodgson
approximations. The lower bound is not based on any complexity assumptions and holds
for exponential-time Dodgson approximations as well. This is quite striking since, as stated
in Theorem 4.1, Td′ is also monotonic and polynomial-time.

Theorem 4.2. Any homogeneous Dodgson approximation has approximation ratio at least
Ω(m log m).

The proof is based on the construction of a preference profile with an alternative b ∈ A
that defeats some of the alternatives in pairwise elections, and is tied against many others.
Hence, it has a high Dodgson score. On the other hand, there is a second alternative that has
a Dodgson score of two, simply because it has a deficit of two against another alternative. In
order to obtain a good approximation ratio, the algorithm must not select b in this profile.
However, when the profile is replicated, the Dodgson score of b does not increase: it is still
tied against the same alternatives. In contrast, the Dodgson score of the other alternatives
scales with the number of copies. By homogeneity, we cannot select b in the replicated
profile, which yields the lower bound.

We can think of an agent as the subset of alternatives that are ranked above b. If b is
tied against an alternative, then that alternative is a member of exactly half the subsets.
The argument used in the proof of Theorem 4.1 implies that there is always a cover of
logarithmic size; the proof of Theorem 4.2 establishes that this bound is tight. Indeed, the
combinatorial core of the theorem’s proof is the construction of a set cover instance with the
following properties: each element of the ground set appears in roughly half the subsets, but
every cover requires a logarithmic number of subsets. This (apparently novel) construction
is due to Noga Alon [2].

5 Additional Properties

In this section we briefly summarize our results with respect to several additional social
choice properties that are not satisfied by Dodgson’s rule. In general, our lower bounds
with respect to these properties are at least linear in n, the number of agents. Since n is
almost always large, these results should strictly be interpreted as impossibility results, that
is, normally an upper bound of O(n) is not useful. We now (informally) formulate the five
properties in question; for more formal definitions the reader is referred to [22].



We say that a voting rule satisfies combinativity if, given two preference profiles where
the rule elects the same winning set, the rule would also elect this winning set under the
profile obtained from appending one of the original preference profiles to the other. Note
that combinativity implies homogeneity.

A dominating set is a nonempty set of alternatives such that each alternative in the set
beats every alternative outside the set in pairwise elections. The Smith set is the unique
inclusion-minimal dominating set. A voting rule satisfies Smith consistency if winners under
the rule are always contained in the Smith set.

We say that a voting rule satisfies mutual majority consistency if, given a preference
profile where more than half the agents rank a subset of alternatives X ⊆ A above A \ X ,
only alternatives from X can be elected. A voting rule satisfies invariant loss consistency if
an alternative that loses to every other alternative in pairwise elections cannot be elected.
Clearly, mutual majority consistency implies invariant loss consistency.

Independence of clones was introduced by Tideman [21]; see also the paper by
Schulze [20]. For ease of exposition we use a slightly weaker definition previously employed
by Brandt [6]; since we are proving a lower bound, a weaker definition only strengthens
the bound. Given a preference profile, two alternatives x, y ∈ A are considered clones if
they are adjacent in the rankings of all the agents, that is, their order with respect to every
alternative in A \ {x, y} is identical everywhere. A voting rule is independent of clones if a
losing alternative cannot be made a winning alternative by introducing clones.

We have the following theorem.

Theorem 5.1. Let V be a Dodgson approximation. If V satisfies combinativity or Smith
consistency, then its approximation ratio is at least Ω(nm). If V satisfies mutual majority
consistency, invariant loss consistency, or independence of clones, then its approximation
ratio is at least Ω(n).
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