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Abstract

We axiomatically characterize the class of pairwise irresolute social choice functions
that are group-strategyproof according to Kelly’s preference extension. The class
is narrow but contains a number of appealing Condorcet extensions such as the
minimal covering set and the bipartisan set, thereby answering a question raised
independently by Barberà (1977) and Kelly (1977). These functions furthermore
encourage participation and thus do not suffer from the no-show paradox (under
Kelly’s extension).

1 Introduction

One of the central results in social choice theory is that every social choice function (SCF)—
a function mapping individual preferences to a collective choice—is susceptible to strategic
manipulation (Gibbard, 1973; Satterthwaite, 1975). However, the classic result by Gibbard
and Satterthwaite only applies to resolute, i.e., single-valued, SCFs. The notion of a resolute
SCF is rather restricted and artificial.1 For example, consider a situation with two voters
and two alternatives such that each voter prefers a different alternative. The problem is
not that a resolute SCF has to pick a single alternative (which is a well-motivated practical
requirement), but that it has to pick a single alternative based on the individual preferences
alone (see, e.g., Kelly, 1977). As a consequence, resoluteness is at variance with such
elementary notions as neutrality and anonymity.

In order to remedy this shortcoming, Gibbard (1977) strengthened his impossibility to
social choice functions that yield probability distributions over the set of alternatives rather
than single alternatives. While this impossibility result is sweeping, it makes relatively
strong assumptions on the voters’ preferences. In contrast to the traditional setup in social
choice theory, which usually only involves ordinal preferences, Gibbard’s result relies on the
axioms of von Neumann and Morgenstern (1947) (or an equivalent set of axioms) in order
to compare lotteries over alternatives.2

The gap between Gibbard and Satterthwaite’s theorem for resolute social choice func-
tions and Gibbard’s theorem for probabilistic social choice functions has been filled by a
number of impossibility results with varying underlying notions of how to compare sets of
alternatives with each other (e.g., Barberà, 1977; Kelly, 1977; Gärdenfors, 1976; Duggan and
Schwartz, 2000). In this paper, we will be concerned with the weakest (and therefore least
controversial) preference extension from alternatives to sets due to Kelly (1977). According
to this definition, a set of alternatives is preferred to another set of alternatives if all elements
of the former are preferred to all elements of the latter. Barberà (1977) and Kelly (1977)
have shown independently that, for more than two alternatives, all social choice functions
that are rationalizable via a binary preference relation are manipulable. Kelly (1977) con-
cludes his paper by contemplating that “one plausible interpretation of such a theorem is
that, rather than demonstrating the impossibility of reasonable strategy-proof social choice

1For example, Gärdenfors (1976) refers to resolute SCFs as “unnatural” and Kelly (1977) calls them
“unreasonable.”

2Gibbard (1978) later strengthened his impossibility theorem by generalizing it to choice mechanisms
that do not necessarily take preference relations as inputs.



functions, it is part of a critique of the regularity [rationalizability] conditions” and Barberà
(1977) states that “whether a nonrationalizable collective choice rule exists which is not
manipulable and always leads to nonempty choices for nonempty finite issues is an open
question.” Also referring to nonrationalizable choice functions, Kelly (1977) writes: “it is
an open question how far nondictatorship can be strengthened in this sort of direction and
still avoid impossibility results.”

In this paper, we characterize a class of social choice functions that cannot be manipu-
lated by groups of voters who misrepresent their strict preferences. As a corollary of this
characterization, all monotonic social choice functions that satisfy the strong superset prop-
erty are group-strategyproof. The strong superset property goes back to early work by
Chernoff (1954) (see also Bordes, 1979; Aizerman and Aleskerov, 1995) and requires that
choice sets are invariant under the removal of unchosen alternatives. It has recently been
used to characterize so-called set-rationalizable choice functions (Brandt and Harrenstein,
2009). The class of social choice functions satisfying the strong superset property is narrow
but contains appealing Condorcet extensions such as weak closure maximality (also known
as the top cycle, GETCHA, or the Smith set), the minimal covering set, the bipartisan set,
and their generalizations (see Bordes, 1976; Laslier, 1997; Dutta and Laslier, 1999; Laslier,
2000).3 Strategyproofness (according to Kelly’s preference extension) thus draws a sharp
line within the space of social choice functions as many established social choice functions
(such as plurality, Borda’s rule, and all weak Condorcet extensions) are known to be ma-
nipulable (Taylor, 2005) (and also fail to satisfy the strong superset property (Brandt and
Harrenstein, 2009)). We furthermore show that our characterization is complete for pair-
wise social choice functions, i.e., social choice functions whose outcome only depends on the
comparisons between pairs of alternatives.

Kelly’s conservative preference extension has previously been primarily invoked in im-
possibility theorems because it is independent of the voters’ attitude towards risk and the
mechanism that eventually picks a single alternative from the choice set. Its interpretation
in positive results, such as in this paper, is more debatable. Gärdenfors (1979) has shown
that Kelly’s extension is appropriate in a probabilistic context when voters are unaware of
the lottery that will be used to pick the winning alternative. (Whether they are able to
attach utilities to alternatives or not does not matter.) Alternatively, one can think of an
independent chairman or a black-box that picks alternatives from choice sets in a way that
prohibits a meaningful prior distribution. Whether these assumptions can be reasonably
justified or such a device can actually be built is open to discussion. In particular, the study
of distributed protocols or computational selection devices that justify Kelly’s extension
appears to be promising.

Remarkably, the robustness of the minimal covering set and the bipartisan set with
respect to strategic manipulation also extends to agenda manipulation. The strong superset
property precisely states that a social choice function is resistant to adding and deleting
losing alternatives (see also the discussion by Bordes, 1983). Moreover, both choice rules
are composition-consistent, i.e., they are strongly resistant to the introduction of clones
(Laffond et al., 1993b, 1996).4 Scoring rules like plurality and Borda’s rule are prone to
both types of agenda manipulation (Laslier, 1996; Brandt and Harrenstein, 2009) as well as
to strategic manipulation.

We conclude the paper by pointing out that voters can never benefit from abstaining
strategyproof pairwise SCFs. This does not hold for resolute Condorcet extensions, which

3If we assume an odd number of voters with strict preferences, the tournament equilibrium set (Schwartz,
1990) and the minimal extending set (Brandt, 2009) are conjectured to satisfy the strong superset property.
Whether this is indeed the case depends on a certain graph-theoretic conjecture (Laffond et al., 1993a;
Brandt, 2009).

4In addition to these attractive properties, the minimal covering set and the bipartisan set can be
computed efficiently using non-trivial algorithms (Brandt and Fischer, 2008).



is commonly known as the no-show paradox (Moulin, 1988).

2 Related Work

Apart from the mentioned theorems by Barberà (1977) and Kelly (1977), there are nu-
merous impossibility results concerning strategyproofness based on other—stronger—types
of preferences over sets (see, e.g., Gärdenfors, 1976; Duggan and Schwartz, 2000; Barberà
et al., 2001; Ching and Zhou, 2002; Sato, 2008; Umezawa, 2009), many of which are sur-
veyed by Taylor (2005) and Barberà (2010). To the best of our knowledge, Jimeno et al.
(2009) provide the only extension of Moulin’s theorem on abstention for resolute Condorcet
extensions (Moulin, 1988) to irresolute SCFs. Interestingly, they use stronger assumptions
on preferences over sets and therefore obtain a negative result whereas our result is positive.

Inspired by early work by Bartholdi, III et al. (1989), recent research in computer science
investigated how to use computational hardness—namely NP-hardness—as a barrier against
manipulation (see, e.g., Conitzer and Sandholm, 2003; Conitzer et al., 2007; Faliszewski
et al., 2009). However, NP-hardness is a worst-case measure and it would be much preferred
if manipulation is hard on average. Recent negative results on the hardness of typical
cases have cast doubt on this strand of research (see, e.g., Conitzer and Sandholm, 2006;
Friedgut et al., 2008; Walsh, 2009), but more work remains to be done to settle the question
completely. The current state of affairs is surveyed by Faliszewski and Procaccia (2010).
If computational protocols or devices can be used to justify Kelly’s extension by making
“unpredictable” random selections, this might be an interesting alternative application of
computational techniques to obtain strategyproofness.

3 Preliminaries

In this section, we provide the terminology and notation required for our results. We will
use the standard model of social choice functions with a variable agenda (see, e.g., Taylor,
2005).

3.1 Social Choice Functions

Let U be a universe of alternatives over which voters entertain preferences. The preferences
of voter i are represented by a complete preference relation Ri ⊆ U × U .5 We have a Ri b
denote that voter i values alternative a at least as much as alternative b. In compliance
with conventional notation, we write Pi for the strict part of Ri, i.e., a Pi b if a Ri b but
not b Ri a. Similarly, Ii denotes i’s indifference relation, i.e., a Ii b if both a Ri b and b Ri a.
The set of all preference relations over the universal set of alternatives U will be denoted
by R(U). The set of preference profiles, i.e., finite vectors of preference relations, will be
denoted by R∗(U). The typical element of R∗(U) is R = (R1, . . . , Rn) and the typical set
of voters is N = {1, . . . , n}.

Any subset of U from which alternatives are to be chosen is a feasible set (sometimes
also called an issue or agenda). Throughout this paper we assume the set of feasible subsets
of U to be given by F(U), the set of finite and non-empty subsets of U , and generally refer to
finite non-empty subsets of U as feasible sets. Our central object of study are social choice

5Transitivity of individual preferences is not necessary for our results to hold. In fact, Theorem 2 is easier
to prove for general—possibly intransitive—preferences. Theorem 3, on the other hand, would require a
more cumbersome case analysis for transitive preferences.



functions, i.e., functions that map the individual preferences of the voters and a feasible set
to a set of socially preferred alternatives.6

Definition 1. A social choice function (SCF) is a function f : R∗(U)×F(U)→ F(U) such
that f(R,A) ⊆ A and f(R,A) = f(R′, A) for all feasible sets A and preference profiles R,R′

such that R|A = R′|A.

A Condorcet winner is an alternative a that, when compared with every other alternative,
is preferred by more voters, i.e., |{i ∈ N | a Ri b}| > |{i ∈ N | b Ri a}| for all alternatives
b 6= a. An SCF is called a Condorcet extension if it uniquely selects the Condorcet winner
whenever one exists.

The following notational convention will turn out to be useful throughout the
paper. For a given preference profile R, Ri:(a,b) denotes the preference profile
(R1, . . . , Ri−1, R

′
i, Ri+1, . . . , Rn) where R′i = Ri∪{(a, b)} if b Pi a and R′i = Ri\{(b, a)} oth-

erwise. That is, Ri:(a,b) is identical to R except that alternative a is (weakly) strengthened
with respect to b within voter i’s preference relation.

A standard property of SCFs that is often considered is monotonicity. An SCF is mono-
tonic if a chosen alternative remains in the choice set when it is strengthened in individual
preference relations while leaving everything else unchanged.

Definition 2. An SCF f is monotonic if for all feasible sets A, preference profiles R,
voters i, and alternatives a, b ∈ A, a ∈ f(R,A) implies a ∈ f(R′i:(a,b), A).

The strong superset property requires that a choice set is invariant under the removal of
unchosen alternatives (Chernoff, 1954; Bordes, 1979; Aizerman and Aleskerov, 1995).

Definition 3. An SCF f satisfies the strong superset property (SSP) if for all feasible sets
A, B and preference profiles R such that f(R,A) ⊆ B ⊆ A, f(R,A) = f(R,B).

An SCF satisfies set-independence if the choice set is invariant under modifications of
the preference profile with respect to unchosen alternatives (Laslier (1997) used the natural
analog of this definition in the context of tournament solutions).

Definition 4. An SCF f satisfies set-independence if for all feasible sets A, preference
profiles R, voters i, and alternatives a, b ∈ A \ f(R,A), f(R,A) = f(Ri:(a,b), A).

The following proof is adapted from Laslier (1997), who showed the equivalent statement
for tournament solutions.

Proposition 1. Monotonicity and SSP imply set-independence.

Proof. We show that every monotonic SCF f that satisfies SSP also satisfies set-
independence. Let A be a feasible set, R a preference profile, i a voter, and a, b ∈ A\f(R,A).
Furthermore, let R′ = Ri:(b,a). In case a ∈ f(R′, A), monotonicity yields a contra-
diction because a is strengthened in R but a 6∈ f(R,A). Therefore, a 6∈ f(R′, A).
SSP implies that f(R,A) = f(R,A \ {a}) and f(R′, A) = f(R′, A \ {a}). Moreover,
f(R,A \ {a}) = f(R′, A \ {a}) since R and R′ are completely identical on A \ {a}. Hence,
f(R,A) = f(R′, A) and f satisfies set-independence.

6This definition incorporates an independence condition that Bordes (1976) refers to as independence of
irrelevant alternatives (IIA) and that resembles Arrow’s IIA condition for social welfare functions.



3.2 Strategyproofness

An SCF is manipulable if one or more voters can misrepresent their preferences in order to
obtain a more preferred outcome. Whether one choice set is preferred to another depends on
how the preferences over individual alternatives are to be extended to sets of alternatives.
In the absence of information about the mechanism that eventually picks a single alternative
from any choice set, preferences over choice sets are typically obtained by the conservative
extension R̂i (Barberà, 1977; Kelly, 1977), where for any pair of feasible sets A and B and
preference relation Ri,

A R̂i B if and only if a Ri b for all a ∈ A and b ∈ B.

Clearly, in all but the simplest cases, R̂i is incomplete, i.e., many pairs of feasible sets are
incomparable. P̂i denotes the strict part of relation R̂i, i.e., A P̂i B if and only if A R̂i B
and a Pi b for at least one pair of a ∈ A and b ∈ B.

Definition 5. An SCF f is manipulable by a group of voters G ⊆ N if there exists a feasible
set A and preference profiles R,R′ with Ri = R′i for all i 6∈ G such that

f(R′, A) P̂i f(R,A) for all i ∈ G.

An SCF is strategyproof if it is not manipulable by single voters. An SCF is group-
strategyproof if it is not manipulable by any group of voters.

It will turn out that many SCFs that fail to be strategyproof can only be manipulated
by breaking ties strategically, i.e., voters can obtain a more preferred outcome by only
misrepresenting their indifference relation. In many settings, for instance when the choice
infrastructure requires a strict ranking of the alternatives, this may be deemed acceptable.
Please observe that letting voters misrepresent their indifference relation is a weaker re-
quirement than simply assuming that voters have linear preferences, which is often made
in other results on strategyproofness (see, e.g., Taylor, 2005). Accordingly, we obtain the
following definition.

Definition 6. An SCF is strongly manipulable by a group of voters G ⊆ N if there exists
a feasible set A and preference profiles R,R′ with Ri = R′i for all i 6∈ G and Ii ⊆ I ′i for all
i ∈ G such that

f(R′, A) P̂i f(R,A) for all i ∈ G.

An SCF is weakly group-strategyproof if it is not strongly manipulable by any group of
voters.

In other words, every strongly manipulable SCF admits a manipulation in which voters
only misrepresent their strict preferences.7

4 Results

We will present three main results. First, we show that no Condorcet extension is group-
strategyproof. The proof of this claim, however, relies on breaking ties strategically. We
therefore study weak group-strategyproofness and obtain a much more positive character-
ization result. Finally, we show that the two conditions used in our characterization are
necessary and sufficient in the case of pairwise SCFs.

7Besides characterizing a class of SCFs that does not admit a strong manipulation, Theorem 2 shows
something stronger about this class: In every manipulation where voters misrepresent strict preferences as
well as indifferences, modifying the strict preferences is not necessary. The same outcome can be obtained
by only misrepresenting the indifference relation.



2 . . . 2 1 . . . 1 1

a2, . . . , am . . . a1, . . . , am−1 a3, . . . , am . . . a1, . . . , am−2 a2, . . . , am−1

a1 . . . am−1 am

a1 . . . am a2 . . . am a1

Table 1: Preference profile R for 3m voters where A = {a1, . . . , am}

4.1 Manipulation of Condorcet Extensions

We begin by showing that all Condorcet extensions are weakly manipulable, which strength-
ens previous results by Gärdenfors (1976) and Taylor (2005) who showed the same statement
for a weaker notion of manipulability and weak Condorcet extensions, respectively.8

Theorem 1. Every Condorcet extension is manipulable when there are more than two
alternatives.

Proof. Let A = {a1, . . . , am} with m ≥ 3 and consider the preference profile R given in
Table 1. For every alternative ai, there are two voters who prefer every alternative to ai

and who are indifferent between the other alternatives. Moreover, there is one voter for
every alternative ai who ranks ai+1 below ai and prefers every other alternative to both of
them. Again, the voter is completely indifferent between these other alternatives.

Since f(R,A) yields a non-empty choice set, there has to be some 1 ≤ i ≤ m such that
ai ∈ f(R,A). Let j = ((i − 2) mod m) + 1. Now, let R′ be identical to R, except that
the preferences of voter 2i − 1 (i.e., the first voter who ranks ai last) changed such that
aj P ′2i−1 ak for all k 6= j. Furthermore, let R′′ be identical to R, except that the preferences
of voters 2i−1 and 2i (i.e., the first two voters who rank ai last) changed such that aj P ′′2i ak

for all k 6= j.
In the case that ai 6∈ f(R′, A), voter 2i − 1 can manipulate as follows. Suppose R is

the true preference profile. Then, the least favorable alternative of voter 2i − 1 is chosen
(possibly among other alternatives). He can misstate his preferences as in R′ such that ai

is not chosen. Since he is indifferent between all other alternatives, f(R′, A) P̂2i−1 f(R,A).
If ai ∈ f(R′, A), voter 2i can manipulate similarly. Suppose R′ is the true preference

profile. Again, the least favorable alternative of voter 2i is chosen. By misstating his
preferences as in R′′, he can assure that one of his preferred alternatives, namely aj , is
selected exclusively. This is the case because aj is the Condorcet winner in R′′. Hence,
f(R′′, A) P̂ ′2i f(R′, A).

4.2 Weakly Group-Strategyproof SCFs

The previous statement showed that no Condorcet extension is group-strategyproof. For
our characterization of weakly group-strategyproof SCFs, we require set-independence and
a new property that we call set-monotonicity. Set-monotonicity requires that a choice set
should be invariant under the strengthening of chosen alternatives with respect to unchosen
ones.

8A weak Condorcet winner is an alternative that is preferred by at least as many voters than any other
alternative in pairwise comparisons. In contrast to Condorcet winners, weak Condorcet winners need not
be unique. An SCF is called a weak Condorcet extension if it chooses the set of weak Condorcet winners
whenever this set is non-empty. A large number of reasonable Condorcet extensions (including the minimal
covering set and the bipartisan set) are not weak Condorcet extensions. Taylor (2005) calls the definition
of weak Condorcet extensions “really quite strong” and refers to Condorcet extensions as “much more
reasonable.”



Definition 7. An SCF f is set-monotonic if for all feasible sets A, preference profiles R,
voters i, and alternatives a ∈ f(R,A), b ∈ A \ f(R,A), f(R,A) = f(Ri:(a,b), A).

The conjunction of set-independence and set-monotonicity is stronger than monotonicity.

Proposition 2. Set-independence and set-monotonicity imply monotonicity.

Proof. Let f be a set-monotonic SCF, A a feasible set, R a preference profile, i a voter,
and a, b ∈ A such that a ∈ f(R,A). Furthermore, let R′ = Ri:(a,b). Clearly, in case
b 6∈ f(R,A), set-monotonicity implies that f(R′, A) = f(R,A) and thus a ∈ f(R′, A). If, on
the other hand, b ∈ f(R,A), assume for contradiction that a 6∈ f(R′, A). If b ∈ f(R′, A), b
is strengthened with respect to outside alternative a when moving from R′ to R, and set-
monotonicity again implies that f(R,A) = f(R′, A). Otherwise, if b 6∈ f(R′, A), it follows
from set-independence that f(R,A) = f(R′, A), a contradiction.

Set-monotonicity can be connected to existing well-established properties via the follow-
ing proposition, whose proof runs along the same lines as that of Proposition 1.

Proposition 3. Monotonicity and SSP imply set-monotonicity.

Proof. We show that every monotonic SCF f that satisfies SSP also satisfies set-
monotonicity. Let A be a feasible set, R a preference profile, i a voter, a ∈ f(R,A),
and b ∈ A \ f(R,A). Furthermore, let R′ = Ri:(a,b). In case b ∈ f(R′, A), monotonic-
ity yields a contradiction because b is strengthened in R but b 6∈ f(R,A). Therefore,
b 6∈ f(R′, A). SSP implies that f(R,A) = f(R,A \ {b}) and f(R′, A) = f(R′, A \ {b}).
Moreover, f(R,A \ {b}) = f(R′, A \ {b}) because R and R′ are completely identical on
A \ {b}. As a consequence, f(R,A) = f(R′, A) and f satisfies set-monotonicity.

We are now ready to state the main result of this section.

Theorem 2. Every SCF that satisfies set-monotonicity and set-independence is weakly
group-strategyproof.

Proof. Let f be an SCF that satisfies set-monotonicity and set-independence and assume
for contradiction that f is not weakly group-strategyproof. Then, there has to be a feasible
set A, a group of voters G ⊆ N , and two preference profiles R and R′ with Ri = R′i for
all i 6∈ G and Ii ⊆ I ′i for all i ∈ G such that f(R′, A) P̂i f(R,A) for all i ∈ G. We
choose R and R′ such that the union of the symmetric differences of individual preferences⋃

i∈N (Ri \R′i)∪ (R′i \Ri) is inclusion-minimal, i.e., we look at a “smallest” counterexample
in the sense that R and R′ coincide as much as possible. Let f(R,A) = X and f(R′, A) = Y .
Now, consider a pair of alternatives a, b ∈ A such that, for some i ∈ G, a Pi b and b R′i a, i.e.,
voter i misrepresents his strict preference relation by strengthening b. The following case
analysis will show that no such a and b exist, which implies that R and R′ and consequently
X and Y are identical, a contradiction.

Case 1 (a, b 6∈ X): It follows from set-independence that Ri:(b,a) and R′ yield a smaller
counterexample since f(Ri:(b,a), A) = f(R,A) = X.

Case 2 (a, b 6∈ Y ): It follows from set-independence that R and R′i:(a,b) yield a smaller
counterexample since f(R′i:(a,b), A) = f(R′, A) = Y .

Case 3 (a ∈ X and b ∈ Y ): Y P̂i X implies that b Ri a, a contradiction.

Case 4 (a 6∈ X and b ∈ X): It follows from set-monotonicity that f(Ri:(b,a), A) =
f(R,A) = X. Consequently, Ri:(b,a) and R′ constitute a smaller counterexample.



Case 5 (a ∈ Y and b 6∈ Y ): It follows from set-monotonicity that f(R′i:(a,b), A) =
f(R′, A) = Y . Consequently, R and R′i:(a,b) constitute a smaller counterexample.

It is easily verified that this analysis covers all possible cases. Hence, R and R′ have to be
identical, which concludes the proof.

As mentioned above, when assuming that voters have strict preferences, weak strate-
gyproofness can be replaced with strategyproofness in Theorem 2.

Theorem 2 and Propositions 1 and 3 entail the following useful corollary.

Corollary 1. Every monotonic SCF that satisfies SSP is weakly group-strategyproof.

As mentioned in the introduction, there are few—but nevertheless quite attractive—
SCFs that satisfy monotonicity and SSP, namely the top cycle, the minimal covering set,
and the bipartisan set.9

4.3 Weakly Group-Strategyproof Pairwise SCFs

In this section, we identify a natural and well-known class of SCFs for which the character-
ization given in the previous section is complete. A SCF f is said to be based on pairwise
comparisons (or simply pairwise) if, for all preference profiles R, R′ and feasible sets A,
f(R,A) = f(R′, A) if and only if

|{i ∈ N | a Pi b}|−|{i ∈ N | b Pi a}| = |{i ∈ N | a P ′i b}|−|{i ∈ N | b P ′i a}| for all a, b ∈ A.

In other words, the outcome of a pairwise SCF only depends on the comparisons between
pairs of alternatives (see, e.g., Young, 1974; Zwicker, 1991). The class of pairwise SCFs
is quite natural and contains a large number of well-known voting rules such as Kemeny’s
rule, Borda’s rule, Maximin, ranked pairs, and all rules based on simple majority rule
(e.g., the Slater set, the uncovered set, the Banks set, the minimal covering set, and the
bipartisan set). We now show that set-monotonicity and set-independence are necessary for
the strategyproofness of pairwise SCFs.

Theorem 3. Every weakly strategyproof pairwise SCF satisfies set-monotonicity and set-
independence.

Proof. We need to show that every pairwise SCF that fails to satisfy set-monotonicity or set-
independence is strongly manipulable. Suppose SCF f does not satisfy set-monotonicity or
set-independence. In either case, there exists a feasible set A, a preference profile R, a voter i,
and two alternatives a, b ∈ A with a Ri b and a 6∈ f(R,A) = X such that f(R′, A) = Y 6= X
where R′ = Ri:(b,a). Let Rn+1, Rn+2, and R′n+2 be preference relations with indifferences
between all pairs of alternatives except

x Pn+1 y for all (x, y) ∈ (((X \ Y )× Y ) ∪ (X × (Y \X))),
y Pn+2 x for all (x, y) ∈ (((X \ Y )× Y ) ∪ (X × (Y \X))) \ {(b, a)},
a Rn+2 b if and only if a Ri b,
b Rn+2 a if and only if b Ri a,
y P ′n+2 x for all (x, y) ∈ (((X \ Y )× Y ) ∪ (X × (Y \X))) \ {(b, a)},
a R′n+2 b if and only if a R′i b, and
b R′n+2 a if and only if b R′i a.

9SSP and monotonicity do not completely characterize weak strategyproofness. SCFs that satisfy set-
monotonicity and set-independence but fail to satisfy SSP can easily be constructed.



We now define two preference profiles with n+2 voters where voter i is indifferent between a
and b and the crucial change in preference between a and b has been moved to voter n + 2.
Let

S = (R1, . . . , Ri−1, Ri ∪ {(b, a)}, Ri+1, . . . , Rn, Rn+1, Rn+2) and
S′ = (R1, . . . , Ri−1, Ri ∪ {(b, a)}, Ri+1, . . . , Rn, Rn+1, R

′
n+2).

Observe that all preferences between alternatives other than a and b cancel out each other
in the preference relations of voter n + 1 and n + 2. It thus follows from the definition of
pairwise SCFs that f(S, A) = f(R,A) = X and f(S′, A) = f(R′, A) = Y . If X ∪ Y 6= {a, b}
or a Pi b, we have Y P̂n+2 X and f can be manipulated by voter n + 2 at preference
profile S by misstating his strict preference a Pn+2 b as a I ′n+2 b. If, on the other hand,
X ∪ Y = {a, b} and a Ii b, we have X P̂ ′n+2 Y and f can be manipulated by voter n + 2 at
preference profile S′ (by misstating his strict preference b P ′n+2 a as a In+2 b). Hence, f is
strongly manipulable.

We can now completely characterize weak group-strategyproofness of pairwise SCFs
using these two properties.

Corollary 2. A pairwise SCF is weakly group-strategyproof if and only if it satisfies set-
monotonicity and set-independence.

This shows that many pairwise SCFs are not weakly group-strategyproof because they
are known to fail set-independence (Laslier, 1997). Notable exceptions are the top cycle,
the minimal covering set, and the bipartisan set mentioned above.

Brams and Fishburn (1983) introduced a particularly natural variant of strategic manip-
ulation where voters obtain a more preferred outcome by abstaining the election. A SCF is
said to satisfy participation if voters are never better off by abstaining. A common criticism
of Condorcet extensions is that they do not satisfy participation and thus suffer from the
so-called no-show paradox (Moulin, 1988). However, Moulin’s proof strongly relies on reso-
luteness. Irresolute Condorcet extensions that satisfy participation do exist and, in the case
of pairwise SCFs, there is a close connection between strategyproofness and participation
as shown by the following simple observation.10

Proposition 4. Every strategyproof pairwise SCF satisfies participation.

Proof. Let f be a pairwise SCF that fails participation, i.e., there exists a feasible
set A, a preference profile R, and a preference relation Rn+1 such that f(R,A) P̂n+1

f((R1, . . . , Rn, Rn+1), A). Let furthermore R′n+1 be a preference relation that expresses
complete indifference over all alternatives. Since f is pairwise, f((R1, . . . , Rn, R′n+1), A) =
f(R,A) and f can be manipulated at profile (R1, . . . , Rn, Rn+1) by voter n + 1 because by
changing his preferences to R′n+1 he obtains the more preferred outcome f(R,A).

It follows that all SCFs satisfying set-monotonicity and set-independence, which includes
the Condorcet extensions mentioned earlier, satisfy participation according to Kelly’s pref-
erence extension.
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