
Computing the nucleolus of weighted voting games

Edith Elkind and Dmitrii Pasechnik

Abstract

Weighted voting games (WVG) are coalitional games in which an agent’s contribution to a
coalition is given by his weight, and a coalition wins if its total weight meets or exceeds a
given quota. These games model decision-making in political bodies as well as collaboration
and surplus division in multiagent domains. The computational complexity of various solution
concepts for weighted voting games received a lot of attention in recent years. In particular,
Elkind et al.(2007) studied the complexity of stability-related solution concepts in WVGs,
namely, of the core, the least core, and the nucleolus. While they have completely characterized
the algorithmic complexity of the core and the least core, for the nucleolus they have only
provided an NP-hardness result. In this paper, we solve an open problem posed by Elkind et
al. by showing that the nucleolus of WVGs, and, more generally, k-vector weighted voting
games with fixed k, can be computed in pseudopolynomial time, i.e., there exists an algorithm
that correctly computes the nucleolus and runs in time polynomial in the number of players n
and the maximum weight W . In doing so, we propose a general framework for computing the
nucleolus, which may be applicable to a wider of class of games.

1 Introduction
Both in human societies and in multi-agent systems, there are many situations where individual
agents can achieve their goals more efficiently (or at all) by working together. This type of scenarios
is studied by coalitional game theory, which provides tools to decide which teams of agents will
form and how they will divide the resulting profit. In general, to describe a coalitional game, one
has to specify the payoff available to every team, i.e., every possible subset of agents. The size
of such representation is exponential in the number of agents, and therefore working with a game
given in such form is computationally intensive. For this reason, a lot of research effort has been
spent on identifying and studying classes of coalitional games that correspond to rich and practically
interesting classes of problems and yet have a compact representation.

One such class of coalitional games is weighted voting games, in which an agent’s contribution
to a coalition is given by his weight, and a coalition has value 1 if its total weight meets or exceeds a
given quota, and 0 otherwise. These games model decision-making in political bodies, where agents
correspond to political parties and the weight of each party is the number of its supporters, as well
as task allocation in multi-agent systems, where the weight of each agent is the amount of resources
it brings to the table and the quota is the total amount of resources needed to execute a task.

An important issue in coalitional games is surplus division, i.e., distributing the value of the
resulting coalition between its members in a manner that encourages cooperation. In particular, it
may be desirable that all agents work together, i.e., form the grand coalition. In this case, a natural
goal is to distribute the payoff of the grand coalition so that it remains stable, i.e., so as to minimize
the incentive for groups of agents to deviate and form coalitions of their own. Formally, this intuition
is captured by several related solution concepts, such as the core, the least core, and the nucleolus.
Without going into the technical details of their definitions (see Section 3), the nucleolus is, in some
sense, the most stable payoff allocation scheme, and as such it is particularly desirable when the
stability of the grand coalition is important.

The stability-related solution concepts for WVGs have been studied from computational per-
spective in [5]. There, the authors show that while computing the core is easy, finding the least core
and the nucleolus is NP-hard. These computational hardness results rely on all weights being given
in binary, which suggests that these problems may be easier for polynomially bounded weights. In-

217

deed, paper [5] provides a pseudopolynomial time algorithm (i.e., an algorithm whose running time
is polynomial in the number of players n and the maximal weight W) for the least core. However,
an analogous question for the nucleolus has been left open.

In this paper, we answer this question in affirmative by presenting a pseudopolynomial time
algorithm for computing the nucleolus.

Theorem 1. For a WVG specified by integer weights w1, . . . , wn and a quota q, there exists a
procedure that computes its nucleolus in time polynomial in n and W = maxi wi.

As in many practical scenarios (such as e.g., decision-making in political bodies) the weights
are likely to be not too large, this provides a viable algorithmic solution to the problem of find-
ing the nucleolus. Our approach relies on solving successive exponential-sized linear programs by
constructing dynamic-programming based separation oracles, a technique that may prove useful in
other applications.

A proof of Theorem 1 is presented in Section 4, after preliminaries in Section 3 and a discussion
of related work in Section 2. The text rounds up by Section 5 that discusses conclusions and future
work directions.

2 Related work
Another approach to payoff distribution in weighted voting games is based on fairness, i.e., dividing
the payoff in a manner that is proportional to the agent’s influence. The most popular solution
concepts used in this context are the Shapley–Shubik power index [16] and the Banzhaf power
index [1]. Both of these indices are known to be computationally hard for large weights [13, 4], yet
efficiently computable for polynomially bounded weights [10].

The concept of the nucleolus was introduced by Schmeidler [14] in 1969. Paper [14] explains
how the nucleolus arises naturally as “the most stable” payoff division scheme, and proves that the
nucleolus is well-defined for any coalitional game and is unique. Kopelowitz [9] proposes to com-
pute the nucleolus by solving a sequence of linear programs; we use this approach in our algorithm.

The computational complexity of the nucleolus has been studied for many classes of games, such
as flow games [3], cyclic permutation games [17], assignment games [12], matching games [8], and
neighbor games [7], as well as several others. While some of these papers provide polynomial-time
algorithms for computing the nucleolus, others contain NP-hardness results.

The work in this paper is inspired by [5], which shows that the least core and the nucleolus
of a weighted voting game are NP-hard to compute. It also proves that the nucleolus cannot be
approximated within any constant factor. On the positive side, it provides a pseudopolynomial time
algorithm for computing the least core, i.e., an algorithm whose running time is polynomial in n
and W (rather than in the game representation size O(n log W)), as well as a fully polynomial time
approximation scheme (FPTAS) for the least core. However, for the nucleolus, paper [5] contains
no algorithmic results.

3 Preliminaries and Notation
A coalitional game G = (I, ν) is given by a set of agents I = {1, . . . , n} and a function ν : 2I → R
that maps any subset (coalition) of the agents to a real value. This value is the total utility these
agents can guarantee to themselves when working together. A coalitional game is called simple if
ν(S) ∈ {0, 1} for any coalition S ⊆ I . In a simple game, a coalition S is called winning if ν(S) = 1
and losing otherwise.

A weighted voting game is a simple coalitional game G given by a set of agents I = {1, . . . , n},
their non-negative weights w = (w1, . . . , wn), and a quota q; we write G = (I;w; q). As the focus

218

of this paper is computational complexity of such games, it is important to specify how the game is
represented. In what follows, we assume that the weights and the quota are integers given in binary.
This does not restrict the class of WVGs that we can work with, as any weighted voting game has
such a representation [11].

For a coalition S ⊆ I , its value ν(S) is 1 (i.e., S is winning) if
∑

i∈S wi ≥ q; otherwise,
ν(S) = 0. Without loss of generality, we assume that the value of the grand coalition I is 1, that is,∑

i∈I wi ≥ q. Also, we set W = maxi∈I wi.
For a coalitional game G = (I, ν), an imputation is a vector of non-negative numbers p =

(p1, . . . , pn), one for each agent in I , such that
∑

i∈I pi = ν(I). We refer to pi as the payoff of
agent i. We write p(S) to denote

∑
i∈S pi. Similarly, w(S) denotes

∑
i∈S wi.

An important notion in coalitional games is that of stability: intuitively, a payoff vector should
distribute the gains of the grand coalition in such a way that no group of agents has an incentive to
deviate and form a coalition of their own. This intuition is captured by the notion of the core: the
core of a game G is the set of all imputations p such that

p(S) ≥ ν(S) for all S ⊆ I. (1)

While the core is an appealing solution concept, it is very demanding: indeed, for many games of
interest, the core is empty. In particular, it is well known that in simple games the core is empty
unless there exists a veto player, i.e., a player that is present in all winning coalitions. Clearly, this
is not always the case in weighted voting games, and a weaker solution concept is needed.

We can relax the notion of the core by allowing a small error in the inequalities (1). This
leads to the notion of ε-core: the ε-core of a game G is the set of all imputations p such that
p(S) ≥ ν(S) − ε for all S ⊆ I . Under an imputation in the ε-core, the deficit of any coalition S,
i.e., the difference ν(S) − p(S) between its value and the payoff that it gets, is at most ε. Observe
that if ε is large enough, e.g., ε ≥ 1, then the ε-core is guaranteed to be non-empty. Therefore, a
natural goal is to identify the smallest value of ε such that the ε-core is non-empty, i.e., to minimize
the error introduced by relaxing the inequalities in (1). This is captured by the concept of the
least core, defined as the smallest non-empty ε-core of the game. More formally, consider the set
{ε | ε ≤ 1, ε-core of G is non-empty}. It is easy to see that this set is compact, so it has a minimal
element ε1. The least core of G is its ε1-core. The imputations in least core distribute the payoff in
a way that minimizes the incentive to deviate: under any p in the least core, no coalition can gain
more than ε1 by deviating, and for any ε′ < ε1, there is no way to distribute the payoffs so that
the deficit of every coalition is at most ε′. However, while the least core minimizes the worst-case
deficit, it does not attempt to minimize the number of coalitions that experience the worst deficit,
i.e., ε1, nor does it try to minimize the second-worst deficit, etc. The nucleolus is a refinement of the
least core that takes into account these higher-order effects.

Recall that the deficit of a coalition S under an imputation p is given by d(p, S) = ν(S)−p(S).
The deficit vector of p is the vector d(p) = (d(p, S1), . . . , d(p, S2n)), where S1, . . . , S2n is a list of
all subsets of I ordered so that d(p, S1) ≥ d(p, S2) ≥ · · · ≥ d(p, S2n). In other words, the deficit
vector lists the deficits of all coalitions from the largest to the smallest (which may be negative). The
nucleolus is an imputation η = (η1, . . . , ηn) that satisfies d(η) ≤lex d(x) for any other imputation
x, where ≤lex is the lexicographic order. It is known [14] that the nucleolus is well-defined (i.e., an
imputation with a lexicographically minimal deficit vector always exists) and is unique.

4 Algorithm
The description of our algorithm is structured as follows. We use the idea of [9], which explains
how to compute the nucleolus by solving a sequence of (exponential-size) linear programs. In
Section 4.1, we present the approach of [9], and argue that it correctly computes the nucleolus.
This material is not new, and is presented here for completeness. In Section 4.2, we show how

219

to design separation oracles for the linear programs in this sequence so as to solve them by the
ellipsoid method. While a naive implementation of these separation oracles would require storing
exponentially many constraints, we show how to replace explicit enumeration of these constraints
with a counting subroutine, while preserving the correctness of the algorithm. The arguments in
Sections 4.1 and 4.2 apply to any coalitional game rather than just weighted voting games.

In Section 4.3, we show that for weighted voting games with polynomially-bounded weights the
counting subroutine used by the algorithm of Section 4.2 can be efficiently implemented. Finally,
in Section 4.4 we show how to modify this subroutine to efficiently identify a violated constraint if
a given candidate solution is infeasible. The results in Sections 4.3 and 4.4 are specific to weighted
voting games with polynomially bounded weights.

4.1 Computing the nucleolus by solving successive linear programs
As argued in [9], the nucleolus can be computed by solving at most n successive linear programs.
The first linear program LP1 contains the inequality p(S) ≥ ν(S) − ε for each coalition S ⊆ I ,
and attempts to minimize ε subject to these inequalities, i.e., it computes a payoff in the least core
as well as the value ε1 of the least core. Given a (relative) interior optimizer (p1, ε1) for LP1

(i.e., an optimal solution that minimizes the number of tight constraints), let Σ1 be the set of all
inequalities in LP1 that have been made tight by p1 (we will abuse notation and use Σ1 to refer
both to these inequalities and the corresponding coalitions). We construct the second linear program
LP2 by replacing all inequalities in Σ1 with equations of the form p(S) = ν(S) − ε1, and try to
minimize ε subject to this new set of constraints. This results in ε2 < ε1 and a payoff vector p2

that satisfies p2(S) = ν(S) − ε1 for all S ∈ Σ1, p2(S) ≥ ν(S) − ε2 for all S 6∈ Σ1. We repeat
this process until the payoffs to all coalitions are determined, i.e., the solution space of the current
linear program consists of a single point. It has been shown [9] that this will happen after at most n
iterations: indeed, each iteration reduces the dimension of the solution space by at least 1.

More formally, the sequence of linear programs (LP1, . . . ,LPn) is defined as follows. The first
linear program LP1 is given by

min
(p,ε)

ε subject to


∑
i∈I

pi = 1, pi ≥ 0 for all i = 1, . . . , n∑
i∈S

pi ≥ ν(S)− ε for all S ⊆ I.
(2)

Let (p1, ε1) be an interior optimizer to this linear program. Let Σ1 be the set of tight constraints
for (p1, ε1) (and, by a slight abuse of notation, the coalitions that correspond to them), i.e., for any
S ∈ Σ1 we have p1(S) = 1− ε1.

Now, suppose that we have defined the first j − 1 linear programs LP1, . . . ,LPj−1. For k =
1, . . . , j − 1, let (pk, εk) be an interior optimizer for LPk and let Σk = {S | pk(S) = ν(S)− εk}.
Then the jth linear program LPj is given by

min
(p,ε)

ε subject to



∑
i∈I

pi = 1, pi ≥ 0 for all i = 1, . . . , n∑
i∈S

pi = ν(S)− ε1 for all S ∈ Σ1

. . .∑
i∈S

pi = ν(S)− εj−1 for all S ∈ Σj−1

∑
i∈S

pi ≥ ν(S)− ε for all S 6∈ ∪j−1
k=1Σ

k.

(3)

220

Fix the minimal value of t such that there is no interior solution to LPt. It is not hard to see that
the (unique) solution to LPt is indeed the nucleolus. Indeed, the nucleolus is a payoff vector that
produces the lexicographically maximal deficit vector. This means that it:

(i) minimizes ε1 such that all coalitions receive at least 1− ε1;

(ii) given (i), minimizes the number of coalitions that receive 1− ε1;

(iii) given (i) and (ii), minimizes ε2 such that all coalitions except for those receiving 1−ε1 receive
at least 1− ε2;

(iv) given (i), (ii) and (iii), minimizes the number of coalitions that receive 1− ε2, etc.

Our sequence of linear programs finds a payoff vector that satisfies all these conditions; in particular,
(ii) and (iv) (and analogous conditions at subsequent steps) are satisfied, since at each step we choose
an interior optimizer for the corresponding linear program. The only issue that we have to address
is that our procedure selects an arbitrary interior optimizer to the current linear program in order
to construct the set Σj . Conceivably, this may have an impact on the final solution: if two interior
optimizers to LPj lead to two different sets Σj , they may also result in different values of εj+1,
so one would have to worry about choosing the right interior optimizer. Fortunately, this is not the
case, as shown by the following lemma.

Lemma 2. Any two interior optimizers (p, ε) and (q, ε) for the linear program LPj have the same
set of tight constraints, i.e., the set Σj is independent of the choice of the interior optimizer.

Proof. First note that the set of all interior optimizers for LPj is convex. Now, suppose that p and q
are two interior optimizers for LPj , but have different sets of tight constraints. Then, by convexity,
any convex combination αp + (1− α)q of p and q is also an interior optimizer for LPj . However,
the set of constraints that are tight for αp + (1 − α)q is the intersection of the corresponding sets
for p and q, i.e., αp+ (1−α)q has strictly fewer tight constraints than p or q, a contradiction with
p and q being interior optimizers for LPj .

We conclude that when this algorithm terminates, the output is indeed the nucleolus. Next, we
discuss how to solve each of the linear programs LPj , j = 1, . . . , t.

4.2 Solving the linear programs LP1, . . . ,LP t

It is well-known (see e.g. [15, 6]) that a linear program can be solved in polynomial time by the
ellipsoid method as long as it has a polynomial-time separation oracle, i.e., an algorithm that, given
a candidate feasible solution, either confirms that it is feasible or outputs a violated constraint.
Moreover, the ellipsoid method can also be used to find an interior optimizer (rather than an arbitrary
optimal solution) in polynomial time [6, Thm. 6.5.5], as well as to decide whether one exists [6,
Thm. 6.5.6]. We will now construct a polynomial-time separation oracle for jth linear program LPj

in our sequence.
It is easy to construct the part responsible for checking equations of LPj in (3), assuming that

we already have an oracle for the (j − 1)st program LPj−1. Indeed, the latter oracle can be easily
modified to also check whether the equation ε = εj−1 holds, thus providing an oracle for the optimal
face of LPj−1. Then by [6, Thm. 6.5.5] we can compute a basis of the optimal face (which consists
of at most n equations) in polynomial time. The separation oracle can then reject a candidate solution
(p, ε) if p violates one of those basis equations.

Dealing with the inequalities of LPj is more complicated. A naive separation oracle would
have to explicitly list the sets Σ1, . . . ,Σj−1, which may be superpolynomial in size. Alternatively,
one can treat this part of the oracle as a 0-1 integer linear feasibility problem, with 0-1 variables
xi encoding a set S 6∈ ∪j−1

k=1Σ
k that provides a separating inequality for the oracle input (p, ε).

221

Namely, suppose that we have verified that p satisfies all the equations in LPj (as described above).
Then, given an interior optimizer (pj−1, εj−1) for LPj−1, the values x1, . . . , xn can be obtained as
a solution to the following inequalities:∑

i

pj−1
i xi > 1− εj−1, (4)∑

i

pixi < 1− ε, (5)∑
i

wixi ≥ q. (6)

The problem with this approach is that for arbitrary rational p and pj−1 this system of inequali-
ties is at least as hard as KNAPSACK, which is NP-complete. Moreover, as p and pj−1 are pro-
duced by the ellipsoid method, there is no guarantee that their bitsizes are small enough to use a
(pseudo)polynomial-time algorithm for KNAPSACK. The only hope is to replace at least one of (4)
and (5) by something “tame”.

We will now present a more sophisticated approach to identifying a violated constraint. In a way,
it can be seen as replacing checking (4) with counting. Our construction proceeds by induction: to
construct a separation oracle for LPj , we assume that we have constructed an oracle for LPj−1,
and are given the sizes of sets Σ1, . . . ,Σj−1 as well as the sequence (ε1, . . . , εj−1).

By construction, any optimal solution (p, ε) to LPj satisfies ε < εj−1, so we can add the
constraint ε ≤ εj−1 to LPj without changing the set of solutions. From now on, we will assume
that LPj includes this constraint. Our separation oracle will first check whether a given candidate
solution (p, ε) satisfies ε ≤ εj−1, as well as constraints pi ≥ 0 for all i = 1, . . . , n and p(I) = 1,
and reject (p, ε) and output a violated constraint if this is not the case. Therefore, in what follows
we assume that (p, ε) satisfies all these easy-to-identify constraints.

Now, a candidate solution (p, ε) is feasible for LPj if p(S) = ν(S) − εt for S ∈ Σt, t =
1, . . . , j − 1, and p(S) ≥ ν(S)− ε for all S 6∈ ∪j−1

t=1Σt. Recall that the deficit of a coalition S ⊆ I
under a payoff vector p is given by ν(S) − p(S). Suppose that we have a procedure P(p, ε) that,
given a candidate solution (p, ε), can efficiently compute the top j distinct deficits under p, i.e.,

m1 = max{d(S) | S ⊆ I}
m2 = max{d(S) | S ⊆ I, d(S) 6= m1}

. . .

mj = max{d(S) | S ⊆ I, d(S) 6= m1, . . . ,mj−1}
as well as the numbers n1, . . . , nj of coalitions that have deficits of m1, . . . ,mj , respectively:

nk = |{S | S ⊆ I, d(S) = mk}|, k = 1, . . . , j.

Suppose also that we are given the values ε1, . . . , εj−1 and the sizes st of the sets Σt, t = 1, . . . , j−
1.

Now, our algorithm works as follows. Given a candidate solution (p, ε), it runs P(p, ε) to obtain
mt, nt, t = 1, . . . , j. If ε < εj−1, it then checks whether

(a) mt = εt and nt = st for all t = 1, . . . , j − 1

(b) mj ≤ ε.

If ε = εj−1, it simply checks whether mt = εt for t = 1, . . . , j − 1 and nt = st for all t =
1, . . . , j− 2 1. If these conditions are satisfied, the algorithm answers that (p, ε) is indeed a feasible

1Alternatively, if ε = εj , one can verify whether (p, ε) is a feasible solution to the previous linear program LPj−1.

222

solution, and otherwise it identifies and outputs a violated constraint (for details of this step, see
Section 4.4). We will now show that this algorithm implements a separation oracle forLPj correctly
and efficiently.

Theorem 3. Given the values εt, st, t = 1, . . . , j − 1, and a procedure P(p, ε) that computes
mt, nt, t = 1, . . . , j, in polynomial time, our algorithm correctly decides whether a given pair
(p, ε) is feasible for LPj and runs in polynomial time.

Proof. We start by proving an auxiliary lemma.

Lemma 4. For any vector p and any t ≤ j − 1 such that ms = εs, ns = ss for all s ≤ t, the
coalitions with deficit εs under p are exactly the ones in Σs.

Proof. The proof is by induction on s. For s = 1, we have that the largest deficit of any coalition
under p is ε1, and there are exactly s1 coalitions with this deficit. Hence, (p, ε1) is an interior
optimizer for LP1, and therefore the lemma follows by Lemma 2. Now, suppose that the lemma has
been proven for s−1. By the induction hypothesis, p satisfies all constraints in Σ1, . . . ,Σs−1. Also,
under p there are at most s1 + · · · + ss−1 coalitions whose deficit exceeds εs, so for all coalitions
not in ∪s−1

r=1Σ
r their deficit is at most εs. Finally, there are exactly ss coalitions whose deficit is

exactly εs. Hence, (p, εs) is an interior optimizer for LPs, and therefore the lemma follows by
Lemma 2.

To prove the theorem, let us first consider the case ε < εj−1. Suppose that (p, ε) satisfies (a)
and (b). By using Lemma 4 with t = j − 1, we conclude that (p, ε) satisfies all equations in LPj .
Now, under p, mj is the largest deficit of a coalition not in ∪j−1

t=1Σt. If this deficit is at most ε, then
the pair (p, ε) is a feasible solution to LPj .

Conversely, suppose that (a) or (b) is violated. If (p, ε) satisfies (a) but violates (b), by us-
ing Lemma 4 with t = j − 1 we conclude that, under p the coalitions in Σt have deficit εt for
t = 1, . . . , j − 1, but the deficit of some coalition not in ∪j−1

t=1Σt exceeds ε. Hence, this coalition
corresponds to a violated constraint. Now, suppose that (a) does not hold, and let s be the smallest
index for which ms 6= εs or ns 6= ss. By using Lemma 4 with t = s − 1, we conclude that for
r = 1, . . . , s − 1 the coalitions in Σr have deficit εr. However, either the sth distinct deficit under
p is not εs, in which case p violates a constraint in 2I \ ∪s−1

r=1Σ
r, or under p there are more than ss

coalitions with deficit εs (note that by construction it cannot be the case that ns < ss). In the latter
case, there is a coalition in 2I \ ∪s

r=1Σ
r whose deficit exceeds εs, thus violating the corresponding

constraint. The case ε = εj−1 is similar. In this case for a candidate solution (p, ε) to be feasible,
it is not required that there are exactly sj−1 coalitions with deficit εj−1. Hence, the algorithm only
has to decide if for all t = 1, . . . , j − 2, the coalitions with deficit εt under p are exactly the ones in
Σt, and all other coalitions get at least εj−1. Showing that our algorithm checks this correctly can
be done similarly to the previous case.

The bound on the running time is obvious from the description of the algorithm.

To provide the value sj = |Σj | for the subsequent linear programs LPj+1, . . . ,LPn, we need
to find an interior optimizer for LPj . Thm. 6.5.5 in [6] explains how to do this given a separation
oracle for the optimal face, i.e., the set of all optimizers of LPj . Observe that such an oracle can
be obtained by a slight modification of the oracle described above. Indeed, the optimal face is the
set of solutions to the linear feasibility problem given by the constraints in LPj together with the
constraint ε = εj . The modified oracle first checks the latter constraint, reports the violation (and the
corresponding inequality) if it happens, and otherwise continues as the original oracle. Clearly, the
modified oracle runs in polynomial time whenever the original one does. Hence, we can compute
sj in polynomial time by computing an interior solution (p, ε) to LPj according to [6, Thm. 6.5.5],
running P(p, ε) to find nj , and setting sj = nj .

223

4.3 Implementing the counting
We will now show how to implement the counting procedure P(p, ε) used in Section 4.2 for WVGs.
The running time of our procedure is polynomial in the number of players n and the maximum
weight W .

Our approach is based on dynamic programming. Fix a WVG (I;w; q), a payoff vector p, and
j ≤ n. For all k = 1, . . . , n, w = 1, . . . , nW , let X1

k,w, . . . , Xj
k,w be the bottom j distinct payoffs

to coalitions in {1, . . . , k} of weight w, i.e., define

X1
k,w = min{p(S) | S ⊆ {1, . . . , k}, w(S) = w}

X2
k,w = min{p(S) | S ⊆ {1, . . . , k}, w(S) = w, p(S) 6= X1

k,w}
. . .

Xj
k,w = min{p(S) | S ⊆ {1, . . . , k}, w(S) = w, p(S) 6= X1

k,w, . . . , Xj−1
k,w }

and let Y 1
k,w, . . . , Y j

k,w be the numbers of coalitions that get these payoffs, i.e. set

Y t
k,w = |{S | S ⊆ {1, . . . , k}, w(S) = w, p(S) = Xt

k,w}|, for t = 1, . . . , j.

These quantities can be computed inductively for k = 1, . . . , n as follows.
For k = 1, we have X1

1,w = p1 if w = w1 and +∞ otherwise, Y 1
1,w = 1 if w = w1 and 0

otherwise, and Xt
1,w = +∞, Y t

1,w = 0 for t = 2, . . . , j.
Now, suppose that we have computed X1

k−1,w, . . . , Xj
k−1,w, Y 1

k−1,w, . . . , Y j
k−1,w for all w =

1, . . . , nW . Consider S ⊆ {1, . . . , k} receiving one of the bottom j distinct payoffs to subsets of
{1, . . . , k} of weight w, i.e., p(S) ∈ {X1

k,w, . . . , Xj
k,w}. Then either

(1) S ⊆ {1, . . . , k − 1}, in which case S must be among the coalitions that receive one of the
bottom j distinct payoffs to subsets of {1, . . . , k − 1} of weight w, i.e., we have p(S) ∈
{X1

k−1,w, . . . , Xj
k−1,w}, or

(2) k ∈ S, in which case S \ {k} must be among the coalitions that receive one of the bottom j
distinct payoffs to subsets of {1, . . . , k − 1} of weight w − wk, i.e., we have p(S \ {k}) ∈
{X1

k−1,w−wk
, . . . , Xj

k−1,w−wk
}.

Consider the multi-set Sk,w = {X1
k−1,w, . . . , Xj

k−1,w, pk + X1
k−1,w−wk

, . . . , pk + Xj
k−1,w−wk

}.
By the argument above, we have

X1
k,w = min{x | x ∈ Sk,w}

X2
k,w = min{x | x ∈ Sk,w, x 6= X1

k,w}
. . .

Xj
k,w = min{x | x ∈ Sk,w, x 6= X1

k,w, . . . , Xj−1
k,w }.

The number of coalitions that receive the payoff Xt
k,w, i.e., Y t

k,w, t = 1, . . . , j, depends on how
many times Xt

k,w appears in Sk,w. If it only appears once, then there is only one source of sets
that receive a payoff of Xt

k,w, i.e., we set Y t
k,w = Y s

k−1,w if Xt
k,w appears as Xs

k−1,w for some
s = 1, . . . , j, and we set Y t

k,w = Y s
k−1,w−wk

if Xt
k,w appears as Xs

k−1,w−wk
+ pk for some s =

1, . . . , j. On the other hand, if Xt
k,w appears twice in Sk,w (first time as Xs

k−1,w and second time as
pk + Xs′

k−1,w−wk
for some s, s′ = 1, . . . , j), we have to add up the corresponding counts, i.e., we

set Y t
k,w = Y s

k−1,w + Y s′
k−1,w−wk

.
After all X1

n,w, . . . , Xj
n,w, Y 1

n,w, . . . , Y j
n,w have been evaluated, it is not hard to compute mt, nt,

t = 1, . . . , j. Indeed, the top j deficits appear in the multi-set

S = {Iw −X1
n,w, . . . , Iw −Xj

n,w | w = 1, . . . , nW},

224

where Iw = 1 if w ≥ q and Iw = 0 if w < q (recall that q is the quota of the game, i.e., ν(S) = 1 if
and only if w(S) ≥ q). Hence, we can set

m1 = max{x | x ∈ S}
m2 = max{x | x ∈ S, x 6= m1}

. . .

mj = max{x | x ∈ S, x 6= m1, . . . ,mj−1}.

The procedure for computing nt, t = 1, . . . , j, is similar to that of computing Y s
k,w (see above): we

have to check how many times mt appears in S and add the corresponding counts.
In the next subsection, we will show how to find a violated inequality if (p, ε) is not a feasible

solution to LPj .

4.4 Identifying a violated constraint
Consider LPj and a candidate solution (p, ε). Suppose that the algorithm described in the previous
subsection has decided that (p, ε) is not a feasible solution toLPj . This can happen in three possible
ways.

(a) ms = εs, ns = ss for s = 1, . . . , `− 1, but m` 6= ε` for an ` < j.

(b) ms = εs, ns = ss for s = 1, . . . , `− 1, m` = ε`, but n` 6= s` for an ` < j.

(c) ms = εs, ns = ss for s = 1, . . . , j − 1, but mj > ε.

In cases (a) and (b), there is a violated equation in (3), while in (c) there are none (but there is a
violated inequality). Thus (a) and (b) can be handled using the ideas discussed in the beginning of
Section 4.2. Indeed, as argued there, we can efficiently compute the basis of the optimal face of the
feasible set of LPj−1 using the ellipsoid method. One can then easily check if a candidate solution
violates one of the equations in the basis (recall that there are at most n of them), and, if this is the
case, report one that is violated. Hence, we only need to show how to identify a violated constraint
in case (c). However, for completeness, we present here a purely counting-based algorithm for each
of the cases.

In case (a), let (p̂, ε`) be an interior optimizer for LP`. Under p̂, the deficit of any coalition
in 2I \ ∪`−1

s=1Σ
s is at most ε`. On the other hand, under p, there are n` coalitions in 2I \ ∪`−1

s=1Σ
s

whose deficit is m` > ε`. Each of these coalitions corresponds to a violated constraint: indeed, if
such a coalition is in Σs, s ≥ `, then LPj requires that its deficit is εs ≤ ε` < m`, and if it is in
2I \∪j−1

s=1Σ
s, then LPj requires that its deficit is at most ε ≤ ε` < m`, Hence, it suffices to identify

a coalition whose deficit under p is m`. To this end, we can modify the dynamic program for p as
follows. Together with every variable Xt

k,w, t = 1, . . . , j, k = 1, . . . , n, w = 1, . . . , nW , we will
use an auxiliary variable Zt

k,w which stores a coalition whose payoff under p is equal to Xt
k,w. The

values of Zt
k,w can be easily computed by induction: if Xt

k,w = Xs
k−1,w for some s = 1, . . . , j then

Zt
k,w = Zs

k−1,w, and if Xt
k,w = pk +Xs

k−1,w−wk
for some s = 1, . . . , j then Zt

k,w = Zs
k−1,w ∪{k}

(if Xt
k,w = Xs

k−1,w = pk +Xs′
k−1,w−wk

, we can set Zt
k,w to either of these values). Now, there exist

some t and w such that w ≥ q and 1 −Xt
n,w = m` or w < q and −Xt

n,w = m`; such t and w can
be found by scanning all Xt

n,w. The corresponding set Zt
n,w has deficit m` under p, and therefore

corresponds to a violated constraint.
In case (b), as before, let (p, ε) be an interior optimizer toLPj−1. There exists a coalition whose

deficit under p is ε`, but whose deficit under p̂ is strictly less than ε`. To find such a coalition, run
P(p̂, ε) in order to compute the corresponding values X̂t

k,w, Ŷ t
k,w t = 1, . . . , j − 1, k = 1, . . . , n,

w = 1, . . . , nW . Define Zw as follows: if there exists some t ∈ {1, . . . , j − 1} such that Xt
n,w =

225

Iw − ε`, set Zw = Y t
n,w; otherwise, set Zw = 0. Ẑw is defined similarly: if there exists an

s ∈ {1, . . . , j−1} such that X̂s
n,w = Iw− ε`, set Ẑw = Ŷ s

n,w; otherwise, set Ẑw = 0. The variables
Zw and Ẑw count the number of coalitions that have total weight w and have deficit ε` under p
and p̂, respectively. We have n` =

∑
w=1,...,nW Zw, s` =

∑
w=1,...,nW Ẑw. As n` > s`, there

exists a weight w such that Zw > Ẑw. Set q = Iw − ε`, i.e., q is the total payment received by the
coalitions counted by Zw and Ẑw. Now, we have Zw = Zn

w + Z−n
w , where Zn

w is the number of
coalitions of weight w that include n, have weight w and receive total payment q, and Z−n

w is the
number of coalitions of weight w that do not include n, have weight w and receive total payment
ε`; Ẑn

w and Ẑ−n
w can be defined similarly. We can easily compute these quantities: for example,

Zn
w is the number of subsets of {1, . . . , n − 1} that have weight w − wn and receive total payment

q − pn, i.e. Zn
w = Y t

n−1,w−wn
if there exists a t ∈ {1, . . . , j − 1} such that Xt

n−1,w−wn
= q − pn,

and Z−n
w = 0 otherwise. It follows immediately that Zn

w > Ẑn
w or Z−n

w > Ẑ−n
w (or both), and we

can easily verify which of these cases holds. In the former case, we can conclude that the number
of coalitions in {1, . . . , n − 1} that have weight w − wn and are paid q − pn under p exceeds the
number of coalitions in {1, . . . , n − 1} that have weight w − wn and are paid q − p̂n under p̂. In
the latter case, we can conclude that the number of coalitions in {1, . . . , n− 1} that have weight w
and are paid q under p exceeds the number of coalitions in {1, . . . , n − 1} that have weight w and
are paid q under p̂. Continuing in the same manner for n− 1, . . . , 1, we can identify a coalition that
is paid q under p, but not under p̂.

Case (c), i.e. mj > ε, is similar to (a) and can be handled in the same manner.

5 Conclusions and future work
In this paper, we proposed a new technique for computing the nucleolus of coalitional games.
Namely, we have shown that, when constructing the separation oracle for the jth linear program
LPj , instead of storing the sets of tight constraints for the linear programs LPt, t = 1, . . . , j − 1,
it suffices to store the sizes of these sets as well as the top j − 1 deficits of an interior optimizer
(pj−1, ε) toLPj−1. A feasibility of a candidate solution (p, ε) toLPj can then be verified, roughly,
by computing the top j deficits for p as well as the number of coalitions that have these deficits, and
comparing these values to their pre-computed counterparts for (pj−1, ε).

We then demonstrated the usefulness of this technique by showing that for weighted voting
games with polynomially-bounded weights both the top j deficits and the number of coalitions that
have these deficits can be efficiently computed using dynamic programming. This allows us to
implement the separation oracles for our linear programs in pseudopolynomial time. Combining
this with the ellipsoid algorithm results in a pseudopolynomial time algorithm for the nucleolus
of weighted voting games, thus solving an open problem posed by [5]. Furthermore, the general
technique put forward in this paper effectively reduces the computation of the nucleolus to solving
a natural combinatorial problem for the underlying game. Namely, we can state the following meta-
theorem:

Theorem 5. Given a coalitional game G, suppose that we can, for any payoff vector p, identify
the top n distinct deficits under p as well as the number of coalitions that have these deficits in
polynomial time. Then we can compute the nucleolus of G in polynomial time.

We believe that this framework can be useful for computing the nucleolus in other classes of
games. Indeed, by stripping away most of the game-theoretic terminology, we may be able to find
the nucleolus by applying existing results in combinatorics and discrete mathematics in a black-box
fashion.

In the context of weighted voting games, our assumption that the weights are polynomially
bounded (or, equivalently, given in unary) is essential, as [5] shows that the nucleolus is NP-hard to

226

compute for WVGs with weights given in binary. Moreover, in many practical scenarios the agents’
weights cannot be too large (e.g., polynomial functions of n), in which case the running time of our
algorithm is polynomial.

By a slight modification of our algorithm, we can obtain a pseudopolynomial time algorithm for
computing the nucleolus in k-vector weighted voting games for constant k. Informally speaking,
these are games given by the intersection of k weighted voting games, i.e., a coalition is considered
to be winning if it wins in each of the underlying games. There are some interesting games that can
be represented as k-vector weighted voting games for small values of k (i.e., k = 2 or k = 3), but not
as weighted voting games, most notably, voting in the European Union [2]. Hence, this extension of
our algorithm enables us to compute the nucleolus in some real-life scenarios. The overall structure
of our algorithm remains the same. However, the dynamic program has to be modified to keep track
of several weight systems simultaneously.

Another natural way to address the problem of computing the nucleolus is by focusing on ap-
proximate solutions. Indeed, [5] proposes a fully polynomial time approximation scheme (FPTAS)
for several least-core related problems. It would be natural to expect a similar result to hold for
the nucleolus. Unfortunately, this approach is ruled out by [5], which shows that it is NP-hard to
decide whether the nucleolus payoff of any particular player is 0, and therefore approximating the
nucleolus payoffs up to any constant factor is NP-hard. Nevertheless, one can attempt to find an
additive approximation to the nucleolus, i.e., for a given error bound δ > 0, find a vector x such that
|ηi − xi| ≤ δ for i = 1, . . . , n. This can be useful in situations when the agents’ weights cannot
be assumed to be polynomially bounded with respect to n, e.g., in the multiagent settings where
the weights correspond to agents’ resources. We are currently investigating several approaches to
designing additive approximation algorithms for the nucleolus.

References
[1] J. F. Banzhaf. Weighted voting doesn’t work: a mathematical analysis. Rutgers Law Review,

19:317–343, 1965.

[2] J. M. Bilbao, J. R. Fernández, N. Jiminéz, and J. J. López. Voting power in the European Union
enlargement. European Journal of Operational Research, 143:181–196, 2002.

[3] X. Deng, Q. Fang, and X. Sun. Finding nucleolus of flow game. In Proceedings of the Sev-
enteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 124–131, New York,
2006. ACM.

[4] X. Deng and C. H. Papadimitriou. On the complexity of cooperative solution concepts. Math-
ematics of Operations Research, 19(2):257–266, 1994.

[5] E. Elkind, L. A. Goldberg, P. W. Goldberg, and M. Wooldridge. Computational complexity of
weighted threshold games. In Proceedings of the Twenty-Second AAAI Conference on Artificial
Intelligence, volume 1, pages 718–723, Menlo Park, California, 2007. AAAI Press. ISBN 978-
1-57735-323-2.

[6] M. Grötschel, L. Lovász, and A. Schrijver. Geometric algorithms and combinatorial optimiza-
tion, volume 2 of Algorithms and Combinatorics. Springer-Verlag, Berlin, second edition,
1993.

[7] H. Hamers, F. Klijn, T. Solymosi, S. Tijs, and D. Vermeulen. On the nucleolus of neighbor
games. European J. Oper. Res., 146(1):1–18, 2003.

[8] W. Kern and D. Paulusma. Matching games: the least core and the nucleolus. Math. Oper.
Res., 28(2):294–308, 2003.

227

[9] A. Kopelowitz. Computation of the kernels of simple games and the nucleolus of n-person
games. Preprint RM 37, 1967. Research Program in Game Theory and Mathematical Eco-
nomics.

[10] T. Matsui and Y. Matsui. A survey of algorithms for calculating power indices of weighted
majority games. J. Oper. Res. Soc. Japan, 43(1):71–86, 2000. New trends in mathematical
programming (Kyoto, 1998).

[11] S. Muroga. Threshold Logic and its Applications. John Wiley & Sons, 1971.

[12] M. Núñez. A note on the nucleolus and the kernel of the assignment game. Internat. J. Game
Theory, 33(1):55–65, 2004.

[13] K. Prasad and J. S. Kelly. NP-completeness of some problems concerning voting games.
Internat. J. Game Theory, 19(1):1–9, 1990.

[14] D. Schmeidler. The nucleolus of a characteristic function game. SIAM J. Appl. Math., 17:1163–
1170, 1969.

[15] A. Schrijver. Theory of linear and integer programming. Wiley-Interscience Series in Discrete
Mathematics. John Wiley & Sons Ltd., Chichester, 1986. A Wiley-Interscience Publication.

[16] L. S. Shapley and M. Shubik. A method for evaluating the distribution of power in a committee
system. In The Shapley value, pages 41–48. Cambridge Univ. Press, Cambridge, 1988.

[17] T. Solymosi, T. E. S. Raghavan, and S. Tijs. Computing the nucleolus of cyclic permutation
games. European J. Oper. Res., 162(1):270–280, 2005.

Edith Elkind
Intelligence, Agents, Multimedia group
School of Electronics and Computer Science
University of Southampton
Southampton, SO17 1BJ, United Kingdom
Email: ee@ecs.soton.ac.uk

Dmitrii Pasechnik
Division of Mathematical Sciences
School of Physical and Mathematical Sciences
Nanyang Technological University
21 Nanyang Link
Singapore 637371
Email: dima@ntu.edu.sg

228

