
Simulating the Effects of Misperception
on the Manipulability of Voting Rules

Johann Mitlöhner, Daniel Eckert, and Christian Klamler

Abstract

The fact that rank aggregation rules are susceptible to manipulation by

varying degrees has long been known. In this work we study the effect

of noise on manipulation i.e. we assume that individuals are not able

to perceive the preferences of others without distortion. To study the

frequency of various outcomes we simulate a large number of rank aggre-

gations and manipulations on random profiles with the help of a software

package developed by the authors in the Python language and discuss

some preliminary results.

1 Motivation

The extent to which various aggregation rules are susceptible to manipulation
has been studied in a number of investigations, including simulation studies [6].
Manipulation here means to strategically misrepresent one’s true preferences in
order to change the election outcome to a personally more favorable one [4].
This strategic misrepresentation is based on knowledge of the other voters’
preferences. In this work we relax the assumption of perfect information. We
study situations where individuals manipulate while perceiving a noisy version
of the other voters’ preferences. Such manipulations with noisy information
have the interesting property that while they change the outcome to a more
favourable one given the noisy information they may fail to do so given the true
preferences of the other voters, leading to situations where the manipulator is
worse off than without manipulation. This can be interpreted as a form of
punishment for lying; the extent to which various aggregation rules produce
this effect is the subject of this paper.

For our simulation study we have implemented a set of well-known voting
rules [3] in the programming language Python.1 These rules are applied to
a large number of random profiles in a setting with misperception which we
describe in the next section. The details of the implementation are outlined
after that, and the paper concludes with the discussion of the simulation results.

1At the website http://prefrule.sourceforge.net the complete package is available for down-
load, and http://balrog.wu-wien.ac.at/∼mitloehn/prefrule provides an interactive web inter-
face to the system.

2 Manipulation and Misperception

We assume that each voter has complete and strict preferences over the set of
candidates. A profile p is a set of n strict orders over the set of candidates C,
e.g. p = ((a ≻ b ≻ c ≻ d), (b ≻ c ≻ a ≻ d), (c ≻ a ≻ b ≻ d)) denotes a profile
with n = 3 voters and the set of m = 4 candidates C = {a, b, c, d}. A rank
aggregation rule R applied to a profile p derives an aggregate ranking p∗ = R(p)
which is either a strict or a weak order.

The distance d of the aggregate ranking p∗ and some order pi is measured
by taking the positional difference of the winner of p∗ in pi, e.g. with pi = (a ≻
b ≻ c) and p∗ = (b ≻ a ≻ c) the distance is d(pi, p∗) = 1.2 A manipulation is
successful if voter i is able to decrease the distance d by stating manipulated
preferences p′i, e.g. if with p′i = (a ≻ c ≻ b) the aggregate ranking becomes
p′
∗

= ((a = b) ≻ c) then d(p′i, p
′

∗
) = 0.5.

The assumption that any voter i has perfect knowledge of the remaining
profile p−i i.e. the preferences of all other voters is somewhat unrealistic. In
this work we explore a setting where the manipulating voter is mistaken in the
perception of the remaining profile p−i by a certain amount of error i.e. instead
of the true p−i the noisy pe

−i is perceived.3 We define the error e as the number
of pairwise exchanges in adjacent pairs of candidates in some ranking(s) pj

where j > 1, e.g. with p−i = ((b ≻ c ≻ a ≻ d), (a ≻ c ≻ b ≻ d)) and
pe
−i = ((b ≻ c ≻ a ≻ d), (c ≻ a ≻ b ≻ d)) we have an error of e = 1 since there

is one switch of a and c in the last voter.
With faulty perceptions manipulations can result in a distance increase in-

stead of a decrease. This can be viewed as a punishment for lying. The situation
is described in eqs. 1 and 2.

d(pi, R(p′i, p
e
−i)) < d(pi, R(pi, p

e
−i)) (1)

d(pi, R(p′i, p−i)) > d(pi, R(pi, p−i)) (2)

Voter i = 1 perceives the noisy profile pe
−i and based on this observation

choses manipulated preferences p′i that decrease the distance d as shown in
eq. 1. However, when the aggregation rule R is applied to the manipulated
preferences p′i and the true remaining profile p−i the result is shown in eq. 2:
the distance is increased i.e. voter i has not gained but lost by manipulating.

This type of punishment would be an attractive quality of rank aggregation
rules since if it occurs frequently enough it incites voters to state their true
preferences and refrain from manipulation. The question remains whether a
situation of this type is a rare exceptional case that has little meaning for the
evaluation and comparison of aggregation rules in this respect, or a phenomenon
common enough for quantitative analysis.

2In the case of more than one winner the average distance is used.
3In our simulations the manipulator is always voter i = 1.

In order to answer this question we define the expected benefit from ma-
nipulation E(∆d) as the weighted sum of distance changes for the fractions of
successful and failed manipulations:

E(∆d) =
|S|

|S| + |F |

∑

p∈S

(dm − d0) +
|F |

|S| + |F |

∑

p∈F

(dm − d0) (3)

Here d0 denote the distance without manipulation, and dm is the distance
achieved with manipulation, both as calculated when the aggregation rule is
applied to the manipulated preferences p′i of voter i = 1 and the true prefer-
ences p−i of the remaining voters. S is the set of profiles where voter i = 1
successfully manipulated i.e. where dm < d0, while F is the set of profiles where
manipulation failed i.e. it resulted in punishment.

3 Simulations

In order to study the frequency of the punishment effect we have implemented
a number of well-known voting rules in a software package developed in the
Python programming language. The simulation generates a stated number of
random profiles for n voters and m candidates where rankings are independent
i.e. anonymous culture. The set of rules to explore is another parameter,
since some rules are computationally much more expensive than others and for
that reason may be excluded in some simulation runs. The rules implemented
are: Borda (BO), Copeland (CO), Kemeny (KE), Plurality (PL), Antiplurality
(AP), Transitive Closure (TC), Maximin (MM), Slater (SL), Nanson (NA),
Young (YO), and Dodgson (DO).

Since voters’ preferences are assumed to be complete and strict a pro-
file is implemented as a nested list with integers for the candidates, e.g.
[[0,1,2],[2,0,1],[0,2,1]] for ((a ≻ b ≻ c), (c ≻ a ≻ b), (a ≻ c ≻ b)). Aggre-
gate relations are encoded as binary matrices denoting weak preference i.e. if
ri,j = 1 and rj,i = 0 then ci ≻ cj ; if ri,j = rj,i = 1 than ci = cj . Therefore, the
nested list [[1,1,1],[1,1,1],[0,0,1]] denotes the aggregate ranking ((a = b) ≻ c).
For printing the rankings and aggregate relations are transformed into more
readable versions using plain text symbols, such as a > b > c. Table 1 shows a
sample random profile generated by the system and the corresponding aggre-
gate rankings resulting from various voting rules. This profile was selected for
variety of results; in a typical sample the aggregate relations are much more
similar [2].

The Python code is about ten to twenty times slower than a comparable
version of a subset of the code written in the C programming language. How-
ever, in contrast to low level languages like C and Java used in earlier work [1]
the Python language provides more clarity and elegance of syntax. Therefore it
is less error-prone and saves programmer time instead of execution time. The

Table 1: Sample random profile and aggregate rankings.

pr: abcd,cadb,cabd,bdca,bcda

BO: [[1,0,0,1],[1,1,0,1],[1,1,1,1],[0,0,0,1]] c>b>a>d

CO: [[1,1,1,1],[1,1,1,1],[1,1,1,1],[0,0,0,1]] a=b=c>d

TC: [[1,1,1,1],[1,1,1,1],[1,1,1,1],[0,0,0,1]] a=b=c>d

NA: [[1,0,0,1],[1,1,1,1],[1,0,1,1],[0,0,0,1]] b>c>a>d

MM: [[1,0,0,1],[1,1,1,1],[1,1,1,1],[1,0,0,1]] b=c>a=d

KE: [[1,0,0,1],[1,1,1,1],[1,0,1,1],[0,0,0,1]] b>c>a>d

SL: [[1,1,1,1],[0,1,1,1],[0,0,1,1],[0,0,0,1]] a>b>c>d

YO: [[1,0,0,1],[1,1,1,1],[1,1,1,1],[1,0,0,1]] b=c>a=d

DO: [[1,0,0,1],[1,1,1,1],[1,1,1,1],[0,0,0,1]] b=c>a>d

PL: [[1,0,0,1],[1,1,1,1],[1,1,1,1],[0,0,0,1]] b=c>a>d

AP: [[1,0,0,1],[1,1,0,1],[1,1,1,1],[1,0,0,1]] c>b>a=d

Python language has been termed “executable pseudo-code”; fig. 1 shows an
example.

Table 2 shows timings taken on a Dual Core 3.2 GHz Intel Pentium D run-
ning Debian Linux. The data show that where execution time t as a function of
m is concerned the positional rules Borda, Plurality, and Antiplurality, together
with Copeland, Maximin, and Nanson form the most efficient group which al-
lows them to be applied to a wide range of parameter values. The Transitive
Closure rule and the Young rule form an intermediate group, while the Kemeny,
Slater, and Dodgson rules show significant increases with m in execution time
even in the small parameter range tabulated: the Kemeny and Slater rules with
an O(m!) term for trying all permutations of candidates; and the Dodgson rule
with O((nm)!) for trying pairwise exchanges of adjacent candidates.

4 Results

Using the software package described the manipulation with misperception has
been simulated with n = 5 voters and m = 4 candidates. The error level was
e = 1 i.e. a single misperception modelled as a pairwise exchange of adjacent
candidates in the the remaining profile p−i as perceived by voter i = 1. Table 3
shows the results.

These results are preliminary due to their limited parameter range; as such
they indicate that Copeland shows the punishment effect to a much higher
degree than Borda and Kemeny. Success and punishment, if they materialize
at all, are pronounced most strongly in Kemeny and Slater, the only rules
amoung the set investigated that always produce strict aggregate preferences.
The lowest expected change in distance occurs with Transitive Closure, the rule
that tends to produce a high number of indifferences in the aggregate relations.

Figure 1: This function takes a vector of scores and constructs the corresponding
binary relation. The function call after the >>> prompt shows how the code
can be tested in the interactive environment provided by the Python interpreter,
a feature that is very useful in program development.

def scorel(sc):

m=len(sc)

r=mat(m,m)

for i in range(m):

for j in range(m):

if sc[i]>=sc[j]: r[i][j]=1

return r

>>> scorel([5,9,8,2])

[[1, 0, 0, 1], [1, 1, 1, 1], [1, 0, 1, 1], [0, 0, 0, 1]]

Table 2: Execution times in seconds for 1000 random profiles with n = 9 voters
and m = 4, 5, 6, 7, 8 candidates.

Rule m = 4 m = 5 m = 6 m = 7 m = 8
BO 0.07 0.07 0.08 0.09 0.10
CO 0.09 0.09 0.10 0.11 0.13
PL 0.07 0.07 0.08 0.09 0.10
AP 0.07 0.07 0.08 0.09 0.10
MM 0.08 0.10 0.11 0.13 0.14
NA 0.08 0.09 0.10 0.11 0.13
TC 0.15 0.25 0.43 0.72 1.21
YO 1.21 1.93 2.97 3.71 5.15
KE 0.14 0.52 3.58 31.61 318.46
SL 0.15 0.47 3.03 26.20 253.14
DO 2.32 12.31 51.98 160.56 464.17

Table 3: Results of 100000 random profiles with n = 5 voters and m = 4
candidates with error level e = 1. Explanation of headings: M : number of pro-
files with noise manipulable by some voter; M1: number of profiles with noise
manipulable by voter one; S: number of profiles with successful manipulation
without noise i.e. where voter one succeeded in decreasing the distance; ∆dS :
average distance decrease for successful manipulation; F : number of profiles
where manipulation failed i.e. it resulted in punishment; ∆dF : average dis-
tance increase for failure i.e. punishment; E(∆d): expected change in distance
resulting from manipulation as defined in eq. 3.

Rule M M1 S ∆dS F ∆dF E(∆d)
BO 59731 28551 13960 -0.715 2704 0.714 -0.484
CO 32358 8942 4185 -0.545 1430 0.635 -0.244
KE 27171 7727 3260 -1.327 1073 1.232 -0.693
PL 57534 16430 12052 -0.718 1884 0.835 -0.508
AP 52331 25976 21194 -0.675 1694 0.715 -0.572
TC 22909 7356 3853 -0.422 881 0.995 -0.158
NA 25710 9469 3621 -0.938 1349 1.068 -0.393
MM 28052 9101 4727 -0.445 828 0.805 -0.259
SL 27321 7731 3601 -1.334 1057 1.266 -0.744
YO 28052 9151 4731 -0.446 787 0.805 -0.267
DO 33698 10437 4721 -0.579 1576 0.625 -0.278

Apart from TC the Copeland rule shows the strongest punishment effect.
The data also show that the punishment effect for manipulation with mis-

perception is not a rare exceptional case. It occurs frequently enough to provide
an additional dimension for the evaluation and comparison of voting rules.

5 Conclusions

This paper described the prefrule software package for preference aggregation
and reported the results of simulations of various voting rules on a large number
of random profiles. Specifically, the manipulability and the effect of mispercep-
tion of preferences of other voters was investigated. It has been shown that
manipulators can lose rather than gain from manipulation in a setting with
misperception. The susceptibility of various rank aggregation rules to these
effects has been explored in simulation runs. Future work will test the valid-
ity of these results for a wider range of parameters and expand the range of
applications of the software package developed for the simulations.

References

[1] Daniel Eckert, Christian Klamler, and Johann Mitlöhner. Condorcet ef-
ficiency, information costs, and the performance of scoring rules. Central

European Journal of Operations Research, 2005:1.

[2] Daniel Eckert, Christian Klamler, Johann Mitlöhner, and Christian
Schlötterer. A distance-based comparison of basic voting rules. Proc. Joint

Workshop on Decision Support Systems, Experimental Economics and e-

Participation, Graz, Austria, 2005.

[3] Peter C. Fishburn. Condorcet Social Choice Functions, SIAM Journal of

Applied Mathematics, 33:469–489, 1977.

[4] Donald Saari. Susceptibility to manipulation. Public Choice, 64:21–41, 1990.

[5] Donald Saari. Decisions and Elections - Explaining the Unexpected. Cam-
bridge University Press, 2001

[6] David Smith. Manipulability Measures of Common Social Choice Functions.
Social Choice and Welfare, 16:639–661, 1999.

Johann Mitlöhner
Vienna University of Economics and Business Administration
Augasse 2–6, A-1090 Vienna, Austria
Email: mitloehn@wu-wien.ac.at

Daniel Eckert
University of Graz
Universitätsstr. 15/E4, A-8010 Graz, Austria
Email: daniel.eckert@uni-graz.at

Christian Klamler
University of Graz
Universitätsstr. 15/E4, A-8010 Graz, Austria
Email: christian.klamler@uni-graz.at

