
Consensus Action Games

Julian Zappala, Natasha Alechina, Brian Logan
School of Computer Science, University of Nottingham

{jxz,nza,bsl}@cs.nott.ac.uk

Abstract

We present Consensus Action Games (CAGs), a
novel approach to modelling consensus action in
multi-agent systems inspired by quorum sensing
and other forms of decision making found in bio-
logical systems. In a consensus action game, each
agent’s degree of commitment to the joint actions
in which it may participate is expressed as a quo-
rum function, and an agent is willing to participate
in a joint action if and only if a quorum consensus
can be achieved by all the agents participating in
the action.We study the computational complexity
of several decision problems associated with CAGs
and give tractable algorithms for problems such as
determining whether an action is a consensus ac-
tion. We briefly compare CAGs to related work
such as Qualitative Coalitional Games.

1 Introduction
There are many reasons why agents may wish to, or indeed
have to, cooperate, for example, where resources are con-
strained or otherwise in contention, where agents have dif-
fering abilities, or where they possess differing information.
Even self interested agents may be motivated towards coop-
erative behaviour where this is consistent with individual ra-
tionality, for example, where cooperation increases their in-
dividual utility. While there has been considerable research
in AI into joint actions and the collective execution of a
shared plan [Levesque et al., 1990; Grosz and Kraus, 1993;
Tambe, 1997], the main focus of this work has been to ex-
amine how teams of autonomous agents may collectively
achieve some goal. Relatively little attention has been paid
to the selection of the joint actions that agents may perform.

However, the problem of collective action selection has
been extensively studied in the fields of behavioural ecology
and theoretical biology. In this paper, we propose a game-
theoretic model which is an abstraction of several mecha-
nisms for collective action selection occurring in nature.

Many natural systems, including bacteria [Jacob et al.,
2004], ants [Pratt et al., 2005], bees [Seeley and Visscher,
2004], and fish [Ward et al., 2008] exhibit a behaviour known
as quorum sensing. Through a process termed the quorum

response, the probability that an individual will select a par-
ticular action is increasing in the proportion of individuals al-
ready having made that choice. This relationship is typically
non-linear such that the probability that an action is selected
by an agent increases sharply once the number of agents
that have already selected that action passes some threshold
[Sumpter and Pratt, 2008]. The macroscopic behaviour of
such a self-organising system resembles one in which indi-
viduals converge upon consensus with respect to a joint ac-
tion. The prevalence of quorum decision making in nature
suggests that this is an efficient, effective and stable mecha-
nism through which group activities can be coordinated. The-
oretical models support this view, predicting that where the
quorum threshold is adaptive, decisions can not only be op-
timal [List, 2004] but also provide a trade-off between speed
and accuracy [Pratt and Sumpter, 2006]. Conradt and Roper
[2005] term this type of group decision combined decisions.

Another mechanism for collective action selection is found
in spatially cohesive groups of (often social) animals, where
decisions must be made regarding, e.g., movement direction,
travel destination and activity timing. For example, a group of
primates may need to decide whether to forage or go to a wa-
ter source. To minimise the risk of predation, it is critical that
whatever action is chosen is a consensus action, i.e., is per-
formed jointly by all the agents, but each agent will typically
have differing preferences for each joint action and for which
other agents participate in the action (e.g., mutual grooming
with a high status individual). The mechanisms by which
such consensus actions are selected are poorly understood.
However there is evidence from field observations to suggest
that the more individuals indicate they are in favour of a par-
ticular action (for example, by making tentative moves in a
particular direction), the more likely are the other animals to
‘agree’ to the action (see, for example [Stueckle and Zinner,
2008]). Conradt and Roper [2005] term this type of group
decision consensus decisions.

In this paper we present Consensus Action Games (CAGs),
a novel approach to modelling collective action selection in
multi-agent systems inspired by mechanisms for reaching
combined and consensus decisions in natural systems. In a
consensus action game, each agent’s degree of commitment
to the joint actions in which it may participate is expressed
as a quorum function, and its decision whether to support
a joint action is mediated by the quorum thresholds of the



other agents that may participate in the action. Consensus is
reached, where possible, through a series of individual com-
mitments. We study the computational complexity of several
decision problems associated with CAGs and give tractable
algorithms for problems such as determining whether an ac-
tion is a consensus action. We briefly compare CAGs to re-
lated work such as Qualitative Coalitional Games.

Although the immediate motivation for consensus action
games are the phenomena underlying combined and consen-
sus decisions in biological systems, we believe the model has
wider application, for example, modelling trend adoption in
people, and consensus action in multiagent systems. As such,
it extends current work in coalition formation in multiagent
systems, in considering not only which coalition an agent
should join, but which action the agent performs as part of
that coalition.

The remainder of this paper is organised as follows. In sec-
tion 2 we introduce Consensus Action Games (CAGs), and in
section 3 we consider the complexity of decision problems
associated with CAGs. We discuss related research in section
4, and in section 5, we conclude and suggest directions for
future work.

2 Consensus Action Games
A consensus action game (CAG) is a tuple Γ = 〈G, A, J, q〉
where:
G is a finite set of agents, {1, . . . , n}, n ≥ 2
A is a finite, non empty set of possible actions {1, . . . ,m}
J is a set of joint actions; each joint action is a set of pairs

(i, a), where i ∈ G and a ∈ A, specifying the action
performed by each agent participating in the joint action.
We write Ji = {j ∈ J | (i, a) ∈ j} to indicate the set
of joint actions in which agent i may participate, and
JG′ = {j ∈ J | {i | (i, a) ∈ j} = G′} for the set of all
joint actions that can be performed by the set of agents
G′ ⊆ G.1

q is a quorum function which takes an agent i ∈ G and
an action j in Ji and returns a number in the interval
[0,1], formally q : {(i, j) | i ∈ G, j ∈ Ji} → [0, 1].
We will sometimes write qi(j) for q(i, j). For an agent
i ∈ G′ ⊆ G and joint action j ∈ JG′ , the quorum
function qi(j) gives the minimum proportion of agents
in G′ which must support j in order that i will support
j. Where qi(j) = 0 agent i shows unconditional support
for j, where 0 < qi(j) < 1 the agent shows conditional
support for j; where qi(j) = 1 the agent does not sup-
port j.

We say there is a quorum consensus about a joint action j if
and only if all agents participating in j support j. Let G′ ⊆ G,
j ∈ JG′ , and Q ⊆ G′. Consider a function Supportj : Q 7→
Q ∪ {i ∈ G′ | qi(j) × |G′| ≤ |Q|}. Then the joint action
j is a quorum consensus action if and only if G′ is the least
fixed point of Supportj . We will refer to each invocation of
Supportj as a round.

1Note that the set of joint actions is not simply the Cartesian
product of all possible individual actions.

2.1 Example
Consider a group of six agents which have actions sing (s),
play (p) and have a party (h). There are three joint actions:

j1 = {(6, s), (2, p)} with q(6, j1) = 0 and q(2, j1) = 1/4
j2 = {(6, s), (3, p)} with q(6, j2) = 0 and q(3, j2) = 3/4
j3 = {(1, h), (2, h), . . . , (6, h)} with q(i, j3) = (i− 1)/6
Intuitively, agent 6 is keen to sing, and agent 2 will consent

to participate in the joint action j1 where 6 sings and 2 plays
accompaniment, because 2 requires at least a quarter of the
agents involved in the action to support it before it declares
its support, and agent 6 (half of the agents) supports it. Hence
j1 is a quorum consensus action. Action j2 is not a quorum
consensus action (agent 6 has unconditional support for it, but
taking this into account only half of the agents support the
action, and agent 3 requires three quarters). Finally, action
3 is a quorum consensus action: agent 1 has unconditional
support for it, agent 2 supports it provided 1/6 of the agents do
(which agent 1 does), agent 3 supports it if 2 out of 6 agents
do (which 1 and 2 do), and so on. Observe that if we had
q(6, j3) = 1 rather than 5/6, then j3 would not be a quorum
consensus action.

The first two actions illustrate joint actions which are ‘joint
activities’ (actions which require several participants to be
performed) while the third action can be seen as somewhat
similar to the quorum sensing in bacteria (all agents do the
same thing, and the larger the number of agents that support
the action, the larger the number of agents who are willing to
participate in the action).

3 Computational Complexity of CAGs
Our characterisation of the computational complexity of con-
sensus action games focuses on three natural decision prob-
lems associated with the selection of joint actions.

Consensus Action (CA): is an action a consensus action?

Group Consensus (GC): does a particular group of agents
have a consensus action?

No Consensus (NC): is it the case that no group of agents
has a consensus action?

We begin by considering the size of the input to the de-
cision problems, namely the size of the representation of a
CAG. Given a set of agents of size n and a set of actions of
size m, in the worst case (when every set of agents can jointly
execute any possible combination of actions) the set of joint
actions J has cardinality O(mn), i.e., exponential in the num-
ber of agents. However, for any particular CAG |J | may be
significantly smaller than mn.

We assume a concise representation of the input in which
each joint action j is encoded as a set of triples rather than
pairs: each triple consists of an agent, an action and the value
of the quorum function for the agent and joint action. Thus q
is encoded in J . We also assume the function agents : J →
P(G) returns G′ ⊆ G, the set of agents that may participate
in action j, which runs in at most O(n). Finally, we assume
that J is implemented as a random access data structure and
that we can determine the size (number of elements) in J in
O(log|J |).



The first three decision problems consider the complexity
of determining CA, GC and NC for quorum consensus ac-
tions.

QUORUM CONSENSUS ACTION(QCA)
Given a CAG Γ = 〈G, A, J, q〉 and a joint action j ∈ J , is j
a quorum consensus action?

Algorithm: The algorithm must verify that agents(j) is
the least fixed point of Supportj .

Time Complexity: O(n).

Algorithm 1 Is j a quorum consensus action.
function QCA(j, Γ)

array support[|j|+ 1]← {0, . . . , 0}
for all (i, a, q) ∈ j do

k ← dq × |j|e
support[k]← support[k] + 1

s← support[0]
for k from 1 to |j| do

if k ≤ s then
s← s + support[k]

else
return false

return true

Note that we can also obtain an O(n× log(n)) algorithm,
which runs in constant space by sorting j.

QUORUM GROUP CONSENSUS (QGC)
Given a CAG Γ = 〈G, A, J, q〉 and a subset of agents G′ ⊆
G, is there a quorum consensus action for G′?

Algorithm: The algorithm must verify that ∃j ∈ JG′ such
that G′ is the least fixed point of Supportj .

Time Complexity: O(n× |J |)
A non-deterministic algorithm first guesses an index of an

action j in J (this can be done in O(log(|J |)) ≤ O(n) by the
assumption that we can get the size of J in O(log(|J |)), and
then checks that agents(j) = G′ and that j is a consensus
action. This can be done in time linear in n using Algorithm
1. This gives us a non-deterministic linear time algorithm for
a random access machine.2 Hence, the problem is in NP(n)
for RAM.

QUORUM NO CONSENSUS (QNC)
Given a CAG Γ = 〈G, A, J, q〉, is it the case that no subset
G′ ⊆ G has a quorum consensus action?

Algorithm: The algorithm must verify that ¬∃j ∈ J such
that G′ is the least fixed point of Supportj .

Time Complexity: O(n× |J |)
Since the problem of the existence of a quorum consensus

action is in NP(n) for RAM (guess an action in J and verify
it is a quorum consensus action), its complement QNC is in
co-NP(n) for RAM.

2As Immerman [1998] has observed, such machines correspond
more closely to real computers than do multi-tape Turing machines.

3.1 The Core of Consensus Action Games
The core is a key solution concept in game theory that aggre-
gates stable outcomes which are both individually and col-
lectively rational. In CAGs, agents are willing to participate
in any joint action where the degree of support for the action
exceeds the agent’s quorum threshold. However, a rational
agent will disregard joint actions in which not all agents are
willing to participate as these are unlikely to be performed.
Thus the only joint actions in which an agent would actu-
ally participate are consensus actions. Consensus actions are
therefore individually rational and, in one sense, stable. Col-
lectively rational outcomes are, traditionally, those where no
subset of agents can find improvement through unilateral de-
fection. We consider the complexity of two complimentary
solution concepts for the core of CAGs.

G′-Minimal Consensus
Our first solution concept takes a similar approach to the
qualitative model of the core introduced in [Wooldridge and
Dunne, 2004]. We define the G′-minimal core of CAGs
as containing only G′-minimal consensus actions. A G′-
minimal consensus action is a quorum consensus action for
which no subset G′′ ⊂ G′ of agents have a quorum consensus
action. The G′-minimal core aggregates quorum consensus
actions which are collectively rational in the sense that they
are immune to unilateral defection by some agents G′′ ⊂ G′.

Below we consider the complexity of determining CA, GC
and NC under the solution concept of the G′-minimal core.

G′-MINIMAL CONSENSUS ACTION (GMCA)
Given a CAG Γ = 〈G, A, J, q〉 and a joint action j ∈ J by
the agents G′ ⊆ G, is j a G′-minimal consensus action for
G′?

Algorithm: The algorithm must verify that G′ is the least
fixed point of Supportj and that ∀G′′ ⊂ G′,¬∃k ∈ JG′′ such
that G′′ is the least fixed point of Supportk.

Time Complexity: O(n× |J |).
A non-deterministic algorithm to solve the complement of

this problem (decide whether an action is not a G′-minimal
consensus action) first checks whether j is a quorum con-
sensus action (and returns true if it is not); if j is a quorum
consensus action, it will guess an index of an action k ∈ J
and check that agents(k) ⊂ G′ and k is a quorum consen-
sus action. So the problem of deciding whether an action is
not a minimal quorum consensus action is in NP(n) on RAM.
Hence deciding whether an action is a G′-minimal consensus
action is in co-NP(n) for RAM.

G′-MINIMAL GROUP CONSENSUS (GMGC)
Given a CAG Γ = 〈G, A, J, q〉 and a subset of agents G′ ⊆
G, is there a minimal quorum consensus action for G′?

Algorithm: The algorithm must verify that ∃j ∈ JG′

such that G′ is the least fixed point of Supportj and that
∀G′′ ⊂ G′,¬∃k ∈ JG′′ such that G′′ is the least fixed point
of Supportk.

Time Complexity: O(n× |J |)
A nondeterministic algorithm first calls an NP(n) oracle to

check that G′ has a quorum consensus action; if G′ does have
a quorum consensus action, it then calls an NP(n) oracle to



check whether any G′′ ⊂ G′ has a quorum consensus action.
Hence the problem is in Dp(n) (on RAM).3

G′-MINIMAL NO CONSENSUS (GMNC)
Given a CAG Γ = 〈G, A, J, q〉, is it the case that no subset
G′ ⊆ G has a G′-minimal consensus action?

Algorithm: The algorithm must verify that ¬∃j ∈ J by
agents G′ ⊆ G s.t. G′ is the least fixed point of Supportj and
that ∀G′′ ⊂ G′,¬∃k ∈ JG′′ such that G′′ is the least fixed
point of Supportk.

Time Complexity: O(n× |J |)
Note that if any subgroup of agents has a quorum consen-

sus action then either that joint action, or some joint action by
a subset of those agents will be minimal.

A non-deterministic polynomial time algorithm on RAM
for solving the complement of this problem (to accept CAGs
with non-empty G′-minimal core) would guess an action in
J and verify that it is a quorum consensus action. Hence the
problem of deciding whether the G′-minimal core is empty is
co-NP(n).

q−Minimal Consensus
Our second solution concept focuses on the difficulty of
reaching consensus. We define the q-minimal core of a CAG
as containing only those joint actions for which the number
of rounds required for quorum consensus is minimal. Specif-
ically, a quorum consensus action j by the agents G′ is a q-
minimal consensus action if there is no other quorum con-
sensus action for G′ where the number of rounds required to
reach consensus is less than the number of rounds required to
reach consensus regarding j.

Below we consider the complexity of determining CA, GC
and NC under the solution concept of the q-minimal core.
We begin by defining a function rounds that computes the
number of rounds before the least fixed point of Supportj is
encountered.

Algorithm 2 Number of consensus rounds for j.
function rounds(j)

Q← 0
r ← 0
i1 ← 0
i2 ← −1
sort(j) by ascending qi(j)
for all (i, a, q) ∈ j do

if q × |j| ≤ Q then
Q← Q + 1
i1 ← b(q × |j|)c
if (i1 > i2) then

r ← r + 1
i2 ← i1

return r

Algorithm 2 has time complexity of O(n× log(n)).
3The Difference class is the class of problems which are in the

difference of two NP classes of problems [Papadimitriou, 1994].
Wooldridge and Dunne [2004] have shown that similar decision
problems for Qualitative Coalitional Games (such as minimal suc-
cessful coalition) are Dp-complete.

We can now consider the following decision problems for
the q-minimal-core of CAGs.

QUORUM MINIMAL CONSENSUS ACTION (QMCA)

Given a CAG Γ = 〈G, A, J, q〉, and a joint action j ∈ J , is j
a q-minimal consensus action?

Algorithm: The algorithm must verify that G′ =
agents(j) is the least fixed point of Supportj , and that no
other quorum consensus action for G′ reaches the least fixed
point of Supportj in fewer rounds than required for j.

Time Complexity: O(n× log(n)× |J |)

Algorithm 3 Is j a q-minimal consensus action.
function QMCA(j, Γ)

G′ ← agents(j)
r ← 0
if QCA(j, Γ) then

r ← rounds(j)
else

return false
for all k ∈ J do

if agents(k) = G′∧ QCA(k, Γ) then
if rounds(k) < r then

return false
return true

A non-deterministic algorithm for deciding that j is not a
quorum minimal consensus action will first check whether it
is a consensus action (and return yes if it is not) and if it is,
compute rounds(j) and guess an action k ∈ J and verify
that agents(k) = agents(j) and rounds(k) < rounds(j).
The problem of deciding that j is not a quorum minimal con-
sensus action is therefore in NP(n) on RAM. Hence deciding
whether j is a quorum minimal consensus action is in co-
NP(n) on RAM.

QUORUM MINIMAL GROUP CONSENSUS (QMGC)

Given a CAG Γ = 〈G, A, J, q〉 and a subset of agents G′ ⊆
G, is there a q-minimal consensus action for G′?

Algorithm: Observe that if G′ has a quorum consensus
action then G′ has a q-minimal consensus action; therefore
this problem is equivalent to QCG.

QUORUM MINIMAL NO CONSENSUS (QMNC)

Given a CAG Γ = 〈G, A, J, q〉, is it the case that no subset
G′ ⊆ G has a q-minimal consensus action?

Algorithm: Observe that if any G′ has a quorum consen-
sus action then at least one G′ has a q-minimal consensus
action. Therefore this problem is equivalent to QNC.

A summary of our results is given in table 1.



QC G′-minimal q-minimal
CA P (n) co-NP (n) co-NP (n)
GC NP (n) Dp(n) NP (n)
NC co-NP (n) co-NP (n) co-NP (n)

Table 1: Summary of Results (upper bounds). QC – Quorum
Consensus, CA – Action Consensus, GC – Group Consensus,
NC – No Consensus. Note that we assume random access to
indices in J , so the complexity classes are for (N)RAM.

4 Related Work
CAGs have some similarities to Qualitative Coalitional
Games (QCGs) [Wooldridge and Dunne, 2004]). It is there-
fore interesting to compare CAGs and QCGs, especially with
respect to the size of representation and the complexity of
similar decision problems.

A QCG Γ may be represented as an (n + 3) tuple Γ =
〈G, Ag, G1 . . . Gn, V〉 where Gi ⊆ G represents each agent’s
i ∈ Ag set of goals and V : 2Ag → 22G

is the characteris-
tic function of the game mapping each possible coalition of
agents to the sets of goals that coalition can achieve. In
QCGs:

• A set of goals G′ ⊆ G is feasible for a coalition C ⊆ Ag
if G′ ∈ V(C).

• A set of goals G′ ⊆ G satisfies an agent i ∈ C ⊆ Ag if
G′ ∩ Gi 6= ∅.
• A coalition C ⊆ Ag is successful if there exists some set

of goals G′ ⊆ G such that G′ is feasible for C and G′

satisfies at least all agents i ∈ C. A coalition C is selfishly
successful if G′ is feasible for C and satisfies only the
agents in i ∈ C.

• A coalition C ⊆ Ag is in the core if it is both (selfishly)
successful and minimal, i.e., there is no strict subset
C′ ⊂ C which is successful.

To compare QCGs and CAGs, we can identify agents’
goals with quorum consensus actions that they would par-
ticipate in. CAGs thus correspond to a particular kind of
QCGs, namely those where the characteristic function con-
sists of singleton sets (since the agents can perform only one
joint action at a time).

The worst case size of the game representation for QCGs
is the characteristic function where each coalition can enforce
any subset of goals. There are 2n coalitions and 2m subsets
of goals, so the worst case size of V is O(2n+m). This is
different from CAGs where the worst case size of J is only
exponential in n but not in m.

Complexity results for QCGs in [Wooldridge and Dunne,
2004] are given as a function of the size of representation,
where the characterisitic function is replaced by a proposi-
tional formula Ψ (which as noted may be exponential in the
number of agents and goals, but generally will be more con-
cise than a naive representation of V ). The successful coali-
tion problem is NP in the size of the representation. It cor-
responds to our QGC problem which is also in NP, however
it is NP in the number of agents (assuming random access).
Alternatively, QGC can be characterised as linear in the size

of representation since it involves a single iteration over J ,
doing a linear (in n) amount of work.

Relationships between CAGs and other game theoretic
models can also be identified. A central premise in CAGs
is that agents’ choices are conditioned by the number of
other agents also making some choice. Anonymous Games
[Daskalakis and Papadimitriou, 2007] consider situations
where the utility of participation in some coalition is inde-
pendent of the identities of the agents concerned; in such sit-
uations other factors, including the size of the coalition be-
come determinants of an agent’s choice. In general, however,
CAGs are non-anonymous therefore, for example, an agent
could refuse (qi(j) = 1) to participate in any joint action
in which some other, specific, agent participates. In Imita-
tion Games [McLennan and Tourky, 2010] two players take
the roles of leader and follower; through the payoff structure
the follower is motivated to act in consensus with the leader.
McLennan and Tourky [2010] find that the complexity of sev-
eral decision problems concerning Nash equilibria in such is
games is no less than for the general two-player case.

CAGs are also related to work on conditional preference.
In a CAG the agents must choose between potentially expo-
nentially many joint actions. For an individual agent each
joint action encodes: an action for that agent, the subset of
agents with which it acts and the actions performed by those
agents. Agents in CAGs must therefore make decisions over
multiple domains.

It is not our intention that the quorum function be inter-
preted as a comparator or scale of preference over joint ac-
tions; however certain basic correspondences between the
quorum function and preferences do exist. For example it is
reasonable to identify those joint actions for which qi(j) = 0
as being the ‘most preferred’ joint actions of agent i. Where
qi(j) > 0 support for a joint action becomes conditional, and
an agent will only support j if the proportion of other agents
supporting j exceeds qi(j).

Boutilier et al [1999] have proposed conditional prefer-
ence, or CP-nets, as a natural and compact representation
suitable for capturing conditional preferences over combina-
torial domains. Succinctness is a useful property, as explicit
representation of preference over exponentially many out-
comes is often impractical. Preferences in CP-nets are formed
under the assumption of ceteris paribus (all else being equal)
and can be described as having the form: given x, y > z.
This gives rise to preference structures which are potentially
non-linear and may be incomplete.

There is considerable work in the social choice literature
on preference aggregation. Much of this work has focused on
the problem of aggregating the preferences of a large number
of decision makers when making decisions over a single, rel-
atively small, domain. Comparatively little attention has been
given to collective decisions where the reverse is true, as is the
case for CAGs. A notable exception is [Lang, 2007] where
the potential of structure within CP-nets to reduce the com-
putational overhead associated with combinatorial problems
is explored. However Lang [2007] has shown that the com-
plexity of all positional scoring voting rules, including Borda
and even simple majority, cannot be reduced using CP-nets.



5 Discussion and Future Work
We have introduced consensus action games, in which agents’
willingness to participate in joint actions is mediated by a bi-
ologically inspired quorum function. We have analysed the
complexity of several natural decision problems associated
with individual and collective rationality in CAGs and shown
that tractable algorithms exist (at worst polynomial in the size
of the input). We conjecture that the upper bounds are tight
(that the lower bounds for the problems in table 1 are the
same).

We have chosen to study consensus action selection in a
context where individual decisions are conditioned through
a quorum response as opposed to the more common setting
where decisions are guided by preference. It seems likely
that collective decisions in natural systems are not taken on a
purely preferential basis; inherent difficulties associated with
the representation, elicitation and aggregation of preferences
in combinatorial domains are well known. Our results sug-
gest that quorum behaviours may make comparatively lower
cognitive demands on a decision maker. This may explain
why even the simplest organisms are able to effectively coor-
dinate group-level activities through the quorum mechanism.

A robust decision making procedure should reliably pro-
duce beneficial outcomes for the decision makers under di-
verse conditions. Our present model considers agents acting
under a single set of constraints, those joint actions given in J .
A natural extension to this work would be to consider iterated
consensus action selection, where decisions regarding joint
actions are taken repeatedly in differing states of the world.
An iterated version of CAGs would allow us to investigate the
performance of quorum consensus decisions over time. For
example, it would be interesting to examine the implications
of this decision process for both individual and social welfare.
Of equal interest are the questions of how an agent’s quorum
function is implemented, the strategies that agents may em-
ploy in selecting quorum thresholds and the effects of these
on individual and group well being.
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