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Abstract

We study the power of a tournament organizer in
manipulating the outcome of a single elimination
tournament by fixing the initial seeding. It is not
known whether the organizer can efficiently fix the
outcome of the tournament even if the match out-
comes are known in advance. We generalize a re-
sult from prior work by giving a new condition
such that the organizer can efficiently find a tour-
nament bracket for which the given player will
win the tournament. We then use this result to
show that for most tournament graphs generated
by the Braverman-Mossel model, the tournament
organizer can (very efficiently) make a large con-
stant fraction of the players win, by manipulating
the initial bracket. This holds for very low values
of the error probability, i.e. the generated tourna-
ment graphs are almost transitive. Finally, we ob-
tain a trade-off between the error probability and
the number of players that can efficiently be made
winners.

Introduction

The study of election manipulation is an integral part of so-
cial choice theory. Results such as the Gibbard-Satterthwaite
theorem [Gibbard, 1973; Satterthwaite, 1975] show that all
voting protocols that meet certain rationality criteria are ma-
nipulable. The seminal work of [Bartholdi et al, 1989;
1992] proposes to judge the quality of voting systems using
computational complexity: a protocol may be manipulable,
but it may still be good if manipulation is computationally
expensive. This idea is at the heart of computational social
choice.

The particular type of election manipulation that we study
in this paper is called agenda control and was introduced
in [Bartholdi ez al., 1992]: there is an election organizer who
has power over some part of the protocol, say the order in
which candidates are considered. The organizer would like
to exploit this power to fix the outcome of the election by
making their favorite candidate win. [Bartholdi et al., 1992]
focused on plurality and Condorcet voting, agenda control
by adding, deleting, or partitioning candidates or voters. We

study the balanced binary cup voting rule, also called a single-
elimination tournament: the number of candidates is a power
of 2; at each stage the remaining candidates are paired up
and their votes are compared; the losers are eliminated and
the winners move on to the next round, until only one candi-
date remains. The power of the election organizer is to pick
the pairing of the players in each round. We assume that the
organizer knows all the votes in advance, i.e. for any two
candidates, he knows which candidate is preferred.

Single-elimination is prevalent in sports tournaments such
as Wimbledon or March Madness. In this setting, a tourna-
ment organizer has some information, say from prior matches
or from betting experts, about the winner in any possible
player match. The organizer is to come up with a seeding of
the players through which they are distributed in the tourna-
ment bracket. The question is, can the tournament organizer
abuse this power to determine the winner of the tournament?

There is significant prior work on this problem. [Lang et
al., 2007] showed that if the tournament organizer only has
probabilistic information about each match, then the agenda
control problem is NP-hard. [Vu er al., 2009; 2010] showed
that the problem is NP-hard even when the probabilities are
in {0,1,1/2} and that it is NP-hard to obtain a tournament
bracket that approximates the maximum probability that a
given player wins within any constant factor. [Vassilevska
Williams, 2010] showed that the agenda control problem is
NP-hard even when the information is deterministic but some
match-ups are disallowed. [Vassilevska Williams, 2010] also
gave conditions under which one can fix the outcome of the
tournament when the organizer knows each match outcome
in advance. It is still an open problem whether one can al-
ways determine in polynomial time whether the tournament
outcome can be fixed in this deterministic setting.

The binary cup is a complete binary voting tree. Other
related work has studied more general voting trees [Hazon
et al., 2008; Fischer er al., 2008], and manipulation by the
players themselves by throwing games to manipulate single-
elimination tournaments [Russell and Walsh, 2009].

The match outcome information available to the tourna-
ment organizer can be represented as a weighted or un-
weighted tournament graph, a graph such that for every two
nodes u, v exactly one of (u,v) or (v, u) is an edge. An edge
(u, v) signifies that u beats v, and a weight p on an edge (u, v)
means that v will beat v with probability p. With this repre-



sentation, the agenda control problem becomes a computa-
tional problem on tournament graphs. The tournament graph
structure which comes from real world sports tournaments or
from elections is not arbitrary. Although the graphs are not
necessarily transitive, stronger players typically beat weaker
ones. Some generative models have been proposed in order
to study real-world tournaments. In this work, we study the
Braverman-Mossel model [2008]. The basic idea is that there
is an underlying total order of the players and the outcome of
every match is probabilistic. There is some global probabil-
ity p << 1/2 with which a weaker player beats a stronger
player. This probability represents outside factors which do
not depend on the players’ abilities, such as weather or sick-
ness.

[Vassilevska Williams, 2010] has shown that when p >
Q(+/Inn/n), with high probability, the model generates a
tournament graph where one can efficiently fix a single-
elimination bracket for any given player. Two natural ques-
tions emerge. The first is can we still make almost all players
win with a smaller noise value? The second is can we relax
the Braverman-Mossel model to allow a different error prob-
ability for each pair of players? We address both questions.

Contributions We study whether one can compute a win-
ning single-elimination bracket for a king player when the
match outcomes are known in advance. A king is a player
K such that for any other player a, either K beats a, or K
beats some other player who beats a. We show that in or-
der for a winning bracket to exist for a king, it is sufficient
for the king to be among the top third of the players when
sorted by the number of potential matches they can win. Be-
fore our work only much stricter conditions were known, e.g.
that it is sufficient if the king beats half of the players. Our
more general result allows us to obtain better results for the
Braverman-Mossel model as well.

There are log n rounds in a single-elimination tournament
over n players, so a necessary condition for a player to be a
winner is that it can beat at least log n players. We consider a
generalization of the Braverman-Mossel model in which the
error probabilities p(i, j) can vary but are all lower-bounded
by a global parameter p. The expected outdegree of the weak-
est player i is >, p(i,j) > p(n — 1), and it needs to be
> logn, so we focus on the case when p is Q(logn/n), as
this is a necessary condition for all players to be winners.

Our results focus on this lower bound on the noise thresh-
old. We improve previous results and show that when a tour-
nament is generated with Q(log n/n) noise, we are able to fix
the tournament for almost the top half of the players. We also
show that there is a trade-off between the amount of noise and
the number of players that can be made winners: as the level
of noise increases, the tournament can be fixed for more and
eventually all of the players. While this result does not an-
swer the question of whether it is computationally difficult to
fix a single-elimination tournament in general, it does show
that for tournaments we might expect to see in practice, ma-
nipulation can be easy.

Notation
No"(a) = {v[(a,v) € E}
NG (@) = N () N X
N'(a) = {v|(v,a) € E}, N§'(a) = N™(a) N X
out(a) = [N°""(a)], outx (a) = [NZ"(a)]
in(a) = [N*"(a)], inx (a) = [NX'(a)|
H'"™(a) = {vlv € N (a), out(v) > out(a)}
HO"(a) = {v[v € N°%(a), out(v) > out(a)}
H(a) = H"™(a) UH " (a)
EX,)Y)={(u,v)|(u,v) e E,ue X,veY}

Table 1: A summary of the notation used in this paper.

Braverman-Mossel Model — Formal Definition

The premise of the Braverman-Mossel (BM) model is that
there is an implicit ranking 7 of the players by intrinsic abil-
ities so that 7(i) < m(j) means ¢ has strictly better abilities
than j. For clarity, we will call 7(¢) <. When ¢ and j play a
match there may be outside influences so that even if ¢ < 7,
7 might beat i. The BM model allows that weaker players
can beat stronger players, but only with probability p < 1/2.
Here, p is a global parameter and if ¢ < j, j beats ¢ with
probability 1 — p. A random tournament graph generated in
the BM model, a (BM tournament), is defined as: for every
i,7 with ¢ < j, add edge (i, j) independently with probability
1 — p and otherwise add (3, 7).

We give a generalization of the BM model, the GBM
model, in which j beats 7 with probability p(j,:), where
p < p(4,4) < 1/2forall 4,5 with i < j, i.e. the error prob-
abilities can differ but are all lower-bounded by a global p.
A random tournament graph generated in the GBM model
(GBM tournament) is defined as: for every ¢, with ¢ < j,
add edge (4, j) independently with probability 1 — p(j,4) and
otherwise add (3, 7).

Notation and Definitions Unless noted otherwise, all
graphs in the paper are tournament graphs over n vertices,
where n is a power of 2, and all single-elimination tourna-
ments are balanced. In Table 1, we define the notation used
in the rest of this paper. For the definitions, let a € V be
any node, X C V and Y C V such that X and Y are dis-
joint. Given a player A, unless otherwise stated, A denotes
Neut(A) and B denotes N'™(A).

The outcome of a round-robin tournament has a natural
graph representation as a tournament graph. The nodes of a
tournament graph represent the players in a round-robin tour-
nament, and a directed edge (a, b) represents a win of a over
b.

We will use the concept of a king in a graph. Although the
definition makes sense for any graph, it is particularly useful
for tournaments, as the highest outdegree node is always a
king.

Definition 1. A king in G = (V, E) is a node A such that for
every other v € V either (A,z) € E or there exists y € V
such that (A,y), (y,x) € E.

We also use the notion of a superking.
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Figure 1: An example for which Theorem 1 does not apply,
but for which Theorem 2 does apply.

Definition 2. A superking in G = (V, E) is a node A such
that for every other © € V either (A,x) € E or there exist
lognnodes yi, ..., Yogn € V suchthat (A,y;), (y;,x) € E,
Vi.

Kings that are also winners

A player being a king in the tournament graph is not a
sufficient condition for it to also be able to win a single-
elimination tournament. Consider that a player may be a king
by beating only 1 player who, in turn, beats all the other play-
ers. [Vassilevska Williams, 2010] considered the question of
how strong a king player needs to be in order for there to al-
ways exist a winning single-elimination tournament bracket
for them.

Theorem 1. [Vassilevska Williams, 2010] Let G = (V, E)
be a tournament graph and let A € V be a king. One can
efficiently construct a winning single-elimination tournament

bracket for A if either
H™(A) =0, or out(A) > n/2.

We generalize the above result. The set 7" (A) represents
all higher ranked nodes that beat the player A. We show that
it is sufficient for a player who is a king to only be as strong
as the size of H"(A).

Theorem 2 (Kings with High Outdegree). Let G be a tour-
nament graph on n nodes and A be a king. If out(A) >
|H"(A)| + 1, then one can efficiently compute a winning
single-elimination bracket for A.

To see that the above theorem implies Theorem 1, note that
if out(A) > n/2, then |[H"(a)] < n/2 — 1 < out(A) — 1.
Also, if H"(A) = 0 and n > 2, then out(A) > 1 > 1+
[H'"(A)]-

Theorem 2 is more general than Theorem 1. In Figure 1 we
have an example of a tournament where Theorem 2 applies
to the node A but not Theorem 1. Here, |[H"*(A)| = T
|N°“*(A)| = & + 1 and the purpose of the node a is just to
guarantee that A is a king. The example requires that each
node in N"(A) \ H*"(.A) have lower outdegree than A (4 +
1) so we use an outdegree-balanced tournament for this set.
This is a tournament where every vertex has outdegree equal
to half the graph and it can be constructed inductively.

The intuition behind the proof of Theorem 2 is inspired by
the results of [Stanton and Vassilevska Williams, 2011]. They
show that a large fraction of highly ranked nodes can be tour-
nament winners, provided a matching exists from the lower
ranked to the higher ranked players. We are working with
a king node so we are able to weaken the matching require-
ment. Instead, we carefully construct matchings that maintain
that A is a king over the graph, while slowly eliminating the
elements of H'"(A) until we reduce the problem to the case
covered by Theorem 1.

We are now ready to prove Theorem 2. We will need a
technical lemma from prior work relating the indegree and
outdegree of two nodes. If a node A is a king then for every
other node b, N°“*(A) N N (b) # ). This lemma is useful
for showing a node is a king.

Lemma 1 ([Vassilevska Williams, 20101). Let a be a given
node, A = N°“*(a), B = N"(a), b € B. Then out(a) —
out(b) = ina(b) — outp(b). In particular, out(a) > out(b)
if and only if outg(b) < in4(b).

Now we can prove Theorem 2.

Proof of Theorem 2: We will design the matching for each
consecutive round r of the tournament. In the induced graph
before the 7" round, let H, be the subset of H™(A) that is
still live, A,. be the current outneighborhood of A and B, be
the current inneighborhood of 4. We will keep the invariant
that if B, \ H, # 0, we have |A,.| > |H,|+1, Ais aking and
the subset of nodes from the inneighborhood of A that have
larger outdegree than A is contained in ..

We now assume that the invariant is true for round r — 1.
We will show how to construct round . If H,, = () we are
done by reducing the problem to Theorem 1, so assume that
|H,] > 1. We begin by taking a maximal matching M, from
A, to H,. Since |A,.| > |H,| +1, A\ M, # Qie M,
can not match all of A,.. Now, let M/ be a maximal matching
from A, \ M, to B, \ H,.

If A\ (M} U M,) # 0, there is some node a’ leftover
to match A to. Otherwise, pick any ' € M. N A,. Re-
move the edge matched to a’ from M/ and match o’ with A.
To complete the matching, create maximal matchings within
A, = A \(MJUM,)\{d'}, B, = B;\'H,\ M/ and H,\ M.
Either zero or two of |A,|, |By|, |H; \ M| can be odd and so
there are at most 2 unmatched nodes. These can be matched
them against each other. Let M represent the union of all of
these matchings.

We will now show that the invariants still hold. Notice that
A is still a king on the sources of the created matching M.
Now, consider any node b from B, \ H, which is a source
in M. We have two choices. The first is that b survived by
beating another node of B, so it lost at least one outneighbor
from B,. Since M/ was maximal, b may have lost at most
one of its inneighbors (a’). Hence we still have

outp, ., (b) +1 < (outp, (b) —1+1) <
<ing, (b)—1< inAT+1(b).
By Lemma 1 this means that out(b) < out(.A). The second
choice is if b survived by beating a leftover node @ from A,..

This can only happen if A,. \ (M U M,) # 0. Thus, a was
in A, \ (M} U M,). However, since M, was maximal, @



must lose to b, and so all inneighbors of b from A, move on

to the next round, and again out(b) < out(A). Hence A has

outdegree at least as high as that of all nodes in B, 11 \ H,1.
Now we consider A, ;1 vs H,41. We have

[Arga] = [(|Ar| + [M] + [M,| = 1)/2], and

[Hrsr| < [(1He| = [M:])/2] = [(1Hy] + 1 = [M:])/2].

Since |H,-| > 1 we must have |M,.| > 1. If either | M, | >
2,|Ar| > [H,|+2, 0or [M]| > 1 then it must be that | A, 41| >
[(|/Hr| +2)/2] > |Hrt1| + 1. Also, if |H,] is even then

|Ar+1| > |HT|/2 =1+ |_(|Hr| - 1)/2J > |HT+1| + L

On the other hand, assume that |M,.| = 1,|M]| = 0,|A,| =
|H,| + 1 and |H,| is odd. This necessarily implies that | B,. \
H.| < 1. Since |A,| = |H,| + 1is even, |B,| must be odd
and so | B, \ H,-| must be even. | B, \ H,| can only be 0. This
means |H,| = n,/2 — 1 (where n, is the current number
of nodes). We can conclude that A is a king with outdegree
at least half the graph and the tournament can be efficiently
fixed so that A wins by Theorem 1. O
Theorem 2 implies the following corollaries.

Corollary 1. Let G be a tournament graph on n nodes and A
be a king. If |H'"(A)| < (n — 3)/4, then one can efficiently
compute a winning single-elimination tournament bracket for

A

Corollary 2. Let G be a tournament graph on n nodes and A
be a king in G. If [H(A)| < n/3 — 1, then one can efficiently
compute a winning single-elimination tournament bracket for

A

The proof of Corollary 1 follows by the fact that if
|H"(A)| = k, then out(A) > (n—Fk)/3. Corollary 2 simply
states that any player in the top third of the bracket who is a
king is also a tournament winner.

Proof of Corollary 2: Let K = |H(.A)|. Then the outdegree
of A is at least (n — K — 1)/2. Let h = |H™(A)|. Then
by Theorem 2, a sufficient condition for A to be able to win a
single-elimination tournament is that out(A) > h+ 1. Hence
itis sufficient that n— K —1 > 2h+2, or that 2h+ K < n—3.
Since 2h + K < 3K, it is sufficient that 3K < n — 3, and
since K < (n — 3)/3 we have our result. O

Braverman-Mossel Model

We can now apply our results to graphs generated by the
Braverman-Mossel Model. From prior work we know that
if p > Cy/Inn/n for C > 4, then with probability at least
1 — 1/poly(n), any node in a tournament graph generated
by the BM model can win a single-elimination tournament.
However, since p must be less than 1/2, this result only ap-
plies for n > 512. Moreover, even for n = 8192 the relevant
value of p is > 13% which is a very high noise rate. We con-
sider how many players can be efficiently made winners when
p is a slower growing function of n. We show that even when
p > C'lnn/n for a large enough constant C, a constant frac-
tion of the top players in a BM tournament can be efficiently
made winners.

Theorem 3 (BM Model Winners for Lower p). For any
given constant C > 16, there exists a constant n¢ so that for
all n > n¢ the following holds. Let p > C'lan/n, and let G
be a tournament graph generated by the BM model with error
p. Then with probability at least 1 — S/nC/S_Q, any node
v withv < n/2 — 5CVnlnn can win a single-elimination
tournament.

This result applies for n > 256 and also reduces the
amount of noise needed. For example, if C' = 17 then when
n = 8192, it is only necessary that p < 2%, as opposed to
> 13%. This is a significant improvement. The proof of The-
orem 3 uses Theorem 2 and Chernoff-Hoeffding bounds.

Theorem 4 (Chernoff-Hoeffding). Let X;,..., X, be ran-
dom variables with X = ) . X;, E[X] = p. Then for
0 <D< yp PrlX > pu+ D] < exp(—D?/(4p)) and
PrX < ji— D] < exp(~D?/(21)).

Proof of Theorem 3: Let C be given. Consider j. The ex-
pected of the number n; of outneighbors of j in G is

Eln;l = (1-p)(n—35)+(G—1)p =n(1—p)—p—j(1—2p).

This is exactly where we use the BM model. Our result is
not directly applicable to the GBM model because this is
only a lower bound on the expectation of n; in that model.
We will show that with high probability, all n; are concen-
trated around their expectations and that all nodes j < n/2
are kings.

Showing that each n; is concentrated around its’ expecta-
tion is a standard application of the Chernoff bounds and a
union bound. Therefore, 2/nC"/4 < 1/nC for C > 16 and
n > 2. with probability at least 1 — 1/n°~! for every j,
|En;] —n;| < Cvnlnn.

We assume n is large enough so that n >> vnlnn. We
also assume that p < 1/4 so that 1 > (1 — 2p) > 1/2. Now
fix j < n/2. By the concentration result, this implies that

nj >3n/4—1—j—CvVnlnn >
n/4—1—-CvVnlon > en,

where e = 1/8 works. The probability that j is a king is quite
high: the probability that some node z has no inneighbor from
N°ut(4) is at most

n(l _ p)TLJ < n(l _ Clnn/n)(n/(Clnn))‘Calnn

< 1/7715071.

By a union bound, the probability that some node j is not a
king is at most 1 /nsc’2. Therefore, we can conclude that
the probability that all the n; are concentrated around their
expectations and all nodes j < n/2 are kings is at least 1 —
(1/71071 + 1/n5C72)_

We now need to upper bound |H?"(j)|. We are interested
in how many nodes with ¢ < j+2C+vnlnn/(1—2p) appear
in N*(j): if we have an upper bound on them, we can apply
Theorem 2 to get a bound on j. First, consider how small
n; — n; can be for any ¢:

n; —n; > (i—j)(1—2p) —2CvVnlnn.



So for ¢ > j 4+ 2Cvnlnn/(1 — 2p), n; > n,; with high
probability. The expected number of nodes ¢ < j that appear
in N**(j) is (1 — p)(j — 1). By the Chernoff bound, the
probability that at least (1 —p)(j —1)+C+/jInn of the j — 1
nodes less than j are in N(j) is < exp(—C?jInn/4j) =
n—C*/4, Therefore, with probability at least 1 — 1/ nC?/ 4 the
number of such ¢ is at most (1 — p)(j — 1) + C+/jInn. By
a union bound, this holds for all 5 with probability at least
1 — 1/nC"/4=1. Now, we can say with high probability that
|H™(5)] is at most

(1-p)(G—1)+Cyjlnn+2CVninn/(1 - 2p) <

<(1-p)(j—1)+5CVninn.

By Theorem 2, for there to be a winning bracket for j, it is
sufficient that H""*(j) < n; or that

1-p)(i—-1)+5CVninn <
n(l—p)—p—j(1—2p)—CvVnlnn

. This is equivalent to

. _n(l—-p)  (A-2p) . vnln
T<G=a) T -

It is sufficient if

pn (1-2p) oy o
2@ sp) @y  HCVnnn/

and so for all j < n/2 — 5Cv/nlnn, there is a winning
bracket for j with probability at least

j<n/2+

1—(2/n° 1 41/nfC"2) > 1-3/n°/82,

Improving the result for the GBM model through
perfect matchings.

Next, we show that there is a trade-off between the constant
in front of logn/n and the fraction of nodes that can win a
single-elimination tournament. The proofs are based on the
following result by [ErdGs and Rényi, 1964]. Let B(n,p)
denote a random bipartite graph on n nodes in each partition
such that every edge between the two partitions appears with
probability p.

Theorem 5 ([ErdSs and Rényi, 1964]). Let c,, be any func-
tion of n, then consider G = B(n,p) forp = (Inn + ¢,,)/n.
The probability that G contains a perfect matching is at least
1—2/e.

For the particular case ¢,, = ©(lnn), G contains a perfect
matching with probability at least 1 — 1/poly(n).

Lemma 2. Let C' > 64 be a given constant. Let n > 16.
Let G be a GBM tournament for p = C'lun/n. Then with
probability at least 1 — 2/n®/32=1, G is such that one can
efficiently construct a winning single-elimination tournament
bracket for the node ranked 1.

Proof. We will call the top ranked node s. We will show
that with high probability s has outdegree at least n/4 and
that every node in N*"(s) has at least logn inneighbors in
N°ut(s). This makes s a superking, and by [Vassilevska
Williams, 20101, s can win a single-elimination tournament.

The probability that s beats any node j is > 1/2, the
expected outdegree of s is > (n — 1)/2. By a Chernoff
bound, the probability that s has outdegree < n/4 is at most
exp(—(n — 1)/16) << 1/n®/32=1_ Given that the outde-
gree of s is at least n/4, the expected number of inneigh-
bors in N°“!(s) of any particular node y in N*"(s) is at least
(n/4) - (Clnn/n) = (C/4)Inn.

We can show that each node in N"(s) has at least logn
inneighbors from N°“(s) by using a Chernoff bound and
union bound. By a Chernoff bound, the probability that y
has less than (C'/8) In n inneighbors from N°“!(s) is at most
exp(—(C/32)Inn) = 1/n°/32, By a union bound, the prob-
ability that some y € N (s) has less than (C'/8)Inn in-
neighbors from N°%(s) is at most 1/n°/32=1, Therefore, s
is a superking is with probability at least 1—2/n°/32~1 where
n > 16,n/4 > logn,C > 64,and (C/8)Inn >logn. O

Lemma 2 concerned itself only with the player who is
ranked highest in intrinsic ability. The next theorem shows
that as we increase the noise factor, we can fix the tourna-
ment for an increasingly large set of players. As the noise
level increases, we can argue recursively that there exists a
matching from 3 +1...nto1...%, and from ‘%" +1...n
toz+1... %" and so forth. These matchings form each suc-
cessive round of the tournament, eliminating all the stronger
players.

Theorem 6. Let n > 16, ¢ > 0 be a constant and p >
64-2Inn/n € [0, 1]. With probability at least 1—1/poly(n),
one can efficiently construct a winning single-elimination
tournament bracket for any one of the top 1 + n(1 — 1/2°)
players in a GBM tournament.

Proof. Let G be a GBM tournament for p = C2¢Inn/n,
C > 64. Let S be the set of all n/2~! players j with j >
n(l —1/2°1). Let s be a node with 1 + n(1 — 1/2¢71) <
s < 1+ n(1—1/2%). The probability that s wins a single-
elimination tournament on the subtournament of G induced
by S'is high: there is a set X of at least /2% — 1 nodes that are
after s. By Lemma 2, s wins a single-elimination tournament
on X U {s} with high probability 1 — (/2)%

In addition, by Theorem 5, with probability at least 1 —
a7aiye» there is a perfect matching from X U {s} to S\

(X U{s}). Forevery 1 < k <14 — 1, consider
A ={z|14+n(1—1/2%) <2}, and

Br={z|14+n(1-1/2"1) <z <n1-1/2%)
Then A;_1 = A, U By, A, N By, = 0, and ‘Ak‘ = |Bk‘ =
n/2*. Hence p > C'ln|Ay|/|Ag| for all k < i — 1. By The-
orem 5, the probability that there is no perfect matching from
Ay, to By, for a particular k is at most 2/(n/2k)021_k’1. This
value is maximized for k = i, and itis 2/(n/2")°~!. Thus by
a union bound, with probability at least 1 — 23 /(n/2°)¢~1 =



1—1/poly(n), there is a perfect matching from Ay, to By, for
every k.

Thus, with probability at least 1 — 1/poly(n), s wins a
single-elimination tournament in G with high probability, and
the full bracket can be constructed by taking the unions of the
perfect matchings from Ay, to By, and the bracket from S. [

For the BM model we can strengthen the bound from The-
orem 3 by combining the arguments from Theorems 3 and 6.

Theorem 7. There exists a constant ng such that for all n >
ng the following holds. Let i > 0 be a constant, and p =
64-2¢Inn/n € [0, 1]. With probability at least 1—1/poly(n),
one can efficiently construct a winning bracket for any one of
the top n(1 — 1/2F1) — (80/2%/2)v/nInn players in a BM
tournament.

As an example, for p = 256 1nn/n, Theorem 7 says that
any of the top 7n/8 — 40v/n lnn players are winners while
Theorem 6 only gives 3n/4 4 1 for this setting of p in the
GBM model.

Proof. As in Theorem 6, for every 1 < k < 4, consider Ay =
{xLlJrn(l—l/Qk) < z},and By, = {z |1+ n(l —
1/28=1) < 2 < n(1 —1/2%)}. Then Ay_1 = Ax U By,
Ap N By, = 0, and |A;| = |Bg| = n/2%. By the argument
from Theorem 6, w.h.p. there is a perfect matching from Ay,
to By, for all k.

Consider A;. By Theorem 3, with probability 1 —
1/poly(n/2') = 1 — 1/poly(n), we can efficiently
fix the tournament for any of the first n/2t! — 5 .

(n/2%)1In(n/2%) nodes in A;. Combining the construc-
tion with the perfect matchings between Ay and By, we can
efficiently construct a winning tournament bracket for any of
the top

n—n/2" +n/2" —804/(n/2¢)In(n/2%) >

> n(1 —1/21*1) — (80/2%/2)v/nInn nodes. O

Conclusions

In this paper, we have shown a tight bound (up to a constant
factor) on the noise needed to fix a single-elimination tourna-
ment for a large fraction of players when the match outcomes
are generated by the BM model. As this model is believed to
be a good model for real-world tournaments, this result shows
that many tournaments in practice can be easily manipulated.
In some sense, this sidesteps the question of whether it is NP-
hard to fix a tournament in general by showing that it is easy
on examples that we care about.
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