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Abstract

Nanson’s and Baldwin’s voting rules select a win-
ner by successively eliminating candidates with
low Borda scores. We show that these rules have
a number of desirable computational properties. In
particular, with unweighted votes, it is NP-hard to
manipulate either rule with one manipulator, whilst
with weighted votes, it is NP-hard to manipulate ei-
ther rule with a small number of candidates and a
coalition of manipulators. As only a couple of other
voting rules are known to be NP-hard to manipulate
with a single manipulator, Nanson’s and Baldwin’s
rules appear to be particularly resistant to manipu-
lation from a theoretical perspective. We also pro-
pose a number of approximation methods for ma-
nipulating these two rules. Experiments demon-
strate that both rules are often difficult to manip-
ulate in practice. These results suggest that elimi-
nation style voting rules deserve further study.

1 Introduction
Computational social choice studies computational aspects of
voting. For example, how does a coalition of agents com-
pute a manipulation? Can we compile these votes into a more
compact form? How do we decide if we have elicited enough
votes from the agents to be able to declare the result? Whilst
there has been a very active research community studying
these sort of questions for well known voting rules like plu-
rality and Borda, there are other less well known rules that
might deserve attention. In particular, we put forward two
historical voting rules due to Nanson and Baldwin which are
related to Borda voting.

There are several reasons to consider these two rules.
Firstly, they have features that might appeal to the two op-
posing camps that support Borda and Condorcet. In particu-
lar, both rules are Condorcet consistent as they elect the can-
didate who beats all others in pairwise elections. Secondly,
both rules are elimination style procedures where candidates
are successively removed. Other elimination procedures like
STV and plurality with runoff are computationally hard to
manipulate (in the case of STV, with or without weights on
the votes, whilst in the case of plurality with runoff, only in

the case of weighted votes). We might therefore expect Nan-
son’s and Baldwin’s rules to be computationally hard to ma-
nipulate. Thirdly, statistical analysis suggests that, whilst the
Borda rule is vulnerable to manipulation [7], Nanson’s rule
is particularly resistant [14]. We might expect Baldwin to
be similarly resistant. Finally, the two rules have been used
in real elections in the Universitiy of Melbourne (between
1926 and 1982), the University of Adelaide (since 1968), and
the State of Michigan (in the 1920s). It is perhaps therefore
somewhat surprising that neither rule has received much at-
tention till now in the computational social choice literature.

2 Preliminaries
Let C = {c1, . . . , cm} be the set of candidates (or alterna-
tives). A linear order on C is a transitive, antisymmetric, and
total relation on C. The set of all linear orders on C is denoted
by L(C). An n-voter profile P on C consists of n linear or-
ders on C. That is, P = (V1, . . . , Vn), where for every j ≤ n,
Vj ∈ L(C). The set of all n-profiles is denoted by Fn. We let
m denote the number of candidates. A (deterministic) voting
rule r is a function that maps any profile on C to a unique
winning candidate, that is, r : F1 ∪ F2 ∪ . . . → C. In this
paper, if not mentioned otherwise, ties are broken in the fixed
order c1 ≻ c2 ≻ · · · ≻ cm.

(Positional) scoring rules are commonly used voting rules.
Each positional scoring rule is identified by a scoring vector
s⃗m = (s⃗m(1), . . . , s⃗m(m)) of m integers, for any vote V ∈
L(C) and any candidate c ∈ C, let s⃗m(c, V ) = s⃗m(j), where
j is the rank of c in V . For any profile P = (V1, . . . , Vn), let
s⃗m(c, P ) =

∑n
j=1 s⃗m(c, Vj). The rule selects c ∈ C such that

the total score s⃗m(c, P ) is maximized. We assume scores are
integers and decreasing. Borda is the positional scoring rule
that corresponds to the scoring vector (m− 1,m− 2, . . . , 0).
We write s(a, P ) for the Borda score given to candidate a
from the profile of votes P , and s(a) where P is obvious
from the context. When voters are weighted (that is, each
voter is associated with a positive real number as the weight),
a positional scoring rule selects the candidate that maximizes
the weighted total score.

The unweighted (coalitional) manipulation problem is de-
fined as follows. An instance is a tuple (r, PNM , c,M),
where r is a voting rule, PNM is the non-manipulators’ pro-
file, c is the candidate preferred by the manipulators, and M



is the set of manipulators. We are asked whether there exists a
profile PM for the manipulators such that r(PNM ∪ PM ) =
c. The weighted (coalitional) manipulation is defined simi-
larly, where the weights of the voters (both non-manipulators
and manipulators) are also given as inputs. As is common in
the literature, we break ties in favour of the coalition of the
manipulators where appropriate.

3 Nanson’s and Baldwin’s Rules
The Borda rule has several good properties. For instance, it is
monotonic as increasing the score for a candidate only helps
them win. Also it never elects the Condorcet loser (a can-
didate that loses to all others in a majority of head to head
elections). However, it may not elect the Condorcet winner
(a candidate that beats all others in a majority of head to head
elections). Nanson’s and Baldwin’s rules, by comparison, al-
ways elect the Condorcet winner when it exists.

Nanson’s and Baldwin’s rules are derived from the Borda
rule. Nanson’s rule eliminates all those candidates with less
than the average Borda score [16]. The rule is then repeated
with the reduced set of candidates until there is a single can-
didate left. A closely related voting rule proposed by Baldwin
successively eliminates the candidate with the lowest Borda
score1 until one candidate remains [2]. The two rules are
closely related, and indeed are sometimes confused. One
of the most appealing properties of Nanson’s and Baldwin’s
rules is that they are Condorcet consistent, i.e. they elect the
Condorcet winner. This follows from the fact that the Borda
score of the Condorcet winner is never below the average
Borda score. Both rules possess several other desirable prop-
erties including the majority criterion and the Condorcet loser
criterion. There are also properties which distinguish them
apart. For instance, Nanson’s rule satisfies reversal symmetry
(i.e. if there is a unique winner and voters reverse their vote
then the winner changes) but Baldwin’s rule does not.

4 Unweighted Manipulation
We start by considering the computational complexity of ma-
nipulating both these rules with unweighted votes. We prove
that the coalitional manipulation problem is NP-complete for
both rules even with a single manipulator. Computational
intractability with a single manipulator is known only for a
small number of other voting rules including the second order
Copeland rule [4], STV [3] and ranked pairs [18]. In contrast,
when there are two or more manipulators, unweighted coali-
tional manipulation is hard for some other common voting
rules [12; 13; 19; 11; 5]. Our results therefore significantly
increase the size of the set of voting rules used in practice
that are known to be NP-hard to manipulate with a single
manipulator. This also contrasts to Borda where computing
a manipulation with a single manipulator is polynomial [4].
Adding elimination rounds to Borda to get Nanson’s or Bald-
win’s rules increases the computational complexity of com-
puting a manipulation with one manipulator from polynomial
to NP-hard.

1If multiple candidates have the lowest score, then we use a tie-
breaking mechanism to eliminate one of them.

Our results are proved by reductions from the EXACT 3-
COVER (X3C) problem. An X3C instance contains two sets:
V = {v1, . . . , vq} and S = {S1, . . . , St}, where t ≥ 2 and
for all j ≤ t, |Sj | = 3 and Sj ⊆ V . We are asked whether
there exists a subset S ′ of S such that each element in V is in
exactly one of the 3-sets in S ′.

Theorem 1. With unweighted votes, the coalitional manip-
ulation problem under Baldwin’s rule is NP-complete even
when there is only one manipulator.

Proof: We sketch a reduction from X3C. Given an X3C
instance V = {v1, . . . , vq},S = {S1, . . . , St}, we let the
set of candidates be C = {c, d, b} ∪ V ∪ A, where c is
the candidate that the manipulator wants to make the win-
ner, A = {a1, . . . , at}, and d and b are additional candi-
dates. Members of A correspond to the 3-sets in S. Let
m = |C| = q + t+ 3.

The profile P contains two parts: P1, which is used
to control the changes in the score differences between
candidates, after a set of candidates are removed, and
P2, which is used to balance the score differences be-
tween the candidates. We define the votes W(u,v) =
{u≻v≻Others, rev(Others)≻u≻v} where Others is a total
order in which the candidates in C\{u, v} are in a pre-defined
lexicographic order, and rev(Others) is the reverse.

We make the following observations on W(c1,c2). For any
set of candidates C′ ⊆ C and any pair of candidates e1, e2 ∈
C \ C′,

s(e1,W(c1,c2)|C\C′)− s(e2,W(c1,c2)|C\C′)

= s(e1,W(c1,c2))− s(e2,W(c1,c2))

+

{
1 if e1 = c2 and c1 ∈ C′

−1 if e1 = c1 and c2 ∈ C′

0 otherwise

Here W(c1,c2)|C\C′ is the pair of votes obtained from W by
removing all candidates in C′. In words, the formula states
that after C′ is removed, the score difference between e1 and
e2 is increased by 1 if and only if e1 = c2 and c1 is re-
moved; it is decreased by 1 if and only if e1 = c1 and c2
is removed; for any other cases, the score difference does not
change. Moreover, for any e ∈ C \{c1, c2}, s(c1,W(c1,c2))−
s(e,W(c1,c2)) = 1 and s(c2,W(c1,c2))−s(e,W(c1,c2)) = −1.

We next show how to use W(c1,c2) to construct the first part
of the profile P1. Let m = |C|, that is, m = q + t + 3. P1 is
composed of the following votes: (1) for each j ≤ t and each
vi ∈ Sj , there are 2m copies of W(vi,aj); (2) for each i ≤ q,
there are m copies of W(b,vi); (3) there are m(t+6) copies of
W(b,c). It is not hard to verify that s(b, P1)− s(c, P1) ≥ mq,
and for any c′ ∈ V ∪ A, s(c′, P1) − s(c, P1) ≥ 2m. P2 is
composed of the following votes: (1) for each i ≤ q, there
are s(vi, P1) − s(c, P1) − m copies of W(d,vi); (2) for each
j ≤ t, there are s(aj , P1) − s(c, P1) − 1 copies of W(d,aj);
(3) there are s(b, P1)− s(c, P1)−mq copies of W(d,b).

Let P = P1 ∪ P2. We make the following observations on
the Borda scores of the candidates in P .
• For any i ≤ q, s(vi, P )− s(c, P ) = m;
• for any j ≤ t, s(aj , P )− s(c, P ) = 1;



• s(b, P )− s(c, P ) = mq.
Suppose the X3C instance has a solution, denoted by (af-

ter reordering the sets in S) S1, . . . , Sq/3. Then, we let the
manipulator vote for:
c ≻ d ≻ aq/3+1 ≻ · · · ≻ at ≻ b ≻ V ≻ a1 ≻ · · · ≻ aq/3
In the first 4q/3 rounds, all candidates in V and

{a1, . . . , aq/3} drop out. Then b drops out. In the following
t − q/3 rounds the candidates in {aq/3+1, . . . , at} drop out.
Finally, d loses to c in their pairwise election, which means
that c is the winner.

Suppose the manipulator can cast a vote to make c the win-
ner. We first note that d must be eliminated in the final round
since its score is higher than c in all previous rounds. In the
round when b is eliminated, the score of b should be no more
than the score of c. We note that s(b, P ) − s(c, P ) = mq
and the score difference can only be reduced by the manipu-
lator ranking b below c, and by eliminating v1, . . . , vq before
b. However, by ranking b below c, the score difference is re-
duced by no more than m− 1. Therefore, before b drops out,
all candidates in V must have already dropped out. We note
that for any vi ∈ V , s(vi, P ) − s(c, P ) = m. Therefore, for
each vi ∈ V , there exists aj with vi ∈ Sj who is removed
before vi. For any such aj , none of the candidates in Sj can
drop out before aj (otherwise the score of aj cannot be less
than c before b drops out), and in the next three rounds the
candidates in Sj drop out. It follows that the set of candidates
in A that drop out before any candidate in V corresponds to
an exact cover of V . 2

Theorem 2. With unweighted votes, the coalitional manip-
ulation problem under Nanson’s rule is NP-complete even
when there is only one manipulator.

The proof uses the same gadget W(u,v) that is used in the
proof of Theorem 1. Due to the space constraints, the proof
can be found in an online technical report.

Weighted Manipulation
If the number of candidates is bounded, then manipulation is
NP-hard to compute when votes are weighted. Baldwin’s rule
appears more computationally difficult than Nanson’s rule.
Coleman and Teague [8] prove that Baldwin’s requires only
3 candidates to be NP-hard, whilst we prove here that Nan-
son’s rule is polynomial to manipulate with 3 candidates and
requires at least 4 candidates to be NP-hard. It follows that
computing a manipulation is NP-hard for both rules when
votes are unweighted, the number of candidates is small and
there is uncertainty about how agents have voted in the form
of a probability distribution [9]. Note that the coalition ma-
nipulation problem for Borda with weighted votes is NP-hard
for 3 or more candidates [9]. Thus, somewhat surprisingly,
adding an elimination round to Borda, which gives us Nan-
son’s rule, decreases the computational complexity of com-
puting a manipulation with 3 manipulators from NP-hard to
polynomial.

Theorem 3. With Nanson’s rule and weighted votes, the
coalition manipulation problem is NP-complete for just 4
candidates.

Proof: The proof is by a reduction from PARTITION, where
we are given a group of integers {k1, . . . , kl} with sum 2K,
and we are asked whether there is way to partition the group
into two groups, the elements in each of which sum to K.
For any PARTITION instance, we construct a coalition ma-
nipulation problem with 4 candidates (a, b, c and p) where
p is again the candidate that the manipulators wish to win.
We suppose the non-manipulators have voted as follows:
2K + 1 for each of b≻p≻c≻a, a≻c≻b≻p, c≻p≻b≻a
and a≻b≻c≻p, K + 2 for p≻a≻b≻c and c≻b≻p≻a,
and 1 each for a≻b≻p≻c, c≻p≻a≻b, a≻c≻p≻b and
b≻p≻a≻c. The total scores from non-manipulators are as
follows: s(a) = 14K + 18, s(b) = s(c) = 17K + 18 and
s(p) = 12K + 18. For each integer ki, we have a member
of the manipulating coalition with weight ki.

Now, suppose there is a solution to the PARTITION in-
stance. Let the manipulators corresponding to the integers
in one half of the partition vote p≻a≻b≻c, and let the oth-
ers vote p≻a≻c≻b. All scores are now 18K+18 (which is
also the average). By the tie-breaking rule, p wins in the first
round. Thus the manipulators can make p win if a perfect
partition exists.

Conversely, suppose there is a successful manipulation.
Clearly, p cannot be eliminated in the first round. To ensure
this, all manipulators must put p in first place. Next, we show
that if p is not a joint winner of the first round, p cannot win
overall. We consider all possible sets of candidates that could
be eliminated in the first round. There are 6 cases. In the
first case, only a is eliminated in the first round. The scores
from non-manipulators in the second round are as follows:
s(b) = s(c) = 12K + 13, and s(p) = 6K + 10. The aver-
age score is 10K+12. Even with the maximum 4K possible
score from the manipulators, p is eliminated. This contradicts
the assumption that p wins. In the second case, only b is elim-
inated in the first round. As p and a are not eliminated in the
first round, the manipulators have to cast votes that put p in
first place and b in second place. With such manipulating
votes, the scores in the second round are: s(a) = 11K + 11,
s(c) = 12K + 12 and s(p) = 13K + 13. The average score
is 12K + 12. Hence, a is eliminated. In the next round, p is
eliminated as s(p) = 5K+5, s(c) = 7K+7 and the average
score is 6K +6. This contradicts the assumption that p wins.
In the third case, only c is eliminated in the first round. This
case is symmetric to the second case. In the fourth case, a and
b are eliminated in the first round. The case when a and c are
eliminated is symmetric. In the second round, the scores from
non-manipulators are s(c) = 7K + 7 and s(p) = 3K + 5.
The 2K score from the manipulators cannot prevent p being
eliminated. This contradicts the assumption that p wins. In
the fifth case, b and c are eliminated in the first round. How-
ever, in the first round, the score b and c receive from the
non-manipulators is 17K + 18. One of them will get at least
K points from manipulators. This will give them greater than
the average score of 18K + 8. Hence, at least one of them is
not eliminated. In the sixth and final case, a, b and c are all
eliminated in the first round. This case is again impossible by
the same argument as the last case.

The only way for p to win is to have a tie with all candidates
in the first round. As we observed above, the manipulators



have to put p in first place, and a in second place. In turn, both
b and c have to get exactly K points from the manipulators.
Hence, there exists a solution to the PARTITION instance. 2

Clearly, it is polynomial to compute a manipulation of
Baldwin’s rule with 2 candidates (since this case degenerates
to majority voting). With Nanson’s rule, on the other hand, it
is polynomial with up to 3 candidates.

Theorem 4. With Nanson’s rule and weighted votes, the
coalition manipulation problem is polynomial for up to 3 can-
didates.

Proof: Consider an election with 3 candidates (a, b and p)
in which the manipulators want p to win. We prove that the
optimal strategy is for the manipulators either all to vote p ≻
a ≻ b or all to vote p ≻ b ≻ a. If p does not win using one of
these two votes, then p cannot win. Therefore we simply try
out the two votes and compute if p wins in either case.

Suppose the manipulators can make p win. We first note
that there is no loss for them to raise p to the first position,
while keeping the other parts of their preferences the same.
By doing so, the score of p goes up and the scores of a and b
go down. The only possible change in the elimination process
is that now both a and b drop out in the first round, so that p
still wins.

Now, suppose that all manipulators rank p in their top po-
sitions. Let PM denote the manipulators’ profile that makes
p win. Because Nanson’s rule never selects the Condorcet
loser, p cannot be beaten by both a and b in pairwise elec-
tions. Without loss of generality, suppose p beats a. We ar-
gue that if all manipulators vote p ≻ a ≻ b, then p still wins.
For the sake of contradiction, suppose all manipulators vote
p ≻ a ≻ b but p does not win. As the manipulators still rank
p in their top positions, the score of p in the first round is the
same as in PM . Therefore, p must enter (and lose) the second
round. Hence, only a is eliminated in the first round, and in
the second round b beats p. However, having the manipula-
tors vote p ≻ a ≻ b only lowers b’s score in the first round,
compared to the case where they vote PM . Hence, when the
manipulators vote PM , b also enters the second round and
then beats p, which is a contradiction.

Therefore, if the manipulators can make p win, then they
can make p win by all voting p ≻ a ≻ b, or all voting p ≻
b ≻ a. 2

5 Approximation Methods
One way to deal with computational intractability is to treat
computing a manipulation as an optimization problem where
we try to minimize the number of manipulators. We there-
fore considered five approximation methods. These are either
derived from methods used with Borda or are specifically de-
signed for the elimination style of Nanson’s and Baldwin’s
rules.

REVERSE: The desired candidate is put first, and the other
candidates are reverse ordered by their current Borda
score. We repeat this construction until the desired
candidate wins. REVERSE was used to manipulate the
Borda rule in [20].

LARGESTFIT: This method was proposed for the Borda rule
[10]. Unlike REVERSE which constructs votes one by
one, we construct votes in any order using a bin packing
heuristic which puts the next largest Borda score into
the “best” available vote. We start with a target number
of manipulators. Simple counting arguments will lower
bound this number, and we can increase it until we have
a successful manipulation. We construct votes for the
manipulators in which the desired candidate is in first
place. We take the other Borda scores of the manipula-
tors in decreasing order, and assign them to the candi-
date with the lowest current Borda score who has been
assigned less than the required number of scores. A per-
fect matching algorithm then converts the sets of Borda
scores for the candidates into a set of manipulating votes.

AVERAGEFIT: This method was also proposed for the Borda
rule [10]. We again have a target number of manipula-
tors, and construct votes for the manipulators in which
the desired candidate is in first place. We take the other
Borda scores of the manipulators in decreasing order,
and assign them to the candidate with the current low-
est average Borda score who has less than the required
number of scores. The intuition is that if every score
was of average size, we would have a perfect fit. If more
than one candidate has the same lowest average Borda
score and can accommodate the next score, we tie-break
on the candidate with the fewest scores. Examples of
LARGESTFIT and AVERAGEFIT can be found in [10].

ELIMINATE: We repeatedly construct votes in which the de-
sired candidate is put in first place, and the other can-
didates in the reverse of the current elimination order.
For instance, the first candidate eliminated is put in last
place. For Nanson’s rule, we order candidates elimi-
nated in the same round by their Borda score in that
round.

REVELIMINATE: We repeatedly construct votes in which the
desired candidate is put in first place, and the other can-
didates in the current elimination order. For instance,
the first candidate eliminated is put in second place. For
Nanson’s rule, we order candidates eliminated in the
same round by the inverse of their Borda score in that
round.

The intuition behind ELIMINATE is to move the desired
candidate up the elimination order whilst keeping the rest of
the order unchanged. With REVELIMINATE, the intuition is
to move the desired candidate up the elimination order, and to
assign the largest Borda scores to the least dangerous candi-
dates. It is easy to show that all methods will eventually com-
pute a manipulation of Nanson’s or Baldwin’s rule in which
the desired candidate wins.

With Borda voting, good bounds are known on the quality
of approximation that is achievable. In particular, [20] proved
that REVERSE never requires more than one extra manipula-
tor than optimal. Baldwin’s and Nanson’s rules appear more
difficult to approximate within such bounds. We can give ex-
amples where all five methods compute a manipulation that
use several more manipulators than is optimal. Indeed, even



Table 1: Percentage of random uniform elections with 5 can-
didates where the heuristic finds the optimal manipulation.

Rules REV LAFIT AVFIT ELIM REVELIM

Baldwin 74.4% 74.4% 75.8% 62.2% 75.2%
Nanson 74.6% 76.0% 78.0% 65.4% 66.9%
Borda 95.7% 98.8% 99.8% 95.7% 10.7%

Table 2: Percentage of urn elections with 5 candidates where
the heuristic finds the optimal manipulation.

Rules REV LAFIT AVFIT ELIM REVELIM

Baldwin 75.1% 75.4% 77.3% 68.9% 83.4%
Nanson 78.1% 79.0% 79.8% 72.2% 79.4%
Borda 96.1% 92.7% 99.9% 96.1% 4.4%

with a fixed number of candidates, REVERSE can require an
unbounded number of extra manipulators.

Theorem 5. With Baldwin’s rule, there exists an election with
7 candidates and 42n votes where REVERSE computes a ma-
nipulation with at least n more votes than is optimal.

Proof: (Sketch) Consider an election over a, b, c, d, e, f and
p where p is the candidate that the manipulators wish to win.
We define R(u, v) as the pair of votes: u≻v≻Others≻p,
rev(Others)≻u≻v≻p where Others is some fixed order-
ing of the other candidates and rev(Others) is its reverse.
The non-manipulators cast the following votes: 3n copies
of R(a, b), R(b, c), R(c, d), R(d, e) and R(e, f). In addi-
tion, there are 6n copies of the votes: p≻a≻Others and
rev(Others)≻p≻a. If 18n manipulators vote identically
p≻a≻ . . .≻f then p wins. This provides an upper bound
on the size of the optimal manipulation. After the non-
manipulators have voted, s(a) = s(f) = 138n, s(b) =
s(c) = s(d) = s(e) = 141n and s(p) = 42n. REVERSE
will put p in first place. We suppose n is a multiple of 2, but
more complex arguments can be given in other cases. After n
manipulating votes have been constructed, the scores of can-
didates a to f are level at 285n/2 and p is leveled at 48n.
From then on, the manipulators put p in first place and alter-
nate the order of the other candidates. At least 32n votes are
therefore required for p to move out of last place. 2

Asymptotically this result is as bad as we could expect.
Any election can be manipulated with O(n) votes by simply
reversing all previous votes, and this proof demonstrates that
REVERSE may use O(n) more votes than is optimal.

6 Experimental Results
To test the difficulty of computing manipulations in practice
and the effectiveness of these approximation methods, we ran
some experiments using a similar setup to [17]. We generated
either uniform random votes or votes drawn from a Polya
Eggenberger urn model. In the urn model, votes are drawn
from an urn at random, and are placed back into the urn along
with a other votes of the same type. This captures varying
degrees of social homogeneity. We set a = m! so that there
is a 50% chance that the second vote is the same as the first.

Our first set of experiments used 3000 elections with 5 can-
didates and 5 non-manipulating voters. This is small enough
to find the optimal number of manipulators using brute force
search, and thus to determine how often a heuristic computes

Table 3: Uniform elections using Baldwin rule. This (and
subsequent) tables give the average number of manipulators.

n Rev LaFit AvgFit Elim RevElim
4 2.25 2.25 2.25 2.44 2.21
8 2.99 3.07 3.01 3.35 3.06

16 4.31 4.41 4.40 4.79 4.67
32 5.93 6.03 6.14 6.61 6.84
64 8.56 8.65 8.84 9.54 11.02

128 12.13 12.24 12.41 13.37 16.06

Table 4: Uniform elections using Nanson rule.
n Rev LaFit AvgFit Elim RevElim
4 2.15 2.17 2.15 2.25 2.28
8 2.91 2.96 2.84 3.05 3.21

16 4.13 4.27 4.05 4.44 4.99
32 5.80 5.88 5.81 6.18 7.46
64 8.51 8.58 8.82 8.99 12.04

128 12.07 12.09 13.00 12.60 17.90

Table 5: Urn elections using Baldwin rule.
n Rev LaFit AvgFit Elim RevElim
4 3.26 3.23 3.24 3.35 3.14
8 5.95 5.96 5.99 6.37 5.82

16 11.64 11.66 11.87 12.74 11.52
32 21.70 21.78 22.35 24.67 22.41
64 43.09 43.37 44.24 49.07 45.70

128 82.19 81.82 83.62 95.37 91.80

Table 6: Urn elections using Nanson rule.
n Rev LaFit AvgFit Elim RevElim
4 3.20 3.19 3.20 3.28 3.22
8 5.93 5.98 5.95 6.13 6.09

16 11.62 11.93 11.64 12.16 12.37
32 22.36 22.78 22.53 24.00 24.39
64 44.56 45.50 44.77 48.81 49.69

128 87.18 87.55 86.76 97.02 99.43

the optimal solution. We threw out the 20% or so of problems
generated in which the chosen candidate has already won be-
fore the manipulators vote. Results are given in Tables 1–2.
Heuristics that are very effective at finding an optimal ma-
nipulation with the Borda rule do not perform as well with
Baldwin’s and Nanson’s rules. For example, AVERAGEFIT
almost always finds an optimal manipulation of the Borda
rule but can only find an optimal solution about 3/4 of the
time with Baldwin’s or Nanson’s rules.

Our second set of experiments used larger problems. This
amplifies the differences between the different approximation
methods (but means we are unable to compute the optimal
manipulation using brute force search). Problems have be-
tween 22 and 27 candidates, and the same number of votes as
candidates. We tested 6000 instances, 1000 at each problem
size. Tables 3–6 show the results for the average number of
manipulators. The results show that overall REVERSE works
slightly better than LARGESTFIT and AVERAGEFIT, which
themselves outperform the other two methods especially for
problems with large number of candidates. We observe a sim-
ilar picture with Nanson’s rule. This contrasts with the Borda
rule where LARGESTFIT and AVERAGEFIT do much better



than REVERSE [10]. In most cases AVERAGEFIT is less ef-
fective than LARGESTFIT except urn elections with Nanson’s
rule.

These experimental results suggest that Baldwin’s and
Nanson’s rules are harder to manipulate in practice than
Borda. Approximation methods that work well on the Borda
rule are significantly less effective on these rules. Overall,
REVERSE, LARGESTFIT and AVERAGEFIT appear to offer
the best performance, though no heuristic dominates.

7 Other Related Work
Bag, Sabourian and Winter [1] prove that a class of voting
rules which use repeated ballots and eliminate one candidate
in each round are Condorcet consistent. They illustrate this
class with the weakest link rule in which the candidate with
the fewest ballots in each round is eliminated. Geller [15] has
proposed a variant of single transferable vote where first place
votes, candidates are successively eliminated based on their
original Borda score. Unlike Nanson’s and Baldwin’s rules,
this method does not recalculate the Borda score based on the
new reduced set of candidates. For any Condorcet consistent
rule (and thus for Nanson’s and Baldwin’s rule), Brandt et
al. [6] showed that many types of control and manipulation
are polynomial to compute when votes are single peaked.

8 Conclusions
With unweighted votes, we have proven that Nanson’s and
Baldwin’s rules are NP-hard to manipulate with one manipu-
lator. This increases by two thirds the number of rules known
to be NP-hard to manipulate with just a single manipulator.
With weighted votes, on the other hand, we have proven that
Nanson’s rule is NP-hard to manipulate with just a small
number of candidates and a coalition of manipulators. We
have also proposed a number of approximation methods for
manipulating Nanson’s and Baldwin’s rules. Our experiments
suggest that both rules are difficult to manipulate in practice.
There are many other interesting open questions coming from
these results. For example, are there other elimination style
voting rules which are computationally difficult to manipu-
late? As a second example, with Nanson’s and Baldwin’s
rule what is the computational complexity of other types of
control like the addition/deletion of candidates, and the ad-
dition/deletion of voters? As a third example, we could add
elimination rounds to other scoring rules. Do such rules have
interesting computational properties?
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