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Solution Concepts

Solution Concepts

Binary dominance relations

Identify the “most desirable” elements in a pairwise majority
relation:

o game theory

o social choice theory
@ argumentation theory
® sports tournaments

o ...

Natural concept: Choose the maximal element.







Solution Concepts

Example

Maximal element
z is the winner.
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Solution Concepts

Example

Maximal element Maximal element

z is the winner. There is no winner!

Condorcet’s Paradox renders maximality useless
= solution concepts



Unidirectional Covering

Solution Concept: Minimal Unidirectional Covering Sets

Unidirectional Covering

Let A be a finite set of alternatives, BC A, -~ C Ax Aa
dominance relation, and let x,y € B.

o x upward covers y (xCuy) if x = y and for all z € B, z > x
implies z > y.

xCuy, zCyx, and zC,y
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Solution Concept: Minimal Unidirectional Covering Sets

Unidirectional Covering

Let A be a finite set of alternatives, BC A, -~ C Ax Aa
dominance relation, and let x,y € B.

o x upward covers y (xCuy) if x = y and for all z € B, z > x
implies z > y.

o x downward covers y (xCyy) if x = y and forallz€ B, y > z
implies x > z.

y

xCuy, zCyx, and zC,y
zCyx, zCqy, and xCyy



Unidirectional Covering

Solution Concept: Minimal Unidirectional Covering Sets

Uncovered Set

Let A be a finite set of alternatives, BC A, =~ C AX A a
dominance relation, and let C be a covering relation on A. The
uncovered set of B with respect to C is:

UCc(B) = {x € B| yCx for no y € B}.

UC({x,y,2}) ={z}
UCd({va?z}) = {Z}




Unidirectional Covering

Solution Concept: Minimal Unidirectional Covering Sets

Minimal Covering Set

Let A be a finite set of alternatives, = C A x A a dominance
relation, and C a covering relation. B C A is a covering set for A
under C, if:

o UC¢(B) = B (internal stability), and
o forall x € A— B,x ¢ UCc(B U {x}) (external stability).
Such a B is minimal if no B’ C B is a covering set for A under C.

Minimal upward covering sets: .

By ={a,c} and B, = {b,d}
Minimal downward covering set:
B3 ={a,b,c,d}

v




Unidirectional Covering

Minimal Upward Covering Set Member

Definition

Name: Minimal Upward Covering Set Member (MC,-Member).
Instance: A set A of alternatives, a dominance relation - on A,
and a distinguished element d € A.

Question: Is d contained in some minimal upward covering set
for A?

A = {X7yaz}
- = {(z,x),(z,y),(x,y)}

(A, -,z) € MCy-Member
(A, -,x) & MCy-Member




Unidirectional Covering

MC,-Size: Given a set A of alternatives, a dominance relation
= on A, and a positive integer k, does there exist some
minimal upward covering set for A containing at most k
alternatives?

MC,-Member-All: Given a set A of alternatives, a dominance
relation > on A, and a distinguished element d € A, is d
contained in all minimal upward covering sets for A?

MC,-Unique: Given a set A of alternatives and a dominance
relation > on A, does there exist a unique minimal upward
covering set for A?

MC,-Test: Given a set A of alternatives, a dominance relation

> on A, and a subset M C A, is M a minimal upward covering
set for A?

MC,-Find: Given a set A of alternatives and a dominance
relation > on A, find a minimal upward covering set for A.



Unidirectional Covering

Minimality versus Minimum Size

Set-inclusion Minimality versus Minimum Cardinality

o cardinality: classical problems (maximum-size independent
set, minimum-size dominating set, etc.)

o set inclusion: minimal upward covering set member.

= Standard techniques are not directly applicable.

Upward covering sets:

S = {ac,e}
T = {b,d}

set inclusion minimal; S and T
cardinality minimal: only T



Results
Lower Bound

Approach for proving ©5-hardness

NP-hardness coNP-hardness

SN

DP-hardness

©5-hardness




Results
NP-Hardness

Reduction from SAT to MC,-Member

There is a satisfying assignment for ¢
=
there is a minimal upward covering set that contains d.

e=(@VvVw)A(uvw)
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Results

Example: NP-Hardness

Reduction from SAT to MC,-Member

There is a satisfying assignment for ¢
=
there is a minimal upward covering set that contains d.

¢ =(uVvVw)A (uVWw), satisfying assignment: v =v =w =1




Results

coNP-Hardness

The class coNP
Class of sets whose complements are in NP.

Reduction from SAT to the complement of MC,-Member

There is a satisfying assignment for 1)
=
there is no minimal upward covering set that contains e.

Additionally: e is contained in all minimal upward covering sets if
and only if there is no satisfying assignment for .
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Results
DP-Hardness

The class DP

The class of differences of two NP sets: DP = {A— B| A, B € NP}.
NP U coNP C DP.

y

Wagner’s Lemma for DP-Hardness

Let A be some NP-complete problem, let B be an arbitrary problem.

If there exists a polynomial-time computable function f such that,

for all strings xi, xo satsifying that if x, € A then x; € A, it holds:
(xi € Aand xp € A) & f(x1,x) € B,

then B is DP-hard.

| A\

Construction

There is a satisfying assignment for ¢, and none for v
=
there is a minimal upward covering set that contains d.




Results

Combination of the previously presented NP and coNP reductions.

Oz

NP coNP.
construction construction




Results

©5-Hardness

The class ©5

O (also known as P|'\|'P) is the class of problems solvable by a
polynomial-time algorithm having parallel access to an NP oracle.

NP U coNP C DP C ©5.

| A\

Wagner's Lemma for ©5-Hardness

Let A be some NP-complete problem, and let B be an arbitrary
problem. If there exists a polynomial-time computable function f
such that, for all m > 1 and all strings x1, x2, . .., xom satisfying
that if x; € A then x;_; € A, 1 <j < 2m, it holds that

[I{i| xi € A}|| isodd < f(x1,x2,...,%m) € B,

then B is @g—hard.




Results

Concatenation of the construction used to show DP-hardness.

coNP coNP NP coNP

constr. constr. constr. constr.

There is some odd i such that ¢; € SAT and ¢;1 & SAT
=
there is a minimal upward covering set that contains d.



Problem MC,, MCy MSC, MSCq4

Size NP-complete NP-complete NP-complete
Member ©%-hard, in X5 ©85-complete coNP-hard, in ©5
Member-All  coNP-complete ©85-complete coNP-hard, in ©5
Unique coNP-hard, in 5  coNP-hard, in ©5  coNP-hard, in ©5
Test coNP-complete coNP-complete coNP-complete
Find not in polynomial time unless P = NP




Thank you for your attention!

The Complexity of Computing Minimal Unidirectional
Covering Sets, D. Baumeister, F. Brandt, F. Fischer, J. Hoffmann,
and J. Rothe, to appear in the Proceedings of CIAC 2010.
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