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CHAPTER 1

Introduction

1. Introduction

Chapters 2-4 of this thesis deal with social choice theory and more specifically

with voting, and Chapter 5 with a topic from epistemic game theory.

Social choice theory, as the name suggests, deals with techniques for finding

an alternative for a society respecting their preferences over the set of alternatives.

Of course, such a technique must satisfy some desirable properties such as strategy-

proofness and unanimity. Strategy-proofness ensures that the individuals can not be

better off by misrepresenting their true preferences, whereas unanimity implies that

if all agents report the same preference, then the rule selects the top of that common

preference. However, the classic results of Gibbard (1973) and Satterthwaite (1975)

have shown that if we allow for all possible preferences of the individuals then the only

rule that satisfies these properties is the dictatorial one. As all the non-dictatorial

rules are manipulable, the natural question arises, which one is least manipulable,

i.e., manipulable at minimum number of profiles. Furthermore, this impossibility

result leaves another question open as to whether in a more restricted context rules

other than dictatorships can be strategy-proof. We address these two fundamental

questions in the first four chapters of this thesis.

Epistemic game theory is a different approach towards game theory. This

theory analyzes different ways a player may reason about his opponents’ behavior to

make a decision.

Chapter 2 considers approval voting rules. Here we characterize all preference

profiles at which the approval (voting) rule is manipulable, under three extensions of

preferences to sets of alternatives: by comparison of worst alternatives, best alterna-

tives, or by comparison based on stochastic dominance. We perform a similar exercise

for k-approval rules, where voters approve of a fixed number k of alternatives. These

results can be used to compare (k-)approval rules with respect to their manipulability.

Analytical results are obtained for the case of two voters, specifically, the values of k

for which the k-approval rule is minimally manipulable – has the smallest number of
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manipulable preference profiles – under the various preference extensions are deter-

mined. For the number of voters going to infinity, an asymptotic result is that the

k-approval rule with k around half the number of alternatives is minimally manipu-

lable among all scoring rules. Further results are obtained by simulation and indicate

that k-approval rules may improve on the approval rule as far as manipulability is

concerned.

In Chapter 3, we turn to collective decision problems with a finite number

of agents who have single-peaked preferences on the real line. H. Moulin (Public

Choice 35 (1980), 437-455) has characterized the class of unanimous and strategy-

proof deterministic rules in this framework. Here we focus on the probabilistic aspect

of the problem. A probabilistic decision scheme assigns a probability distribution over

the set of alternatives to every profile of reported preferences. Hereby we show that

any unanimous and strategy-proof probabilistic rule can be expressed as a probability

mixture, i.e., a convex combination of deterministic rules. Thus we characterize the

class of unanimous and strategy-proof probabilistic schemes as a closed and convex set

with the extreme points as deterministic rules. This characterization is of great use in

solving many other related problems such as finding the mechanism that maximizes

ex-ante total expected utility of all agents.

Chapter 4 deals with the characterization of the class of dominant-strategy

incentive-compatible (or strategy-proof) random social choice functions in the stan-

dard multi-dimensional voting model where voter preferences over the various dimen-

sions (or components) are separable when there are two voters. We show that these

social choice functions (which we call generalized random dictatorships) are induced

by probability distributions on voter sequences of length equal to the number of com-

ponents. They induce a fixed probability distribution on the product set of voter

peaks. The marginal probability distribution over every component is a random dic-

tatorship. Our results generalize the classic random dictatorship result in Gibbard

(1977b) and also show that the decomposability results for strategy-proof determin-
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istic social choice functions for multi-dimensional models with separable preferences

obtained in LeBreton and Sen (1999), do not extend straightforwardly to random

social choice functions.

The thesis concludes with Proper rationalizability (Schuhmacher (1999),

Asheim (2001)). Proper rationalizability is a concept in epistemic game theory that

is based on two assumptions: (1) every player is cautious, i.e., does not exclude any

opponent’s choice from consideration, and (2) every player respects the opponent’s

preferences, i.e., deems one opponent’s choice to be infinitely more likely than another

whenever he believes the opponent to prefer the one to the other. In this chapter, we

provide a new foundation for proper rationalizability, by assuming that players have

incomplete information about the opponents’ utilities. We show that, if the uncer-

tainty of each player about the opponents’ utilities vanishes gradually in some regular

manner, then the choices he can rationally make under common belief in rationality

are all properly rationalizable in the original game with no uncertainty about the

opponents’ utilities.
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CHAPTER 2

On the manipulability of approval voting and related scoring rules

1. Introduction

Approval voting is a well accepted voting procedure.1 In approval voting each

voter can approve of as many alternatives as he wants. It is well known (Brams and

Fishburn, 1983, and the references therein) that this procedure is strategy-proof (non-

manipulable) if preferences are dichotomous, that is, each voter distinguishes only

between a set of good and a set of bad alternatives. With more refined preferences,

however, strategy-proofness no longer holds.

In this chapter we study the manipulability of the approval (voting) rule and

of a related procedure called k-approval (voting) rule. In a k-approval rule each voter

approves of exactly k alternatives. This procedure is less flexible than the approval

rule – voters can provide less information about their preferences – but tends to be

also less manipulable, as we will argue. Therefore, k-approval rules may offer a good

compromise between the approval rule and scoring rules such as Borda count.

In Section 2 we introduce the approval rule and next we study its manip-

ulability. Since the approval rule (and also each k-approval rule) is a social choice

correspondence and can be multi-valued, we need to make assumptions about extend-

ing the preferences (weak orderings) of voters over alternatives to sets of alternatives.

We do this in three ways: by comparing the worst alternatives of a set, or by com-

paring the best alternatives of a set, or by comparing sets on the basis of stochastic

dominance using equal chances. In Section 3 we characterize the non-manipulable

preference profiles under approval voting for worst, best, and stochastic dominance

comparison. The special cases of strict preferences follow as corollaries. Strategy-

proofness under dichotomous preferences follows as a special case as well.

In Section 4 we characterize the non-manipulable profiles under k-approval

rules, again for worst, best, and stochastic dominance comparison. We also include a

brief consideration of a lexicographic refinement of worst and best comparison. For

1It is used, for instance, to select candidates for councils of scientific communities
such as the Society for Social Choice and Welfare and the Game Theory Society.
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technical reasons attention in Section 4 is restricted to strict preferences.

The main purpose of all these exercises is to compare the approval rule and

k-approval rules for different values of k with respect to manipulability and under

different assumptions about the voters’ preferences on sets of alternatives. This com-

parison is based on a simple measure, namely the number of manipulable preference

profiles. The implicit assumption is therefore that all profiles are equally likely. This

is called ‘impartial culture’ in the literature. Unfortunately, a complete analytical

comparison is out of the question due to the combinatorial complexity of the prob-

lem. For this reason, our comparative results are mainly based on simulations and,

thus, they are conjectures and suggestions rather than theorems. A selection of the

results of these simulations is presented in Section 5. They give rise to some prudent

conclusions concerning the manipulability of the approval and k-approval rules under

different assumptions on preference extensions. In particular, they give support to

the conjecture that k-approval rules for specific values of k may be less susceptible to

manipulation than the approval rule.

Nevertheless, we also present some analytical comparison results. In Section

4.4 we consider the two-voter case and compute the optimal k for different preference

extensions, that is, the value of k for which the k-approval rule is minimally manip-

ulable. For k = 1, the k-approval rule is just plurality voting. In the two-voter case,

this is non-manipulable (strategy-proof) under any reasonable preference extension,

including those considered in this chapter. Plurality voting, however, has a serious

drawback. If (the) two voters agree on a good second-ranked alternative but disagree

on the first, then under plurality voting this compromise is not chosen; it would be

chosen, however, under any other k-approval rule. Therefore, for each of the three

mentioned preference comparisons and for k �= 1 we have established the overall opti-

mal value of k, and the optimal value under the restriction k ≤ m/2, where m is the

total the number of alternatives. The latter restriction is justified by the desirable

property of ‘citizen sovereignty’: for each alternative there is a preference profile re-
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sulting in that alternative as the unique outcome. For 2 ≤ k ≤ m/2 we find k = 2 as

the optimal value in case of best or stochastic dominance comparison, and k ≈ √m

in case of worst comparison.

On the other extreme, in Section 4.6 we let the number of voters go to in-

finity and show that even among all scoring rules the k-approval rule with k ∈
{(m − 1)/2, (m + 1)/2} if m is odd, and with k = m/2 if m is even, is minimally

manipulable. Of course, this result should be interpreted with care, since the proba-

bility of manipulability by a single voter is very small anyway if the number of voters

is large. The basic intuition for this result is that the (statistical) variance in scores

is maximal for the mentioned value(s) of k, so that any single voter’s probability of

being able to change the outcome is minimal.

Related literature In most voting situations agents have the possibility to manipulate

the outcome of the vote by not voting according to their true preferences. The

classical theorem of Gibbard (1973) and Satterthwaite (1975) formalizes this fact for

social choice functions, which assign a unique alternative to every preference profile,

but it also holds for social choice correspondences under various assumptions on

preference extensions to sets (e.g., Barberà, Dutta, and Sen, 2001). The present

chapter belongs to the strand of literature, initiated by Kelly (1988, 1989), which

accepts this phenomenon as a matter of fact and looks for social choice rules which

are second best in this respect, i.e., least manipulable. Other references include

Fristrup and Keiding (1998) and Aleskerov and Kurbanov (1999). Maus et al. (2007)

contains a brief overview of this literature.

Of course, counting the non-manipulable profiles is just one way of measur-

ing the degree of (non-)manipulability of voting rules. Many other approaches are

possible (e.g., Saari (1990) or recently Campbell and Kelly, 2008). As already men-

tioned, our measure of non-manipulability reflects ‘impartial culture’: each prefer-

ence profile is implicitly regarded as equally likely. The characterizations of the sets

of non-manipulable profiles derived in this chapter, however, are also needed when
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considering ‘partial culture’.

Notation We denote the cardinality of a set D by |D|.
2. Approval Voting

The set of voters is N = {1, ..., n} with n ≥ 2 and the (finite) set of alternatives

is A with |A| = m ≥ 3. A preference is a weak ordering on A, i.e., a complete, reflexive,

and transitive binary relation on A. By W we denote the set of all preferences. A

preference profile w is a function from N to W , i.e., an element of WN . For a

preference profile w, w(i) is the preference of voter i ∈ N . For a non-empty subset

B of A, w(i)|B denotes the restriction of w(i) to the set B, i.e., w(i)|B = {(x, y) ∈
B × B | (x, y) ∈ w(i)}. Obviously, w(i)|A = w(i).

We next introduce some further notation. Let w be a preference profile and

i ∈ N . Let 1 ≤ � ≤ m and suppose there exists a set of alternatives B with |B| = �,

(x, y) ∈ w(i) and (y, x) /∈ w(i) for all x ∈ B and y ∈ A\B. Then we denote this set by

β�(w(i)). Observe that β�(w(i)) exists if and only if there are � alternatives strictly

preferred to the remaining m − � alternatives according to w(i); that is, β�(w(i))

contains only full indifference classes of w(i).

Also, for a subset B of A, by β(w(i)|B) we denote the set of best elements of

B according to w(i), that is, β(w(i)|B) = {x ∈ B | (x, y) ∈ w(i) for all y ∈ B}.
Similarly, ω(w(i)|B) denotes the set of worst elements of B according to w(i), that is,

ω(w(i)|B) = {x ∈ B | (y, x) ∈ w(i) for all y ∈ B}. The lower contour set of a ∈ A at

w(i) is the set L(a, w(i)) = {x ∈ A | (a, x) ∈ w(i)}. Observe that a ∈ L(a, w(i)) by

reflexivity of w(i).

In approval voting, each voter i ∈ N approves of k(i) alternatives, where

1 ≤ k(i) ≤ m is the choice of the voter. The outcome of the vote is the set of

those alternatives that receive the largest number of votes. (Observe that excluding

k(i) = 0 is without loss of generality since the option k(i) = m is available.) To

formalize this, a report of voter i is a pair r(i) = (w(i), k(i)) ∈ W × {1, . . . ,m} such

that βk(i)(w(i)) exists. This implies that if a voter approves of an alternative x he
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also has to approve of all alternatives which are indifferent or strictly preferred to x

according to w(i). By R we denote the set of all reports, and by RN the set of all

(report) profiles. We denote by

score(x, r) = |{i ∈ N | x ∈ βk(i)(w(i))}|

the number of voters who approve of alternative x ∈ A at profile r = (w, k) =

((w(i), k(i)))i∈N ∈ RN . The approval rule ϕ, defined by

ϕ(r) = {x ∈ A | score(x, r) ≥ score(y, r) for all y ∈ A}, r ∈ RN ,

assigns to each profile r the subset of alternatives with maximal score.

We need a few more notations. For r = (w, k) ∈ RN and i ∈ N , ϕ(r−i)

denotes the set of alternatives assigned by the approval rule to the restricted profile

r−i = (r1, ..., ri−1, ri+1, ..., rn) ∈ RN\{i} , that is,

ϕ(r−i) = {x ∈ A | score(x, r−i) ≥ score(y, r−i) for all y ∈ A} ,

where score(x, r−i) = |{j ∈ N \ {i} | x ∈ βk(j)(w(j))}|. Finally, for (any) a ∈ ϕ(r−i),

ϕ−(r−i) = {x ∈ A | score(x, r−i) = score(a, r−i)− 1}

is the (possibly empty) set of those alternatives that have score one less than the

elements of ϕ(r−i). We call the alternatives in ϕ(r−i) quasi-winners and those in

ϕ−(r−i) almost quasi-winners.2 These notations are convenient in view of the follow-

ing straightforward observation, which will be used throughout the next section:

ϕ(r) =

⎧⎨
⎩ ϕ(r−i) ∩ βk(i)(w(i)) if ϕ(r−i) ∩ βk(i)(w(i)) �= ∅,

ϕ(r−i) ∪ [ϕ−(r−i) ∩ βk(i)(w(i))] if ϕ(r−i) ∩ βk(i)(w(i)) = ∅.
(2.1)

In order to define (non-)manipulability of the approval rule at particular pro-

files we need to be able to extend individual preferences to preferences over non-empty

2Assuming that there is no confusion about the identity of the voter whose vote
is left out.
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subsets of alternatives. For a voter i in N and a preference w(i) ∈ W , we say that a

binary relation �w(i) on 2A \ {∅} extends w(i) if {x} �w(i) {y} ⇔ (x, y) ∈ w(i) holds

for all x, y ∈ A. We write B �w(i) C instead of (B,C) ∈�w(i). Also, 
w(i) and ∼w(i)

denote the asymmetric and symmetric parts of �w(i), respectively.

In this paper we will consider (three or even more) different ways to extend w(i)

over alternatives to a binary relation over non-empty sets of alternatives. Suppose

that �w(i) extends w(i) for all i ∈ N . For i ∈ N and r, s ∈ RN , we say that r

and s are i-deviations if r−i = s−i. In that case, clearly, ϕ (r−i) = ϕ (s−i) and

ϕ− (r−i) = ϕ− (s−i). The approval rule ϕ is manipulable by voter i at r = (w, k)

towards s if r and s are i-deviations and ϕ(s) 
w(i) ϕ(r). The approval rule ϕ is not

manipulable at r if for all voters i there is no i-deviation s such that ϕ is manipulable

by i at r towards s.

3. Manipulability of approval voting

The purpose of this section is to characterize the (report) profiles at which the

approval rule is not manipulable, for three different preference extensions.

3.1. Worst comparison

In this subsection we extend preferences to sets by considering worst alterna-

tives of those sets. Let i ∈ N and w(i) ∈ W , then we define the extension �w(i)

by

B �w(i) C ⇔ (x, y) ∈ w(i) for every x ∈ ω
(
w(i)|B

)
and y ∈ ω

(
w(i)|C

)
for all non-empty sets B,C ⊆ A. Thus, B is weakly preferred to C whenever every

worst element of B is (weakly) preferred, according to w(i), to every worst element

of C.

Theorem 3.1 Let r = (w, k) ∈ RN . The approval rule ϕ is not manipulable at r

under worst comparison if and only if for each voter i at least one of the following

two statements holds:

(a) ϕ (r−i) ∩ βk(i) (w (i)) �= ∅ and {x} ∼w(i) {y} for all x, y ∈ ϕ (r−i) ∩ βk(i) (w (i)).
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(b) {x} ∼w(i) {y} for all x, y ∈ ϕ (r−i).

In words, condition (a) requires that if among the quasi-winners there are alterna-

tives belonging to the k(i) highest ranked alternatives of voter i, then i is indifferent

between those alternatives; and (b) requires that voter i is indifferent between all

quasi-winners.

Proof of Theorem 3.3. For the if-part, let s be an i-deviation of r.

In case (a), it follows by (5.1) that ϕ (r) = ϕ (r−i) ∩ βk(i) (w (i)). By the

assumption in (a), ϕ (r) = β
(
w (i) |ϕ(r−i)

)
. Again by (5.1), ϕ (s) ∩ ϕ (r−i) �= ∅, so for

every x ∈ ϕ(r) = β
(
w (i) |ϕ(r−i)

)
it follows that {x} �w(i) ϕ (s). So, ϕ (r) �w(i) ϕ (s).

Now consider case (b) and assume ϕ (r−i) ∩ βk(i) (w (i)) = ∅ otherwise we are

done by (a). Then ϕ(r−i) ⊆ ϕ(r), so we have ω
(
w(i)|ϕ(r)

)
= ϕ(r−i). Since, by (5.1),

ϕ (s) ∩ ϕ (r−i) �= ∅, we have again ϕ (r) �w(i) ϕ (s).

For the only if-part, suppose that there is an voter i for whom (a) nor (b)

holds. It is sufficient to prove that ϕ is manipulable at profile r by voter i. Observe

that either there exist x, y ∈ ϕ (r−i)∩βk(i)(w (i)) such that {x} 
w(i) {y}, or ϕ (r−i)∩
βk(i) (w (i)) = ∅ and there exist x, y ∈ ϕ (r−i) such that {x} 
w(i) {y}. In both cases,

by (5.1), x, y ∈ ϕ (r). Now consider the report s (i) = (w′ (i) , 1) of voter i such that

β (w′ (i)) = {x}. Then, by (5.1) again, ϕ (s) = {x} 
w(i) ϕ (r). �

We now consider the subclass of strict of preferences. This will enable us to compare

approval voting to k-approval voting, which is studied in the next section.

3.1.1. Strict preferences. A preference w(i) is strict (or a linear ordering) if it is

antisymmetric, i.e., (x, y) ∈ w(i) implies (y, x) /∈ w(i) for all x, y ∈ A with x �= y. Let

P denote the set of all linear orderings on A, and S the set of all reports (w(i), k(i))

with w(i) ∈ P . The following result considers manipulability of the approval rule ϕ

when restricted to SN .
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Corollary 3.2 Let r = (w, k) ∈ SN . The approval rule ϕ, restricted to SN , is not

manipulable at r under worst comparison if and only if for each voter i at least one

of the following two statements holds:

(a) |ϕ (r−i) ∩ βk(i) (w (i)) | = 1.

(b) |ϕ (r−i)| = 1.

Proof. For the only-if direction, note that if voter i can manipulate via a preference

in W , then i can also manipulate by a strict preference, by strictifying the weak

preference in any arbitrary way. Thus, the only-if direction follows from Theorem

3.3. The if-direction is immediate from Theorem 3.3. �

3.2. Best comparison

In this subsection we extend preferences to sets by considering best alternatives

of those sets. Let i ∈ N and w(i) ∈ W , then we define the extension �w(i) by
3

B �w(i) C ⇔ (x, y) ∈ w(i) for every x ∈ β
(
w(i)|B

)
and y ∈ β

(
w(i)|C

)
for all non-empty sets B,C ⊆ A. Thus, B is weakly preferred to C whenever every

best element of B is (weakly) preferred, according to w(i), to every best element of

C.

Theorem 3.3 Let r = (w, k) ∈ RN . The approval rule ϕ is not manipulable at r

under best comparison if and only if for each voter i at least one of the following two

statements holds:

(a) (x, y) ∈ w(i) for all x ∈ β
(
w(i)|ϕ(r−i)

)
and all y ∈ ϕ−(r−i).

(b) ϕ(r−i) ∩ βk(i)(w(i)) = ∅ and ϕ−(r−i) ∩ βk(i)(w(i)) �= ∅.
3In order to avoid cumbersome notation we will use the same symbols for different

preference extensions in this paper.
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In words, condition (a) requires that any best alternative among the quasi-winners

is preferred by i over all almost quasi-winners; and (b) requires that none of the

quasi-winners is among his k (i) highest ranked alternatives, but some of the almost

quasi-winners are among his k (i) highest ranked alternatives.

Proof of Theorem 3.3. For the if-part, let s be an i-deviation of r.

In case (a), it follows by (5.1) that there exists x ∈ ϕ(r) with x ∈ β
(
w(i)|ϕ(r−i)

)
.

So by (a), {x} �w(i) {y} for all y ∈ ϕ(r−i) ∪ ϕ−(r−i). This implies ϕ (r) �w(i) ϕ (s).

In case (b), by (5.1), ϕ(r) = ϕ(r−i)∪
[
ϕ−(r−i) ∩ βk(i)(w(i))

]
. So ϕ(r) �w(i) {x}

for all x ∈ ϕ(r−i) ∪ ϕ−(r−i). This implies again ϕ (r) �w(i) ϕ (s).

For the only if-part, suppose that there is an voter i for whom (a) nor (b) holds.

It is sufficient to prove that ϕ is manipulable at profile r by voter i. Observe that

either (i) ϕ(r−i) ∩ βk(i)(w(i)) �= ∅ and there exists y ∈ ϕ−(r−i) such that {y} 
w(i)

β
(
w(i)|ϕ(r−i)

)
; or (ii) ϕ−(r−i)∩βk(i)(w(i)) = ∅ and there exists y ∈ ϕ−(r−i) such that

{y} 
w(i) β
(
w(i)|ϕ(r−i)

)
. Note that, in both cases, ϕ(r) ⊆ ϕ(r−i). For both cases,

consider the report s (i) = (w′ (i) , 1) of voter i such that β (w′ (i)) = {y}. Then by

(5.1), ϕ (s) = ϕ(r−i) ∪ {y}, which implies ϕ (s) 
w(i) ϕ (r). �

For strict preferences we have the following corollary. The proof is straightforward

and therefore omitted.

Corollary 3.4 Let r = (w, k) ∈ SN . The approval rule ϕ, restricted to SN , is not

manipulable at r under best comparison if and only if for each voter i at least one of

the following two statements holds:

(a) (x, y) ∈ w(i) for all y ∈ ϕ−(r−i), where {x} = β
(
w(i)|ϕ(r−i)

)
.

(b) ϕ(r−i) ∩ βk(i)(w(i)) = ∅ and ϕ−(r−i) ∩ βk(i)(w(i)) �= ∅.

3.3. Stochastic dominance comparison

In this subsection comparisons of sets of alternatives are based on stochastic

dominance. To formalize this we need some further notions. Let u be a function from
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A to R. Then u is said to be a utility function representing preference w(i) of voter

i, if for all alternatives x and y in A

(x, y) ∈ w(i) if and only if u(x) ≥ u(y) .

Let B and C be two nonempty subsets of alternatives. Voter i is said to prefer B to

C according to stochastic dominance at preference w(i), denoted as B �w(i) C, if

∑
a∈B

1

|B|u (a) ≥
∑
a∈C

1

|C|u (a) for every utility function u representing w (i) .

This preference extension4 is based on the idea that, if we attach equal probabilities

to the alternatives in each set, then the expected utility of the resulting lottery over

B should be at least as high as the expected utility of the resulting lottery over C,

for each utility function representing p(i). Clearly, and in contrast to worst and best

comparison in the preceding sections, this preference extension is not complete: many

sets are incomparable. Observe that our notion of manipulability implies that a voter

manages to obtain a preferred and thus comparable set.

In the following theorem we characterize the non-manipulable profiles under the

stochastic dominance preference extension. To understand the proof, it is sometimes

convenient to keep in mind the familiar characterization (or definition) of stochastic

dominance involving only probabilities. This characterization says that a lottery � is

preferred over another lottery �′ if it can be obtained by shifting probability in �′ to

preferred alternatives.

Theorem 3.5 Let r = (w, k) ∈ RN . The approval rule ϕ is not manipulable at r

under stochastic dominance if and only if for each voter i at least one of the following

three statements holds:

(a) ϕ (r−i) ⊆ [A\βk(i) (w (i))] and ϕ− (r−i) ∩ βk(i) (w (i)) �= ∅.
4The stochastic dominance criterion to compare sets has been used before, see e.g.

Barberà, Dutta and Sen (2001).

Thesis_Souvik_v03.pdf



14

(b) ϕ (r−i) ∩ βk(i) (w (i)) �= ∅ and {x} ∼w(i) {y} for all x, y ∈ ϕ (r−i) ∩ βk(i) (w (i))

and [A\βk(i) (w (i))] ∩ ϕ (r−i) �= ∅.

(c) {x} ∼w(i) {y} for all x, y ∈ ϕ (r−i) and ϕ− (r−i) ⊆ L (x, w (i)) for some x ∈
ϕ (r−i).

In words, these three cases can be described as follows. In case (a), no quasi-winner

but at least one almost quasi-winner belongs to the k(i) highest ranked alternatives.

In case (b) there are quasi-winners among the k (i) highest ranked alternatives and

voter i is indifferent between them, but there are also lower ranked quasi-winners. In

case (c) voter i is indifferent between the quasi-winners, and all almost quasi-winners

are lower ranked than some of the quasi-winners.

For a proof of this theorem see the Appendix.

The following corollary (proof omitted) applies to strict preferences.

Corollary 3.6 Let r = (w, k) ∈ SN . The approval rule ϕ, restricted to SN , is not

manipulable at r under stochastic dominance comparison if and only if for each voter

i at least one of the following three statements holds:

(a) ϕ (r−i) ⊆ [A\βk(i) (w (i))] and ϕ− (r−i) ∩ βk(i) (w (i)) �= ∅.

(b) ϕ (r−i) ∩ βk(i) (w (i)) = {x} for some x ∈ A and [A\βk(i) (w (i))] ∩ ϕ (r−i) �= ∅.

(c) ϕ (r−i) = {x} for some x ∈ A and ϕ− (r−i) ⊆ L (x, w (i)) .

3.4. Dichotomous preferences

A preference w(i) ∈ W is dichotomous if it has two indifference classes, i.e.,

there are disjoint subsets B1 �= ∅ and B2 of A such that A = B1 ∪ B2, (x, y), (y, x) ∈
w(i) for all x, y ∈ B1 and for all x, y ∈ B2, and (x, y) ∈ w(i), (y, x) /∈ w(i) for all

x ∈ B1 and y ∈ B2. Let D ⊆ W denote the subset of all dichotomous preferences.

A report r(i) = (w(i), k(i)) is in Rd if w(i) is dichotomous and k(i) is the cardinality
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of the higher indifference class of w(i), i.e., k(i) = |B1| in the notation above5. A

report r(i) ∈ Rd is called dichotomous as well. In the following corollary we show

that the approval rule is strategy-proof when restricted to dichotomous report profiles,

under all three preference extensions considered in this paper: this means that ϕ is

manipulable at no r ∈ RN
d under any of these preference extensions. This result

confirms well known results on approval voting, see Brams and Fishburn (1983) and

the references therein.

Corollary 3.7 The approval rule ϕ, restricted to RN
d , is strategy-proof under the

worst, best, and stochastic dominance preference extensions.

Proof. Let r ∈ RN
d , r(i) = (w(i), k(i)) for all i ∈ N .

Suppose that for some j ∈ N statement (b) in Theorem 3.3 does not hold.

Then there is x ∈ ϕ(r−j) with x ∈ βk(j)(w(j)), and, clearly, {x} ∼w(j) {y} for all

x, y ∈ ϕ (r−j) ∩ βk(j) (w (j)). Hence, (a) holds for j. Thus, ϕ is strategy-proof under

worst comparison.

Next, suppose that (a) in Theorem 3.3 does not hold for some i ∈ N . Then

there is a y ∈ ϕ−(r−i) with (y, x) ∈ w(i) and (x, y) /∈ w(i) for all x ∈ ϕ(r−i). This

implies that (b) holds for i. Thus, ϕ is strategy-proof under best comparison.

Finally, suppose (c) in Theorem 3.5 does not hold for some i ∈ N . There are

two cases. If the first statement in (c) does not hold, then ϕ(r−i) ∩ βk(i)(w(i)) �= ∅
and ϕ(r−i) ∩

[
A \ βk(i)(w(i))

] �= ∅, so that (b) holds. If the second statement in (c)

does not hold, then there is y ∈ ϕ−(r−i) with {y} 
w(i) {x} for some x ∈ ϕ(r−i). In

this case, if ϕ(r−i) ⊆
[
A \ βk(i)(w(i))

]
then (a) holds, and otherwise (b) holds. Thus,

ϕ is strategy-proof under stochastic dominance comparison. �

4. Manipulability of k-approval voting

A variation on approval voting is obtained by fixing the number of alternatives

that has to be approved by each voter. Specifically, for a profile p ∈ PN of strict

5Observe that, in this case, k(i) is uniquely determined by w(i).
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preferences, an alternative x ∈ A, and a number k ∈ {1, . . . ,m − 1}, we denote by

the k-score

scorek(x, p) = |{i ∈ N | x ∈ βk(p(i))}|

the total number of voters for who alternative x is among the k first ranked alterna-

tives at a profile p. The k-approval rule ϕk, defined by

ϕk(p) = {x ∈ A | scorek(x, p) ≥ scorek(y, p) for all y ∈ A}, p ∈ PN

assigns to each profile p the subset of alternatives with maximal k-score.6

Observe that it is, indeed, convenient to restrict attention to strict preferences,

since otherwise we might have to split up indifference classes due to the fact that the

number of alternatives to be approved is now fixed.

The sets ϕk(p−i) and ϕ−k (p−i) of quasi-winners and almost quasi-winners are

defined analogously as for the approval rule. Also, we have the following useful

observation:

ϕk(p) =

⎧⎪⎨
⎪⎩

ϕk(p−i) ∩ βk(p(i)) if ϕk(p−i) ∩ βk(p(i)) �= ∅,

ϕk(p−i) ∪
[
ϕ−k (p−i) ∩ βk(p(i))

]
if ϕk(p−i) ∩ βk(p(i)) = ∅,

(2.2)

for all p ∈ PN , i ∈ N , and 1 ≤ k ≤ m− 1.

In what follows we characterize the profiles of preferences at which the k-

approval rule is not manipulable for different preference extensions, starting with

worst, best, and stochastic dominance comparison. The definitions of (non)-

manipulability of ϕk at a profile p are completely analogous to those for the approval

rule.

4.1. Worst comparison

For the definition of the worst comparison preference extension see Section 3.1.

The following theorem characterizes all profiles at which the k-approval rule is

not manipulable under worst comparison.

6Unlike the approval rule the k-approval rule is a scoring rule, see Section 4.6.
Note, further, that the case k = m is uninteresting.
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Theorem 4.1 Let p ∈ PN . The k-approval rule ϕk is not manipulable at p under

worst comparison if and only if for each voter i at least one of the following three

statements holds:

(a) |ϕk(p−i) ∩ βk(p(i))| = 1.

(b) |ϕk(p−i)| = 1.

(c) A \ βk(p(i)) � ϕk(p−i).

In words, condition (a) requires that exactly one of that voter i’s k highest ranked

alternatives is a quasi-winner; (b) requires that there is a unique quasi-winner; and

(c) requires that the quasi-winners are a strict subset of the m − k lowest ranked

alternatives.

Proof of Theorem 4.1. For the if-part, let i ∈ N and let q be an i-deviation of p.

Assume that at least one of the cases (a), (b), and (c) holds. We show that voter i

cannot manipulate from p to q.

In case (a), let {x} = ϕk(p−i) ∩ βk(p(i)). By (2.2), ϕk(p) = {x}. Again by

(2.2), either ϕk(q) ⊆ ϕk(p−i) or ϕk(p−i) ⊆ ϕk(q). In the first case, if x ∈ ϕk(q), then

ϕk(p) = {x} �p(i) ϕk(q); if x /∈ ϕk(q) then ϕk(q) ⊆ A \ βk(p(i)) so that again ϕk(p) =

{x} �p(i) ϕk(q). In the second case, ϕk(p) = {x} ⊆ ϕk(q), hence ϕk(p) �p(i) ϕk(q).

In case (b), let ϕk(p−i) = {x} for some alternative x. If x ∈ βk(p(i)) we are

done by case (a). If x /∈ βk(p(i)) then by (2.2), ϕk(p) = {x} ∪ [
ϕ−k (p−i) ∩ βk(p(i))

]
and, thus, ω(p(i)|ϕk(p)) = x. Further, also by (2.2), ϕk(q) = {x} or ϕk(q) = {x} ∪[
ϕ−k (p−i) ∩ βk(q(i))

]
; in both cases, (x, ω(p(i)|ϕk(q))) ∈ p(i) and, thus, ϕk(p) �p(i)

ϕk(q).

In case (c), by (2.2) we have ϕk(p) = ϕk(p−i)∩ βk(p(i)) and ϕk(q) = ϕk(q−i)∩
βk(q(i)) = ϕk(p−i) ∩ βk(q(i)). If βk(q(i)) = βk(p(i)) then ϕk(p) = ϕk(q). Otherwise,

since A \ βk(p(i)) � ϕk(p−i), there is a y ∈ [A \ βk(p(i))] ∩ ϕk(q). Hence, ϕk(p) �p(i)

ϕk(q).
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For the only-if part, suppose that there is a voter i ∈ N such that none of the

three cases (a), (b), and (c) holds. It is sufficient to prove that ϕk is manipulable at

profile p by voter i. For this, in turn, it is sufficient to prove that i can manipulate

at profile p for the following two cases.

Case (i): ϕk(p−i) ∩ βk(p(i)) = ∅ and |ϕk(p−i)| ≥ 2.

Let b = β
(
p(i)|ϕk(p−i)

)
. Take q(i) such that the positions in p(i) of b and one

of the alternatives in βk(p(i)) are swapped. Then ϕk(q) = {b} and ϕk(q) 
p(i) ϕk(p),

hence voter i can manipulate at profile p towards q.

Case (ii): |ϕk(p−i) ∩ βk(p(i))| ≥ 2 and [A \ βk(p(i))] � ϕk(p−i).

Let w = ω
(
p(i)|ϕk(p−i)∩βk(p(i))

)
and y ∈ A \ [βk(p(i)) ∪ ϕk(p−i)]. Let q(i) be

obtained from p(i) by swapping the positions of the alternatives w and y. By (2.2),

ϕk(p) = ϕk(p−i) ∩ βk(p(i)) and ϕk(q) = ϕk(p−i) ∩ βk(p(i)) \ {w} it follows that

ϕk(q) 
p(i) ϕk(p), proving that ϕk is manipulable by voter i at profile p towards q.�

4.2. Best comparison

For the definition of the best comparison preference extension see Section 3.2.

The following theorem characterizes all profiles at which the k-approval rule is

not manipulable under best comparison.

Theorem 4.2 Let p ∈ PN . The k-approval scoring rule ϕk is not manipulable at p

under best comparison if and only if for each voter i at least one of the following three

statements holds:

(a)
(
β(p(i)|ϕk(p−i)), x

) ∈ p(i) for all x ∈ ϕ−k (p−i).

(b) ϕk(p−i) ∩ βk(p(i)) = ∅ and ϕ−k (p−i) ∩ βk(p(i)) �= ∅.

(c) |ϕk(p−i) ∩ βk(p(i))| > |A \ [βk(p(i)) ∪ ϕk(p−i)]|.

In words, condition (a) requires that the best alternative among the quasi-winners is

preferred over all almost quasi-winners; (b) requires that no quasi-winner is among his

k first ranked alternatives, but some of the almost quasi-winners are; and (c) requires

Thesis_Souvik_v03.pdf



19

that the number of the voter’s k highest ranked alternatives among the quasi-winners

is larger than the number of alternatives that are neither among his k highest ranked

nor among the quasi-winners.

Proof of Theorem 4.2. For the if-part, let q be an i-deviation of p. Note that

ϕk(p−i) = ϕk(q−i) and ϕ−k (p−i) = ϕ−k (q−i). Assume that at least one of the cases (a),

(b), and (c) holds. We show that voter i cannot manipulate from p to q.

In case (a), for both cases occurring in (2.2), we obtain β
(
p(i)|ϕk(p)

)
=

β
(
p(i)|ϕk(p−i)

)
. Since β

(
p(i)|ϕk(q)

) ∈ ϕk(p−i) ∪ ϕ−k (p−i) and by the assumption for

case (a), we conclude that ϕk(p) �p(i) ϕk(q).

In case (b), again using (2.2), we have ϕk(p) = ϕk(p−i) ∪ [ϕ−k (p−i) ∩ βk(p(i))],

hence β
(
p(i)|ϕk(p)

)
= β

(
p(i)|ϕ−k (p−i)∩βk(p(i))

)
; and ϕk(q) ∈ ϕk(p−i) ∪ [ϕ−k (p−i) ∩

βk(q(i))]. By the assumptions for this case, ϕk(p) �p(i) ϕk(q).

In case (c), it is easy to see that |A \ ϕk(p−i)| < |βk(p(i))| = k = |βk(q(i))|,
hence βk(q(i)) ∩ ϕk(p−i) �= ∅. Therefore, by (2.2) we have ϕk(p) = ϕk(p−i) ∩ βk(p(i))

and ϕk(q) = ϕk(p−i) ∩ βk(q(i)) ⊆ ϕk(p−i). Thus, also in this case ϕk(p) �p(i) ϕk(q).

For the only-if part, suppose that there is a voter i ∈ N such that none of the

three cases (a), (b), and (c) holds. It is sufficient to prove that ϕk is manipulable at

profile p by voter i. For this, in turn, it is sufficient to prove that i can manipulate

at profile p for the following two cases.

Case (i): There is an x ∈ ϕ−k (p−i) such that (x, b) ∈ p(i), where b =

β
(
ϕk(p−i), p(i)|ϕk(p−i)

)
; ϕk(p−i) ∩ βk(p(i)) �= ∅; and |ϕk(p−i) ∩ βk(p(i))| ≤ |A \

[βk(p(i)) ∪ ϕk(p−i)]|.
For this case, note that x ∈ βk(p(i)). By the assumptions for this case we can

take a q(i) ∈ P with x ∈ βk(q(i)) and ϕk(p−i)∩βk(q(i)) = ∅. Hence, x ∈ ϕk(q)\ϕk(p)

and, thus, ϕk(q) 
p(i) ϕk(p). So i can manipulate at profile p towards q.

Case (ii): There is an x ∈ ϕ−k (p−i) such that (x, b) ∈ p(i), where b =

β
(
p(i)|ϕk(p−i)

)
; and ϕ−k (p−i) ∩ βk(p(i)) = ∅.
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In this case, ϕk(p) = ϕk(p−i). Note that the sets βk(p(i)), ϕk(p−i), and ϕ−k (p−i)

are pairwise disjoint. So we can take q(i) ∈ P such that x ∈ βk(q(i)) and ϕk(p−i) ∩
βk(q(i)) = ∅. Then ϕk(q) ⊇ ϕk(p−i)∪{x}, so x ∈ ϕk(q)\ϕk(p), thus ϕk(q) 
p(i) ϕk(p)

and i can manipulate at profile p towards q. �

4.3. Stochastic dominance comparison

For the definition of the stochastic dominance comparison preference extension

see Section 3.3.

The following theorem characterizes all profiles at which the k-approval rule is

not manipulable under stochastic dominance comparison. Its proof is placed in the

Appendix.

Theorem 4.3 Let p ∈ PN . The k-approval scoring rule ϕk is not manipulable at p

under stochastic dominance comparison if and only if for all voters i at least one of

the following five statements holds:

(a) A \ βk(p(i)) � ϕk(p−i).

(b) ϕk(p−i) ⊆ [A \ βk(p(i))] and ϕ−k (p−i) ∩ βk(p(i)) �= ∅.

(c) ϕk(p−i) ∩ βk(p(i)) = {w} for some w ∈ A and [A \ βk(p(i))] ∩ ϕk(p−i) �= ∅.

(d) ϕk(p−i) = {w} for some w ∈ A and ϕ−k (p−i) ⊆ L(w, p(i)).

(e) ϕk(p−i) = {w} for some w ∈ A and |ϕ−k (p−i) ∩ L(w, p(i))| > m− k.

In words, these five cases can be described as follows. In case (a), at least one of voter

i’s k highest ranked alternatives and all of his lower ranked alternatives are quasi-

winners. In case (b), no quasi-winner but at least one almost quasi-winner is among

his k highest ranked alternatives. In case (c) there is a unique quasi-winner among

voter i’s k highest ranked alternatives, but there are lower ranked quasi-winners as

well. In case (d) there is a unique quasi-winner, which is preferred by i to all almost

quasi-winners. In case (e) there is again a unique quasi-winner, and among the almost
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quasi-winners there are more than m − k alternatives worse than the unique quasi-

winner.

4.4. The two-voter case

In this subsection we concentrate on the two-voter case and consider the fol-

lowing question: which k-approval rule is least (or minimally) manipulable, under

various assumptions on preference extensions as studied in the preceding sections?

We start with a simple theorem, which will be derived from Theorems 4.1, 4.2,

and 4.3, but also easily follows directly. It states that ϕ1 is strategy-proof, i.e., not

manipulable at any profile p.

Theorem 4.4 Let n = 2. Then the 1-approval rule ϕ1 is strategy-proof under worst,

best, and stochastic dominance comparison.

Proof. Let p = (p(1), p(2)) be a preference profile and let k = 1. Note that (b) in

Theorem 4.1 is always satisfied: this shows strategy-proofness under worst compari-

son. In Theorem 4.2, (a) reduces to β(p(1)) = β(p(2)) and (b) to β(p(1)) �= β(p(2)):

this shows strategy-proofness under best comparison. Finally, in Theorem 4.3, (b)

reduces to β(p(1)) �= β(p(2)) and (d) to β(p(1)) = β(p(2)): this shows strategy-

proofness under stochastic dominance comparison. �

This observation might make our quest for minimally manipulable rules futile,

were it not the case that the 1-approval rule (i.e., plurality rule) is not unambiguously

attractive. As an example, consider the case where voter 1 has preference p(1) :

xz . . . y and voter 2 has preference p(2) : yz . . . x (notations obvious). Then ϕ1(p) =

{x, y} but ϕ2(p) = {z}. So it seems that ϕ2 offers a better compromise in this case

than ϕ1.

Moreover, for more than two voters and apart from a few particular cases,

Theorem 4.4 no longer holds.

We will now consider the three cases (worst, best, and stochastic dominance

comparison) separately.
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4.4.1. Worst comparison for two voters. The non-manipulable profiles for two

voters under worst comparison are easily described using Theorem 4.1.

Corollary 4.5 Let n = 2 and 2 ≤ k < m. Let p ∈ P and consider worst comparison.

(a) If k ≤ (m + 1)/2, then ϕk is not manipulable at p if and only if |ϕk(p)| = 1,

or equivalently,

|βk(p(i)) ∩ βk(p(2))| = 1 .

(b) If k > (m+1)/2, then ϕk is not manipulable at p if and only if |ϕk(p)| = 2k−m,

or equivalently,

|βk(p(i)) ∩ βk(p(2))| = 2k −m .

Proof. Case (b) in Theorem 4.1 does not apply. If case (a) in Theorem 4.1 applies

then we have |βk(p(1)) ∩ βk(p(2))| = 1 (or, equivalently, |ϕk(p)| = 1), but this is

possible if and only if k ≤ (m + 1)/2. If case (c) in Theorem 4.1 applies then we

have |βk(p(1)) ∩ βk(p(2))| = 2k −m (or, equivalently, |ϕk(p)| = 2k −m), but this is

possible if and only if k ≥ (m+ 1)/2; but for k = (m+ 1)/2 we have 2k −m = 1, so

that we are back in case (a). �

Denote by η(m, k) the number of profiles (for two voters) at which ϕk is not

manipulable. By straightforward counting we obtain the following result for the

number of manipulable profiles for two voters under worst comparison.

Theorem 4.6 Let n = 2 and 2 ≤ k < m. Consider worst comparison. Then

η(m, k) =

⎧⎪⎨
⎪⎩

m! k
(
m−k
k−1

)
k! (m− k)! if k ≤ (m+ 1)/2

m!
(

k
2k−m

)
k! (m− k)! if k > (m+ 1)/2 .

From this theorem we derive the following corollary (see the Appendix for a

proof), which states some facts about k as far as non-manipulability is concerned.

(The exact meaning of k∗ being close to
√
m in part (a) is explained in the proof.)

Thesis_Souvik_v03.pdf



23

Corollary 4.7

(a) η(m, k) increases in k between 2 and an integer k∗, which is close to
√
m, and

decreases between k∗ and 1
2
(m− 1).

(b) η(m, k) increases between 1
2
(m− 1) and (m− 1).

(c) The (m− 1)-approval scoring rule is second best since η(m, (m− 1)) > η(m, k)

for all m− 1 > k ≥ 2.

The first-best value of k is k = 1 (Theorem 4.4), but ϕ1 has the drawback that

it does not give much opportunity for compromises. Among other values of k, the

value k = m − 1 is best. We might, however, prefer to have k ≤ (m + 1)/2, for the

following reason. Call ϕk citizen-sovereign if for every alternative x ∈ A there is a

profile p ∈ P with ϕk(p) = {x}. It is not difficult to see that ϕk is citizen-sovereign for

any number of voters n ≥ 2 if k ≤ (m+1)/2. For n = 2 and k > (m+1)/2, however,

ϕk is not citizen-sovereign. Hence, if we restrict ourselves to citizen-sovereign rules

with k ≥ 2, then the best rule is ϕk∗ , where k∗ is close to
√
m.

4.4.2. Best comparison for two voters. The non-manipulable profiles for two

voters under best comparison can be derived from Theorem 4.2.

Corollary 4.8 Let n = 2 and 2 ≤ k < m. Let p ∈ P and consider best comparison.

(a) If k ≤ m/2 then ϕk is not manipulable at p ∈ P if and only if either

β(p(1)) ∈ βk(p(2)) and β(p(2)) ∈ βk(p(1))

or

βk(p(1)) ∩ βk(p(2)) = ∅ .

(b) If k > m/2 then ϕk is not manipulable at any p ∈ P .
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Proof. If k > m/2 then case (c) in Theorem 4.2 applies to all p ∈ P , and if k ≤ m/2

then case (c) applies to no p ∈ P . This implies part (b) of the corollary, and it also

implies that for k ≤ m/2 we only have to consider cases (a) and (b) in Theorem 4.2.

It is easily seen that these cases result in the two cases in part (a) of the corollary.�

The number of non-manipulable profiles η(m, k) if k ≤ m/2 is computed in

the following theorem.

Theorem 4.9 Let n = 2 and 2 ≤ k ≤ m/2. Consider best comparison. Then

η(m, k) = m! (m− 2)! (k − 1)2 +m! (m− 1)! +m! [(m− k)!]2/(m− 2k)! .

Proof. The first case in (a) in Corollary 4.8 with β(p(1)) �= β(p(2)) results in

m! (k − 1)

(
m− 2

k − 2

)
(k − 1)! (m− k)!

different non-manipulable profiles. This yields the first term of η(m, k) in the theorem.

If β(p(1)) = β(p(2)) then this number is simply equal to m! (m − 1)!, which yields

the second term. The second case in (a) in Corollary 4.8 results in

m!

(
m− k

k

)
k! (m− k)!

different non-manipulable profiles, which simplifies to the third term for η(m, k) in

the theorem. �

If we require k �= 1 and citizen-sovereignty, i.e., k ≤ m/2, then the optimal

value of k with respect to non-manipulability, i.e., the value of k that maximizes

η(m, k), is equal to 2.

To see this, note that by Theorem 4.9 and some elementary calculations we

have for 2 < k ≤ m
2
:

η(m, 2) > η(m, k)

⇔ (m− 2)(m− 3) > k(k − 2) +

k factors︷ ︸︸ ︷
(m− k)(m− k − 1) · . . . · (m− 2k + 1)

(m− 2)(m− 3) · . . . · (m− k + 1)︸ ︷︷ ︸
k − 2 factors

.
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Since k > 2 it is therefore sufficient to prove that

(m− 2)(m− 3) > k(k − 2) + (m− 2k + 2)(m− 2k + 1) .

This simplifies to (4k − 8)m > 5k2 − 8k − 4. Since m ≥ 2k, it is sufficient to show

that 3k2 − 8k + 4 > 0, which indeed holds for k > 2.

4.4.3. Stochastic dominance comparison for two voters. The non-manipulable

profiles for two voters under stochastic dominance comparison can be derived from

Theorem 4.3.

Corollary 4.10 Let n = 2 and 2 ≤ k < m. Let p ∈ P and consider stochastic

dominance comparison. Then ϕk is not manipulable at p if and only if at least one

of the following holds.

(a) βk(p(1)) ∩ βk(p(2)) = ∅.

(b) |βk(p(1)) ∩ βk(p(2))| = 1.

(c) βk(p(1)) ∩ βk(p(2)) �= ∅ and [A \ βk(p(1))] ∩ [A \ βk(p(2))] = ∅.

Proof. For n = 2 and k ≥ 2 cases (d) and (e) in Theorem 4.3 are not possible. Case

(c) in Theorem 4.3 reduces to case (b) above, and case (a) in Theorem 4.3 reduces to

case (c) above. Finally, case (b) in the theorem reduces to case (a) above. �

From this description we can again derive the number of manipulable profiles

η(m, k).

Theorem 4.11 Let n = 2, k ≥ 2, and consider stochastic dominance comparison.

(a) If k ≤ m/2 then

η(m, k) = m! [(m− k)!]2/(m− 2k)! +m! k2 [(m− k)!]2/(m− 2k + 1)! .

(b) If k > m/2 then

η(m, k) = m! [k!]2/(2k −m)! .
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Proof. If k ≤ m/2 then (c) in Corollary 4.10 is not possible, and cases (a) and (b)

in the corollary are mutually exclusive. In case (a) of Corollary 4.10 there are

m!

(
m− k

k

)
k! (m− k)!

non-manipulable profiles, resulting in the first term for η(m, k), and in case (b) of the

corollary there are

m! k

(
m− k

k − 1

)
k! (m− k)!

non-manipulable profiles, resulting in the second term for η(m, k).

If k > m/2 then case (a) of Corollary 4.10 is not possible, and (b) is a special

case of (c). For the latter case, we just have to count the number of profiles for which

[A \ βk(p(1))] ∩ [A \ βk(p(2))] = ∅, since the other condition is always fulfilled. This

number is equal to

m!

(
k

m− k

)
k! (m− k)!

which is equal to m! [k!]2/(2k −m)! . �

About the value of k that maximizes η(m, k), so the value of k that is optimal

with respect to non-manipulability, we can say the following.

1. For 2 ≤ k ≤ m
2
, the number of non-manipulable profiles decreases with k, and

thus k = 2 is optimal.

2. For m
2
< k ≤ m − 1, the number of non-manipulable profiles increases with k,

and thus k = m− 1 is optimal.

3. η(m, 2) > η(m,m− 1) for m ≥ 4, so k = 2 is the overall optimal value between

2 and m− 1.

To prove these statements, first assume k ≤ m
2
. Then, using Theorem 4.11(a)

and simplifying, we derive

η(m, k + 1) < η(m, k)⇔ 3k2 − 2km− 1 < 0 ,
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and it is easily seen that the right hand side holds for all 2 ≤ k ≤ m
2
. Next, assume

m
2
< k ≤ m− 1. Then, using Theorem 4.11(b) and simplifying, we derive

η(m, k + 1) > η(m, k)⇔ 3k2 + k(4− 4m) +m2 − 3m+ 1 < 0 .

The roots of the quadratic expression in k at the right hand side are 2
3
(m − 1) ±

1
3

√
m2 +m+ 1; the smaller root is smaller than m

2
, whereas the larger root is larger

than m − 1. Thus, the right hand side holds for all m
2

< k ≤ m − 1. Finally, by

Theorem 4.11 again,

η(m, 2) > η(m,m− 1)⇔ m > 3 ,

so that k = 2 is the overall optimal value of k for 2 ≤ k ≤ m− 1.

4.5. Lexicographic worst and best comparison

In this subsection we briefly consider a natural extension of worst and best

comparison, namely lexicographic worst and best comparison. These preference ex-

tensions to sets are given by the following recursive definition. For two subsets B and

C of alternatives, we say that B is (weakly) preferred to C under lexicographic worst

comparison by voter i with preference p(i) if

1. C = ∅, or

2. B and C are non-empty and
(
ω(p(i)|B), ω(p(i)|C)

) ∈ p(i), or

3. ω(p(i)|B) = ω(p(i)|C) =: w and B \ {w} is preferred to C \ {w} under lexico-

graphic worst comparison by voter i with preference p(i).

The definition for lexicographic best comparison is obtained simply by replac-

ing the worst alternative by the best alternative, i.e., by replacing ω(·) by β(·). Thus,
under lexicographic worst comparison a voter first considers the worst elements of B

and C. If these are different, then he prefers the set with the better worst element.

Otherwise, the voter considers the second worst elements. If these are different, then

Thesis_Souvik_v03.pdf



28

he prefers the set with the better second worst element. Otherwise, he considers the

third worst elements, etc. Similarly, of course, for lexicographic best comparison.

Complete characterizations of the non-manipulable profiles for both lexico-

graphic worst and lexicographic best comparison can be given but are rather technical

(even more so than for stochastic dominance comparison) and therefore not included.

Note that any profile that is manipulable under worst [best] comparison is

also manipulable under lexicographic worst [best] comparison. Hence, the set of non-

manipulable profiles under lexicographic worst [best] comparison is always a subset

of the set of non-manipulable profiles under worst [best] comparison. It is not very

difficult to check (we omit the proof for the sake of briefness) that all the profiles

listed in Corollary 2.3, that is, all two-voter profiles that are non-manipulable under

worst comparison, are also non-manipulable under lexicographic worst comparison,

so that in this case considering lexicographic worst comparison instead of just worst

comparison does not make any difference. The non-manipulable profiles coincide, and

the optimal value of k as far as non-manipulability is concerned, is the same as in

Section 4.4.1.

For two voters and lexicographic best comparison the situation is different and

the set of non-manipulable profiles is a strict subset of the set of non-manipulable

profiles under best comparison, that is, the set of profiles described in Corollary 4.8.

To be precise, we have the following result, which can be derived from Corollary 4.8

(the proof is again left to the reader).

Corollary 4.12 Let n = 2 and 2 ≤ k < m. Let p ∈ P and consider lexicographic

best comparison.

(a) If k ≤ m/2 then ϕk is not manipulable at p ∈ P if and only if either

{β(p(1))} = {β(p(2))} = βk(p(1)) ∩ βk(p(1))

or

βk(p(1)) ∩ βk(p(2)) = ∅ .
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(b) If k > m/2 then ϕk is not manipulable at any p ∈ P .

In this case, the total number of non-manipulable profiles for 2 ≤ k ≤ m/2 is

equal to

η(m, k) =
m! [(m− k)!]2 (m− 2k + 2)

(m− 2k + 1)!

and this number is decreasing in k, so that k = 2 is the value of k that minimizes

manipulability subject to 2 ≤ k ≤ m/2, just as in the best comparison case. The

proofs of these facts are somewhat simpler than for the best comparison case. For

the sake of briefness we omit them.

4.6. An asymptotic result

We start with defining the class of all scoring rules. A (normalized) scoring

vector is a vector s = (s1, s2, . . . , sm) ∈ Rm with 1 = s1 ≥ s2 ≥ . . . ≥ sm = 0. For

a preference π ∈ P and an alternative x ∈ A let t(π, x) denote the rank of x in the

preference π, i.e., t(π, x) = k where k = 1 if {x} = β(π) and {x} = βk(π) \ βk−1(π)

otherwise.

For a scoring vector s, a profile p ∈ PN , and an alternative x ∈ A, we denote

by the s-score

scores(x, p) =
∑
i∈N

st(p(i),x)

the total score that x obtains under profile p and score vector s. The scoring rule

with scoring vector s is defined by

ϕs(p) = {x ∈ A | scores(x, p) ≥ scores(y, p) for all y ∈ A}, p ∈ PN .

Clearly, a k-approval rule is a scoring rule with scoring vector s such that s1 = . . . =

sk = 1 and sk+1 = . . . = sm = 0.

Now, in what follows, we fix the number of alternatives m and let the number

of voters go to infinity. We will show, formally, that then any two scoring rules lead

to the same expected values of the highest score, second highest score, and so on, up

to a multiplicative constant proportional to the standard deviations of the scoring
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vectors: the higher this standard deviation the larger the differences between the

expected scores. Since the standard deviation is maximal for k-approval rules with

k around m/2, we can conclude by the law of large numbers that the proportion of

manipulable profiles is smallest for this rule.7

In order to derive the announced result, assume that voter preferences are

drawn from the uniform distribution over P – that is, according to ‘impartial culture’.

Let Y = (Yπ)π∈P denote the random vector giving the numbers of voters for each

preference (so
∑

π∈P Yπ = n). Then Y has a multinomial distribution with mean

(n/m!)1, where 1 is a vector with all entries equal to 1. Write A = {x1, . . . , xm},
then for a scoring vector s the random vector Y gives rise to a random vector of scores

Xs = (Xs
1 , . . . , X

s
m) where Xs

j =
∑

π∈P Yπst(π,xj) for j = 1, . . . ,m. Let

σ(s) =

√
s21 + . . .+ s2m

m
− s̄2

denote the standard deviation of the scoring vector s, where s̄ = (s1 + . . . + sm)/m

is the mean of s. Proposition 2 in Pritchard and Wilson (2009) asserts that (Xs −
ns̄1)/

√
n converges in distribution to Zs := σ(s)

(
m

m−1
)1/2

(Z − Z̄1), where Z =

(Z1, . . . , Zm) is a vector of independent standard normal random variables and Z̄ =

(1/m)
∑m

j=1 Zj. In words, this means that the limit distributions of the vectors of

normalized random variables Xs differ only in a multiplicative constant, namely the

standard deviation σ(s). This implies Zs = (σ(s)/σ(s′))Zs′ for any two scoring

vectors s and s′. In particular, this also holds for the associated order statistics

(Zs
(1), . . . , Z

s
(m)) and (Zs′

(1), . . . , Z
s′
(m)), with Zs

(1) and Zs′
(1) being the (limit) distributions

of the highest scores. As a consequence we obtain the following proposition.

Proposition 4.13 For all scoring vectors s and s′,

E[Zs
(j)]− E[Zs

(j+1)] = (σ(s)/σ(s′))
(
E[Zs′

(j)]− E[Zs′
(j+1)]

)
for all j = 1, . . . ,m− 1, where E denotes the expectation operator.

7We thank Eric Beutner (Maastricht University) for helpful discussions on this
topic.
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Proposition 2.1 implies that the difference in expected value between any two

consecutive scores is largest for rules based on scoring vectors with maximal standard

deviation. Since the vectors of random variables Zs have the same distributions up

to these standard deviations of the score vectors, and taking into account that the

probability of all alternatives having distinct scores converges to 1 if the number of

voters goes to infinity8, we have by the law of large numbers that scoring rules ϕs with

maximal standard deviation σ(s) have the smallest proportion of manipulable profiles.

The following result, of which for completeness a proof is given in the Appendix, then

implies that the k-approval rule with k around m/2 is least manipulable if the number

of voters becomes large.

Proposition 4.14 Among all scoring vectors s, σ(s) is maximal if and only if s1 =

. . . = sk = 1 and sk+1 = . . . = sm = 0, where k = m/2 if m is even and k ∈
{(m− 1)/2, (m+ 1)/2} if m is odd.

For ease of reference we formulate the main result of this subsection as a

corollary.

Corollary 4.15 Let k∗ denote the value(s) of k in Proposition 2.2 and let s be an

arbitrary scoring vector unequal to the scoring vector associated with k∗. Then for n

sufficiently large the proportion of manipulable profiles under ϕk∗ is smaller than the

proportion of manipulable profiles under ϕs.

This asymptotic result should be taken with some care, since the probability

of being able to manipulate becomes very small if the number of voters grows, and

so we are comparing small numbers. On the other hand there is some evidence that

already for a relatively small number of voters the k-approval rule with k close to m/2

performs best, at least among the k-approval rules. See Table 3 in the next section.

8This is Proposition 3 in Pritchard and Wilson, 2009.
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5. Some simulation results

Since general comparisons between the approval rule and k-approval rules are

complex and hard to obtain, we present here some results of simulations.9

Table 1 gives the approximate percentages of non-manipulable profiles for the

approval rule with 3–10 alternatives and 2, 3, 6, and 10 voters, based on 1,00,000

trials. While the number of trials is relatively low, we nevertheless think that the

numbers in the table give reliable impressions.

m 3 4 5 6 7 8 9 10

n = 2 worst comp 56 45 38 33 30 27 25 23

best comp 65 59 55 52 49 48 46 45

stoch comp 41 37 34 31 30 28 27 25

n = 3 worst comp 57 49 44 41 38 36 34 32

best comp 56 47 41 38 34 32 30 28

stoch comp 25 20 17 16 15 14 14 13

n = 6 worst comp 67 61 57 54 52 50 48 47

best comp 51 40 33 29 25 22 20 18

stoch comp 28 20 16 13 11 10 09 08

n = 10 worst comp 73 69 65 62 60 59 57 56

best comp 54 43 37 32 28 25 23 21

stoch comp 35 27 22 19 16 15 13 12

Table 1: Approximate percentages of non-manipulable preference profiles for the approval

rule, based on 1,00,000 trials.

Some conclusions can be drawn from this table. Clearly, the possibility of manip-

ulation increases with the number of alternatives. For more than two voters ma-

9We thank Bram Driesen for doing these simulations (with Matlab). They are
based on randomly drawing profiles and checking for non-manipulability using the
characterizations in Sections 3 and 4.
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nipulability also increases from worst comparison to best comparison and from best

comparison to stochastic dominance comparison. This is not entirely intuitive at first

glance. One might expect that many profiles that are manipulable under stochastic

comparison are also manipulable under worst and best comparison, since in order to

improve under stochastic comparison a necessary condition is that the worst and best

alternatives of a set should not decrease in preference. Thus, to explain the results

in Table 1, it seems to be the case that manipulation under stochastic comparison is

often performed by improving intermediate alternatives. Moreover, apparently this

kind of manipulation can often lead to comparable sets, in spite of the fact that

stochastic dominance preference is not complete.

As a final comment on Table 1, under worst comparison manipulability seems

to decrease with the number of voters, but under the other two preference extensions

manipulability first seems to increase and then to decrease again.

In Table 2 we present the results for k-approval rules for 6 alternatives; 2, 3,

6, or 10 voters; and again based on 1,00,000 trials. For comparison the corresponding

results for the approval rule from Table 1 are copied in Table 2.
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(m = 6) k 1 2 3 4 5 Approval rule

n = 2 worst comp 100 54 45 40 83 33

best comp 100 60 35 100 100 52

stoch comp 100 93 50 40 83 31

n = 3 worst comp 44 57 61 32 56 41

best comp 100 63 51 48 100 38

stoch comp 100 30 54 35 56 16

n = 6 worst comp 60 64 60 51 25 54

best comp 50 59 50 46 78 29

stoch comp 34 41 24 16 16 13

n = 10 worst comp 69 70 68 64 56 62

best comp 45 56 52 40 51 32

stoch comp 29 36 31 27 07 19

Table 2: Approximate percentages of non-manipulable preference profiles for k-approval

rules and the approval rule, m = 6, based on 1,00,000 trials. (The percentages equal

to 100 are exact and reflect strategy-proofness in the involved cases.)

Again we see that for relatively high numbers of voters manipulability seems to in-

crease from worst to best and from best to stochastic dominance comparison. Further,

for more than two voters the approval rule is outperformed by (at least) the 3-approval

rule as far as non-manipulability is concerned.

The final simulation results we present are collected in Table 3. This table

gives the percentages of non-manipulable preference profiles for k-approval rules with

k odd and the approval rule for 10 alternatives, 25 agents, based on 1,000,000 trials.

We give more accurate numbers than in the other tables since some differences are

very small. A prudent observation is that the 5-approval rule performs best with

respect to (non-)manipulability among the odd values of k (except for the case k = 9
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and best comparison) – in line with the asymptotic result in Section 4.6. Also, it

performs better than the approval rule.

m = 10 k 1 3 5 7 9 Approval rule

n = 25 worst comp 67.1 74.4 74.5 70.2 48.8 69.5

best comp 33.5 49.9 50.2 40.9 54.8 37.6

stoch comp 26.6 37.6 37.8 29.7 03.7 29.1

Table 3: Percentages of non-manipulable preference profiles for k-approval rules and the

approval rule, m = 10, n = 25, based on 1,000,000 trials.

6. Concluding remarks

We have characterized all (non-)manipulable preference profiles for the ap-

proval rule and for k-approval rules. Our simulation results indicate that k-approval

voting may be a good substitute for approval voting. It preserves the simplicity of the

voting procedure characteristic for approval voting but tends to be less manipulable.

Asymptotically, the k-approval rule with k close to half of the number of alterna-

tives is even best among all scoring rules in this respect. This result is in line with

Pritchard and Wilson (2009), although their context is somewhat different.

Our characterizations are also useful for studying ‘partial culture’ voting, where

uniform distribution of preference profiles is not assumed.
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CHAPTER 3

Characterization of probabilistic rules on single peaked domain

1. Introduction

In modern age the study of probabilistic schemes gained a lot of interest in

the literature. However, in the classical model of social choice with all preferences

admissible, only strategy-proof rule is a so-called random dictatorship where each

agent has an equal chance of being the dictator. Gibbard (1973), Gibbard (1977a)

first studied strategy-proof probabilistic schemes and characterized random dictator-

ships as the only strategy-proof and unanimous rule. This arises the natural question

as to whether in a more restricted context probabilistic schemes other than random

dictatorships can be strategy-proof. For the deterministic setting the impossibility

(i.e., dictatorship) results of Gibbard (1973) and Satterthwaite (1975) can be avoided

by restricting the set of preferences and at the same time adapting the domain of

alternatives. In particular, Moulin (1980) characterizes classes of schemes on the real

line that are non-dictatorial and strategy-proof with respect to single-peaked prefer-

ences. These results have later been extended in several directions by many authors.

In this chapter, we adopt the Moulin framework but consider probabilistic rules. Such

a rule assigns to every profile of reported individual preferences a probability distri-

bution over the real line. The main property that we impose is strategy-proofness.

In order to formulate this condition the preferences of the agents must be extended

to probability distributions. This will be done as follows. For a given single-peaked

preference an agent (weakly) prefers one probability distribution over another if the

former assigns at least as much probability to any upper contour set of the prefer-

ence as the latter. Here, an upper contour set is an interval around the peak of the

preference consisting of those points that are weakly preferred to a given outcome. A

probabilistic rule is strategy-proof if honest reporting always results in a probability

distribution that (weakly) dominates, in the sense just described, any probability dis-

tribution brought about by lying. Some references from the literature on probabilistic

social choice mechanisms are Barbera et al. (1998), Dutta (1980), and Bandyopad-

hyay et al. (1982) - but this list is not exhaustive. Recently, probabilistic mechanisms
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in private goods contexts have been studied by Sasaki (1997), Abdulkadiroğlu and

Sònmez (1998), Crès and Moulin (2001), and Bogomolnaia and Moulin (2001).

2. Model and main results

Let N = {1, . . . , n}, n ≥ 2, denote the set of agents, who collectively have to

choose an element from a set A of alternatives. In this paper A is either the interval

[0, 1] or a finite subset of it containing both 0 and 1. A single-peaked preference

of agent i on A is a complete, reflexive and transitive binary relation Ri on A for

which there is a number p(Ri) ∈ A, the peak of Ri, such that for all x, y ∈ A: if

x < y ≤ p(Ri) or x > y ≥ p(Ri) then yPix, where Pi denotes the asymmetric part

of Ri. Let R denote the set of all single-peaked preferences on A. Then RN is the

set of all single-peaked preference profiles. For R ∈ RN , p(R) = (p(R1), . . . , p(Rn))

is the vector of peaks, p(R) = min{p(Ri) | i ∈ N}, p(R) = max{p(Ri) | i ∈ N}. For

S ⊆ N , RS = (Ri)i∈S is the restriction of the profile R to S. For i ∈ N , profiles

R,R′ ∈ RN are i-deviations if RN\{i} = R′N\{i}.

A deterministic rule is a function ϕ : RN → A. A probabilistic rule is a

function Φ that assigns to each profile R ∈ RN a (probability) distribution over A,

i.e., a probability measure on the Borel σ-algebra B of subsets of A. (If A is finite

then this is the set of all subsets of A.)

A deterministic rule can be seen as a probabilistic rule that selects for each

R ∈ RN a distribution placing probability 1 on a single alternative.

For x ∈ A and Ri ∈ R, the upper contour set of Ri at x is the set B (x,Ri) =

{y ∈ A | yRix}. Single-peakedness of Ri implies that upper contour sets are closed

intervals.

Preferences on A are extended to distributions on A as follows. For Ri ∈ R and

two distributions Q,Q′ over A, Q is (weakly) preferred to Q′ under Ri if Q assigns to

each upper contour set of Ri at least the probability that is assigned by Q′ to this set.

Abusing notation we use the same symbols to denote preferences over distributions

and preferences over alternatives. Formally we have:
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Ordinal extension of preferences For all Ri ∈ R and all distributions Q,Q′ over

A, QRiQ
′ if and only if

for all x ∈ A, Q(B(x,Ri)) ≥ Q′(B(x,Ri)). (3.1)

Furthermore, QPiQ
′ if and only if

QRiQ
′ and for some y ∈ A, Q(B(y, Ri)) > Q′(B(y, Ri)). (3.2)

Inequality (5.1) says that Q stochastically dominates Q′, given the ordering Ri

on A. Clearly, this extension is not complete over the set of all distributions over A.

Note, however, that for preferences over distributions completeness is a demanding

requirement.

We now define the main properties of interest in this paper for a probabilistic

rule Φ. Clearly, these properties extend to deterministic rules in a straightforward

manner.

Strategy-proofness Φ (R)RiΦ
(
R
)
for all i ∈ N and all i-deviations R,R ∈ RN .

Strategy-proofness says that reporting a different preference results in a

stochastically (weakly) dominated distribution. It implies that for any von Neumann-

Morgenstern utility function representing an agent’s preference relation, his expected

utility is maximal when he reports his true preference relation.

Unanimity Φ (R) ({p (R1)}) = 1 for every R ∈ RN with Ri = Rj for all i, j ∈ N .

For every R ∈ RN and every permutation π of N let Rπ denote the profile(
Rπ(i)

)
i∈N .

Anonymity Φ (R) = Φ (Rπ) for every R ∈ RN and every permutation π of N .

Peaks-onliness Φ (R) = Φ
(
R
)
for all R,R ∈ RN with p(R) = p(R).

Uncompromisingness Φ (R) (X) = Φ
(
R
)
(X) for all X ∈ B, all i ∈ N and all

i-deviations R,R ∈ RN such that X ∩ [p (Ri) , p
(
Ri

)
] = ∅.
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The following proposition summarizes some results from Ehlers et al. (2002).

In that paper the set of alternatives is the real line but it is not difficult to adapt

the results to our framework where A is either [0, 1] or a finite subset of it containing

both 0 and 1.

Proposition 2.1 Let Φ be a probabilistic rule. Then Φ is strategy-proof and peaks-

only if and only if it is uncompromising. If Φ is unanimous and strategy-proof then

it is peaks-only.

In Ehlers et al. (2002) all uncompromising probabilistic rules are characterized.

For R ∈ RN , let p1(R), . . . , pk(R), k ≤ n, denote the different peaks of R such that

for all � ∈ {1, . . . , k − 1}, p�(R) < p�+1(R). Thus, p1(R) = p(R), pk(R) = p(R), and

{p�(R) | � ∈ {1, . . . , k}} = {p(Ri) | i ∈ N}. Let S� denote the set of agents whose

peaks are smaller than or equal to p�(R). Thus, S1 � S2 � . . . � Sk and Sk = N .

Let S0 = ∅.
For every S ∈ 2N , let DS be a probability distribution over A. We call Δ =

(DS)S∈2N a collection of fixed probabilistic ballots if the following holds:

DT ([0, x]) ≥ DS([0, x[) for all S ⊆ T ⊆ N and x ∈ A . (3.3)

For X ⊆ A denote by 1X the indicator function of X, i.e., 1X(y) = 1 if y ∈ X

and 1X(y) = 0 if y /∈ X, for all y ∈ A.

Fixed probabilistic ballots rule The probabilistic rule Φ is a fixed probabilistic

ballots rule if there is a collection Δ = (DS)S∈2N of fixed probabilistic ballots such

that, for all R ∈ RN and all X ∈ B

Φ(R)(X) = D∅
(
X ∩ [0, p(R)[

)
+DN (X∩ ]p(R), 1] )

+
k−1∑
�=1

DS�
(X∩ ]p� (R) , p�+1 (R) [ )

+
k∑

�=1

1X(p�(R))
(
DS�

( [0, p�(R)] )−DS�−1
( [0, p�(R)[ )

)
. (3.4)
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In this case we denote Φ by ΦΔ.

This definition says that on the interval [0, p(R)[ = [0, p1(R)[ the distribution

Φ(R) coincides with DS0 = D∅; on ]p�(R), p�+1(R)[ it coincides with DS�
, for 1 ≤

� ≤ k − 1; and on ]p(R), 1] = ]pk(R), 1] it coincides with DSk
= DN . To p�(R) it

assigns the probability DS�
([0, p�]) − DS�−1

([0, p�[) for 1 ≤ � ≤ k; these numbers are

nonnegative by (3.3). It is straightforward to check that Φ(R)(A) = 1, so that Φ(R)

is indeed a probability measure.

Also the following result is proved in Ehlers et al. (2002).

Proposition 2.2 The probabilistic rule Φ is uncompromising if and only if Φ = ΦΔ

for some collection of fixed probabilistic ballots Δ = (DS)S∈2N . In that case,

• Δ is uniquely determined;

• if Φ is anonymous, then DS = DT whenever |S| = |T |;

• if Φ is unanimous, then D∅({1}) = DN({0}) = 1.

In the special case that ΦΔ(R) is degenerate for all R ∈ RN , i.e., puts prob-

ability 1 on exactly one alternative, clearly all distributions DS must be degenerate

distributions. If the associated alternatives are denoted by aS, S ⊆ N , then (3.3)

implies 0 ≤ aT ≤ aS ≤ 1 for all S ⊆ T ⊆ N , and for R ∈ RN equation (5.3) implies

Φ(R)({ϕΦ(R)}) = 1 with

ϕΦ(R) = a∅1[0,p1(R)[(a∅) + aN1]pk(R),1](aN) +
k−1∑
�=1

aS�
1]p�(R),p�+1(R)[(aS�

)

+
k∑

�=1

p�(R)1[aS�
,aS�−1

](p�(R)) . (3.5)

Thus, ϕΦ is the deterministic rule associated with Φ. More generally we have the

following straightforward corollary. See also Moulin (1980) and Ching (1997).
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Corollary 2.3 Let ϕ be a deterministic rule. Then ϕ is uncompromising if and only

if there are aS ∈ A, S ⊆ N , satisfying 0 ≤ aT ≤ aS ≤ 1 for all S ⊆ T ⊆ N , such that

ϕ(R) is equal to the right-hand side of (3.5) for all R ∈ RN . In that case,

• the numbers aS, S ⊆ N , are uniquely determined;

• if ϕ is anonymous, then aS = aT whenever |S| = |T |;

• if ϕ is unanimous, then a∅ = 1 and aN = 0.

3. The finite case

In this section we consider the case where A is a finite subset of [0, 1] including

both 0 and 1. Specifically, let A = {x1, . . . , xm} with 0 = x1 < x2 < . . . < xm = 1,

where m ≥ 2. We consider uncompromising probabilistic rules Φ and for ease of

presentation assume anonymity. By Proposition 2.2, such a rule is characterized by

fixed probabilistic ballotsD0, . . . , Dn, where we writeD� for the distributionsDL with

|L| = �. For � = 0, . . . , n let R� ∈ RN be a profile with |{i ∈ N | pi(R�) = 0}| = �

and |{i ∈ N | pi(R�) = 1}| = n − �. We use R� as the generic notation for such a

boundary profile, which is without loss of generality as long as Φ is anonymous.

The following lemma follows easily from (5.3).

Lemma 3.1 Let Φ be uncompromising and anonymous, with fixed probabilistic ballots

D0, . . . , Dn. Then Φ(R�)(xj) = D�(xj) for all � = 0, . . . , n and j = 1, . . . ,m.

The relevance of the boundary profiles R� stems from the following observation.

Lemma 3.2 Let Φ1 and Φ2 be uncompromising and anonymous, and suppose that

Φ1(R�) = Φ2(R�) for all � = 0, . . . , n. Then Φ1 = Φ2.

Proof. Let (D1
� )�=0,...,n and (D2

� )�=0,...,n be the associated fixed probabilistic ballots.

By Lemma 3.1 we have D1
� (xj) = D1

� (xj) for all � = 0, . . . , n and all j = 1, . . . ,m.

Hence D1
� = D1

� for all � = 0, . . . , n, so Φ1 = Φ2. �
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By Corollary 2.3, any uncompromising and anonymous deterministic rule ϕ is

characterized by a vector α = (α0, . . . , αn) ∈ An+1 such that αk = aK for any K ⊆ N

with |K| = k. In particular, α0 ≥ . . . ≥ αn. We write ϕα for the probabilistic rule

associated with ϕ. Let Ξ denote the (finite) set of all such vectors α. For each α ∈ Ξ

let λα ≥ 0 such that
∑

α∈Ξ λα = 1. Then Φ =
∑

α∈Ξ λαϕα denotes the (uncompro-

mising and anonymous) probabilistic rule such that Φ(R)(xj) =
∑

α∈Ξ λαϕα(R)(xj)

for all R ∈ RN and j = 1, . . . ,m. The following theorem is the main result of this

section. It says that every uncompromising and anonymous probabilistic rule is a

convex combination of uncompromising and anonymous deterministic rules, where

the coefficients in this convex combination are interpreted as probabilities.

Theorem 3.3 Let A = {x1, . . . , xm} with 0 = x1 ≤ . . . ≤ xn = 1 and let Φ be a prob-

abilistic rule. Then there are λα ≥ 0 with
∑

α∈Ξ λα = 1 such that Φ =
∑

α∈Ξ λαϕα.

Proof. The proof proceeds in four steps.

Step 1 Let Δ = D0, . . . , Dn be the fixed probabilistic ballots such that Φ = ΦΔ

(cf. Proposition 2.2). By Lemma 3.2 it is sufficient to show that there are λα ≥ 0

with
∑

α∈Ξ λα = 1 such that

∑
α∈Ξ

λαϕα(R
k)(xj) = Dk(xj) for all k = 0, . . . , n and j = 1, . . . ,m. (3.6)

We first note that if (3.6) holds then the condition
∑
α∈Ξ

λα = 1 is redundant, since:

1 =
m∑
j=1

ΦΔ (R) (xj) =
m∑
j=1

∑
α∈Ξ

λαϕα (R) (xj) =
∑
α∈Ξ

λα

m∑
j=1

ϕα (R) (xj) =
∑
α∈Ξ

λα.

Thus, it is sufficient to show that (3.6) holds for some λα ≥ 0. We now write (3.6) in

matrix form as Aλ = d where

• A is an (n + 1)m × |Ξ|-matrix with rows indexed by pairs (k, j) and columns by

α ∈ Ξ, such that the entry in row (k, j) and column α is ϕα(R
k)(xj);

• λ is a column vector of length |Ξ| with λα at row α; and
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• d is a column vector of length (n+ 1)m with Dk(xj) at row (k, j).

Now, in order to show that the system of equations Aλ = d has a nonnegative

solution it is by Farkas’ Lemma sufficient to show that d′y ≥ 0 for any y ∈ R(n+1)m

with A′y ≥ 0 ∈ R|Ξ|. The system A′y ≥ 0 is equivalent to

n∑
k=0

m∑
j=1

ϕα(R
k)(xj)yk,j ≥ 0 for all α ∈ Ξ. (3.7)

Consider an α ∈ Ξ, and let ϕα(R
k) assign probability 1 to xin−k+1

∈ A for k = 0, . . . , n.

Then by strategy-proofness 1 ≤ i1 ≤ . . . ≤ in+1 ≤ m, and we have

n∑
k=0

m∑
j=1

ϕα(R
k)(xj)yk,j = yn,i1 + yn−1,i2 + . . .+ y0,in+1 .

Therefore (3.7) and, thus, the system A′y ≥ 0 is equivalent to

yn,i1 + yn−1,i2 + . . .+ y0,in+1 ≥ 0 for all 1 ≤ i1 ≤ . . . ≤ in+1 ≤ m. (3.8)

So we have to prove that if y ∈ R(n+1)m satisfies (3.8) then

n∑
k=0

m∑
j=1

yk,jDk(xj) ≥ 0 . (3.9)

Step 2 We will prove (3.9) by using a network formulation of the problem. In this

step we collect some definitions and results on networks needed in the sequel of this

proof.

A network is a directed graph G = (V,E), with V the finite set of vertices and

E ⊆ V ×V the set of edges, and with s, t ∈ V being the source (having only outgoing

edges) and the sink (having only ingoing edges) of G, respectively. The capacity of an

edge (u, v) ∈ E is a nonnegative number c(u, v): it represents the maximum amount

of flow that can pass through it. The capacity of a vertex v ∈ V is a nonnegative

number c(v). A flow is a mapping f : E → R satisfying the following constraints:

(F1) 0 ≤ f (u, v) ≤ c (u, v) for each (u, v) ∈ E,

(F2)
∑

u: (u,v)∈E f (u, v) =
∑

u: (v,u)∈E f (v, u), for each v ∈ V \ {s, t},
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(F3)
∑

u∈V f (u, v) ≤ c(v) for each v ∈ V \ {s, t}.
The value of a flow f is defined by |f | = ∑

(s,v)∈E f(s, v). It represents the

amount of flow passing from the source to the sink.

A path from s to t is a sequence of vertices s = v1, . . . , v� = t such that

(vi, vi+1) ∈ E for all i = 1, . . . , �− 1. A cut C is a subset of V ∪ E such that for any

path from s to t there is a u on this path with u ∈ C or (u, v) ∈ C or (v, u) ∈ C for

some v ∈ V . If the cut C is a subset of V alone it is called a vertex cut. A vertex

cut C is trivial if it contains s or t. The capacity of a cut C, denoted by c(C), is the

sum of the capacities of all edges and vertices in it. Hence, the value of any flow is

smaller or equal to the capacity of any cut.

Generalized max-flow min-cut theorem The maximum value of a flow is equal

to the minimum capacity of a cut.

For later reference we also record the following straightforward observation.

Lemma 3.4 Suppose c(u, v) = min{c(u), c(v)} for all (u, v) ∈ E. Then for any cut

C there is a vertex cut C ′ with c(C ′) ≤ c(C).

Step 3 We now formulate our problem as a network problem and derive some results

about this particular network. Let the set of vertices be the set

V = {s, t} ∪ {yk,j | 0 ≤ k ≤ n, 1 ≤ j ≤ m} ,

and let the set of edges be the set

E = {(s, yn,j) | 1 ≤ j ≤ m}
∪ {(yk,j, yk−1,j′) | 1 ≤ j ≤ j′ ≤ m, 2 ≤ k ≤ n}
∪ {(y0,j, t) | 1 ≤ j ≤ m} .

Let furthermore

c(s) = c(t) = 1; c(yk,j) = Dk(xj) for all k = 0, . . . , n, j = 1, . . . ,m ,
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and

c (u, v) = min (c (u) , c (v)) for all (u, v) ∈ E .

Then {(
s, yn,i1 , yn−1,i2 , ..., yn+1−l,il , ..., y1,in , y0,in+1 , t

) | 1 ≤ i1 ≤ ... ≤ in+1 ≤ m
}

is the set of all paths from s to t. In this network the value of a maximal flow turns

out to be equal to 1, as the following claim shows.

Claim 1 The maximal value of a flow is equal to 1.

In order to prove this claim it is by the generalized max-flow min-cut theorem

it is sufficient to show that the minimal capacity of a cut is equal to 1. By Lemma 3.4

we only have to consider vertex cuts. If C is a trivial vertex cut then it contains s

or t and therefore has capacity at least 1. Now let C be a nontrivial vertex cut. We

claim that there are n ≥ k1 ≥ . . . ≥ km ≥ 0 such that yki,i ∈ C for all i = 1, . . . ,m.

To see this first define k1 = max{k ∈ {0, . . . , n} | yk,1 ∈ C}: this must exist since

otherwise yk,1 /∈ C for all k and then the path s, yn,1, . . . , y0,1, t would not contain a

vertex in C. Next, define k2 = max{k ∈ {0, . . . , k1} | yk,2 ∈ C}: again, this must

exist since otherwise the path s, yn,1, . . . , yk1−1,1, yk1,2, . . . , y0,2, t would not contain a

vertex in C. And so on and so forth.

Now,

c (yk1,1) + c (yk2,2) = Dk1 (x1) +Dk2 (x22) ≥ Dk2 (1) +Dk2 (2)

this inequality follows from the fact that k1 ≥ k2 implies Dk1 (x1) ≥ Dk2 (x1) by (3.3).

Suppose that

c (yk1,1) + c (yk2,2) + ...+ c (yki,i) ≥ Dki(x1) + . . .+Dki (xi) .

Then

c (yk1,1) + . . .+ c (yki,i) + c
(
yki+1,i+1

)
≥ Dki(x1) + . . .+Dki (xi) +Dki+1

(xi+1)

≥ Dki+1
(x1) + . . .+Dki+1

(xi) +Dki+1
(xi+1)
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as Dki(x1) + . . .+Dki (xi) ≥ Dki+1
(x1) + . . .+Dki+1

(xi) for ki ≥ ki+1. By induction

we conclude

c(C) ≥ c (yk1,1) + . . .+ c (ykm,m) ≥ Dkm(x1) + . . .+Dkm (xm) = 1.

Now consider the trivial cut C = {s}. Clearly c (C) = 1. So, the minimum capacity

of a cut is 1. This completes the proof of Claim 1.

Claim 2 Let f be a flow with maximal value. Then
∑

u∈V : (u,v)∈E f(u, v) = c(v) for

any vertex v ∈ V \ {s, t}.
To prove this claim, consider a vertex v = yk,j. Consider the cut C = {yk,j′ |

1 ≤ j′ ≤ m}. Then, by repeated application of (F2) in the definition of a flow, we

obtain

|f | =
m∑
j=1

f(s, yn,j) =
m∑
j=1

m∑
�=j

f(yn,j, yn−1,�) = . . .

=
m∑
j=1

m∑
�=j

f(yk−1,j, yk,�) =
∑
v′∈C

∑
u∈V : (u,v′)∈E

f(u, v′) ≤
∑
v′∈C

c(v′) ,

where the inequality follows from (F3). Also,

∑
v′∈C

c(v′) =
m∑

j′=1

c(yk,j′) =
m∑

j′=1

Dk(xj′) = 1 .

Hence, by Claim 1,

1 = |f | =
∑
v′∈C

∑
u∈V : (u,v′)∈E

f(u, v′) ≤
∑
v′∈C

c(v′) = 1 .

So the inequality must be an equality, and by (F3) we have

∑
u∈V : (u,v′)∈E

f(u, v′) = c(v′)

for all v′ ∈ C, in particular for v′ = v. This proves Claim 2.

Step 4 We return to our original problem and complete the proof of the theorem.

First note that the left-hand sides of (3.8) correspond 1-1 with paths in the network

by adding s at the beginning and t at the end.
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Claim 3 For all y ∈ R(n+1)m we have

d′y =
∑

1≤i1≤...≤in+1≤m
(yn,i1 + . . .+ y0,in+1) · f(s, yn,i1 , . . . , y0,in+1 , t) , (3.10)

where f is a maximal flow in the network.

To see this, we fix yk,j and show that its coefficients in the left and right-hand

sides are equal. The coefficient of yk,j in the left-hand side is equal toDk(xj), as follows

from (3.9). The coefficient of yk,j in the right-hand side is equal to the total flow

passing through yk,j, which is equal to c(yk,j) by Claim 2. In turn, c(yk,j) = Dk(xj).

This proves Claim 3.

The proof of the theorem is now complete by noting that if y ∈ R(n+1)m satisfies

(3.8) then the right-hand side of (3.10) is nonnegative, hence d′y ≥ 0. �
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CHAPTER 4

The structure of strategy-proof random choice functions over product domain and

separable preferences: The case of two voters

1. Introduction

Randomization has been used as a method of resolving conflicts of interest since

antiquity. It has been analyzed extensively in problems of aggregation, fairness and

mechanism design in a variety of models including the pure voting model, matching,

auctions and other allocation models. 1 From the perspective of mechanism design

theory, allowing for randomization expands the set of incentive-compatible social

choice functions because domain restrictions are inherent in the preference ranking of

lotteries that satisfy the expected utility hypothesis. A classical result in this respect

is that of Gibbard (1977b) which characterizes the class of strategy-proof random

social choice functions over the complete domain of preferences.

In this chapter we investigate the class of strategy-proof random social choice

rules over multi-dimensional (or multi-component) domains with separable prefer-

ences. This model is an important one with several applications and has been ex-

tensively studied in the deterministic setting, for example in Barberá et al. (1991),

Barberà et al. (1993), LeBreton and Sen (1999), Barberà et al. (1997), Barberà et al.

(2005) and Svensson and Torstensson (2008). For a survey see Sprumont (1995).

LeBreton and Sen (1999) show that strategy-proof deterministic social choice

functions defined over a rich domain of preferences are decomposable, i.e. a strategy-

proof social choice function is composed of strategy-proof social choice functions de-

fined over each component domain. A corollary of this result is the following: if the

domain comprises of all separable preferences and each component domain consists

of at least three alternatives, then a social choice function is strategy-proof only if

there is a dictator for each component.

In this chapter, we analyze the structure of random strategy-proof social choice

functions over a sub-domain of separable preferences, the domain of lexicographically

1See for example, Barberá and Sonnenschein (1978), Myerson (1981), Bogomol-
naia and Moulin (2001), Bogomolnaia and Moulin (2004), Bogomolnaia et al. (2005),
Moulin and Stong (2002)
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separable preferences or simply lexicographic preferences. If the decomposability prop-

erty extended straightforwardly to random social choice functions, we would expect

strategy-proof random social choice functions over product domains to be the stochas-

tic product of component random dictatorships. This is false; for instance, random

dictatorship itself is clearly strategy-proof but not the product of component ran-

dom dictatorships. The latter would put non-zero probabilities on alternatives that

are not first-ranked by any voter unlike a random dictatorship. Thus products of

component random dictatorships are strategy-proof but do not describe all random

strategy-proof choice functions.

Our main result is a complete characterization of random strategy-proof so-

cial choice functions in the case of two voters. The case of an arbitrary number of

voters involves technical difficulties which we are unable to address at the moment.

We call such random social choice functions, generalized random dictatorships and

they include random dictatorships and products of component random dictatorships.

A random dictatorship is a fixed probability distribution on the set of voters. At

any preference profile, the probability of an alternative is the sum of the probabil-

ity weights of voters for whom the alternative is the best. A generalized random

dictatorship on the other hand, is a fixed probability distribution on the set of all

voter sequences of length m where m is the number of components. For instance, if

there are three voters and five components, there are 35 possible voter sequences. A

generalized random dictatorship assigns a probability to each of these sequences. An

alternative is consistent with a sequence at a profile if each component of the alter-

native is the best (amongst all component alternatives) for the voter specified in the

sequence for that component. The total probability of the alternative at the profile

is simply the sum of probabilities of voter sequences consistent with the alternative.

A generalized random dictatorship thus induces a fixed probability distribution on

the product set of the maximal alternatives of all voters. A critical feature of these

social choice functions is that the induced marginal probability distribution on each
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component is a random dictatorship.

The chapter is organized as follows. In the next section, we introduce the

model, the notation and the background results. The following section contains the

main result and its proof while the final section concludes.

2. Background and Preliminaries

The set of alternatives is a finite set A ≡ A1×A2...×Am where Aj, j = 1, ...m

is the jth component set. The set of components will be written as M = {1, ...,m}.
An element a ∈ A is an m-tuple a ≡ (a1, ..., am). For any Q ⊂ M , we will let

AQ =
∏

j∈Q Aj. Abusing notation slightly, we will write AM−j for the set
∏

k �=j Ak.

Typical elements of AM−j will be denoted by aM−j, bM−j etc.

The set of voters is I = {1, . . . , N}. Each voter i has an antisymmetric prefer-

ence ordering P i over the elements of A which is assumed to be separable.

Definition 2.1 The ordering P i is separable if for all Q ⊂ M , for all aQ, bQ ∈ AM ,

for all cM−Q, dM−Q ∈ AM−Q,

[(aQ, cM−Q)P i(bQ, cM−Q)]⇒ [(aQ, dM−Q)P i(bQ, dM−Q)].

If a preference ordering is separable, then choices over a subset of components

do not affect ranking of alternatives over the remaining components. In other words,

choices over components do not impose “externalities” over other components. A

separable preference P i induces a marginal preference ordering P i
Q over AQ, Q ⊂ M

in a natural way: for every aQ, bQ ∈ AQ

[aQP
i
QbQ] if [(aQ, cM−Q)P

i(bQ, cM−Q) for all cM−Q ∈ AM−Q].

The set of marginal preference orderings over components in the set Q ⊂ M

will be denoted by [DQ]
S.

A particular class of separable orderings is the class of lexicographically sepa-

rable orderings.
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Definition 2.2 The ordering P i is lexicographic if there exists an antisymmetric or-

dering > on the set M and antisymmetric orderings P i
j on each component set Aj,

j ∈M such that, for all a, b ∈ A, aP ib iff there exists a component j and

1. ajP
i
j bj

2. ak = bk for all k ∈M such that k > j.

Let P i be a lexicographic ordering. We shall refer to the components that are

maximal and minimal according to the ordering > over M as the lexicographically

best and lexicographically worst components respectively. In general if, components j

and k are such that k > j, we shall say that component k is lexicographically better

than component j.

Let P, DS and DL denote respectively the set of all antisymmetric orderings,

the set of separable orderings and the set of lexicographically orderings over A re-

spectively. We note that DL ⊆ DS ⊂ P. 2 We also let Pj, j ∈M denote the set of all

possible antisymmetric orderings over the elements of the set Aj.

Let D ⊂ P. A preference profile P is an N -tuple (P 1, ..., PN) ∈ DN . For any

voter i, ordering P̄ i and profile P , (P̄ i, P−i) will denote the profile where the ith com-

ponent of P has been replaced by P̄ i. A marginal preference profile for components

Q, Q ∈M is similarly an N -tuple, PQ ≡ (P 1
Q, ..., P

N
Q ). We shall say that two profiles

P, P̄ ∈ [DS]N are marginally equivalent if P i
j = P̄ i

j for all voters i ∈ I and j ∈M .

We let L(A) denote the set of lotteries over the elements of the set A. If

λ ∈ L(A), then λa will denote the probability that λ puts on a ∈ A. Clearly λa ≥ 0

and
∑

a∈A λa = 1. For every j ∈M we can define L(Aj) accordingly.

Definition 2.3 Let D ⊂ P. A Random Social Choice Function (RSCF) (for the

domain D) is a map ϕ : DN → L(A).
2The set of lexicographic orderings coincides with the separable orderings in the

special case when there are two components and exactly two alternatives in every
component set. In general DL is a strict subset of DS.
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Our focus is on RSCFs that are strategy-proof, i.e. which provide voters with

dominant-strategy incentives to reveal their preference orderings (which are assumed

to be private information), truthfully. In models such as ours where the outcome of

voting is a probability distribution over outcomes, there are several ways to define

strategy-proofness. Here we follow the approach of Gibbard (1977b).

Definition 2.4 A utility function u : A → � represents the ordering P i over A if

for all a, b ∈ A,

[aP ib]⇔ [u(a) > u(b)]

Definition 2.5 A RSCF ϕ : DN → L(A) is manipulable by voter i at profile P ∈ DN

via P̄ i ∈ D if there exists a utility functions u representing P i such that

∑
a∈A u(a)ϕa(P̄

i, P−i) >
∑

a∈A u(a)ϕa(P
i, P−i).

Definition 2.6 A RSCF ϕ : DN → L(A) is strategy-proof if it is not manipulable

by any voter at any profile. Equivalently, ϕ is strategy-proof if, for all i ∈ I, for all

P ∈ DN , for all P̄ i ∈ D and all utility functions u representing P i, we have

∑
a∈A u(a)ϕa(P

i, P−i) ≥∑
a∈A u(a)ϕa(P̄

i, P−i).

A RSCF is strategy-proof if at every profile no voter can obtain a higher

expected utility by deviating from her true preference ordering than she would if

she announced her true preference ordering. Here, expected utility is computed with

respect an arbitrary utility representation of her true preferences. It is well-known

that this is equivalent to requiring that the probability distribution from truth-telling

stochastically dominates the probability distribution from misrepresentation in terms

of a voter’s true preferences. This is stated formally below.

For any i ∈ I, P i ∈ D and a ∈ A, we let B(a, P i) = {b ∈ A : bP ia} ∪ {a}, i.e.
B(a, P i) denotes the set of alternatives that are weakly preferred to a according to

the ordering P i.
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Definition 2.7 A RSCF ϕ : DN → L(A) is manipulable by voter i at profile P ∈ DN

via P̄ i ∈ D if there exists a ∈ A such that

∑
b∈B(a,P i) ϕb(P̄i, P−i) >

∑
b∈B(a,P i) ϕb(P

i, P−i).

It is strategy-proof if for all i ∈ I, for all P ∈ DN , for all P̄i ∈ D and all a ∈ A, we

have

∑
b∈B(a,P i) ϕb(Pi, P−i) ≥

∑
b∈B(a,P i) ϕb(P̄

i, P−i).

We also introduce the mild requirement of unanimity for RSCFs. This requires

an alternative which is first-ranked by all voters in any profile to be selected with

probability one in that profile. For any P i ∈ D, let τ(P i, A) denote the maximal

element in A according to P i. Since the domain consists of antisymmetric orderings

and A is finite, a maximal element always exists and is unique.

Definition 2.8 A RSCF ϕ : DN → L(A) satisfies unanimity if for all P ∈ DN and

a ∈ A,

[a = τ(P i, A) for all i ∈ I]⇒ [ϕa(P ) = 1].

A RSCF of particular significance is random dictatorship.

Definition 2.9 The RSCF ϕr : DN → L(A) is a random dictatorship if there exist

non-negative real numbers βi, i ∈ I with
∑

i∈I β
i = 1 such that for all P ∈ D and

a ∈ A,

ϕr
a(P ) =

∑
{i:τ(P,A)=a} β

i

In a random dictatorship, each voter i gets weight βi where the sum of these βi’s

is one. At any profile, the probability assigned to an alternative a is simply the sum

of the weights of the voters whose maximal element is a. A random dictatorship is

clearly strategy-proof for any domain; by misrepresentation, a voter can only transfer
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weight from her most-preferred to a less-preferred alternative. A fundamental result

in Gibbard (1977b) states that the converse is also true for the complete domain P. 3

Theorem 2.10 [Gibbard (1977b) ] Assume |A| ≥ 3. A RSCF ϕ : PN → L(A) is

strategy-proof and satisfies unanimity if and only if it is a random dictatorship.

In the paper, we investigate the structure of strategy-proof RSCFs satisfying

unanimity for the domain DS. First, we introduce some concepts which we will refer

to later. Let ϕ : [DS]N → L(A) be a RSCF. For every component j and every

profile P ∈ [DS]N , we can define the marginal probability distribution ϕj(P ) in an

obvious way: for every aj ∈ Aj, ϕj,aj(P ) =
∑

aM−j∈AM−j
ϕ(aj ,aM−j)(P ). A RSCF

induces a marginal random social choice function MRSCF ϕ : [DS]N → L(Aj) by

associating the marginal probability distribution ϕj(P ) over component j for every

profile P ∈ [DS]N .

We now recall results for deterministic social choice functions over the domain

DS.

Definition 2.11 A deterministic social choice function (DSCF) f is a map f :

[DS]N → A.

A DSCF is simply a RSCF whose image set is the set of degenerate probability

distributions over A. We can similarly define component DSCFs. The definitions of

strategy-proofness and unanimity for a DSCF are special cases of those of RSCFs and

are omitted.

Definition 2.12 A DSCF f : [DS]N → A is a component dictatorship if there exists

a map σ : M → N such that for all P ∈ [DS]N ,

[f(P ) = a]⇒ [aj = τ(P
σ(j)
j , Aj)]

3Gibbard’s result is actually more general than Theorem 2.10 below because it
does not assume unanimity. However since unanimity will be a maintained hypothesis
throughout the paper, we state only the version of the result with unanimity.
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In a component dictatorship, the jth component of the outcome at a profile is

the maximal element of the jth component of voter σ(j). Since preferences are sepa-

rable for all individuals, these maximal elements are well-defined. We can imagine the

DSCF being decomposable into component DSCFs which are dictatorial. LeBreton

and Sen (1999) establish a general decomposability result a special case of which is

the result below.

Theorem 2.13 [LeBreton and Sen (1999)] Assume |Aj| ≥ 3 for all j ∈M . A DSCF

f : DN → A is strategy-proof and satisfies unanimity if and only if it is a component

dictatorship.

Does this result carry over to RSCFs? A particular generalization of component

dictatorship to the random case is a RSCF where the probability distribution over

the set A is the product of component random dictatorships. We define this below.

Definition 2.14 A RSCF is ϕ : [DS]N → L(A) is an independent component random

dictatorship if for each j ∈ M , there exists a random dictatorship ϕj : PN → L(Aj)

such that for all P ∈ DN

ϕ(P ) =
∏

j∈M ϕj(Pj).

Consider the case where there are two voters and two components. Suppose

the weight vectors for components 1 and 2 are (β1
1 , β

2
1) and (β1

2 , β
2
2) respectively. Then

in any profile where voter 1 and 2’s maximal elements are a1a2 and b1b2 respectively,

the alternatives a1a2, a1b2, b1a2 and b1b2 get probability weights β1
1β

1
2 , β

1
1β

2
2 , β

1
2β

2
1 and

β2
1β

2
2 respectively.

An independent component random dictatorship is strategy-proof (we shall

verify this later) and clearly satisfies unanimity. Is every strategy-proof RSCF de-

fined over the domain DS with |Aj| ≥ 3 an independent component random dicta-

torship? No, and this is established by the observation that a random dictatorship

is strategy-proof but not an independent component random dictatorship unless it is
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deterministic, i.e. there exists a voter i such that βi = 1. Showing that a random

dictatorship is strategy-proof is routine. To demonstrate the other claim, consider for

simplicity the case where there are two voters i and k and two components. Suppose

also that βi, βk > 0. Consider a profile where i’s maximal element is a1a2 and k’s is

b1b2 where a1 �= b1 and a2 �= b2. Observe that this RSCF would put probabilities βi

and βk on a1a2 and b1b2 respectively and zero on all other alternatives. However every

independent component random dictatorship which puts strictly positive probability

on a1a2 and b1b2 also puts strictly positive probability on the alternatives a1b2 and

b1a2.

Below, we formulate a generalization of both random dictatorship and indepen-

dent component random dictatorship which coincides with the class of strategy-proof

RSCFs satisfying unanimity in the case where each component set has at least three

alternatives.

Let i ≡ (i1, . . . , im) ∈ Im be an m-tuple of voters. We shall call such an m-

tuple, a voter sequence. For all a ∈ A and P ∈ [DS]N , we shall let χ(a, P ) denote

the set of voter sequences consistent with a and P where χ(a, P ) = {i ∈ Im : aj =

τ(P
ij
j , Aj) for all j = 1, . . .m}.

Definition 2.15 A RSCF ϕg : [DS]N → L(A) is a generalized random dictatorship

if there exist non-negative real numbers γ(i) for all i ∈ Im with
∑

i∈IM γ(i) = 1 such

that for all a ∈ A and P ∈ [DS]N ,

ϕg
a(P ) =

∑
i∈χ(a,P ) γ(i).

Consider the following example. Suppose I = {1, 2} and Aj = {aj, bj, cj} with
j = 1, 2. Here i is one of four, two-tuples (1, 1), (1, 2), (2, 1) and (2, 2). The function

γ specifies four non-negative real numbers γ(1, 1), γ(1, 2), γ(2, 1) and γ(2, 2) which

sum to one. Consider a profile P where the maximal alternatives of voters 1 and 2 are

(a1a2) and (b1b2) respectively. Observe that χ((a1a2), P ) = {(1, 1)}, χ((a1b2), P ) =

{(1, 2)}, χ((b1a2), P ) = {(2, 1)} and χ((b1b2), P ) = {(2, 2)}. Hence, a generalized
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random dictatorship puts probabilities of γ(1, 1), γ(1, 2), γ(2, 1) and γ(2, 2) on (a1a2),

(a1b2), (b1a2) and (b1b2) respectively and zero on all other alternatives. Consider

another profile P̄ where voter 1 and 2’s maximal alternatives are (a1, c2) and (a1b2)

respectively. Here χ((a1c2), P ) = {(1, 1), (2, 1)}, and χ((a1b2), P ) = {(1, 2), (2, 1)}.
Hence this RSCF will put probability γ(1, 1) + γ(2, 1) on (a1c2) and γ(1, 2) + γ(2, 2)

on (a1b2) and zero on everything else.

In general, a generalized random dictatorship is specified by Nm non-negative

real numbers adding up to one. For any i ≡ (i1, . . . , im), the probability of an

alternative a in profile P is the sum of γ(i)’s over those i’s which have the property

that for every j = 1, . . . ,m, aj is the maximal element in Aj for voter ij, i.e. over all

elements of the set χ(a, Pi).

We make several observations about generalized random dictatorships.

Observation 2.16 The value of a generalized random dictatorship at a profile de-

pends only on the maximal alternatives (or “tops”) of voter preferences at the profile.

However it may assign positive probabilities to all alternatives in the product set of the

top alternatives. In other words, a generalized random dictatorship is a probability

distribution over the set
∏

j∈M{τ(P 1
j , Aj), . . . , τ(P

N
j , Aj)}.

Observation 2.17 Let ϕg be a generalized random dictatorship with an associ-

ated map γ. Pick an arbitrary voter s and an arbitrary component j. Let

βs =
∑
{i≡(i1,...,im):ij=s} γ(i). Clearly 0 ≤ βs ≤ 1 and

∑
s∈I β

s = 1. Pick a component j

and a profile P ∈ [DS]N . Observe that the probability of aj ∈ Aj in the marginal dis-

tribution ϕg
j (P ) is

∑
{s:τ(P s

j )=aj} β
s. Hence, a generalized random dictatorship induces

a MRSCF over each component that is a random dictatorship with respect to marginal

preferences over that component. More formally, if ϕg is a generalized random dicta-

torship, there exist component random dictatorships ϕr
j : P

N → L(A), j = 1, . . . ,m

such that for all P ∈ [DS]N such that ϕg
j (P ) = ϕr

j(Pj) for each j = 1, . . .m. As we

shall remark at the end of the next section, this observation implies that our main
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result can be interpreted as a decomposability result for strategy-proof RSCFs for

the domain DS.

Observation 2.18 A random dictatorship is a special case of a generalized random

dictatorship when γ(i) = 0 for all voter sequences i such that ij �= ij′ for some j �= j′.

Equivalently, γ(i) > 0 implies i = (i, i, . . . , i) for some i ∈ I.

Observation 2.19 An independent component dictatorship is a special case of a

generalized random dictatorship. Define the component random dictatorships as fol-

lows: for all j = 1, . . . ,m, let γj(i), i = 1, . . . , N be a non-negative real numbers with∑
i∈I γj(i) = 1. Now define a generalized random dictatorship as follows: for all voter

sequences i ≡ (i1, . . . , im), γ(i) = γ1(i1)× γ2(i2)× . . .× γm(im).

Observation 2.20 In the special case where m = 1, a generalized random dictator-

ship is simply a random dictatorship.

In the next section we show that all strategy-proof RSCFs satisfying unanimity

are generalized random dictatorships.

3. The Result

Our main result is the following.

Theorem 3.1 Assume |Aj| ≥ 3 for all j = 1, . . . ,m. A generalized random dic-

tatorship ϕg : [DS]N → L(A) is strategy-proof and satisfies unanimity. If a RSCF

ϕ : [DL]2 → L(A) is strategy-proof and satisfies unanimity then it is a generalized

random dictatorship.

Proof: (Sufficiency) Let ϕg be a generalized random dictatorship specified by the

function γ in Definition 2.15. Let P ∈ [DS]N be an arbitrary separable profile and

let i be an arbitrary voter. Consider a possible manipulation by i at P via P̄ i. It

follows from the definition of a generalized random dictatorship that the value of ϕg
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at any profile depends only on the maximal alternatives of voters at the profile. Let

τ(P i) = a and τ(P̄ i) = b where bQ �= aQ and aM−Q = bM−Q for some non-empty

subset Q of M .

Pick an arbitrary i ≡ (i1, . . . , im) ∈ Nm. If ij �= i for any j ∈ Q then probability

γ(i) is assigned to the same alternative under profiles P and (P̄ i, P−i). If ij = i for

all j ∈ T for some T ⊆ Q, then probability γ(i) is shifted from alternative (aT , xM−T )

for some xM−T ∈ AM−T in profile P to (bT , xM−T ) in profile (P̄ i, P−i). However

ajP
i
j bj for all j ∈ T by assumption so that (aT , xM−T )P i(bT , xM−T ) by separability.

Therefore the distribution ϕg(P̄ i, P−i) is obtained by transferring probabilities from

higher-ranked alternatives to lower-ranked alternatives according to P i. from ϕg(P ).

Clearly ϕg(P̄ i, P−i) stochastically dominates ϕg(P ) according to P i and ϕg is strategy-

proof.

(Necessity) We proceed as follows. In Step 1 we establish an important “conditional

unanimity” property which holds for an arbitrary number of voters and in Step 2 we

establish generalized random dictatorship in the case of two voters.

We begin with a Lemma which holds for arbitrary domains and is a straight-

forward adaptation of a result in Gibbard (1977b).

Let D be an arbitrary domain. Let P i ∈ D and let x, y ∈ A and assume that

xP iy. We say x and y are contiguous in P i if there does not exist z ∈ A distinct from

x and y such that xP izP iy. We say that the ordering P̄i is a feasible local switch of x

and y in P i if (i) x and y are contiguous (ii) xP iy and yP̄ ix (iii)B(x, P i) = B(y, P̄ i)

(iv) P̄ i ∈ D.

Lemma 3.2 Let ϕ : DN → L(A) be strategy-proof. Let i be an arbitrary voter and

let P̄ i be a feasible local switch of x and y in P i (i.e xP iy and yP̄ ix). Then

• ϕy(P̄
i, P−i) ≥ ϕy(P ).

• ϕx(P̄
i, P−i) + ϕy(P̄

i, P−i) = ϕx(P ) + ϕy(P ).
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We omit the proof of this Lemma which is an implication of the definition of

strategy-proofness.

Step 1. We consider an arbitrary strategy-proof RSCF ϕ : [DL]N → L(A) satisfying
unanimity. Recall that every P i ∈ DL induces an ordering P i

Q over AQ for every

Q ⊂M .

The goal of this Step is to show the following. Pick an arbitrary non-empty

subset Q ⊂ M . Then there exists a unanimous, strategy-proof RSCF ϕQ : [DL
Q]

N →
L(AQ) such that for all profiles P ∈ [DL]N satisfying τ(P i

M−Q, AM−Q) = aM−Q for all

i ∈ I, we have

1. [ϕx(P ) > 0]⇒ [xM−Q = aM−Q] and

2. ϕ(P ) = ϕQ(PQ).

Thus, there exists a strategy-proof RSCF ϕQ defined for every arbitrary non-

empty set of components Q with the property that whenever all voters are unanimous

with respect to say aM−Q ∈ AM−Q, then ϕ (i) puts strictly positive probability only

on those alternatives whose M −Q are given by aM−Q and (ii) the probability of an

alternative (aQ, aM−Q) in the profile P is the probability given to aQ in the RSCF ϕQ

in the component Q induced profile PQ. Moreover ϕQ satisfies unanimity.

We first establish some preliminary lemmas. Let 
 be an ordering over the

set M and let j ∈ M . Then E(
, j) = {i ∈ M : i 
 j}. Thus E(
, j) is the set of

components which lexicographically dominate j.

Lemma 3.3 Let P ∈ [DL]N and i ∈ I. Let P i be lexicographic with respect to 
.
Let j be a component and let 
′ be another ordering over M such that (i) E(
, j) =
E(
′, j) = Q and (ii) 
 and 
′ agree on Q. Let P̄ i be lexicographic with respect to


′ such that P i
Q = P̄ i

Q. Then ϕk(P ) = ϕk(P̄
i, P−i) for all k ∈ Q. Also let aQ ∈ AQ.

Then ϕQ,aQ(P ) =
∑
{b:bQ=aQ} ϕb(P ) =

∑
{b:bQ=aQ} ϕb(P̄

i, P−i) = ϕQ,aQ(P̄
i, P−i).
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Proof: We first prove the first part of the Lemma. Suppose it is false. Let k be


 maximal element in Q such that ϕk(P ) �= ϕk(P̄
i, P−i). Let bk ∈ Ak be the P i

k-

maximal element in Ak such that ϕk,bk(P ) �= ϕk,bk(P̄
i, P−i); in other words, bk is the

maximal element in P i
k such that the marginal probability of bk changes as i switches

from P i to P̄ i. Note that

ϕk,bk(P ) =
∑
xQ−k

∑
xM−Q

ϕ(xQ−k,bk,xM−Q)(P )

and

ϕk,bk(P̄
i, P−i) =

∑
xQ−k

∑
xM−Q

ϕ(xQ−k,bk,xM−Q)(P̄
i, P−i)

The LHS of the expressions above are not equal to each other. Let cQ−k be

the maximal alternative in AQ−k such that

∑
xM−Q

ϕ(cQ−k,bk,xM−Q)(P ) �=
∑
xM−Q

ϕ(cQ−k,bk,xM−Q)(P̄
i, P−i)

Suppose

∑
xM−Q

ϕ(cQ−k,bk,xM−Q)(P ) <
∑
xM−Q

ϕ(cQ−k,bk,xM−Q)(P̄
i, P−i)

Let wM−Q be the worst alternatives in AM−Q according to P i
M−Q. Since P i is

lexicographic with respect to 
 it must be the case that B̄ = B((cQ−k, bk, wM−Q), P i)

is the set of alternatives (xQ−k, xk, wM−Q) where either xQ−kP i
Q−kcQ−k or xQ−k = cQ−k

and xkP
i
kbk.

Then,
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∑
x∈B̄

ϕx(P̄
i, P̄−i))

=
∑

{x:xQ−kP
i
Q−kcQ−k}

ϕx(P̄
i, P−i) +

∑
{(xk,xM−Q):xkP

i
kbk}

ϕ(cQ−k,xk,xM−Q)(P̄
i, P−i)

+
∑
xM−Q

ϕ(cQ−k,bk,xM−Q)(P̄
i, P−i)

>
∑

{x:xQ−kP
i
Q−kcQ−k}

ϕx(P ) +
∑

{(xk,xM−Q):xkP
i
kbk}

ϕ(cQ−k,xk,xM−Q)(P )

+
∑
xM−Q

ϕ(cQ−k,bk,xM−Q)(P )

=
∑
x∈B̄

ϕx(P )

contradicting strategy-proofness. Note that the strict inequality from the observations

that ∑
{x:xQ−kP

i
Q−kcQ−k}

ϕx(P̄
i, P−i) =

∑
{x:xQ−kP

i
Q−kcQ−k}

ϕx(P )

∑
{(xk,xM−Q):xkP

i
kbk}

ϕ(cQ−k,xk,xM−Q)(P̄
i, P−i) =

∑
{(xk,xM−Q):xkP

i
kbk}

ϕ(cQ−k,xk,xM−Q)(P )

and

∑
xM−Q

ϕ(cQ−k,bk,xM−Q)(P̄
i, P−i) >

∑
xM−Q

ϕ(cQ−k,bk,xM−Q)(P )

which follow from our definitions of cQ−k and bk.

The remaining case is when

∑
xM−Q

ϕ(cQ−k,bk,xM−Q)(P ) >
∑
xM−Q

ϕ(cQ−k,bk,xM−Q)(P̄
i, P−i)

Using the fact that B̄ = B((cQ−k, bk, wM−Q), P̄ i) (since P i
Q = P̄ i

Q) we can

use arguments analogous to the ones above to show that voter i manipulates from

(P̄ i, P−i) via P i.

Thesis_Souvik_v03.pdf



63

To prove the second part of the Lemma, we replace k and bk above with Q and

aQ respectively and replicate the arguments above.

Lemma 3.4 Let P ∈ [DL]N , i ∈ I and P̄ i ∈ DL be such that (i) P i and P̄ i are

marginally equivalent, i.e. P i
j = P̄ i

j for all j ∈ M and (ii) if P i and P̄ i are lex-

icographic with respect to the orderings 
 and 
̄ over M respectively, then 
 and


̄ agree over all components except j and k where j and k are contiguous in 
. If

ϕ(P ) �= ϕ(P̄ i, P−i) then ϕj(P ) �= ϕj(P̄
i, P−i) and ϕk(P ) �= ϕk(P̄

i, P−i).

Proof: Suppose the Lemma is false. In view of Lemma 3.3, we can assume that j and

k are the lexicographic best and second best components respectively in P i and the

lexicographic second and best components in P̄ i respectively. We have therefore as-

sumed that ϕ(P i, P−i) �= ϕ(P̄ i, P−i) but ϕl(P
i, P−i) = ϕl(P̄

i, P−i) for all components

l. Let a be the highest ranked alternative in P i such that ϕa(P
i, P−i) �= ϕa(P̄

i, P−i).

Since ϕ is strategy-proof, it must be the case that ϕa(P
i, P−i) > ϕa(P̄

i, P−i).

Let Y = {x ∈ A : xkP̄
i
kak} = {x ∈ A : xkP

iak} (since P̄ i
k = P i

k). Let

Z = {x ∈ A : xk = ak and xP̄ ia}. Note that Z = {x ∈ A : xk = ak and xP ia}
since P i and P̄ i are marginally equivalent orderings and the lexicographic ordering of

components in M \ k in the two orderings is also the same. Note the following

(i) B(a, P̄ i) = Y ∪ Z ∪ {a}

(ii) ϕz(P̄
i, P−i) = ϕz(P

i, P−i) for all z ∈ Z since z ∈ Z implies that zP ia and a is

the highest-ranked alternative P i such that ϕ(P i, P−i) �= ϕ(P̄ i, P−i) and

(iii)
∑
{xk:xkP̄

i
kak} ϕk,xk

(P̄ i, P−i) =
∑
{xk:xkP̄

i
kak} ϕk,xk

(P i, P−i) by virtue of our as-

sumption that the ϕ yields the same marginal probability distribution all over

components.

Hence,

Thesis_Souvik_v03.pdf



64

∑
x∈B(a,P̄ i)

ϕx(P
i, P−i) =

∑
x∈Y

ϕx(P
i, P−i) +

∑
x∈Z

ϕx(P
i, P−i) + ϕa(P

i, P−i)

=
∑

{xk:xkP
i
kak}

ϕk,xk
(P i, P−i) +

∑
x∈Z

ϕx(P
i, P−i) + ϕa(P

i, P−i)

>
∑

{xk:xkP̄
i
kak}

ϕk,xk
(P̄ i, P−i) +

∑
x∈Z

ϕx(P̄
i, P−i) + ϕa(P̄

i, P−i)

=
∑
x∈Y

ϕk,xk
(P̄ i, P−i) +

∑
x∈Z

ϕx(P̄
i, P−i) + ϕa(P̄

i, P−i)

=
∑

x∈B(a,P̄ i)

ϕx(P̄
i, P−i)

Consequently voter i manipulates at (P̄ i, P−i) via P i contradicting the

strategy-proofness of ϕ.

We now return to Step 1. The first lemma asserts that ϕ satisfies a conditional

unanimity property.

Lemma 3.5 Let Q ⊂ M , P ∈ [DL]N and a ∈ A be such that τ(P i
M−Q, AM−Q) =

aM−Q for all i ∈ I. Then [ϕb(P ) > 0]⇒ [bM−Q = aM−Q].

Proof: Suppose that the Lemma is false. Assume that τ(P i
M−Q, AM−Q) = aM−Q for

all i ∈ I but ϕb(P ) > 0 where bM−Q �= aM−Q. For all i ∈ I, let P̄ i ∈ DL be such

that (i) P̄ i
k = P i

k for all k ∈M −Q (ii) τ(P̄ i
Q, Aj) = bQ and (iii) all components in Q

lexicographically dominate all components in M −Q.

Pick an arbitrary voter i and suppose ϕx(P̄
i, P−i) = 0 whenever xQ = bQ. For

any k �= j let dk ∈ Ak be the worst ranked element in Ak according to P̄ 1
k (and P 1

k ).

Let B̄ = B((bQ, dM−Q), P̄ i). Since components in Q lexicographically dominate those

in M −Q in P̄ i, it follows that c ∈ B̄ ⇒ [cQ = bQ]. Therefore

∑
x∈B̄

ϕx(P
i, P−i) ≥ ϕb(P ) > 0 =

∑
x∈B̄

ϕx(P̄
i, P−i).

Thesis_Souvik_v03.pdf



65

Hence i manipulates ϕ at (P̄ i, P−i) via P i. Therefore, ϕ(bQ,cM−Q)(P̄
i, P−i) > 0

for some cM−Q ∈ AM−Q.

Now suppose ϕ(bQ,aM−Q)(P̄
i, P−i) = 1. Let B̂ = B((bQ, aM−Q), P i). Note that

(bQ, aM−Q)P ib since aM−Q = τ(P i, AM−Q). Since

∑
x∈B̂

ϕx(P
i, P−i) <

∑
x∈B̂

ϕx(P̄
i, P−i) = 1

voter i will manipulate at P via P̄ i. Therefore ϕ(bQ,aM−Q)(P̄
i, P−i) < 1.

We can conclude from the arguments in the two previous paragraphs that

there exists cM−Q ∈ AM−Q \ {aM−Q} such that ϕ(bQ,cM−Q)(P̄
i, P−i) > 0. Now

pick a voter i′ �= i and replace P i′ in the profile (P̄ i, P−i) by P̄ i′ . Replicating

the arguments above, we can conclude that there exists dM−Q ∈ AM−Q \ {aM−Q}
such that ϕ(bQ,dM−Q)(P̄

i, P̄ i′ , P̄−i,i
′
) > 0. Proceeding in this manner, it follows that

ϕ(bQ,xM−Q)(P̄ ) > 0 where xM−Q ∈ AM−Q \ {aM−Q}. But all voters have (bQ, aM−Q) as
their first-ranked alternative in the profile P̄ . Hence ϕ violates unanimity completing

the proof of the Lemma.

For every Q ⊂ M and a ∈ A, Let [DL(a,Q)]N ⊂ [DL]N be the set of lexico-

graphic profiles P with the property that τ(P i
Q, AM−Q) = aM−Q.

Lemma 3.6 Let Q ⊂ M and a ∈ A. Let P̂ , P̄ ∈ [DL(a,Q)]N be such that P̂Q = P̄Q.

Then ϕ(P̂ ) = ϕ(P̄ ).

Proof: It follows from Lemma 3.5 that [ϕb(P̂ ) > 0]⇒ [bQ = aQ] and [ϕb(P̄ ) > 0]⇒
[bQ = aQ]. We first claim that ϕ(P̄ i, P̂−i) = ϕ(P̂ ) for an arbitrary voter i. Suppose

this is false. Let cQ be the best-alternative in AQ according to P̂ i
Q = P̄ i

Q such that

ϕ(cQ,aM−Q)(P̄
i, P̂−i) �= ϕ(cQ,aM−Q)(P̄

i, P̂−i).

Such an alternative cQ must exist. If

ϕ(cQ,aM−Q)(P̄
i, P̂−i) > ϕ(cQ,aM−Q)(P̂ )
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then ∑
x∈B((cQ,aM−Q),P̂ i)

ϕx(P̄
i, P̂−i) >

∑
x∈B((cQ,aM−Q),P̂ i)

ϕx(P̂ )

contradicting the strategy-proofness of ϕ. If

ϕ(cQ,aM−Q)(P̄
i, P̂−i) < ϕ(cQ,aM−Q)(P̂ )

then ∑
x∈B((bQ,aM−Q),P̄ i)

ϕx(P̂ ) >
∑

x∈B((cQ,aM−Q),P̄ i)

ϕx(P̄
i, P̂−i)

again contradicting the strategy-proofness of ϕ. Therefore ϕ(P̄ i, P̂−i) = ϕ(P̂ ).

Progressively switching preferences of voters from P̂ i to P̄ i and repeatedly applying

these arguments above yields ϕ(P̂ ) = ϕ(P̄ ) as required.

Let a ∈ A and Q ⊂ M . We define the function ϕa,Q : [DL(a,Q)]N → L(AQ)

as follows: for all PQ ∈ [DL(a, j)]N , ϕa,Q(PQ) = ϕ(P ). Thus we obtain ϕa,Q by

considering a profile P ∈ [DL(a,Q)]N and equating the probability that ϕa,Q(PQ)

gives to every bQ ∈ AQ with ϕ(bj ,aM−Q)(P ). A critical observation is that Lemma 3.6

implies that ϕa,Q is well-defined. The next Lemma demonstrates that it is strategy-

proof.

Lemma 3.7 ϕa,Q is strategy-proof and satisfies unanimity.

Proof: Suppose ϕa,Q is not strategy-proof. Then there must exist i ∈ I, PQ ∈
[DL(a,Q)]N , P̄ i

Q ∈ [DL(a,Q)] and bQ ∈ AQ such that

∑
xQ∈B(bQ,P i

Q)

ϕa,Q
xQ

(P̄ i
Q, P

−i
Q ) >

∑
xQ∈B(bQ,P i

Q)

ϕa,Q
xQ

(PQ).

Let P̂ ∈ [DL]N be a profile and P̃ i ∈ DL be an ordering such that (i) P̂Q = PQ

(ii) τ(P̂ t
M−Q, AM−Q) = aM−Q for all voters t ∈ I (iii) all components in Q are lex-

icographically dominated by those in M − Q in P̂ t for all t ∈ I (iv) P̃ i
Q = P̄ i

Q (v)
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τ(P̃ i
M−Q, AM−Q) = aM−Q and (vi) all components in Q are lexicographically domi-

nated by those in M −Q in P̃ i.

By construction, the profiles P̂ , (P̃ i, P̂−i) ∈ [DS(a,Q)]N . Hence Lemma 3.5

implies that [ϕb(P̂ ) > 0] ⇒ [bM−Q = aM−Q] and [ϕb(P̃
i, P̂−i) > 0] ⇒ [bM−Q =

aM−Q]. Since components in Q are lexicographically dominated by those in M − Q

in both P̂ i and P̃ i and τ(P̂ i
M−Q, AM−Q) = aM−Q we must have B((bQ, aM−Q), P̂ i) =

{(xQ, aM−Q) : xQ ∈ B(bQ, P̂
i
Q)}.

Consequently

∑
x∈B((bQ,aM−Q),P̂ i)

ϕx(P̃
i, P̂−i) =

∑
xQ∈B(bQ,P̂ i

Q)

ϕa,Q
xQ

(P̃ i
Q, P̂

−i
Q )

=
∑

xQ∈B(bQ,P i
Q)

ϕa,Q
xQ

(P̃ i
Q, P̂

−i
Q )

>
∑

xQ∈B(bQ,P i
Q)

ϕa,Q
xQ

(PQ)

=
∑

x∈B((bQ,aM−Q),P̂ i)

ϕx(P̂ )

contradicting the strategy-proofness of ϕ. Therefore ϕa,Q is strategy-proof.

Now let P be a profile such that PQ ∈ [DL(a,Q)]N be a profile such that all

voters are unanimous with respect to components in Q, i.e. suppose τ(P i
Q, AQ) = bQ

for some bQ ∈ AQ. Clearly τ(P i, A) = (bQ, aM−Q). Since ϕ satisfies unanimity,

ϕ(P ) = (bQ, aM−Q) which implies that ϕa,Q(PQ) = bQ. Therefore ϕa,Q satisfies una-

nimity.

Lemma 3.8 ϕa,Q does not depend on a i.e. ϕa,Q = ϕb,Q for all b ∈ A.

Proof: Suppose not, i.e. ϕa,Q(PQ) �= ϕb,Q(PQ) for some a, b ∈ A and PQ ∈ [DL
Q]

N

. Assume without loss of generality that ϕa,Q
xQ

(PQ) > ϕb,Q
xQ

(PQ) for some xQ ∈ AQ.

Let P̄ ∈ [DL(a,Q)]N and P̂ ∈ [DL(b, Q)]N be such that (i) P̂Q = P̄Q = PQ, (ii) all

components in Q lexicographically dominate all components in M − Q in P̄ i for all
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i ∈ I and (iii) all components in Q lexicographically dominate all components in

M −Q in P̂ i for all i ∈ I. It follows that

ϕ(xQ,aM−Q)(P̄ ) = ϕa,Q
xQ

(PQ) > ϕb,Q
xQ

(PQ) = ϕ(xQ,bM−Q)(P̂ ).

Moreover, since ϕ(xQ,yM−Q)(P̄ ) > 0 only if yM−Q = aM−Q and ϕ(xQ,yM−Q)(P̂ ) >

0 only if yM−Q = bM−Q, it follows that

∑
cM−Q

ϕ(xQ,cM−Q)(P̄ ) >
∑
cM−Q

ϕ(xQ,cM−Q)(P̂ ).

Let voter i switch from P̄ i to P̂ i in the profile P̄ . We claim that

∑
cM−Q

ϕ(xj ,cM−j)(P̄ ) =
∑
cM−Q

ϕ(xQ,cM−Q)(P̂
i, P̄−i).

Suppose this is false. Suppose that

∑
{cM−Q∈AM−Q}

ϕ(xQ,cM−Q)(P̄ ) <
∑

{cM−Q∈AM−Q}
ϕ(xQ,cM−Q)(P̂

i, P̄−i).

Let dM−Q be the worst alternative in AM−Q according to P i
Q, i.e. yM−QP

i
QdM−Q

for all yM−Q �= dM−Q. Since components in Q lexicographically dominate components

in M −Q in P̄ i, we have

∑
x∈B((xQ,dM−Q),P̄ i)

ϕx(P̂
i, P̄−i)) =

∑
cM−Q∈AM−Q

ϕ(xQ,cM−Q)(P̂
i, P̄−i)

>
∑

cM−Q∈AM−Q

ϕ(xQ,cM−Q)(P̄ )

=
∑

x∈B((xQ,dM−Q),P̄ i)

ϕx(P̄ )

contradicting the strategy-proofness of ϕ. An analogous argument shows that

∑
{cM−Q∈AM−Q}

ϕ(xQ,cM−Q)(P̄ ) >
∑

{cM−Q∈AM−Q}
ϕ(xQ,cM−Q)(P̂

i, P̄−i)
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cannot hold. Progressively switching preferences of voters from P̄ to P̂ , we

obtain

∑
cM−Q

ϕ(xQ,dM−Q)(P̄ ) =
∑
cM−Q

ϕ(xQ,cM−Q)(P̂ ).

However this contradicts our earlier conclusion that

∑
cM−Q

ϕ(xQ,cM−Q)(P̄ ) >
∑
cM−Q

ϕ(xQ,cM−Q)(P̂ ).

This concludes Step 1.

Step 2: The goal of this step is to show the following: Let I = {1, 2} and

let ϕ : [DL]2 → L(A) be a strategy-proof RSCF satisfying unanimity. Then ϕ is a

generalized random dictatorship. Throughout Step 2, we assume that ϕ is a two-voter

RSCF defined on the domain of lexicographic preferences that is strategy-proof and

satisfies unanimity.

For any P ∈ [DL]2, the Top Product Set at P or TPS(P ) is defined as follows:

TPS(P ) ≡ {τ(P 1
1 , A1) ∪ {τ(P 2

1 , A1)} × . . .× {τ(P 1
m, Am)} ∪ {τ(P 2

m, Am)}.

We say that ϕ satisfies the TPS Property if

∑
a∈TPS(P )

ϕa(P ) = 1 for all P ∈ [DL]2.

Lemma 3.9 ϕ satisfies the TPS Property.

Proof: Suppose the Lemma is false. Then there exists P ∈ [DL]2, a, b, c ∈ A and

j ∈ M such that ϕc(P ) > 0 and τ(P 1, A) = a, τ(P 2, A) = b and cj /∈ {aj, bj}. We

consider two mutually exhaustive cases.

Case 1: Component j is the lexicographically worst component in P 1 and P 2.
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Claim 1: If ϕj,xj
(P ) > 0 then ajP

1
j xjP

1
j bj and bjP

2
j xjP

2
j aj.

Suppose that the Claim is false. Assume without loss of generality that bjP
1
j xj

and ϕj,xj
(P ) > 0. Consider P̄ 1 ∈ DL such that (i) P̄ 1

M−j = P 1
M−j and (ii) τ(P̄ 1

j , Aj) =

bj. From Lemma 3.3, we deduce that
∑

zj
ϕ(yM−j ,zj)(P ) =

∑
zj
ϕ(yM−j ,zj)(P̄

1, P 2) for

all yM−j ∈ AM−j. Also ϕj,bj(P̄
1, P 2) = 1 from Step 1, i.e. ϕj,xj

(P̄ 1, P 2) = 0. There

must therefore exist yM−j such that

ϕ(yM−j ,xj)(P ) > ϕ(yM−j ,xj)(P̄
1, P 2) = 0

In fact, assume without loss of generality that yM−j is the P 1
M−j-maximal

alternative in AM−j with this property. Let B̄ = B((yM−j, xj), P
1)\ (yM−j, xj). Then

∑
z∈B̄

ϕz(P̄
1, P 2) >

∑
z∈B̄

ϕz(P ).

Therefore 1 manipulates at P via P̄ 1. This proves Claim 1.

In view of Claim 1, we can assume that ajP
1
j cjP

1
j bj and bjP

2
j cjP

2
j aj. Let

P̄ 1 ∈ DL be such that (i) P̄ 1
M−j = P 1

M−j and (ii) τ(P̄ 1
j , Aj) = aj and bj is ranked

second in Aj according to P̄ 1
j . We claim that ϕj,aj(P ) = ϕj,aj(P̄

1, P 2). If ϕj,aj(P ) <

ϕj,aj(P̄
1, P 2), then we can construct an argument analogous to the one above to show

that 1 manipulates at P via P̄ 1. If the reverse is true, 1 manipulates at (P̄ 1, P 2) via P 1.

It follows from our earlier arguments that ϕj,zj(P̄
1, P2) = 0 for all zj �= aj, bj. Since

ϕj,cj(P ) > 0 and ϕj,aj(P ) = ϕj,aj(P̄
1, P 2), we must have ϕj,bj(P ) < ϕj,bj(P̄

1, P 2).

Now construct P̄ 2 ∈ DL be such that (i) P̄ 2
M−j = P 2

M−j and (ii) τ(P̄ 2
j , Aj) = bj

and aj is ranked second in Aj according to P̄ 2
j . From our earlier arguments ϕj,zj(P̄ ) =

0 for all zj �= aj, bj and ϕj,bj(P̄ ) = ϕj,bj(P̄
1, P 2). Therefore ϕj,aj(P̄ ) = ϕj,aj(P̄

1, P 2).

Hence ϕj,bj(P̄ ) > ϕj,bj(P ).

Now consider ϕj(P
1, P̄ 2). Using the same arguments as before, we can deduce

that ϕj,bj(P ) = ϕj,bj(P
1, P̄ 2), ϕj,aj(P ) < ϕj,aj(P

1, P̄ 2) and ϕj,zj(P
1, P̄ 2) = 0 for

all zj �= aj, bj. Furthermore ϕj,bj(P̄ ) = ϕj,bj(P
1, P̄ 2), ϕj,aj(P̄ ) = ϕj,aj(P

1, P̄ 2) and
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ϕj,zj(P̄ ) = 0 for all zj �= aj, bj. Hence ϕj,bj(P̄ ) = ϕj,bj(P ) contradicting our earlier

conclusion that ϕj,bj(P̄ ) > ϕj,bj(P ). This completes Case 1.

Case 2: Case 1 does not hold. Assume without loss of generality that j is not the

lexicographically worst component in P 1. Let S and T denote the set of components

lexicographically worse than j and lexicographically better than j respectively. Let

P̄ 1 ∈ DL such that (i) P̄ 1
T = P 1

T (ii) the set of components lexicographically better

than j in P̄ i is T and (iii) τ(P̄ 1
S , AS) = bS. From Lemma 3.3 ϕj(P ) = ϕj(P̄

1, P 2).

Let P̂ 1 ∈ DL be such that (i) the ordering of all components other than j is the

same as in P̄ i and j is the lexicographically worst (ii) P̂ 1
k = P̄ 1

k for all k ∈ M . We

claim that ϕj(P̄
1, P 2) = ϕj(P̂

1, P 2) = ϕj(P ). Consider k ∈ T . It follows from

Lemma 3.3 that ϕk(P̄
1, P 2) = ϕk(P̂

1, P 2). For components k ∈ S, ϕk,bk(P̂
1, P 2) =

ϕk,bk(P̄
1, P 2) = 1 from Step 1. Therefore ϕk(P̄

1, P 2) = ϕk(P̂
1, P 2) for all k �= j. If

ϕj(P̄
1, P 2) �= ϕj(P̂

1, P 2), we can use arguments analogous to ones used earlier to show

that either 1 manipulates at (P̄ 1, P 2) via P̂ 1 or at (P̂ 1, P 2) via P̄ 1. This establishes

the claim. Similarly we can find P̂ 2 ∈ DL where j is lexicographically worst and

ϕj(P̂ ) = ϕj(P ). Therefore ϕj,cj(P̂ ) > 0. Note that P̂ i
j , Aj) �= cj for i = 1, 2. Hence

we are in the situation described in Case 1 and we can use the same arguments to

show that ϕj,cj(P̂ ) > 0 is not possible.

Recall that profiles P, P̄ ∈ [DL]2 are said to be marginally equivalent if, P i
Q =

P̄ i
Q for all i = {1, 2} and Q ⊂ M . According to our next lemma, the outcome of a

strategy-proof RSCF in the two-voter case is identical across marginally equivalent

profiles.

Lemma 3.10 Let P, P̄ ∈ [DL]2 be marginally equivalent profiles. Then ϕ(P ) = ϕ(P̄ ).

Proof: Let P, P̄ ∈ [DS]2 be marginally equivalent profiles. Suppose τ(P 1) = a and

τ(P 2) = b. Since P and P̄ are marginally equivalent it follows that τ(P̄ 1) = a and

τ(P̄ 2) = b. Moreover ajP
1
j bj, ajP̄

1
j bj and bjP

2
j aj, bjP̄

2
j aj for all j ∈ M whenever aj

and bj are distinct. According to Lemma 3.9, the support of the lotteries ϕ(P ) and
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ϕ(P̄ ) are the same and equal to the set {a1, b1} × . . .× {am, bm}. We will show that

these lotteries are in fact, equal to each other. We prove this by induction on the

number of components.

The result from the Gibbard random dictatorship result in the case where

m = 1. Assume now that the following is true.

Induction Hypothesis (IH): Suppose there are t ≥ 2 components. Let P, P̄ ∈ [DL]2 be

marginally equivalent profiles. Then ϕ(P ) = ϕ(P̄ ).

We will show that Lemma 3.10 holds in the case of t+ 1 components. We will

prove this in two steps.

Claim 2: Suppose that there are t + 1 components. Let P, P̄ ∈ [DL]2 be two pro-

files such that there exists a component assumed without loss of generality to be

component t+ 1 and

1. τ(P 1
t+1) = τ(P 2

t+1) = xt+1 and τ(P̄ 1
t+1) = τ(P̄ 2

t+1) = yt+1

2. P i
k = P̄ i

k for i = 1, 2 and all components k = 1, . . . t.

Then ϕ(a,xt+1)(P ) = ϕ(a,yt+1)(P̄ ) for all t-component alternatives a.

Let P−(t+1) and P̄−(t+1) denote the profiles of preferences induced over all com-

ponents other than t + 1 by the profiles P and P̄ respectively. Observe that P−(t+1)

and P̄−(t+1) are marginally equivalent over all components other than t+1 by 2 above.

Applying Lemma 3.8, we know that there exists a t component strategy-proof RSCF

ϕ′ such that

• [ϕ(a,at+1)(P ) > 0]⇒ [at+1 = xt+1]

• [ϕ(a,at+1)(P̄ ) > 0]⇒ [at+1 = yt+1]

• ϕ(a,xt+1)(P ) = ϕ′a(P−(t+1))

• ϕ(a,yt+1)(P̄ ) = ϕ′a(P̄−(t+1))
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The Induction Hypothesis implies that ϕ′a(P−(t+1)) = ϕ′a(P̄−(t+1)). Therefore

ϕ(a,xt+1)(P ) = ϕ(a,yt+1)(P̄ ). This completes Claim 2.

We now complete the proof of the induction step. In view of Claim 2 the only

case that needs to be considered is the one where τ(P 1) = a and τ(P 2) = b and

aj �= bj for all j = 1, . . . t + 1. Suppose that ϕ(P 1, P 2) �= ϕ(P̄ 1, P 2). (Recall that P 1

and P̄ 1 are marginally equivalent.) There must exist x, y ∈ TPS(P ) = TPS(P̄ ) such

that xP 1y and yP̄ 2x. We claim that there must exist at least two components say

j and k such that xj �= yj and xk �= yk. Of course, at least one such component is

required; otherwise x = y. Suppose there exists exactly one such component , say j.

Then separability of preference orderings would imply that the marginal preferences

over component j have switched between P 1 and P̄ 1 contradicting our hypothesis

that P 1 and P̄ 1 are marginally equivalent.

From Lemma 3.4 we know that there exist components j and k such that

ϕaj(P̄
1, P 2) > ϕaj(P ) and ϕak(P̄

1, P 2) < ϕak(P ).

Consider the second ranked alternative x in P 2. There must exist a unique

component say l such that xl = al and xj = bj for all j �= l. We consider two cases.

Case 1: j �= l. Let P̃ 1 be a lexicographic ordering where component j is lexicograph-

ically best. If ϕaj(P̃
1, P 2) < ϕaj(P̄

1, P 2), then voter 1 will manipulate at (P̃ 1, P 2)

via P̄ 1. Therefore ϕaj(P̃
1, P 2) ≥ ϕaj(P̄

1, P 2). Let P̂ 1 be a lexicographic ordering

where j is the best and τ(P̂ 1
l ) = bl. By strategy-proofness, ϕaj(P̂

1, P2) = ϕaj(P̃
1, P2).

Hence ϕaj(P̂
1, P2) > ϕaj(P ). Observe that at the profile (P̂ 1, P 2), both voters have

a common maximal alternative bl for component l.

Let P̃ 2 be a lexicographic ordering where j and l are the best and the worst

components respectively. Using the same argument as before, ϕbj(P
1, P̃ 2) ≥ ϕbj(P ),

i.e. ϕaj(P
1, P̃ 2) ≤ ϕaj(P ). Let P̂ 2 be a lexicographic ordering such that component

j and l are the best and worst respectively and τ(P̂ 2
l ) = al. As before, ϕaj(P

1, P̃ 2) =

ϕaj(P
1, P̂ 2) so that ϕaj(P

1, P̂ 2) ≤ ϕaj(P ).
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Observe that at the profile (P 1, P̂ 2), both voters have a common maximal

alternative al for component l. By Claim 5 we must have ϕaj(P̂
1, P 2) = ϕaj(P

1, P̂ 2).

However, we have shown that ϕaj(P̂
1, P2) > ϕaj(P ) ≥ ϕaj(P

1, P̂ 2). We have a

contradiction.

Case 2: j = l. Let P̃ 2 be a lexicographic ordering where component k is lexicograph-

ically best. Using a similar argument as before we have ϕak(P̄
1, P̃ 2) ≤ ϕak(P̄

1, P 2).

Let P̂ 2 be a lexicographic ordering where k is the best and τ(P̂ 2
l ) = al. By strategy-

proofness, ϕak(P
1, P̂ 2) = ϕak(P

1, P̃ 2). Hence ϕak(P
1, P̂ 2) < ϕak(P ). Observe that at

the profile (P 1, P̂ 2), both voters have a common maximal alternative al for component

l.

Let P̃ 1 be a lexicographic ordering where k and l are the best and the worst

components respectively. Using the same argument as before, ϕak(P̃
1, P 2) ≥ ϕak(P ).

Let P̂ 1 be a lexicographic ordering such that component k and l are the best and

worst respectively and τ(P̂ 1
l ) = bl. As before, ϕak(P̃

1, P 2) = ϕak(P̂
1, P 2) so that

ϕak(P̂
1, P 2) ≥ ϕak(P ).

Observe that at the profile (P̂ 1, P 2), both voters have a common maximal

alternative bl for component l. By Claim 5 we must have ϕak(P̂
1, P 2) = ϕak(P

1, P̂ 2).

However, we have shown that ϕak(P̂
1, P 2) > ϕak(P ) ≥ ϕak(P

1, P̂ 2). We have a

contradiction.

Lemma 3.11 Let j ∈M , P ∈ [DL]2, P̄ i ∈ DL and (xj, zM−j), (yj, zM−j) ∈ A be such

that (i) τ(P i
k, Ak) = τ(P̄ i

k, Ak) for all k �= j (ii) τ(P i
j , Aj) = xj and τ(P̄ i

j , Aj) = yj

and (iii) (xj, zM−j) ∈ TPS(P ). Then

ϕ(xj ,zM−j)(P̄
i, P−i) + ϕ(yj ,zM−j)(P̄

i, P−i) = ϕ(xj ,zM−j)(P ) + ϕ(yj ,zM−j)(P ).

Moreover ϕ(dj ,zM−j)(P̄
i, P−i) = ϕ(dj ,zM−j)(P ) for all dj ∈ Aj.

Proof: In view of Lemmas 3.9 and 3.10 we can assume without loss of generality that

(i) j is the lexicographically worst component in P i and P̄ i and (ii) aM−jP i
M−jbM−j ⇔
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aM−jP̄ i
M−jbM−j. In other words, the lexicographic ordering of all components in P i

and P̄ i are the same and the marginal preferences for each component other than j is

the same in P i and P̄ i. It follows then that (xj, zM−j) and (yj, zM−j) are contiguous

in P i. Suppose (aj, zM−j)P i(xj, zM−j) where aj �= yj. Since j is the lexicographi-

cally worst component and (xj, zM−j) and (yj, zM−j) are contiguous it follows that

(aj, zM−j)P̄ i(yj, zM−j). Similarly (aj, zM−j)P̄ i(yj, zM−j) ⇒ (aj, zM−j)P i(xj, zM−j).

Now suppose (aj, bM−j)P i(xj, zM−j) where bM−j �= zM−j. From our assump-

tions, bM−jP i
M−jzM−j. Hence bM−jP̄ i

M−jzM−j and (aj, bM−j)P̄ i(yj, zM−j). Similarly,

(aj, bM−j)P̄ i(yj, zM−j) implies (aj, bM−j)P i(xj, zM−j). Hence P̄ i is a feasible local

switch of (xj, zM−j) and (yj, zM−j). The result now follows from Lemma 3.2.

To show the second part of the Lemma, note that ϕ(dj ,zM−j)(P̄
i, P−i) =

ϕ(dj ,zM−j)(P ) = 0 if dj �= τ(P−i, Aj). Suppose dj = τ(P−i, Aj). Again, using Lemmas

3.9 and 3.10, we can assume that dj is ranked third in both P i
j and P̄ i

j . This im-

plies that B((dj, zM−j), P i) = B((dj, zM−j), P̄ i). Now strategy-proofness implies that

ϕ(dj ,zM−j)(P̄
i, P−i) = ϕ(dj ,zM−j)(P ).

We now complete the proof of Step 2. Let P ∈ [DL]2 be such that τ(P 1) = a

and τ(P 2) = b where aj �= bj for all j ∈ M . Pick an arbitrary i ∈ Im and let

γ(i) = ϕx(P ) where χ(x, P ) = i. Since the maximal alternatives of the two voters

for each component are distinct, there exists a unique i ∈ Im for every x ∈ TPS(P )

such that χ(x, P ) = i. Therefore

∑
i∈Im

γ(i) =
∑

x∈TPS(P )

ϕx(P ) = 1

where the second equality follows from the fact that ϕ satisfies the TPS prop-

erty (Lemma 3.9).

Now consider j ∈ M and P̄ 1 ∈ D such that τ(P̄ 1
j , Aj) = cj �= bj

and τ(P̄ 1
k , Ak) = ak for all k �= j. Let x ∈ TPS(P ). Observe that [i ∈

χ((aj, xM−j), P ) ⇔ [i ∈ χ((cj, xM−j), (P̄ i), P 2)]. Now applying Lemma 3.11 and
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the fact that (cj, xM−j) /∈ TPS(P ) and (aj, xM−j) /∈ TPS(P̄ 1, P 2), we conclude that

ϕ(aj ,xM−j)(P ) = ϕ(cj ,xM−j)(P̄
1, P 2). Using this and the second part of Lemma 3.11, it

follows that ϕx(P̄
1, P 2) =

∑
i∈χ(x,(P̄ 1,P 2)) γ(i).

Now consider the case where τ(P̄ 1
j , Aj) = bj. Let x ∈ TPS(P ). Observe that

[i ∈ χ((aj, xM−j), P ) ∪ χ((bj, xM−j), P )⇔ [i ∈ χ((bj, xM−j), (P̄ 1, P 2)]. Now applying

Lemma 3.11 and noting the fact that (aj, xM−j) /∈ TPS(P̄ 1, P 2), we have

ϕ(bj ,xM−j)(P̄
1, P 2) = ϕ(aj ,xM−j)(P ) + ϕ(bj ,xM−j)(P ).

Once again, we have ϕx(P̄
1, P 2) =

∑
i∈χ(x,(P̄ 1,P 2)) γ(i) for all x ∈ A. Progres-

sively replacing the maximal alternative of each component in voter 1 and voter 2’s

preferences and noting that the previous expression holds at all profiles along the

sequence, we conclude that the expression holds for all profiles P . This establishes

the result.

4. Conclusion

We have generalized the random dictatorship result of Gibbard (1977b) to

a multi-dimensional setting where there are two voters and preferences are lexico-

graphically separable. In particular we have shown that strategy-proof random social

choice functions satisfying unanimity are generalized random dictatorships. These

are induced by a fixed probability distribution on voter sequences of length equal

to the number of components. Although the joint distribution on outcomes is not

the product of strategy-proof component random social functions, we have shown

that the marginal probability distribution on each component at a preference pro-

file depends only on component preferences. Moreover the marginal random social

choice functions are in fact, strategy-proof and therefore random dictatorships. An

important question for future research is whether the decomposability of the marginal

random social choice functions holds more generally, for instance, for “rich domains”

as defined in cite LeBreton and Sen (1999).
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CHAPTER 5

A foundation for proper rationalizability from an incomplete information perspective

1. Introduction

Epistemic game theory deals with the ways the players may reason about their

opponents before making a decision. More precisely, in epistemic game theory players

base their choices on the beliefs about the opponents’ behavior, which in turn depend

on their beliefs about the opponents’ beliefs about others’ behavior, and so on. A ma-

jor goal of epistemic game theory is to study such infinite belief hierarchies, to impose

reasonable conditions on these, and to investigate their behavioral implications.

A central idea in epistemic game theory is common belief in rationality (Tan

and da Costa Werlang (1988)), stating that a player believes that his opponents

choose rationally, believes that his opponents believe that their opponents choose ra-

tionally, and so on. In our view, one of its most natural refinements is the concept

of proper rationalizability (Schuhmacher (1999) and Asheim (2002), which is based

on Myerson’s (1978) (Myerson (1978)) notion of proper equilibrium, but without im-

posing any equilibrium assumption. Proper rationalizability is based on the following

two conditions: The first states that players are cautious, meaning that they do not

exclude any opponents’ choice from consideration. The second condition is an ex-

tension of Myerson’s ε-proper trembling condition, which states that whenever you

believe that a choice a is better than another choice b for your opponent, then the

probability you assign to b must be at most ε times the probability you assign to a.

Under ε-proper rationalizibility there is common belief in the event that every player

is cautious and satisfies the ε-proper trembling condition. A choice is called properly

rationalizable if it can be chosen under ε-proper rationalizability for every ε > 0.

We will now explain this concept by means of an example. Consider the game

in Figure 1, where player 1 chooses between a, b and c and player 2 chooses between

d, e and f . Note that for player 2, choice d is better than choice e, and choice e

is better than choice f . Hence, under proper rationalizability player 1 deems d for

player 2 much more likely than e, and e much more likely than f . Consequently, only

choice c will be optimal for player 1. So, if ε > 0 is small enough, then only choices
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d e f
a 0, 2 1, 1 1, 0
b 1, 2 0, 1 1, 0
c 1, 2 1, 1 0, 0

Figure 1: An example for proper rationalizability

c and d can rationally be made under ε-proper rationalizability. As such, only the

choices c for player 1 and d for player 2 are properly rationalizable.

The usual interpretation of proper rationalizability is that you assume that

your opponent makes mistakes, but that you deem more costly mistakes much less

likely than less costly mistakes. In this chapter we offer a rather different foundation

for proper rationalizability. Instead of assuming that you believe your opponent

to make mistakes, we rather suppose that you have uncertainty about his utility

function, while believing that he chooses rationally. We thus consider a game with

incomplete information. Our main result states that, if we let the uncertainty about

the opponent’s utility go to zero in some regular manner, then every choice that can

rationally be made under common belief in rationality in the game with incomplete

information, will be properly rationalizable in the original game, in which there is no

uncertainty about the opponent’s utilities.

In the game with incomplete information, we impose some regularity conditions

on the players’ beliefs about the opponent’s utility functions which can be summarized

as follows: First, for every outcome in the game, the belief that player i has about

player j’s utility from this outcome, is always normally distributed with its mean at

the “original” utility in the original game. As a consequence, player i deems any utility

function possible for player j, and hence every choice for player j can be optimal for

some utility function deemed possible by i. Together with the condition that i believes

in j’s rationality, this actually makes sure that player i deems every choice possible

for player j, thus mimicking the cautiousness condition described above. Secondly,
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i’s belief about j’s utility function should be independent from his belief about j’s

belief hierarchy. This makes intuitive sense since j’s belief hierarchy is an epistemic

property of this player, whereas his utility function is not. So there is no obvious

reason to expect any correlation between these two characteristics. Thirdly, i’s belief

about j’s utilities from different outcomes in the game should be independent from

each other. Possibly some of these conditions can be relaxed for the proof of our main

result, but we leave this issue for future research.

Our game with incomplete information is related to the one used in Dekel and

Fudenberg (1990). They also consider games with incomplete information where the

player’s uncertainty about the opponent’s utilities goes to zero. An important dif-

ference with our approach is that Dekel and Fudenberg apply the concept of iterated

elimination of weakly dominated choices to the games with incomplete information.

They show that if the uncertainty about the opponent’s utilities vanishes, then we

obtain one round of deletion of weakly dominated strategies, followed by iterated

deletion of strongly dominated strategies, in the original game. The latter procedure

is also called the Dekel-Fudenberg procedure in the literature. In contrast, we apply

common belief in rationality to our games with incomplete information. We then

show that if the uncertainty about the opponent’s utilities vanishes, we obtain a sub-

selection (that is some, but in general not all) of the properly rationalizable choices

in the original game, which is fundamentally different from the Dekel-Fudenberg pro-

cedure. Another fundamental difference between our work and Dekel and Fudenberg

lies in the way the uncertainty about the opponent’s utilities is modeled. Their model

assumes that players only deem possible finitely many utility functions for the op-

ponent, and that a large probability must be assigned to the opponent’s “original”

utility function. In contrast, we assume that the uncertainty about the opponent’s

utilities is given by a normal distribution. In particular, players deem every utility

function possible for the opponent.

The chapter is organized as follows: In Section 2 we introduce our epistemic
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model for games with incomplete information, we formalize the idea of common belief

in rationality for these games, and show that common belief in rationality is always

possible. In Section 3 we introduce our epistemic model for games with complete

information, and present the concept of proper rationalizability for these games. In

Section 4 we state our main result, establishing the connection between common

belief in rationality in the game with incomplete information (in the presence of

small uncertainty about the opponent’s utility function), and proper rationalizability

in the original game. In Section 5 we provide some concluding remarks. All proofs

are collected in Section 6.

2. Rationalizability in Games with Incomplete Information

2.1. Epistemic Model

Throughout this paper we restrict attention to games with two players. Let

Γ = (Ci, ui)i∈I be a finite, static game where I = {1, 2} is the set of players, Ci is the

finite set of choices of player i, and ui is player i ’s utility function. The function ui

assigns to every pair of choices (c1,c2) ∈ C1 × C2 a utility ui (c1, c2) ∈ R.

In a game with incomplete information players do not only have uncertainty

about the opponent’s choices, they also have uncertainty about the opponent’s utility

function. Hence a belief hierarchy should not only specify what the player believes

about the opponent’s choice but also what he believes about the opponent’s utility

function. Not only this, it should also specify what the player believes about the

opponent’s belief about his own choice and utility function, and so on. A possible

way of modeling such belief hierarchies is by means of the following definition.

Epistemic model An epistemic model for Γ with incomplete information is a tu-

ple M = (Ti, bi, vi)i∈I where (1) Ti is the set of types for player i, (2) bi : Ti −→
� (Cj × Tj) is the belief assignment taking only finitely many different probability

distributions on � (Cj × Tj), and (3) vi is the utility assignment that assigns to every

ti ∈ Ti a utility function vi (ti) : C1 × C2 −→ R.
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By � (X) we denote the set of probability distributions on X. So, in an epis-

temic model, each type ti has a belief about player j’s choice-type combinations.

And hence, in particular, it has a belief about j’s choice. But, as player j’s type also

specifies his utility function and his belief about player i’s choice, player i also has

some belief about player j’s utility function, and about player j’s belief about his own

choice, and so on. In this way one can derive a complete belief hierarchy for every

given type.

Note that each type ti can be indentified with a pair (vi(ti), bi(ti)) where vi(ti)

is its utility function and bi(ti) is its belief hierarchy. Since we required the belief

assignment to take only finitely many different probability distributions, the epistemic

model contains only finitely many different belief hierarchies.

2.2. Restrictions on the Epistemic Model

Our goal will be to model the situation where the players have uncertainty

about the opponent’s utility function, but where this uncertainty “vanishes in the

limit”. In order to formalise this we need to impose additional restrictions on the

epistemic model.

Recall that every type ti can be identified with a pair (vi (ti) , bi (ti)), where

vi (ti) is ti’s utility function and bi (ti) is its belief hierarchy. Denote by Vi the set of

all possible utility functions, and by Bi the set of all belief hierarchies in the epistemic

model M = (Ti, vi, bi)i∈I . The first condition we impose is that Ti = Vi × Bi, that

is, for every possible utility function we can think of, and every belief hierarchy in

the model, there exists a type in the model with exactly this combination of utility

function and belief hierarchy. So in a sense we assume that the type space is rich

enough.

Secondly we assume that ti’s belief about j’s utility from (c1, c2) is statistically

independent from its belief about j’s utility from (c′1, c
′
2) whenever (c1, c2) �= (c′1, c

′
2),

and that this belief is also statistically independent from its belief about j’s belief

hierarchy.
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Finally we assume that ti’s beliefs about j’s utilities from the various outcomes

in the game are all induced by a unique normal distribution. More formally, ti’s

belief about j’s utility from (c1, c2) is given by a normal distribution with its mean at

uj (c1, c2) – the “true” utility of player j in the original game. So, all these beliefs are

distributed identically around the mean. By collecting all these conditions we arrive

at the following definition.

σ-regular epistemic model Let P be the normal distribution on R with mean 0

and variance σ2 > 0. Then an epistemic model M = (Ti, bi, vi)i∈I is σ-regular if for

both players i, (1) Ti = Vi × Bi, (2) for every type ti ∈ Ti, his belief about j’s

utility from (c1, c2) is statistically independent from his belief about j’s utility from

(c′1, c
′
2) whenever (c1, c2) �= (c′1, c

′
2), and his belief about j’s utilities is statistically

independent from his belief about j’s belief hierarchy, and (3) for every type ti ∈ Ti,

and every choice-pair (c1, c2), the belief of ti about j’s utility from (c1, c2) is given by

P , up to a shift of the mean to uj (c1, c2).

2.3. σ-Rationalizability

In this subsection we will define common belief in rationality inside an epistemic

model with incomplete information. In addition, if we require the epistemic model to

be σ-regular for a given normal distribution with mean 0 and variance σ2, then we

obtain the concept of σ-rationalizability.

We first need some more notation. For given type ti and choice ci, let vi (ti) (ci)

be the expected utility for type ti from choosing ci, given his belief bi (ti) about the

opponent’s choice, and given his utility function vi(ti).

Rational choice A choice ci is rational for ti if vi (ti) (ci) ≥ vi (ti) (c
′
i) for all c

′
i ∈ Ci.

We will now define common belief in rationality. In words it says that a player

believes that his opponent makes rational choices, and believes that his opponent

believes that he makes rational choices, and so on.
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Formally, for every T̃i ⊆ Ti, let(
Ci × T̃i

)rat

= {(ci, ti) ∈ Ci × T̃i : ci is rational for ti}.

Common belief in rationality For both players i we define subsets of types

T 1
i , T

2
i , ... in a recursive way as follows:

T 1
i : = {ti ∈ Ti : bi (ti) [(Cj × Tj)

rat] = 1},
T 2
i : = {ti ∈ Ti : bi (ti) [(Cj × T 1

j )
rat] = 1},

...

T l
i : = {ti ∈ Ti : bi (ti) [(Cj × T l−1

j )rat] = 1},
...

Type ti expresses common belief in rationality if ti ∈ ∩l∈NT l
i .

A type ti is σ-rationalizable if it expresses common belief in rationality within

a σ-regular epistemic model.

σ-rationalizable type Let M = (Ti, bi, vi)i∈I be a σ-regular epistemic model. Every

type ti ∈ Ti that expresses common belief in rationality is called σ-rationalizable.

Now we show that σ-rationalizable types always exist.

Theorem 2.1 (σ-rationalizable types always exist) Consider a finite static

game Γ = (Ci, ui)i∈I , and some σ > 0. Then there is a σ-regular epistemic model

M = (Ti, bi, vi)i∈I for Γ where all types are σ-rationalizable.

The proof can be found in Section 6.

2.4. Limit Rationalizability

In this subsection we focus on those choices which can rationally be made

under common belief in rationality when the uncertainty about the opponent’s utility

vanishes. This will lead to the concept of limit rationalizability. We first need an

additional definition.
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Constant type spaces and utility assignments A sequence of epistemic models

((T n
i , b

n
i , v

n
i )i∈I)n∈N has constant type spaces and utility assignments if T n

i = Tm
i and

vni = vmi for all n and m, and for both players i.

We are now ready to define the concept of limit rationalizable choice.

Limit rationalizable choice Consider a finite static game Γ = (Ci, ui)i∈I with two

players. A choice ci is limit rationalizable if there is a sequence (σn)n∈N → 0, and

a sequence (Mn)n∈N of σn-regular epistemic models with constant type spaces and

utility assignments, such that in every Mn there is a σn-rationalizable type tni with

utility function ui, for which choice ci is optimal.

3. Proper Rationalizability in Games with Complete Information

3.1. Epistemic Model

Let Γ = (Ci, ui)i∈I be a finite, static game with two players. In a game with

complete information players do not have uncertainty about the opponent’s utility

function. Therefore a belief hierarchy only needs to specify what a player believes

about the opponent’s choice, what he believes about the opponent’s belief about his

own choice, and so on. Therefore the epistemic model will be simpler compared to

the case of incomplete information.

Epistemic model An epistemic model for Γ with complete information is a tuple

M = (Θi, βi)i∈I where (1) Θi is the finite set of types for player i, and (2) βi : Θi −→
� (Cj ×Θj) is the belief assignment.

So, in an epistemic model, each type θi has a belief about player j’s choice-

type combinations. And hence, in particular, it has a belief about j’s choice. But, as

player j’s type also specifies his belief about player i’s choice, player i also has some

belief about player j’s belief about his own choice, and so on. In this way one can

derive a complete belief hierarchy for every given type.
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For given type θi and choice ci we define ui(ci, θi) as the expected utility for

type θi from choosing ci given his belief βi (θi) about his opponent’s choice (and given

his “fixed” utility function ui). Type θi is said to prefer choice ci to choice c′i when

ui(ci, θi) > ui(c
′
i, θi). We say that a type θi considers possible some opponent’s type

θj if βi(θi)(cj, θj) > 0 for some cj ∈ Cj. Now we introduce the key condition in proper

rationalizability, which is the ε-proper trembling condition. Intuitively it says that

(1) a player should deem possible all opponent’s choices, and (2) if a player believes

choice a is better than choice b for the other player, then he should deem choice a

much more likely than choice b.

ε-proper trembling condition Let ε > 0. A type θi satifies the ε-proper trembling

condition if

(1) for each θj that θi deems possible, βi (θi) (cj, θj) > 0 for all cj ∈ Cj, and

(2) for every θj that θi deems possible, whenever θj prefers cj to c′j, then

βi (θi)
(
c′j, θj

) ≤ ε · βi (θi) (cj, θj) .

So, the first condition says that whenever θi deems some type θj possible, θi

also assumes every choice is possible for θj.

Proper rationalizability is based on the event that the types should not only

satisfy the ε-proper trembling condition themselves, but also express common belief

in the event that types satisfy the ε-proper trembling condition.

ε-properly rationalizable type A type θi is ε-properly rationalizable if:

θi satisfies the ε-proper trembling condition,

θi only deems possible opponent’s types θj which satisfy the ε-proper trembling con-

dition,

θi only deems possible opponent’s types θj which only deem possible player i’s types

θ′i which satisfy the ε-proper trembling condition, and so on.

Properly rationalizable choices are those choices which can rationally be made

by ε-properly rationalizable types, for all ε.
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Properly rationalizable choice A choice ci is ε-properly rationalizable if there is

an epistemic model and an ε-properly rationalizable type θi within it for which ci is

optimal. A choice ci is properly rationalizable if it is ε-properly rationalizable for all

ε > 0.

3.2. Example

Consider again the game in Figure 1. Let the type sets of player 1 and player

2 be Θ1 = {θ1, θ′1} and Θ2 = {θ2, θ′2}. For ε > 0 (small), let the beliefs for the types

be given by

β1 (θ1) =
(
1− ε2 − ε3

)
(d, θ2) + ε2 (e, θ2) + ε3 (f, θ2) ,

β1 (θ
′
1) =

1

6
(d, θ2) +

1

6
(e, θ2) +

1

6
(f, θ2) +

1

6
(d, θ′2) +

1

6
(e, θ′2) +

1

6
(f, θ′2) ,

β2 (θ2) =
(
1− ε2 − ε3

)
(c, θ1) + ε2 (b, θ1) + ε3 (a, θ1) , and

β2 (θ
′
2) =

1

6
(a, θ1) +

1

6
(b, θ1) +

1

6
(c, θ1) +

1

6
(a, θ′1) +

1

6
(b, θ′1) +

1

6
(c, θ′1) .

It may be verified that the types θ1 and θ2 both satisfy the ε-proper trembling

condition. Also, type θ1 only deems possible the opponent’s type θ2, and θ2 only

deems possible the opponent’s type θ1. This implies that both θ1 and θ2 are ε-

properly rationalizable. So, choice c for player 1, and d for player 2 are ε-properly

rationalizable for any ε > 0 small enough. Hence, choice c for player 1, and d for

player 2 are properly rationalizable.

On the other hand, we see that the type θ′1 of player 1 believes that the choices

d, e and f are equally likely to be taken by type θ2 of player 2 while for type θ2, d

is better than e, and e is better than f . So, type θ′1 of player 1 does not satisfy the

ε-proper trembling condition. Similarly, type θ′2 also does not satisfies the ε-proper

trembling condition.

4. Main Result

4.1. Statement of the Main Result

For a static game we analysed two contexts, one with incomplete information

and another with complete information. In the context with incomplete information,
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where players have uncertainty about the opponent’s utility, we introduced the con-

cept of a limit rationalizable choice. In the context with complete information, where

players have no uncertainty about the opponent’s utility, we discussed the concept of

a properly rationalizable choice. In our main result we connect these two concepts.

Theorem 4.1 (Limit rationalizability implies proper rationalizability )

Consider a finite static game with two players. Every limit rationalizable choice for

the context with incomplete information is a properly rationalizable choice for the

context with complete information.

4.2. Illustration of the Main Result

By means of an example we provide some intuition for our main result. More

precisely we show how a σ-rationalizable type in the context of incomplete information

can be transformed into an ε-properly rationalizable type in the context of complete

information. Also we show that when σ goes to zero then ε goes to zero as well.

Consider again the game from Figure 1. Let us start with the context of

incomplete information. Let P be the normal distribution with mean 0 and variance

σ2. From the proof of Theorem 2.1 we know that there exists a σ-regular epistemic

model M = (Ti, bi, vi)i∈I where every type is σ-rationalizable and all the types have

the same belief hierarchy. So, types only differ by their utility function. For each of

the types t1 of player 1 we denote by β1 the belief about player 2’s choice, and for

each type t2 let β2 be the belief about player 1’s choice. As we assume that all the

types have the same belief hierarchy, β1 and β2 are unique.

For both players i let Qi be the probability distribution on player i’s utility

functions generated by P . Since the epistemic model is σ-regular every type tj has

the belief Qi about i’s utility function. Let Vi (ci, βi) be the set of utility functions

for player i such that choice ci is optimal under the belief βi about the opponent’s

choice. Since every type ti expresses common belief in rationality, the probability it

assigns to an opponent’s choice cj is exactly the probability it assigns to the event
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that j’s utility function is in Vj (cj, βj), which is Qj (Vj (cj, βj)). So, we can derive

the following six equations:

β1 (d) = Q2 (V2(d, β2))

β1 (e) = Q2 (V2(e, β2))

β1 (f) = Q2 (V2(f, β2))

β2 (a) = Q1 (V1(a, β1))

β2 (b) = Q1 (V1(b, β1))

β2 (c) = Q1 (V1(c, β1)) .

Since P has full support on R, it follows that all these probabilities are positive.

Now we turn to the context of complete information. We construct an epistemic

model with a single type θ1 for player 1 and a single type θ2 for player 2. Let the

belief of θ1 about player 2’s choice be given by the β1 constructed above, and similarly

for the belief of θ2. So, the belief about the opponent’s choice has not changed by

moving from the context with incomplete information to the context with complete

information.

Since in the original game d is better than e and e is better than f for player

2, for small σ we will have that Q2 (V2(d, β2)) is much bigger than Q2 (V2(e, β2)),

and Q2 (V2(e, β2)) is much bigger than Q2 (V2(f, β2)). So, by our equations above we

have that β1 (d) is much bigger than β1 (e), and β1 (e) is much bigger than β1 (f).

Given such a β1, in the original game c will be better than b and b will be better

than a. So, similarly, for small σ we will have that Q1 (V1(c, β1)) is much bigger than

Q1 (V1(b, β1)), and Q1 (V1(b, β1)) is much bigger than Q1 (V1(a, β1)). And hence, from

the equations above, we have that β2 (c) is much bigger than β2 (b), and β2 (b) is much

bigger than β2 (a). Now define

ε = max{β2 (a)

β2 (b)
,
β2 (b)

β2 (c)
,
β1 (e)

β1 (d)
,
β1 (f)

β1 (e)
}.

Then, by construction, θ1 and θ2 are ε-properly rationalizable. Moreover, if σ goes to

zero then the associated ε would go to zero as well.
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If the variance of P is small then choice c is optimal for the σ-rationalizable

type t1 in the model with incomplete information that has the original utility function.

Similarly, d is optimal for the σ-rationalizable type t2 that has the original utility

function in the model with incomplete information. As a consequence, c and d are

limit rationalizable in the context with incomplete information. On the other hand,

in the associated epistemic model with complete information c is optimal for the ε-

properly rationalizable type θ1 and d is optimal for the ε-properly rationalizable type

θ2. As ε goes to zero when σ goes to zero, we conclude that c and d are properly

rationalizable. So, in this example the limit rationalizable choices are also properly

rationalizable.

5. Concluding remarks

We believe that proper rationalizability is a very natural concept in game

theory, but it has not yet received the attention it deserves. In this paper we have

established a new foundation for proper rationalizability from the viewpoint of games

with incomplete information. In games with incomplete information we define a

choice as limit rationalizable if it can rationally be made under common belief of

rationality when the uncertainty vanishes gradually in some regular way. We show

the existence of such choices. We then prove that each limit rationalizable choice in

the game with incomplete information is properly rationalizable for the context with

complete information.

Throughout this paper it is assumed that the players’ uncertainty about the

opponent’s utilities are described by a normal distribution. We have used the nor-

mal distribution as it is a very natural candidate to describe the uncertainty. We

believe, however, that we can extend our framework to wider classes of probability

distributions here, as long as this class is closed under taking convex combinations,

and Lemma 6.4 is satisfied.

In this paper we restricted our attention to two players for the sake of simplicity.

However, we believe our result can be extended to more than two players in a natural
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way.

6. Proofs

6.1. Existence of σ-Rationalizable Types

We prove Theorem 2.1, which guarantees the existence of σ-rationalizable

types. Consider a finite static game Γ = (Ci, ui)i∈I , and some σ > 0. Let P be

the normal distribution with mean 0 and variance σ2. In fact we will construct a

σ-regular epistemic model where all types of player 1 have the same belief β2 about

player 2’s choice and all types of player 2 have the same belief β1 about player 1’s

choice. We construct β1 and β2 by means of the fixed point of some correspondence.

For every belief βj ∈ Δ(Cj) and every utility function wi, we define

Ci (βj, wi) := {ci ∈ Ci : wi(ci, βj) ≥ wi(c
′
i, βj) for all c

′
i}.

We also define Qi as the probability distribution on the set of utility functions of

player i induced by P . For every βj ∈ Δ(Cj) we define

Fi(βj) : = {βi ∈ Δ(Ci) : βi =

∫
wi∈Vi

γi (wi) dQi ,

where γi (wi) ∈ Δ(Ci (βj, wi)) for every wi ∈ Vi}.

Here Vi denotes the set of all possible utility functions for player i. So every βi ∈ Fi(βj)

is obtained by taking for every utility function wi a randomization over optimal choices

against βj and then taking the expected randomization with respect to Qi. Now we

define a correspondence F from Δ(C1)×Δ(C2) to Δ(C1)×Δ(C2) by

F (β1, β2) := F1 (β2)× F2(β1).

Now we use Kakutani’s fixed point theorem to prove that F has a fixed point. Clearly

F is upper hemi-continuous and compact valued. We show that F is convex valued.

For this it is sufficient to show that F1 and F2 are convex valued. For a given β2, take

β′1, β
′′
1 in F1 (β2). We show that λβ′1 + (1− λ)β

′′
1 is also in F1 (β2). By definition

β′1 =
∫
w1

γ′1 (w1) dQ1 and β
′′
1 =

∫
w1

γ
′′
1 (w1) dQ1
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where γ′1 (w1) , γ
′′
1 (w1) ∈ Δ(C1 (β2, w1)) for every w1. So we have

λβ′1 + (1− λ)β
′′
1 =

∫
w1

(λγ′1 (w1) + (1− λ)γ
′′
1 (w1))dQ1

where λγ′1 (w1) + (1 − λ)γ
′′
1 (w1) ∈ Δ(C1 (β2, w1)) for every w1. Hence by definition

λβ′1+(1−λ)β
′′
1 ∈ F1 (β2). This implies that F1 is convex valued. The same applies to

F2 and hence we can conclude that F is convex valued. Now using Kakutani’s fixed

point theorem F has a fixed point
(
β
∗
1 , β

∗
2

)
.

Since β
∗
1 ∈ F1

(
β
∗
2

)
it follows that

β∗1 =

∫
w1

γ∗1 (w1) dQ1

where γ∗1 (w1) ∈ Δ(C1 (β
∗
2 , w1)) for every w1. Similarly

β∗2 =

∫
w2

γ∗2 (w2) dQ2

where γ∗2 (w2) ∈ Δ(C2 (β
∗
1 , w2)) for every w2.

We will now construct an epistemic model M = (Ti, bi, vi)i∈I . For both players

i, define

Ti = {twi
i : wi ∈ Vi}.

Let the utility assignment vi be given by

vi (t
wi
i ) = wi

for every twi
i ∈ Ti. In order to define the belief assignment bi we first define for every

type twi
i a density function b̃i (t

wi
i ) on Cj × Tj as follows:

b̃i (t
wi
i )

(
cj, t

wj

j

)
:= γ∗j (wj) (cj) ,

where γ∗j (wj) (cj) is the probability that probability distribution γ∗j (wj) assigns to cj.

For every type twi
i let bi (t

wi
i ) ∈ Δ(Cj × Tj) be the probability distribution induced

by density function b̃i (t
wi
i )

(
cj, t

wj

j

)
and the probability distribution Qj on Vj. That

is, for every set of types E ⊆ Tj given by

E := {twj

j : wj ∈ F}
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we have that

bi (t
wi
i ) ({cj} × E) :=

∫
wj∈F

b̃i (t
wi
i )

(
cj, t

wj

j

)
dQj.

It follows that the belief of type twi
i about player j’s choice is given by β∗j . Namely,

the probability that type twi
i assigns to choice cj is equal to

bi (t
wi
i ) ({cj} × Vj) =

∫
wj∈Vj

b̃i (t
wi
i )

(
cj, t

wj

j

)
dQj

=

∫
wj∈Vj

γ∗j (wj) (cj) dQj

= β∗j (cj) .

So all types of player i have the same belief β∗j about player j’s choice. This completes

the construction of the epistemic model. It follows directly from the construction that

the epistemic model is σ-regular.

We now show that every type in this model expresses common belief in ra-

tionality. For this it is sufficient to show that every type twi
i believes in the op-

ponent’s rationality. So, we must show for both players i and every twi
i ∈ Ti that

bi (t
wi
i ) [(Cj × Tj)

rat] = 1. In order to prove so we show that b̃i (t
wi
i )

(
cj, t

wj

j

)
> 0 only

if cj is rational for t
wj

j .

Suppose that b̃i (t
wi
i )

(
cj, t

wj

j

)
> 0. Since b̃i (t

wi
i )

(
cj, t

wj

j

)
:= γ∗j (wj) (cj) , it

follows that γ∗j (wj) (cj) > 0. As by definition γ∗j (wj) ∈ Δ(Cj (β
∗
i , wj)) it follows

that cj ∈ Cj (β
∗
i , wj). Remember that the belief of type t

wj

j about player i’s choice is

exactly β∗i . Since cj ∈ Cj (β
∗
i , wj) it follows that cj is rational for type t

wj

j . So we have

shown that b̃i (t
wi
i )

(
cj, t

wj

j

)
> 0 only if cj is rational for t

wj

j . This implies that type twi
i

believes in the opponent’s rationality. Since this holds for every type in the model it

follows that every type in the epistemic model expresses common belief in rationality.

So every type in the model is σ-rationalizable because the model is σ-regular. This

completes the proof. �

6.2. Some Technical Lemmas

In this subsection we state some technical lemmas which we need for the proof

of the main result.
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Lemma 6.1 If X, Y and Z are real valued, independent random variables then

Pr (X ≥ max{Y, Z}) ≥ Pr (X ≥ Y ) · Pr (X ≥ Z) .

Proof. Let fY and fZ be the probability density functions of the random variables

Y and Z. Now,

Pr (X ≥ max{Y, Z})
=

∫
y

∫
z

Pr (X ≥ max {y, z}) dfY (y) dfZ (z)

≥
∫
y

∫
z

Pr (X ≥ max {y, z}) · Pr(X ≥ min {y, z})dfY (y) dfZ (z)

=

∫
y

∫
z

Pr (X ≥ y) · Pr (X ≥ z) dfY (y) dfZ (z)

=

∫
y

Pr (X ≥ y) dfY (y) ·
∫
z

Pr (X ≥ z) dfZ (z)

= Pr (X ≥ Y ) · Pr (X ≥ Z) .

Note that the first and third equality follow from the fact that Y and Z are indepen-

dent, and the inequality holds because Pr(X ≥ min {y, z}) ≤ 1. �

We now state the well-known Chebyshev’s inequality, which we use in the proof

of Lemma 6.3.

Lemma 6.2 (Chebyshev’s inequality) Let X be a random variable with E (X) =

μ. Then for any number k > 0,

Pr (|X − μ| ≥ k) ≤ V ar (X)

k2
.

Lemma 6.3 For every n ∈ N, let X1
n, X

2
n, ..., X

m
n be independent random variables

with E (X i
n) = μi for all n and i, μ1 > μ2 > ... > μm, and limn→∞ V ar (X i

n) = 0 for

all i. Then,

lim
n→∞

Pr
(
X1

n ≥ X2
n ≥ ... ≥ Xm

n

)
= 1.

Proof. For a given n,

Pr
(
X1

n ≥ X2
n ≥ ... ≥ Xm

n

) ≥ 1− Pr
(
X i

n < Xj
n for some i < j

)
.
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For fixed i < j we have,

Pr
(
X i

n < Xj
n

)
= Pr

(
Xj

n −X i
n > 0

)
= Pr

((
Xj

n −X i
n

)− (
μj − μi

)
> μi − μj

)
≤ Pr

(∣∣(Xj
n −X i

n

)− (
μj − μi

)∣∣ > μi − μj
)

≤ V ar (Xj
n −X i

n)

(μi − μj)2

=
V ar (Xj

n) + V ar (X i
n)

(μi − μj)2
.

Here, the inequality comes from Chebyshev’s inequality and the last equality follows

from the fact that Xj
n and X i

n are independent. Now, note that limn→∞ V ar (X i
n) = 0

and limn→∞ V ar (Xj
n) = 0, which implies limn→∞ Pr (X i

n < Xj
n) = 0. Then, from

above it follows that

lim
n→∞

Pr
(
X1

n ≥ X2
n ≥ ... ≥ Xm

n

)
= 1. �

Consider a sequence (Pn)n∈N of normal distributions with mean 0 and variance

σ2
n such that σn → 0 as n→∞. The density function fn of Pn is given by

fn (x) =
1

σn

√
2π

e
− x2

2σ2
n for all x.

We show that for large n the right tail of Pn becomes arbitrarily steep everywhere.

Lemma 6.4 Consider a sequence (Pn)n∈N of normal distributions with mean 0 and

variance σ2
n, such that σn → 0 as n → ∞. Let fn be the density functions of these

distributions. Then for all c > 0 and ε > 0 there is N ∈ N such that fn(x+c)
fn(x)

≤ ε for

all n ≥ N and all x > 0.

Proof. Take c > 0 and ε > 0. Then

fn(x+ c)

fn(x)
=

e
− (x+c)2

2σ2
n

e
− x2

2σ2
n

= e
− 1

2σ2
n
((x+c)2−x2)

= e
− 1

2σ2
n
(2cx+c2) ≤ e

− c2

2σ2
n .

Now as c > 0 is fixed and σn → 0 as n → ∞, we can find N large enough such that

e
− c2

2σ2
n ≤ ε for n ≥ N . �
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Lemma 6.5 Consider a sequence (Xn)n∈N of normally distributed random variables

such that E (Xn) = 0 for all n, and var (Xn) → 0 as n → ∞. Let fn be the density

functions of these random variables. Then, for every 0 < x < y it holds that

lim
n→∞

Pr (Xn ≥ y)

Pr (Xn ≥ x)
= 0.

Proof. Fix 0 < x < y, and fix an ε > 0. Then, by Lemma 6.4 there is an N such

that fn(z+(y−x))
fn(z)

≤ ε for all n ≥ N and all z > 0. Take some n ≥ N. Then,

Pr (Xn ≥ y) =

∫ ∞

y

fn (z) dz =

∫ ∞

x

fn (z + (y − x)) dz

≤ ε ·
∫ ∞

x

fn (z) dz = ε · Pr(Xn ≥ x).

This implies that limn→∞
Pr(Xn≥y)
Pr(Xn≥x) = 0. �

6.3. Proof of the Main Result

We finally prove or main theorem, which is Theorem 4.1. We proceed by three

steps.

In step 1, we show how a σ-regular epistemic model M with incomplete infor-

mation can be transformed into an epistemic model M̂ with complete information.

More precisely, we transform every type ti in M into a type θi (ti) in M̂ which has

the same belief about the opponent’s choice as ti.

In step 2, we take a choice c∗i that is limit rationalizable. So we can find a

sequence (Pn)n∈N of normal distributions with mean 0 and variance σ2
n, with σ2

n → 0

as n→∞, and a sequence (Mn)n∈N of σn-regular epistemic models with constant type

spaces and utility assignments, such that in everyMn there is a σn-rationalizable type

tni with utility function ui for which choice c∗i is optimal. We show that the type tni is

transformed into a type θi (t
n
i ) which is εn-properly rationalizable for some εn. Since,

for all n, c∗i is rational for tni , and θi (t
n
i ) has the same belief about the opponent’s

choice and the same utility function as tni , it follows that c
∗
i is rational for θi (t

n
i ) for all
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n. As θi (t
n
i ) is εn-properly rationalizable for every n, it follows that c∗i is εn-properly

rationalizable for all n.

In step 3, we prove that limn→∞ εn = 0. Hence, c∗i is ε-properly rationalizable

for every ε > 0 and therefore properly rationalizable.

Step 1. Take some σ > 0. Let M = (Ti, bi, vi)i∈I be a σ-regular epistemic model for

Γ with incomplete information. Now we transform this epistemic model M into an

epistemic model M̂ = (Θi, βi)i∈I with complete information. Using the fact that M

is σ-regular we can write

Ti = Vi × Bi,

where Vi is the set of all possible utility functions and Bi is the finite set of belief

hierarchies in Ti. Then, for ti ∈ Ti,

bi (ti) ∈ � (Cj × Vj × Bj) .

Now take Θi = Bi and Θj = Bj. Clearly, Θi and Θj are finite sets as Bi and Bj are

finite. For every ti ∈ Ti define the type θi (ti) ∈ Θi by

βi (θi (ti)) := margCj×Bj
bi (ti) .

So,

βi (θi (ti)) (cj, bj) = bi (ti) (Vj × {(cj, bj)})

for all (cj, bj) ∈ Cj × Bj. Hence,

βi (θi (ti)) ∈ � (Cj × Bj) = � (Cj ×Θj) .

By construction θi (ti) has the same belief about j’s choice as ti. This completes the

construction of the epistemic model M̂ = (Θi, βi)i∈I .

Step 2. Take a choice c∗i that is limit rationalizable. Hence, there exists a sequence

(Pn)n∈N of normal distributions with mean 0 and variance σ2
n, with σ2

n → 0 as n→∞,
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and a sequence (Mn)n∈N of σn-regular epistemic models with constant type spaces

and utility assignments, such that in every Mn there is a σn-rationalizable type tni

with utility function ui for which choice c∗i is optimal. Let the constant type spaces

in the sequence (Mn)n∈N of epistemic models be Ti and Tj, and the constant utility

assignments be vi and vj.

Fix an n. Then, within the epistemic model Mn = (Ti, b
n
i , vi)i∈I there is a

σn-rationalizable type tni ∈ Ti with utility function ui for which c∗i is optimal. Since

type tni only deems possible j’s types which are σn-rationalizable, and only deems

possible j’s types which only deem possible i’s types which are σn-rationalizable,

and so on, we may assume without loss of generality that all the types in Mn are

σn-rationalizable. Let M̂n = (Θn
i , β

n
i )i∈I be the corresponding epistemic model with

complete information, as constructed in step 1.

For every θi ∈ Θn
i , we define a number εn (θi) as follows: Let Poss(θi) be the set

of types in Θj that θi deems possible. For a given type θj ∈ Poss(θi), suppose that θj

prefers choice c1j to c2j , c
2
j to c3j , and so on. So, we obtain an ordering

(
c1j , c

2
j , c

3
j , ..., c

m
j

)
of j’s choices. Then define

εn (θi, θj) = max
k∈{2,3,...,m}

βn
i (θi)

(
ckj , θj

)
βn
i (θi)

(
ck−1j , θj

) .
Next we define

εi,n = max
θi∈Θn

i ,θj∈ Poss(θi)
εn (θi, θj) .

Finally let

εn = max{εi,n, εj,n}.

Note that by construction every type in M̂n satisfies the εn-proper trembling con-

dition, hence every type in M̂n is εn-properly rationalizable. In particular θi (t
n
i ) is

εn-properly rationalizable.

Step 3. Now we show that limn→∞ εn = 0. It is sufficient to show that

lim
n→∞

βn
i (θi)

(
ckj , θj

)
βn
i (θi)

(
ck−1j , θj

) = 0 (5.1)
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for every θi ∈ Θn
i , and every θj ∈ Poss(θi) and every k. As before, player j’s choices

are ordered c1j , ..., c
m
j such that θj prefers choice c1j to c2j , c

2
j to c3j , and so on. We

assume, without loss of generality, that all preferences are strict.

Fix some θi ∈ Θn
i and θj ∈ Poss(θi). Suppose that θi = θi(ti) for some ti ∈ Ti,

and that θj = θj(tj) for some tj ∈ Tj. Let γj ∈ Δ(Ci) be θj’s belief about i’s choice.

As before, let Vj be the set of utility functions for player j. For every k ∈ {1, ...,m},
let Xk : Vj → R be given by

Xk(vj) := vj(c
k
j , γj) =

∑
ci∈Ci

γj(ci) · vj(ckj , ci)

for every vj ∈ Vj. So,X
k(vj) denotes the expected utility for player j induced by choice

ckj , under the belief γj and the utility function vj. Note that X
k is a random variable,

as player i holds a probability distribution on Vj, induced by Pn. The probability

distribution of Xk depends on n, and is denoted by ϕnk(Xk). Note that Xk has a

normal distribution with mean

E(Xk) = uj(c
k
j , γj),

and variance

V arn(Xk) =
∑
ci∈Ci

(γj(ci))
2 · σ2

n. (5.2)

In particular, it follows that limn→∞ V arn(Xk) = 0, as limn→∞ σ2
n = 0. Since, by

assumption, θj strictly prefers c1j to c2j , strictly prefers c2j to c3j , and so on, we have

that E(X1) > E(X2) > ... > E(Xm).

Let ϕn be the probability distribution of the random vector (X1, ..., Xm). Recall

that all types in Mn are σn-rationalizable, which implies that all types in Mn express

common belief in rationality. As such, type ti ∈ Ti (which generates θi) expresses

common belief in rationality. In particular, ti only assigns positive probability to

those choice-type combinations (cj, tj) where cj is optimal for tj. Now, as θi = θi(ti)

and θj = θj(tj), we have that βn
i (θi)

(
ckj , θj

)
is the probability that ckj is optimal for
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tj, and that is ϕn(Xk ≥ X l for all l). Then,

βn
i (θi)

(
ckj , θj

)
βn
i (θi)

(
ck−1j , θj

) =
ϕn(Xk ≥ X l for all l)

ϕn(Xk−1 ≥ X l for all l)
. (5.3)

Hence, in order to prove (5.1), we must show that

lim
n→∞

ϕn(Xk ≥ X l for all l)

ϕn(Xk−1 ≥ X l for all l)
= 0

for all k ∈ {2, ...,m}. We distinguish two cases.

Case 1. First we consider the case where k = 2. Then we have,

ϕn(Xk ≥ X l for all l)

ϕn(Xk−1 ≥ X l for all l)
≤ ϕn(X2 ≥ X1)

ϕn (X1 ≥ X2 ≥ X3 ≥ ... ≥ Xm)
.

Recall that E(X1) > E(X2) > ... > E(Xm). But then, by Lemma 6.3, ϕn(X2 ≥
X1)→ 0, and ϕn (X1 ≥ X2 ≥ X3 ≥ ... ≥ Xm)→ 1, and hence

ϕn(X2 ≥ X1)

ϕn (X1 ≥ X2 ≥ X3 ≥ ... ≥ Xm)
→ 0,

which implies that
ϕn(Xk ≥ X l for all l)

ϕn(Xk−1 ≥ X l for all l)
→ 0

as n→∞.

Case 2. Now we consider the case where k > 2. Let Xmax be the random variable

given by Xmax := maxj �=k,k−1 Xj. We have

ϕn(Xk ≥ X l for all l)

ϕn(Xk−1 ≥ X l for all l)

=
ϕn(

(
Xk ≥ Xk−1) and

(
Xk ≥ Xmax

)
)

ϕn((Xk−1 ≥ Xk) and (Xk−1 ≥ Xmax))

≤ ϕn
(
Xk ≥ Xmax

)
ϕn((Xk−1 ≥ Xk) and (Xk−1 ≥ Xmax))

≤ (by Lemma 6.1)
ϕn

(
Xk ≥ Xmax

)
ϕn (Xk−1 ≥ Xk) · ϕn (Xk−1 ≥ Xmax)

=
ϕn

(
Xk ≥ Xmax

)
ϕn (Xk−1 ≥ Xmax)

· 1

ϕn (Xk−1 ≥ Xk)

=
ϕn

(
Xk ≥ Xmax

)
ϕn (Xk ≥ Xmax − (E(Xk−1)− E(Xk))

· 1

ϕn (Xk−1 ≥ Xk)
,
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where the last equality follows from the observation that Xk−1−E(Xk−1) and Xk −
E(Xk) have the same distribution.

Now, from Lemma 6.3 it follows that ϕn
(
Xk−1 ≥ Xk

) → 1 as n → ∞. We

show that
ϕn

(
Xk ≥ Xmax

)
ϕn (Xk ≥ Xmax − (E(Xk−1)− E(Xk))

→ 0

as n→∞.

Let us define c := E(Xk−1)− E(Xk). So, we have to show that

ϕn
(
Xk ≥ Xmax

)
ϕn (Xk ≥ Xmax − c)

→ 0 (5.4)

as n → ∞. Note that ϕn
(
Xk ≥ Xmax

) ≤ ϕn
(
Xk ≥ X1

)
. We first show that there

exists N ∈ N such that for all n ≥ N,

ϕn
(
Xk ≥ Xmax − c

) ≥ ϕn
(
Xk ≥ X1 − c/2

)
. (5.5)

Now,

ϕn
(
Xk ≥ Xmax − c

)
= ϕn

(
Xk ≥ Xmax − c | Xmax = X1

) · ϕn
(
Xmax = X1

)
+ϕn

(
Xk ≥ Xmax − c | Xmax �= X1

) · ϕn
(
Xmax �= X1

)
≥ ϕn

(
Xk ≥ Xmax − c | Xmax = X1

) · ϕn
(
Xmax = X1

)
= ϕn

(
Xk ≥ X1 − c

) · ϕn
(
Xmax = X1

)
.

So, to show (5.5) it is sufficient to show that there exists N ∈ N such that for

all n ≥ N,

ϕn
(
Xk ≥ X1 − c

) · ϕn
(
Xmax = X1

) ≥ ϕn
(
Xk ≥ X1 − c/2

)
. (5.6)

Using Lemma 6.3, ϕn (Xmax = X1)→ 1 as n→∞. We have,

ϕn
(
Xk ≥ X1 − c/2

)
ϕn (Xk ≥ X1 − c)

=
ϕn

((
Xk −X1

)− (
E

(
Xk

)− E (X1)
) ≥ −c/2− (

E
(
Xk

)− E (X1)
))

ϕn ((Xk −X1)− (E (Xk)− E (X1)) ≥ −c− (E (Xk)− E (X1)))
.
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Note that ϕn
((
Xk −X1

)− (
E

(
Xk

)− E (X1)
))

has a normal distribution with

mean 0, and where the variance of ϕn
(
Xk −X1

)
tends to 0 as n → ∞. More-

over, −c− (
E

(
Xk

)− E (X1)
)
> 0 as E

(
Xk

)−E (X1) < E
(
Xk

)−E
(
Xk−1) = −c.

Hence, using Lemma 6.5,

ϕn
((
Xk −X1

)− (
E

(
Xk

)− E (X1)
) ≥ −c/2− (

E
(
Xk

)− E (X1)
))

ϕn ((Xk −X1)− (E (Xk)− E (X1)) ≥ −c− (E (Xk)− E (X1)))
→ 0

as n→∞. Then, we have,

ϕn
(
Xk ≥ X1 − c/2

)
ϕn (Xk ≥ X1 − c)

→ 0.

So, there exists N ∈ N such that for all n ≥ N,

ϕn
(
Xmax = X1

) ≥ ϕn
(
Xk ≥ X1 − c/2

)
ϕn (Xk ≥ X1 − c)

.

This proves (5.6), which, as we have shown, implies (5.5).

Now, by (5.5) we have

ϕn
(
Xk ≥ Xmax

)
ϕn (Xk ≥ Xmax − c)

≤ ϕn
(
Xk ≥ X1

)
ϕn (Xk ≥ X1 − c/2)

=
ϕn

((
Xk −X1

)− (
E

(
Xk

)− E (X1)
) ≥ − (

E
(
Xk

)− E (X1)
))

ϕn ((Xk −X1)− (E (Xk)− E (X1)) ≥ −c/2− (E (Xk)− E (X1)))

=
ϕn

((
Xk −X1

)− (
E

(
Xk

)− E (X1)
) ≥ (

E (X1)− E
(
Xk

)))
ϕn ((Xk −X1)− (E (Xk)− E (X1)) ≥ (E (X1)− E (Xk))− c/2)

→ 0

as n goes to infinity. Here the convergence follows from Lemma 6.5 as(
E (X1)− E

(
Xk

)) − c/2 > 0. So, we have shown (5.4), which completes case 2.

Hence, we have shown that (5.1) holds for all k. Therefore, limn→∞ εn = 0 and hence

the proof is complete. �
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