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Preface

Computational social choice is a relatively new research field whose goal is, on one hand, to
provide computational and algorithmic analysis of social choice and group decision making
settings, and, on the other, to apply methods and tools of social choice in the context of
computer science. Thus, naturally, computational social choice is a very multidisciplinary
field, spanning computer science, economics, and political science, with an active exchange
of ideas between all these fields. A classic example of such an exchange is the concept of
a voting-based Internet meta-search engine: Search engines (the voters) rank websites (the
candidates) with respect to a given query, the rankings are aggregated using some voting
rule, the final result is presented to the user. The difficulty in implementing this intuitive,
beautiful idea lies in the fact that we have to pick a voting rule that will lead to desirable
aggregated results and, at the same time, can be efficiently computed. Moreover, it should
be difficult for users to skew the results of these “online elections” (for example, to promote
or bury some website). Thus, to implement the idea, one has to have a good understanding
of the axiomatic properties of voting rules (and group decision-making in general), a good
understanding of algorithms for computing voting rules (or their approximate variants), as
well as a good understanding of methods of manipulation and the practical and theoretical
hardness of implementing manipulative attacks. Research in computational social choice
addresses these—and many other—issues using a variety of methods ranging from com-
putational complexity theory, through computational and empirical experiments, to pure
theoretical social choice.

This volume contains the workshop notes of COMSOC-2012, the Fourth International
Workshop on Computational Social Choice, hosted on 11–13th September 2012 by the De-
partment of Computer Science at the AGH University of Science and Technology in Kraków,
Poland. The COMSOC workshop series started in 2006 in Amsterdam and since then con-
tinued biennially, with the second workshop held in Liverpool (2008) and the third one
held in Düsseldorf (2010). The goal of the workshop series is to bring together people from
various communities that contribute to computational social choice (computer scientists,
economists, and political scientists) and to provide a forum for them to exchange ideas,
discuss their research, and discover new approaches.

We received 54 submissions of which we accepted 38. Virtually all of the submissions
were of very high quality and highly relevant to the theme of the workshop, making the
selection process particularly difficult. As in the previous editions, both new papers and
papers already presented or accepted at some other venue (for example, at conferences with
formal proceedings such as AAAI, IJCAI, or AAMAS) were accepted. Each paper was
reviewed by three program committee members and/or outside referees. For each paper
included in this volume, its copyright stays with the authors.

As opposed to previous years, this time we have decided not to organize a separate
tutorial day, but rather to focus on a single topic with an extended tutorial at the beginning
of the workshop’s first day. Our chosen topic is parametrized complexity theory, a theory
that is employed ever more frequently in computational social choice papers:

• Prof. Rolf Niedermeier, Technische Universität Berlin
Parameterized Complexity Analysis for Social Choice Problems

We will also have four invited talks, delivered by some of the most prominent researchers
working on (computational) social choice:

• Prof. Michel Le Breton, Toulouse School of Economics
Simple Games and the Probability of Casting a Decisive Vote.



• Prof. Clemens Puppe, Karlsruhe Institute of Technology
Majority Voting over Interconnected Propositions: The Condorcet Set.

• Prof. Craig A. Tovey, Georgia Institute of Technology
Computational Methods for the Spatial Model of Social Choice.

• Prof. Gerhard Woeginger, Eindhoven University of Technology
Coalitions in Hedonic Games.

We are very grateful to all the people that helped in preparing the workshop. Foremost,
we would like to thank Ulle Endriss and Jérôme Lang, who have organized the first COMSOC
workshop and, since then, have put tremendous effort into maintaining the community,
keeping the workshop series going, organizing various other computational social choice
events, obtaining funding, and promoting the field in the wider scientific community. We
also are very grateful to all the program committee members, reviewers, local organizing
committee members, the sponsors, and—last but not least—to our invited guests and paper
authors, who all contribute to making COMSOC 2012 a successful event.

F.B. & P.F.
Munich & Kraków, August 2012
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Christian List London School of Economics
Hannu Nurmi University of Turku
Maria Silvia Pini University of Padova
Ariel Procaccia Carnegie Mellon University
Jeffrey S. Rosenschein The Hebrew University of Jerusalem
Joerg Rothe Universitaet Duesseldorf
Tuomas Sandholm Carnegie Mellon University
Michael Trick Carnegie Mellon University
Virginia Vassilewska-Williams University of California, Berkeley
Toby Walsh NICTA and UNSW
Michael Wooldridge University of Liverpool
Lirong Xia Harvard University
Makoto Yokoo Kyushu University
William S. Zwicker Union College Mathematics Department

Additional Reviewers

Aziz, Haris

Ball, Michael
Ballester, Miguel
Baumeister, Dorothea
Brill, Markus
Budinich, Michele

Dorn, Britta

Erdelyi, Gabor

Gehrlein, William

Harrenstein, Paul
Huang, Chien-Chung

Iwasaki, Atsushi

Klamler, Christian

Lev, Omer
Lu, Tyler

Maudet, Nicolas
Meir, Reshef
Moulin, Herve

Nguyen, Nhan-Tam

Polukarov, Maria
Pyrga, Evangelia

Rey, Anja
Roos, Magnus
Rossi, Francesca
Roth, Aaron

Sakurai, Yuko
Salehi-Abari, Amirali
Salvagnin, Domenico
Schend, Lena
Schlotter, Ildikó
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Computing Socially-Efficient Cake Divisions

Yonatan Aumann, Yair Dombb and Avinatan Hassidim

Abstract

We consider a setting in which a single divisible good (“cake”) needs to be divided
between n players, each with a possibly different valuation function over pieces of the
cake. For this setting, we address the problem of finding divisions that maximize the
social welfare, focusing on divisions where each player needs to get one contiguous
piece of the cake. We show that for both the utilitarian and the egalitarian social
welfare functions it is NP-hard to find the optimal division. For the utilitarian
welfare, we provide a constant factor approximation algorithm, and prove that no
FPTAS is possible unless P=NP. For egalitarian welfare, we prove that it is NP-hard
to approximate the optimum to any factor smaller than 2. For the case where the
number of players is small, we provide an FPT (fixed parameter tractable) FPTAS
for both the utilitarian and the egalitarian welfare objectives.

1 Introduction

Consider a town with a central conference hall, erected by the municipality for the benefit
of the townspeople. Different people and organizations wish to use the hall for their events,
each for a possibly different duration. Furthermore, each such event may have its preferences
and constraints on the times when it can take place, e.g. only in the evenings, on weekends,
prior to some date, etc. How should the municipality allocate the hall to the different
events? How do we compute the allocation that maximizes the social welfare provided by
this common resource?

A natural setting for analyzing the above problem is that of cake cutting, where a single
divisible good needs to be divided between several players with possibly different preferences
regarding the different parts of the good, or “cake”. The cake cutting problem was first
introduced in the 1940’s by Steinhaus [Ste49], where the goal was to give each of the n
players “their due part”, i.e. a piece worth at least 1

n of the entire cake by their own measure.
(In the cake cutting literature, this fairness requirement is termed proportionality.) Since
then, other objectives have also been considered, with the majority of them requiring that
the division be “fair”, under some definition of fairness (e.g. envy-freeness).

Here, we address the fundamental problem of maximizing social welfare in cake cutting.
Given a shared resource, the valuation functions of the players for this resource, and a social
welfare function, the problem is to find an allocation that maximizes the welfare. Maximizing
social welfare has been previously considered for dividing a set of discrete indivisible items,
each of which must be given in whole to one player. Here, we consider the problem with
a single, continuously divisible good, and furthermore focus on the case where each player
needs to get a single contiguous piece of the good. The contiguity requirement is natural in
many settings, e.g. dividing time (as in the example above), spectrum, and real-estate.

Results. We show that the problems of maximizing utilitarian and egalitarian welfare are
both NP-hard in the strong sense. For egalitarian welfare, we further show that it is hard
to approximate the optimum to any factor smaller than 2.

For utilitarian welfare, we provide a constant-factor approximation algorithm (note that
the strong NP-hardness result implies that no FPTAS exists for the problem). Specifically,
our algorithm finds a division with utilitarian welfare within 8 + o(1) of the optimum,
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in polynomial time. We also show that approximating both the utilitarian and egalitarian
welfare is fixed-parameter-tractable with regards to the parameter n (the number of players).

Finally, we consider the case where the contiguity requirement is dropped, i.e. each player
may get a collection of intervals. For this setting, we show that the situation varies greatly
depending on the model of input. When the valuations are given explicitly to the algorithm,
and are piecewise constant, the problem can be solved in polynomial time. However, if the
algorithm has only oracle access to the valuations, then it is impossible to do any better
than an n-factor approximation, even if the valuations themselves are piecewise uniform.

Due to space constraints, many of the proofs are deferred to the full version of the paper.

Related Work. The problem of maximizing egalitarian welfare when allocating a set of in-
divisible goods has been extensively considered in the last 15 years [Woe97, AAWY98, BS06,
CCK09]. The currently known best algorithms are a polynomial-time algorithm achieving
an approximation factor of O(

√
n log3 n) [AS07], and an algorithm obtaining Õ(nε) approx-

imation in time nO(1/ε), for any ε = Ω( log logn
logn ) [CCK09]. Hardness of approximation for

this problem, however, is proven only for a factor of 2 or less [BD05]. Better approximation
guarantees are known for more restricted settings, e.g. when valuations are restricted to
having only one possible non-zero value for each item [BS06, Fei08]. Envy minimization in
this setting has also been considered in [LMMS04], which showed hardness results as well
as an FPTAS for the case of players with identical preferences. Unlike this body of work,
which considers a non-ordered set of indivisible items, here we consider a single divisible
item, and furthermore require that each player obtain a single contiguous piece of this good.

Cake cutting problems were first introduced in the 1940’s [Ste49], and were studied in
many variants since then. Various algorithms were proposed for the problem, including a
number of “moving knife” algorithms, which perform an infinite number of valuations by
continuously moving a knife over the cake (for some examples, see [Str80, EP84] and [BT95]).
In addition to the algorithmic results, there has also been work on existence theorems [DS61,
Str80], lower bounds for the complexity of such algorithms ([SW03, Str08, Pro09], to mention
just a few), and a number of books on the subject, e.g. [BT96, RW98].

The issue of social welfare in cake cutting was first considered in Caragiannis et
al. [CKKK09] which aimed to quantify the degradation in social welfare that may be
caused by different fairness requirements; the same question was studied for connected
pieces in [AD10]. Guo and Conitzer [GC10], and Han et al. [HSTZ11] study the utilitarian
welfare achievable by truthful mechanisms for dividing a set of divisible goods, a setting
very similar to a cake with piecewise-constant valuations and non-connected pieces. Cohler
et al. [CLPP11] study utilitarian welfare maximization under the envy-freeness requirement
(with non-connected pieces). Bei et al. [BCH+12] consider a similar question, but with
connected pieces, and with proportionality replacing envy-freeness. Also related is the work
of Zivan [Ziv11] which suggests a way for increasing utilitarian welfare using trust.

2 Model and Definitions

Valuation Functions. In our model, the cake is represented by the interval [0, 1]. Each
player i ∈ [n] (where [n] = {1, . . . , n}) has a non-atomic (additive) measure vi(·), mapping
each measurable subset of [0, 1] to its value according to player i. For most of this work,
we are only interested in a value of intervals in [0, 1], and thus simply write vi(a, b) for the
value of the interval between a and b. (Note that since vi is non-atomic, single points have
zero value, and we need not worry about the boundary points a and b themselves.)

We also assume, as common in the cake-cutting literature, that the valuations are nor-
malized, i.e. that vi(0, 1) = 1 for every player i. However, our results hold (with small
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modifications to the algorithms or complexity) for arbitrary valuations as well.

Social Welfare Functions. We consider two prominent social welfare functions, whose
aim is to measure how good each division is for the whole society. Let x be a division (to be
formally defined shortly); we write ui(x) to express the value player i obtains from the piece
she receives in x. The utilitarian welfare is defined as the sum of utilities, and we denote
u(x) =

∑
i∈[n] ui(x). The egalitarian welfare is defined as the utility of the worst-off player,

and we denote eg(x) = mini∈[n] ui(x).

Connected Divisions. In this work, we focus on divisions in which every player gets
a (disjoint) single interval of the cake. Formally, a connected division of the cake [0, 1]
between n players can be defined as a vector x = (x1, . . . , xn−1, π) ∈ [0, 1]n−1 × Sn (where
Sn is the set of all the permutations of [n]), having x1 ≤ x2 ≤ · · · ≤ xn−1. This is interpreted
as making n − 1 cuts in positions x1, . . . , xn−1, and allocating the n resulting intervals to
the players in the order determined by the permutation π. Note that the space X of all
such divisions is compact; in addition, both utilitarian and egalitarian welfare functions are
continuous in X (as the players’ valuation functions are all non-atomic). Therefore, for each
of these welfare functions there exists a division that maximizes the welfare.

Our main problem is thus the following: given the players’ valuations, what is the (con-
nected) division that maximizes welfare? Since the two welfare functions considered here
obtain maxima in the divisions space, the problem is indeed well-defined. For the analysis
of these problems, it is useful to consider their decision versions, defined as follows.

Connected Utilitarian Optimum (CUO)
Instance: A set {vi}ni=1 of non-atomic measures on [0, 1], and a bound B.
Problem: Does there exist a connected division x having u(x) ≥ B?

Connected Egalitarian Optimum (CEO)
Instance: A set {vi}ni=1 of non-atomic measures on [0, 1], and a bound B.
Problem: Does there exist a connected division x having eg(x) ≥ B?

Complexity and Input Models. In order to analyze the complexity of our problems,
we must first define how the input is represented. In most of the cake cutting literature, the
mechanism is not explicitly given the players’ valuation functions; instead, it can query the
players on their valuations (see e.g. [EP84, RW98, Str08]). Typically, two types of queries
are allowed. In the first, a player i is given points 0 ≤ a ≤ b ≤ 1 and is required to return the
value vi(a, b). In the second type of query, a player i is given a point a ∈ [0, 1] and a value
x and is required to return a point b such that vi(a, b) = x; we denote this by v−1i (a, x).1

In contrast, some more recent works (e.g. [CLPP10, CLPP11, BCH+12]) consider a
model in which the players give complete descriptions of their valuations to the mechanism.
In this case, it is usually assumed that the functions have some simple structure, so they
can be represented succinctly. Specifically, for each player i, let νi : [0, 1] → [0,∞) be a
value density function, such that

vi(X) =

∫

X

νi(x)dx

for every measurable subset X ∈ [0, 1]. Following [CLPP10], we say that a valuation function
vi(·) is piecewise-constant if its value density function νi(·) is a step function, i.e. if [0, 1]

1Note that using only one type of query it is possible to give approximate answers (in polynomial time)
to queries of the other type using binary search.

3



can be partitioned into a finite number of intervals such that νi is constant on each interval.
If, in addition, there is some constant ci such that νi(·) can only attain the values 0 or ci,
we say that vi(·) is piecewise-uniform.2 Any piecewise-constant valuation function vi(·) can
be therefore represented by a finite set of subintervals of [0, 1] together with the value νi
attains in each interval.

Our hardness results show that both of the decision problems above are computationally
hard, even when the valuation functions are of the simplest type—piecewise-uniform—and
are given explicitly to the mechanism. In contrast, our positive algorithmic results hold also
for the more general oracle model. The complexity of our algorithms in this case depends
on the number of players n and additionally on a precision parameter ε.

The Discrete Variants. A convenient preprocessing step in our algorithms will be re-
ducing our problems into ones that are purely combinatorial. More precisely, we consider
discrete analogues of the problems, where one is additionally given a set of points in [0, 1],
and is only allowed to make cuts at points from this set (and not anywhere in [0, 1]). An
alternative interpretation is to consider, instead of a continuous cake, a sequence of indivis-
ible items; a connected division in this setting gives each player a consecutive subsequence
of these items. The discrete variants of our problems are defined as follows:

Discrete Connected Utilitarian Optimum (Discrete-CUO)
Instance: A sequence A = (a1, . . . , am) of items, a set {vi}ni=1 of valuation

functions of the form vi : A→ R+, and a bound B.
Problem: Does there exist a connected division x having u(x) ≥ B?

Discrete Connected Egalitarian Optimum (Discrete-CEO)
Instance: A sequence A = (a1, . . . , am) of items, a set {vi}ni=1 of valuation

functions of the form vi : A→ R+, and a bound B.
Problem: Does there exist a connected division x having eg(x) ≥ B?

Our hardness results apply to these “cleaner” problems as well. We note that if we drop
the contiguity requirement, allowing players to get any disjoint subsets of A, maximizing
utilitarian welfare becomes trivial (give each item to the player who values it the most). In
contrast, maximizing egalitarian welfare (in the discrete setting with non-connected pieces) is
known to be a hard problem [BD05] and has been studied extensively (e.g. [AS07, CCK09]).

3 Approximation Algorithms

In this section we present algorithms that return a division that is guaranteed not to be
too far from the social optimum. Throughout this section we assume that the algorithms
operate in the (more-general) oracle model. We note that if the valuation functions are
given explicitly, and are simple enough (in particular, if they are piecewise-constant), the
answer to each oracle query can be computed in time polynomial in the input size.

3.1 The Discretization Procedure

As we have previously mentioned, it is often useful to reduce the continuous cake into a
sequence of discrete items. We now show that this can indeed be done in a time-efficient
manner, and without too much harm to the maximum obtainable welfare.

2Note that in this case the constant ci is uniquely determined by the total fraction of [0, 1] in which
νi(x) 6= 0, since we require that the valuation of the entire cake should be 1.
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The Discretization Procedure receives a cake instance and a parameter ε, and produces
a set of cut positions that partition the cake into a set of items. We start with the set
C = {0} of cut points. At each step, let a be the position of the last (rightmost) cut in C.
The procedure asks each player i for the leftmost point bi such that the vi(a, bi) = ε; it then
adds the leftmost of these points to C, and repeats the process. When vi(a, 1) ≤ ε for all
players i, the procedure adds the point 1 to C, and halts.

Note that the set of cuts C produced by the algorithm induces a sequence of items.
Specifically, let 0 = c0 < c1 < · · · < cm = 1 be the cut points in C; then, for each 1 ≤ j ≤ m
create an item aj with value vi(aj) = vi(cj−1, cj) for player i ∈ [n].

The following lemma, whose proof we omit due to space constraints, establishes that
the set C can be computed efficiently, and that we do not lose much utilitarian welfare by
restricting our cuts positions to C. A similar claim also holds for egalitarian welfare.

Lemma 1. Let {vi(·)}i∈[n] be a cake instance with n players, and consider some precision
parameter ε. Then:

1. The discretization procedure terminates on this instance in time O(n2/ε).

2. Let x be a division of the original cake; then there exists a division y making cuts only
at points in the set C returned by the procedure, and having u(y) ≥ u(x)− (n− 1)ε.

3.2 Approximating the Utilitarian Welfare

We now present an approximation algorithm for the problem of maximizing utilitarian
welfare; the approximation ratio achieved by our algorithm is 8

(
1 + (n− 1)ε

)
, where ε is a

precision parameter, and the running time of the algorithm is polynomial in n and in 1/ε.
As a first step, the algorithm uses the Discretization Procedure to obtains a set A of m
discrete items. We now describe how to approximate the optimal utilitarian welfare for this
new instance. The algorithm returns a set {(si, ti)}i∈[n], where si is the beginning index of
i’s piece, and ti is its end index. We also use the notation (s, t) to refer to the consecutive
sequence of items {s, s+ 1, . . . , t− 1, t}; hence, e.g. vi(s, t) =

∑t
j=s vi(j).

Algorithm 1: Discrete Utilitarian Welfare Approximation

Data: For each player i ∈ [n] a vector of valuations vi : [m]→ R+.
begin
∀i ∈ [n] : si ←− 0 , ti ←− 0
for t = 1, . . . ,m do

while maxk∈[n],s≤t

{
vk(s, t)− 2

(
vk(sk, tk) + V−k(s, t)

)}
≥ 0

do
k′, s′ ←− arguments maximizing the expression
sk′ ←− s′ , tk′ ←− t
(si, ti)←− (0, 0) for all i with si ≥ s′
ti ←− s′ − 1 for i with si < s′ ≤ ti

return
{

(si, ti)
}
i∈[n]

Our algorithm for the discretized instance works iteratively, where in the t-th iteration
it finds a good division for the first t items. We begin with the trivial null allocation of
0 items. Assuming that we have a good allocation for the first t − 1 items, and for all
s ≤ t and k ∈ [n], we consider the cost of giving items s through t to player k. This cost
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is comprised of two components. The first component is the value of a piece (sk, tk) that
player k may currently own, and has to give up in order to get the new piece (s, t). The
second component is the sum of values that the other players to which the items s through
t are assigned obtain from these items. We denote this second component by V−k(s, t). We
only give the segment (s, t) to player k if her total value vk(s, t) for this segment is at least
twice the cost of giving her this segment. We continue trying to find a player k′ and a
segment (s′, t) ending at item t whose value exceeds twice the cost, and make changes until
there are no such player and segment, at which point we move on to the next item t+ 1.

Observe that in the algorithm, each interval (s, t) can be given to player i at most once;
this immediately implies that the running time of the algorithm is polynomial in the number
of players n and number of items m. For analyzing the approximation ratio of the algorithm,
we use indicator variables xji , for i ∈ [n] and j ∈ [m]. At each step in the algorithm, we will

have xji = 1 if and only if player i owned the item j at some point until now.

Lemma 2. At any iteration t of the above algorithm, we have

∑

i∈[n]
vi(si, ti) ≤

∑

i∈[n]

∑

j∈[m]

xji · vi(j) ≤ 2 ·
∑

i∈[n]
vi(si, ti)

(where the values are as in the end of the t-th iteration).

Proof. The first inequality trivially holds, and we prove the second by induction on t. The
second inequality clearly holds at the beginning of the step t = 1; we show that if it holds
at the beginning of some step t, then it must still hold at the end of this step.

At the beginning of the t-th step, item t is unallocated. If the while loop was not
executed even once in this iteration, none of the expressions

∑
i∈[n]

∑
j∈[m] x

i
j · vi(j) and∑

i∈[n] vi(si, ti) have changed, and the claim still holds. Otherwise, consider some it-

eration of the while loop. In such an iteration, the increase in
∑
i∈[n]

∑
j∈[m] x

j
i · vi(j)

is upper-bounded by vk′(s
′, t). The expression

∑
i∈[n] vi(si, ti) also gains vk′(s

′, t), but

in addition loses vk(sk, tk) + V−k(s, t); however, the while loop condition ensures that
vk′(s

′, t)−
(
vk(sk, tk) + V−k(s, t)

)
≥ 1

2 · vk′(s′, t). Therefore, the increase to the right-hand
side of the inequality is at least as large as that of the left-hand side, and the inequality is
maintained. Since this holds for every iteration of the while loop, this still holds at the end
of step t, as required.

Theorem 1. Algorithm 2 returns an 8-approximation of the discrete utilitarian optimum.

Proof. Fix a discrete cake instance. Let
{

(sAi , t
A
i )
}
i∈[n] be the final output of Algorithm 1

on this instance, and let
{

(s∗i , t
∗
i )
}
i∈[n] be the optimal division for this instance. Denote by

OPT =
∑
i∈[n] vi(s

∗
i , t
∗
i ) the utilitarian welfare achieved by the optimal division.

For every player k, consider the iteration t∗k, in which the rightmost item given to k in
the optimal division was first considered. Let (s′k, t

′
k) be the segment given to player k at

the end of this iteration. When iteration t∗k ends, it has to be that

vk(s∗k, t
∗
k) ≤ 2

(
vk(s′k, t

′
k) + V−k(s∗k, t

∗
k)
)

(where V−k(s∗k, t
∗
k) is with respect to the division set by the algorithm at this point). Note

that vk(s′k, t
′
k) =

∑t′k
j=s′k

xkj · vk(j) and that V−k(s∗k, t
∗
k) ≤∑t∗k

j=s∗k

∑
i 6=k x

i
j · vi(j). Combining

6



all this, we get

OPT =
∑

k∈[n]
vk(s∗k, t

∗
k) ≤

∑

k∈[n]
2 ·
( t′k∑

j=s′k

xkj · vk(j) +

t∗k∑

j=s∗k

∑

i 6=k
xij · vi(j)

)

= 2 ·
( ∑

k∈[n]

t′k∑

j=s′k

xkj · vk(j) +
∑

k∈[n]

t∗k∑

j=s∗k

∑

i 6=k
xij · vi(j)

)

≤ 2 ·
( ∑

k∈[n]

∑

j∈[m]

xkj · vk(j) +
∑

k∈[n]

∑

j∈[m]

xkj · vk(j)
)

= 4 ·
∑

k∈[n]

∑

j∈[m]

xkj · vk(j) ≤ 8 ·
∑

i∈[n]
vi(s

A
i , t

A
i ) .

The second inequality holds since for every k 6= k′ the segments (s∗k, t
∗
k) and (s∗k′ , t

∗
k′) are

disjoint, as
{

(s∗i , t
∗
i )
}
i∈[n] is a division. The last inequality follows from Lemma 2.

Combining the guarantees for the Discretization Procedure and for Algorithm 1 we get:

Corollary 2. For every ε > 0, it is possible to find a division achieving utilitarian welfare
within 8

(
1 + (n− 1)ε

)
of the optimum in time polynomial in n and 1/ε.

3.3 Fixed-Parameter Tractable Approximations

Suppose that we have a relatively small number of players n, but that the social efficiency
of the division is of much importance. We show that divisions that are within a factor of
1 + ε of the social optimum (for both utilitarian and egalitarian welfare) can be computed
in time exponential in the number of players, but polynomial in 1

ε .3 Using the terminology
of the theory of Parametrized Complexity [DF99] we say that these approximations are
fixed-parameter tractable. Both of these algorithms are based on dynamic programming; the
full proofs can be found in the full version of the paper.

Theorem 3. For every ε > 0, it is possible to find a division achieving utilitarian welfare
within 1 + ε of the optimum in time 2n · poly(n, 1ε ).

Theorem 4. For every ε > 0, it is possible to find a division achieving egalitarian welfare
within 1 + ε of the optimum in time 2n · n · log2

(
n
ε

)
.

4 Hardness

We show that all of the four problems defined in Section 2 are NP-complete in the strong
sense. Note that membership in NP is straightforward, as a division achieving the required
welfare can serve as a witness for that instance; we thus concentrate on proving hardness.

We prove that CEO is strongly NP-complete and hard to approximate to a factor of 2−ε
for any ε > 0, using a reduction from the classic problem of 3DM [GJ79]. In this problem,
one is given three sets X,Y, Z of cardinality n each, as well as a set E ⊆ X × Y × Z, and
needs to determine if there exists a subset E′ ⊆ E of cardinality n that covers X,Y and Z.

Our reduction borrows its main ideas from the proof of Bezáková and Dani [BD05] for
non-connected divisions in the discrete setting, which itself uses ideas from Lenstra, Shmoys
and Tardos [LST90]. However, the adjustment to the continuous setting with connected
divisions is somewhat intricate and needs to be done carefully.

3Recall that we assume the oracle model; if the valuation functions are given explicitly, we also have
polynomial dependence on the size of the input.
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Theorem 5. CEO and Discrete-CEO are NP-complete in the strong sense. Furthermore,
for every ε > 0 there is no (2− ε) approximation for either of the problems, unless P=NP.

This holds even if the valuation functions of the players are piecewise-uniform, and are
given explicitly to the algorithm.

Proof. We show a polynomial-time reduction from 3DM to CEO. Let X,Y, Z and E ⊆
X × Y × Z be an input to 3DM. We construct a set of piecewise-constant valuations and
a bound B as an input for CEO; this instance can be transformed into an equivalent one
with piecewise-uniform valuations.

For convenience, we take the cake to be the interval
[
0, 2|E|

]
rather than [0, 1]. We will

think of the cake as being sectioned into |E| “sections” of length 2, where the right half of
each section is used for separation from the next section.4 The set of players we create has
players of three types: “triplet players”, “ground sets players” and “separation players”. In
what follows we describe the valuation functions of all the players, by their type; for the
bound, we set B = 1

|E| .

• Triplet Players: We create a player for every z ∈ Z. For each ei ∈ E such that
z appears in the triplet ei, the player created for z has value of 1

2|E| for each of the

intervals
(
2(i− 1), 2(i− 1) + 1

4

)
and

(
2(i− 1) + 3

4 , 2(i− 1) + 1
)

in the left half of the
i-th section.

Denote by mz the number of such triplets ei in E. To keep the value of the entire cake
at 1 for each player, we will divide the missing value 1− mz

|E| between the right halves of

all sections. Specifically, player z will additionally have value |E|−mz

2|E|2 for every interval(
2(j − 1) + 6

5 , 2(j − 1) + 7
5

)
and

(
2(j − 1) + 8

5 , 2(j − 1) + 9
5

)
, for all 1 ≤ j ≤ |E|.

• Ground Sets Players: For x ∈ X, let mx be the number of triplets in E in which
x appears. We create mx − 1 identical players for x. For every ei ∈ |E| such that x
appears in ei, all of x’s players will have valuation of 1

|E| for the interval
(
2(i − 1) +

1
4 , 2(i − 1) + 1

2

)
in the left half of the i-th section. Again, in order to complement

these valuations to 1, they will also assign a value of |E|−mx

2|E|2 for each of the intervals(
2(j − 1) + 6

5 , 2(j − 1) + 7
5

)
and

(
2(j − 1) + 8

5 , 2(j − 1) + 9
5

)
, for all 1 ≤ j ≤ |E|.

We similarly create my − 1 identical players for every y ∈ Y . For each ei ∈ E in
which y appears we have these players give value of 1

|E| to the interval
(
2(i − 1) +

1
2 , 2(i−1)+ 3

4

)
, and complement this by giving value of

|E|−my

2|E|2 to each of the intervals(
2(j − 1) + 6

5 , 2(j − 1) + 7
5

)
and

(
2(j − 1) + 8

5 , 2(j − 1) + 9
5

)
, for all 1 ≤ j ≤ |E|.

• Separation Players: We finally create 3|E| separation players. For every segment
1 ≤ i ≤ |E| we have a player s3i−2 have valuation of 1 for the interval

(
2(j − 1) +

1, 3(j − 1) + 6
5

)
, another player s3i−1 have valuation 1 for

(
2(i− 1) + 7

5 , 2(i− 1) + 8
5

)
,

and a third player s3i have valuation 1 for
(
2(i− 1) + 9

5 , 2(j − 1) + 2
)
.

Figure 1 illustrates the structure of the preferences in one segment. In this example, we
consider some triplet ei = (xj , yk, z`) ∈ E, and show the section of the cake created for it,
with the preferences of the players who desire some piece of it.

It is straightforward to observe that the construction above can be carried out in poly-
nomial time. Also, all the numbers created in this instance can be represented by a number
of bits logarithmic in the input size.

4Indeed, the last section needs not have this “separation half”; however, we leave it there in order to
treat it identically to all the other sections.
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1
2|E|

1
2|E|

z` z`
1
|E|

1
|E|

all xj players all yk players

@
@R

�
�	

1 1 1

s3i−2 s3i−1 s3i

6 6
worth < 1

2|E| to all

non-separation players

Figure 1: The valuations of the players for the section created for ei = (xj , yk, z`) ∈ E.
Note that there are mxj

− 1 identical players for xj and myk − 1 identical players for yk.

Due to space constraints, we defer the correctness proof for this construction, as well as
the adjustment for piecewise-uniform valuations, to the full version of the paper.

The proof for Discrete-CEO is analogous, and can easily be obtained by a straightfor-
ward partitioning of the cake created in the reduction into discrete indivisible chunks.

We use a reduction from Discrete-CEO to prove the hardness of maximizing utilitarian
welfare. The proof is again deferred to the full version due to space constraints.

Theorem 6. CUO and Discrete-CUO are NP-complete in the strong sense.
This holds even if the valuation functions of the players are piecewise-uniform, and are

given explicitly to the algorithm.

The strong NP-hardness of CUO and Discrete-CUO implies the following corollary:

Corollary 7. There is no FPTAS for either CUO nor Discrete-CUO.

5 Welfare Maximization with Non-Connected pieces

In this section we analyze the problem of welfare maximization when each player may get a
collection of intervals. We first show that if the valuation functions are piecewise-constant
and are given explicitly to the algorithm, the problem can be easily solved in polynomial
time using a linear program almost identical to the one used by Cohler et al. [CLPP11]; the
details of the proof are can be found in the full version of the paper.

Theorem 8. Given a set of n piecewise-constant valuation functions (i.e. for each i ∈ [n]
the list of intervals in which the value density function attains different values, along with
the value for each such interval), it is possible to find a division maximizing the utilitarian
(resp. egalitarian) welfare in polynomial time.

In contrast to this positive result, it turns out that maximizing welfare is impossible
if instead of receiving the explicit functions, we only get oracle access to the valuations.
In particular, we show that no deterministic algorithm (even super-polynomial) can find a
division approximating the utilitarian or egalitarian optimum by a factor smaller than n.
Note that this bound is tight, as every proportional division5 approximates utilitarian and
egalitarian welfare by at least n, and many algorithms for finding proportional divisions do
exist in the queries model (see, e.g. [RW98] for a survey).

5Recall that a division is said to be proportional if it gives each player what she considers to be at least
1/n of the total value of the cake.
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Theorem 9. For any ε > 0, no deterministic algorithm working in the oracle input model
can approximate utilitarian or egalitarian welfare to a factor of n− ε, when non-connected
pieces are allowed.

Proof sketch. We discuss utilitarian welfare; the arguments for egalitarian welfare are ana-
loguous. Let A be a deterministic cake division algorithm working in the oracle input model,
and fix some n ∈ N and ε > 0. Consider the operation of the algorithm on the set of pref-
erences in which all players value the entire cake uniformly. In this case, the utilitarian
welfare obtained cannot exceed 1. We will now show that for any ε′ > 0 we can construct
a different set of preferences on which the algorithm outputs the same division (with the
same welfare), but for which there exists a division achieving utilitarian welfare of (1− ε′)n.
The theorem will follow by choosing ε′ = ε/n.

Let 0 = p0 < p1 < . . . < pk−1 < pk = 1 be the set of (distinct) points that appear in
the operation of the algorithm on the input above. I.e. {pi}ki=0 is the set of all points a, b
for which the algorithm makes a query vi(a, b) or receives an answer b = v−1i (a, x), and all
the points c in which the algorithm makes cuts in its output division. We create a new
instance in which the valuations in the interval between two each consecutive such points
(pj , pj+1) are “rearranged”. The value of this interval in the original instance, as well as in
the new instance, is `j = pj+1 − pj . We divide this interval into n + 1 “slivers”: the i-th

sliver (1 ≤ i ≤ n) is worth `j − ε′

k to player i, and zero to everyone else. The n+ 1-st sliver

of the interval is worth ε′

k for all the players.
It is straightforward to observe that the operation of the algorithm A is identical on the

old and new instances, as we constructed the new valuations so that the answer to every
query asked in the operation of A is identical in the two instances. This implies that A
returns the same division for both instances, and the utilitarian welfare of this division is
1 in both of them. However, in the new instance, any division that allocates every sliver
desired only by one player to this player, achieves utilitarian welfare > (1− ε′)n.

6 Open Problems

In this work we have taken the first steps in studying the problem of maximizing welfare
in cake cutting with connected pieces. Many interesting problems related to this prob-
lem remain open. First and foremost, we believe that it should be possible to obtain a
reasonable approximation for the problem of maximizing the egalitarian welfare. (We do
have non-trivial algorithms that achieve linear-factor approximations, but we conjecture
that better algorithms can be found.) We also conjecture that the approximation ratio for
maximizing utilitarian welfare can be improved; it may also be interesting to see if stronger
inapproximability results can be shown. Other interesting extensions include:

• Strategic Behavior: One implicit assumption in our work was that we have access
to the (true) valuations of the players. In reality, the players may have incentive to
lie about their valuations. Guo and Conitzer [GC10] and Han et al. [HSTZ11] have
considered this problem for a somewhat different setting; the question of what can be
achieved truthfully in our setting is still open.

• 2-Dimensional Cake: The cake cutting literature has generally assumed a one-
dimensional cake; indeed, for the purpose of maintaining fairness, which was its main
focus, a 2-dimensional cake can be simply “projected” into one dimension, and di-
vided fairly according to the projection. However, this may result in a significant loss
of welfare. Therefore, maximizing welfare in allocation of 2-dimensional cakes may
require completely different tools and techniques.
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Abstract

We study the problem of computing possible and necessary winners for partially
specified weighted and unweighted tournaments. This problem arises naturally in
elections with incompletely specified votes, partially completed sports competitions,
and more generally in any scenario where the outcome of some pairwise compar-
isons is not yet fully known. We specifically consider a number of well-known solu-
tion concepts—including the uncovered set, Borda, ranked pairs, and maximin—and
show that for most of them possible and necessary winners can be identified in poly-
nomial time. These positive algorithmic results stand in sharp contrast to earlier
results concerning possible and necessary winners given partially specified preference
profiles.

1 Introduction

Many multi-agent situations can be modeled and analyzed using weighted or unweighted
tournaments. Prime examples are voting scenarios in which pairwise comparisons between
alternatives are decided by majority rule and sports competitions that are organized as
round-robin tournaments. Other application areas include webpage and journal ranking,
biology, psychology, and AI (also see [6], and the references therein). More generally, tour-
naments and tournament solutions are used as a mathematical tool for the analysis of all
kinds of situations where a choice among a set of alternatives has to be made exclusively on
the basis of pairwise comparisons.

When choosing from a tournament, relevant information may only be partly available.
This could be because some preferences are yet to be elicited, some matches yet to be played,
or certain comparisons yet to be made. In such cases, it is natural to speculate which are
the potential and inevitable outcomes on the basis of the information already at hand.

For complete tournaments, a number of attractive solution concepts have been pro-
posed (see, e.g., [6, 17]). Given any such solution concept S, possible winners of a partial
tournament G are defined as alternatives that are selected by S in some completion of G,
and necessary winners are alternatives that are selected in all completions. By a completion
we here understand a complete tournament extending G.

In this paper we address the computational complexity of identifying the possible and
necessary winners for a number of solution concepts whose winner determination problem
for complete tournaments is tractable. We consider four of the most common tourna-
ment solutions—namely, Condorcet winners (COND), the Copeland solution (CO), the
top cycle (TC ), and the uncovered set (UC )—and three common solutions for weighted
tournaments—Borda (BO), maximin (MM ) and ranked pairs (RP). For each of these solu-
tion concepts, we characterize the complexity of the following problems: deciding whether
a given alternative is a possible winner (PW ), deciding whether a given alternative is a
necessary winner (NW ), and deciding whether a given subset of alternatives equals the set

∗A previous version of this paper has been accepted at AAMAS-2012. New results include speeding
up pseudo-polynomial time algorithms to strongly polynomial time for PWSBO (Thm. 8) and PWSMM

(Thm. 12).

13



S PWS NWS PWSS

COND in P [16] in P [16] in P (Thm. 1)
CO in P (Thm. 2)a in P (Thm. 2)a in P (Thm. 2)
TC in P [16]a in P [16] in P (Thm. 3)
UC in P (Thm. 4) in P (Thm. 5) NP-C (Thm. 6)

BO in P (Thm. 7)a in P (Thm. 9) in P (Thm. 8)
MM in P (Thm. 10)a in P (Thm. 11) in P (Thm. 12)
RP NP-C (Thm. 13) coNP-C (Thm. 14) NP-C (Cor. 1)

a This P-time result contrasts with the intractability of the same problem for partial preference
profiles [16, 25].

Table 1: Complexity of computing possible winners (PW) and necessary winners (NW) and
of checking whether a given subset of alternatives is a possible winning set (PWS) under
different solution concepts given partial tournaments.

of winners in some completion (PWS ). These problems can be challenging, as even un-
weighted partial tournaments may allow for an exponential number of completions. Our
results are encouraging, in the sense that most of the problems can be solved in polynomial
time. Table 1 summarizes our findings.

Similar problems have been considered before. For Condorcet winners, voting trees and
the top cycle, it was already shown that possible and necessary winners are computable in
polynomial time [16, 19, 20]. The same holds for computing possible Copeland winners that
were considered in the context of sports tournaments [8].

A more specific setting that is frequently considered within the area of computational
social choice differs from our setting in a subtle but important way that is worth being
pointed out. There, tournaments are assumed to arise from pairwise majority comparisons
on the basis of a profile of individual voters’ preferences.1 Since a partial preference profile
R need not conclusively settle every majority comparison, it may give rise to a partial
tournament only. There are two natural ways to define possible and necessary winners for a
partial preference profile R and solution concept S. The first is to consider the completions
of the incomplete tournament G(R) corresponding to R and the winners under S in these.
This is covered by our more general setting. The second is to consider the completions of
R and the winners under S in the corresponding tournaments.2 Since every tournament
corresponding to a completion of R is also a completion of G(R) but not necessarily the other
way round, the second definition gives rise to a stronger notion of a possible winner and
a weaker notion of a necessary winner. Interestingly, and in sharp contrast to our results,
determining these stronger possible and weaker necessary winners is computationally hard
for many voting rules [16, 25].

In the context of this paper, we do not assume that tournaments arise from majority
comparisons in voting or from any other specific procedure. This approach has a number of
advantages. Firstly, it matches the diversity of settings to which tournament solutions are
applicable, which goes well beyond social choice and voting. For instance, our results also
apply to a question commonly encountered in sports competitions, namely, which teams can
still win the cup and which future results this depends on (see, e.g., [8, 14]). Secondly, (par-
tial) tournaments provide an informationally sustainable way of representing the relevant
aspects of many situations while maintaining a workable level of abstraction and concise-

1See, e.g., [1, 2, 15, 24, 25] for the basic setting, [3] for parameterized complexity results, [12, 13] for
probabilistic settings, and [7, 26] for settings with a variable set of alternatives.

2These two ways of defining possible and necessary winners are compared (both theoretically and exper-
imentally) in [16, 20] for three solution concepts: Condorcet winners, voting trees and the top cycle.
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ness. For instance, in the social choice setting described above, the partial tournament
induced by a partial preference profile is a much more succinct piece of information than
the preference profile itself. Finally, specific settings may impose restrictions on the feasible
extensions of partial tournaments. The positive algorithmic results in this paper can be
used to efficiently approximate the sets of possible and necessary winners in such settings,
where the corresponding problems may be intractable. The voting setting discussed above
serves to illustrate this point.

2 Preliminaries

A partial tournament is a pair G = (V,E) where V is a finite set of alternatives and
E ⊆ V × V an asymmetric relation on V , i.e., (x, y) ∈ E implies (y, x) /∈ E. If (x, y) ∈ E
we say that x dominates y. A (complete) tournament T is a partial tournament (V,E) for
which E is also complete, i.e., either (x, y) ∈ E or (y, x) ∈ E for all distinct x, y ∈ V . We
denote the class of complete tournaments by T .

Let G = (V,E) be a partial tournament. Another partial tournament G′ = (V ′, E′) is
called an extension of G, denoted G ≤ G′, if V = V ′ and E ⊆ E′. If E′ is complete, G′ is
called a completion of G. We write [G] for the set of completions of G, i.e., [G] = {T ∈ T :
G ≤ T}.

For each x ∈ V , we define the dominion of x in G by D+
G(x) = {y ∈ V : (x, y) ∈ E},

and the dominators of x in G by D−G(x) = {y ∈ V : (y, x) ∈ E}. For X ⊆ V , we let
D+
G(X) =

⋃
x∈X D

+
G(x) and D−G(X) =

⋃
x∈X D

−
G(x).

For given G = (V,E) and X ⊆ V , we further write EX→ for the set of edges obtained
from E by adding all missing edges from alternatives in X to alternatives not in X, i.e.,

EX→ = E ∪ {(x, y) ∈ X × V : y /∈ X and (y, x) /∈ E}.

We use EX← as an abbreviation for EV \X→, and respectively write Ex→, Ex←, GX→,
and GX← for E{x}→, E{x}←, (V,EX→), and (V,EX←).

Let n be a positive integer. A partial n-weighted tournament is a pair G = (V,w)
consisting of a finite set of alternatives V and a weight function w : V ×V → {0, . . . , n} such
that for each pair (x, y) ∈ V ×V with x 6= y, w(x, y)+w(y, x) ≤ n. We say that T = (V,w) is
a (complete) n-weighted tournament if for all x, y ∈ V with x 6= y, w(x, y) +w(y, x) = n. A
(partial or complete) weighted tournament is a (partial or complete) n-weighted tournament
for some n ∈ N. The class of n-weighted tournaments is denoted by Tn. Observe that with
each partial 1-weighted tournament (V,w) we can associate a partial tournament (V,E) by
setting E = {(x, y) ∈ V : w(x, y) = 1}. Thus, (partial) n-weighted tournaments can be seen
to generalize (partial) tournaments, and we may identify T1 with T .

The notations G ≤ G′ and [G] can be extended naturally to partial n-weighted tour-
naments G = (V,w) and G′ = (V ′, w′) by letting (V,w) ≤ (V ′, w′) if V = V ′ and
w(x, y) ≤ w′(x, y) for all x, y ∈ V , and [G] = {T ∈ Tn : G ≤ T}.

For given G = (V,w) and X ⊆ V , we further define wX→ such that for all x, y ∈ V ,

wX→(x, y) =

{
n− w(y, x) if x ∈ X and y /∈ X,

w(x, y) otherwise,

and set wX← = wV \X→. Moreover, wx→, wx←, GX→, and GX← are defined in the obvious
way.

We use the term solution concept for functions S that associate with each (complete)
tournament T = (V,E), or with each (complete) weighted tournament T = (V,w), a choice
set S(T ) ⊆ V . A solution concept S is called resolute if |S(T )| = 1 for each tournament T .
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In this paper we will consider the following solution concepts: Condorcet winners (COND),
Copeland (CO), top cycle (TC ), and uncovered set (UC ) for tournaments, and maximin
(MM ), Borda (BO), and ranked pairs (RP) for weighted tournaments. Of these only ranked
pairs is resolute. Formal definitions will be provided later in the paper.

3 Possible & Necessary Winners

A solution concept selects alternatives from complete tournaments or complete weighted
tournaments. A partial (weighted) tournament, on the other hand, can be extended to a
number of complete (weighted) tournaments, and a solution concept selects a (potentially
different) set of alternatives for each of them.

For a given solution concept S, we can thus define the set of possible winners for a partial
(weighted) tournament G as the set of alternatives selected by S from some completion of G,
i.e., as PWS (G) =

⋃
T∈[G] S(T ). Analogously, the set of necessary winners of G is the set

of alternatives selected by S from every completion of G, i.e., NWS (G) =
⋂
T∈[G] S(T ). We

can finally write PWSS (G) = {S(T ) : T ∈ [G]} for the set of sets of alternatives that S
selects for the different completions of G.

Note that NWS (G) may be empty even if S selects a non-empty set of alternatives for
each tournament T ∈ [G], and that |PWSS (G)|may be exponential in the number of alterna-
tives of G. It is also easily verified that G ≤ G′ implies PWS (G′) ⊆ PWS (G) and NWS (G) ⊆
NWS (G′), and that PWS (G) =

⋃
G≤G′ NWS (G′) and NWS (G) =

⋂
G≤G′ PWS (G′).

Deciding membership in the sets PWS (G), NWS (G), and PWSS (G) for a given solution
concept S and a partial (weighted) tournament G is a natural computational problem. We
will respectively refer to these problems as PWS , NWS , and PWSS , and will study them
for the solution concepts mentioned at the end of the previous section.3

For complete tournaments T we have [T ] = {T} and thus PWS (T ) = NWS (T ) = S(T )
and PWSS (T ) = {S(T )}. As a consequence, for solution concepts S with an NP-hard
winner determination problem—like Banks, Slater, and TEQ—the problems PWS , NWS ,
and PWSS are NP-hard as well. We therefore restrict our attention to solution concepts for
which winners can be computed in polynomial time.

For irresolute solution concepts, PWSS may appear a more complex problem than PWS .
We are, however, not aware of a polynomial-time reduction from PWS to PWSS . The
relationship between these problems may also be of interest for the “classic” possible winner
setting with partial preference profiles.

4 Unweighted tournaments

In this section, we consider the following well-known solution concepts for unweighted tour-
naments: Condorcet winners, Copeland, top cycle, and uncovered set. Weighted tourna-
ments will then be considered in Section 5.

4.1 Condorcet Winners

Condorcet winners are a very simple solution concept and will provide a nice warm-up.
An alternative x ∈ V is a Condorcet winner of a complete tournament T = (V,E) if it
dominates all other alternatives, i.e., if (x, y) ∈ E for all y ∈ V \ {x}. The set of Condorcet
winners of tournament T will be denoted by COND(T ); obviously this set is always either
a singleton or empty.

3Formally, the input for each of the problems consists of an encoding of the partial (n-weighted) tourna-
ment G and, for partial n-weighted tournaments, the number n.
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It is readily appreciated that the possible Condorcet winners of a partial tournament
G = (V,E) are precisely the undominated alternatives, and that a necessary Condorcet
winner of G should already dominate all other alternatives. Both properties can be verified
in polynomial time.

Each of the sets in PWSCOND(G) is either a singleton or the empty set, and determining
membership for a singleton is obviously tractable. Checking whether ∅ ∈ PWSCOND(G)
is not quite that simple. First observe that ∅ ∈ PWSCOND(G) if and only if there is an
extension G′ of G in which every alternative is dominated by some other alternative. Given
a particular G = (V,E), we can define an extension G′ = (V,E′) of G by iteratively adding
edges from dominated alternatives to undominated ones until this is no longer possible.
Formally, let

E0 = E and Ei+1 = Ei ∪ {(x, y) ∈ Xi × Yi : (y, x) /∈ Ei},

where Xi and Yi denote the dominated and undominated alternatives of (V,Ei), respectively.

Finally define E′ =
⋃|V |
i=0Ei, and observe that this set can be computed in polynomial time.

Now, for every undominated alternative x of G′ and every dominated alternative y of G′,
we not only have (x, y) ∈ E′, but also (x, y) ∈ E. This is the case because in the inductive
definition of E′ only edges from dominated to undominated alternatives are added in every
step. It is therefore easily verified that PWSCOND(G) contains ∅ if and only if the set of
undominated alternatives in G′ is either empty or is of size three or more. We have shown
the following easy result.

Theorem 1. PWCOND , NWCOND , and PWSCOND can be solved in polynomial time.

The results for PWCOND and NWCOND also follow from Proposition 2 of Lang et al. [16]
and Corollary 2 of Konczak and Lang [15]. We further note that Theorem 1 is a corollary
of corresponding results for maximin in Section 5.2. The reason is that a Condorcet winner
is the maximin winner of a 1-weighted tournament, and a tournament does not admit a
Condorcet winner if and only if all alternatives are maximin winners.

4.2 Copeland

Copeland’s solution selects alternatives based on the number of other alternatives they
dominate. Define the Copeland score of an alternative x in tournament T = (V,E) as
sCO(x, T ) = |D+

T (x)|. The set CO(T ) then consists of all alternatives that have maximal
Copeland score. Since Copeland scores coincide with Borda scores in the case of 1-weighted
tournaments, the following is a direct corollary of the results in Section 5.1.

Theorem 2. NWCO , PWCO , and PWSCO can be solved in polynomial time.

PWCO can alternatively be solved via a polynomial-time reduction to maximum network
flow (see, e.g., [8], p. 51).

4.3 Top Cycle

A subset X ⊆ V of alternatives in a (partial or complete) tournament (V,E) is domi-
nant if every alternative in X dominates every alternative outside X. The top cycle of a
tournament T = (V,E), denoted by TC (T ), is the unique minimal dominant subset of V .

Lang et al. have shown that possible and necessary winners for TC can be computed
efficiently by greedy algorithms ([16], Corollaries 1 and 2). For PWSTC , we not only have
to check that there exists a completion such that the set in question is dominating, but also
that there is no smaller dominating set. It turns out that this can still be done in polynomial
time.
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Theorem 3. PWSTC can be solved in polynomial time.

Proof sketch. Consider a partial tournament G = (V,E) and a set X ⊆ V of alternatives.
If X is a singleton, the problem reduces to checking whether X ∈ PWSCOND(G). If X is of
size two or if one of its elements is dominated by an outside alternative, X /∈ PWSTC (G).
Therefore, we can without loss of generality assume that |X| ≥ 3 and (y, x) /∈ E for all
y ∈ V \ X and x ∈ X. The Smith set of a partial tournament is defined as the minimal
dominant subset of alternatives [22].4 It can be shown that there exists a completion T ∈
[G] with TC (T ) = X if and only if the Smith set of the partial tournament (X,E|X×X)
equals the whole set X. Since Brandt et al. [4] have shown that the Smith set of a partial
tournament can be computed efficiently, the theorem follows.

4.4 Uncovered Set

Given a tournament T = (V,E), an alternative x ∈ V is said to cover another alternative
y ∈ V if D+

T (y) ⊆ D+
T (x), i.e., if every alternative dominated by y is also dominated by x.

The uncovered set of T , denoted by UC (T ), then is the set of alternatives that are not
covered by some other alternative. A useful alternative characterization of the uncovered
set is via the two-step principle: an alternative is in the uncovered set if and only if it can
reach every other alternative in at most two steps.5 Formally, x ∈ UC (T ) if and only if for
all y ∈ V \ {x}, either (x, y) ∈ E or there is some z ∈ V with (x, z), (z, y) ∈ E. We denote
the two-step dominion D+

E(D+
E(x)) of an alternative x by D++

E (x).
We first consider PWUC , for which we check for each alternative whether it can be

reinforced to reach every other alternative in at most two steps.

Theorem 4. PWUC can be solved in polynomial time.

Proof. For a given partial tournament G = (V,E) and an alternative x ∈ V , we check
whether x is in UC (T ) for some completion T ∈ [G].

Consider the graph G′ = (V,E′′) where E′′ is derived from E as follows. First, we let
D+(x) grow as much as possible by letting E′ = Ex→. Then, we do the same for its two-step

dominion by defining E′′ as E′D
+

E′ (x)→. Now it can be shown that x ∈ PWUC (G) if and
only if V = {x} ∪D+

E′′(x) ∪D++
E′′ (x).

A similar argument yields the following.

Theorem 5. NWUC can be solved in polynomial time.

Proof. For a given partial tournament G = (V,E) and an alternative x ∈ V , we check
whether x is in UC (T ) for all completions T ∈ [G].

Consider the graph G′ = (V,E′′) with E′′ defined as follows. First, let E′ = Ex←. Then,

expand it to E′′ = E′D
−
E′ (x)→. Intuitively, this makes it as hard as possible for x to beat

alternatives outside of its dominion in two steps. Then it can be shown that x ∈ NWUC (G)
if and only if V = {x} ∪D+

E′′(x) ∪D++
E′′ (x).

For all solution concepts considered so far—Condorcet winners, Copeland, and top
cycle—PW and PWS have the same complexity. One might wonder whether a result like
this holds more generally, and whether there could be a polynomial-time reduction from
PWS to PW . The following result shows that this is not the case, unless P=NP.

Theorem 6. PWSUC is NP-complete.

This can be shown by a rather intricate reduction from Sat. We have to omit the
construction due to space constraints but a sketch is presented in the appendix.

4For complete tournaments, the Smith set coincides with the top cycle.
5In graph theory, vertices satisfying this property are often called kings.
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5 Weighted Tournaments

We now turn to weighted tournaments, and in particular consider the solution concepts
Borda, maximin, and ranked pairs.

5.1 Borda

The Borda solution (BO) is typically used in a voting context, where it is construed as
based on voters’ rankings of the alternatives: each alternative receives |V | − 1 points for
each time it is ranked first, |V | − 2 points for each time it is ranked second, and so forth;
the solution concept then chooses the alternatives with the highest total number of points.
In the more general setting of weighted tournaments, the Borda score of alternative x ∈ V
in G = (V,w) is defined as sBO(x,G) =

∑
y∈V \{x} w(x, y) and the Borda winners are the

alternatives with the highest Borda score. If w(x, y) represents the number of voters that
rank x higher than y, the two definitions are equivalent.

Before we proceed further, we define the notion of a b-matching, which will be used in
the proofs of two of our results. Let H = (VH , EH) be an undirected graph with vertex
capacities b : VH → N0. Then, a b-matching of H is a function m : EH → N0 such
that for all v ∈ VH ,

∑
e∈{e′∈EH :v∈e′}m(e) ≤ b(v). The size of b-matching m is defined as∑

e∈EH
m(e). It is easy to see that if b(v) = 1 for all v ∈ VH , then a maximum size b-

matching is equivalent to a maximum cardinality matching. In a b-matching problem with
upper and lower bounds, there further is a function a : VH → N0. A feasible b-matching
then is a function m : EH → N0 such that a(v) ≤∑e∈{e′∈EH :v∈e′}m(e) ≤ b(v).

If H is bipartite, then the problem of computing a maximum size feasible b-matching
with lower and upper bounds can be solved in strongly polynomial time ([21], Chapter 21).
We will use this fact to show that PWBO and PWSBO can both be solved in polynomial
time. While the following result for PWBO can be shown using Theorem 6.1 of [14], we give
a direct proof that can then be extended to PWSBO .

Theorem 7. PWBO can be solved in polynomial time.

Proof sketch. Let G = (V,w) be a partial n-weighted tournament, x ∈ V . We give a
polynomial-time algorithm for checking whether x ∈ PWBO(G), via a reduction to the
problem of computing a maximum size b-matching of a bipartite graph.

Let Gx→ = (V,wx→) denote the graph obtained from G by maximally reinforcing x, and
s∗ = sBO(x,Gx→) the Borda score of x in Gx→. From Gx→, we then construct a bipartite
graph H = (VH , EH) with vertices VH = V \ {x} ∪ E<n, where E<n = {{i, j} ⊆ V \ {x} :
w(i, j) + w(j, i) < n},6 and edges EH = {{v, e} : v ∈ V \ {x} and v ∈ e ∈ E<n}. We
further define vertex capacities b : VH → N0 such that b({i, j}) = n − w(i, j) − w(j, i) for
{i, j} ∈ E<n and b(v) = s∗ − sBO(v,Gx→) for v ∈ V \ {x}.

Now observe that in any completion T = (V,w′) ∈ [Gx→], w′(i, j) + w′(j, i) = n for all
i, j ∈ V with i 6= j. The sum of the Borda scores in T is therefore n|V |(|V | − 1)/2. Some
of the weight has already been used up in Gx→; the weight which has not yet been used up
is equal to α = n|V |(|V | − 1)/2−∑v∈V sBO(v,Gx→). We claim that x ∈ PWBO(G) if and
only if H has a b-matching of size at least α.

This idea can be extended to a polynomial-time algorithm for PWSBO where we use
a similar construction for a given G = (V,w), a candidate set X ⊂ X and a tar-
get Borda score s∗. Binary search can be used to efficiently search the interval I =
[maxx∈X sBO(x,G), n(|V | − 1)] of possible target scores. The full proof is omitted.

6Note that w(i, j) = wx→(i, j) for alternatives i, j ∈ V \ {x}.
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Theorem 8. PWSBO can be solved in polynomial time.

We conclude this section by showing that NWBO can be solved in polynomial time as
well.

Theorem 9. NWBO can be solved in polynomial time.

Proof. Let G = (V,w) be a partial weighted tournament, x ∈ V . We give a polynomial-time
algorithm for checking whether x ∈ NWBO(G).

Let G′ = Gx←. We want to check whether some other alternative y ∈ V \ {x} can
achieve a Borda score of more than s∗ = sBO(x,G′). This can be done separately for each
y ∈ V \ {x} by reinforcing it as much as possible in G′. If for some y, sBO(y,G′y→) > s∗,
then x /∈ NWBO(G). If, on the other hand, sBO(y,G′y→) ≤ s∗ for all y ∈ V \ {x}, then
x ∈ NWBO(G).

Since the Borda and Copeland solutions coincide in unweighted tournaments, the above
results imply that PWCO and NWCO can be solved in polynomial time. The same is true
for PWSCO , because the Copeland score is bounded by |V | − 1.

5.2 Maximin

The maximin score sMM (x, T ) of an alternative x in a weighted tournament T = (V,w), is
given by its worst pairwise comparison, i.e., sMM (x, T ) = miny∈V \{x} w(x, y). The maxi-
min solution, also known as Simpson’s method and denoted by MM , returns the set of all
alternatives with the highest maximin score.

We first show that PWMM is polynomial-time solvable by reducing it to the problem of
finding a maximum cardinality matching of a graph.

Theorem 10. PWMM can be solved in polynomial time.

Proof sketch. We show how to check whether x ∈ PWMM (G) for a partial n-weighted tour-
nament G = (V,w). Consider the graph Gx→ = (V,wx→). Then, sMM (x,Gx→) is the best
possible maximin score x can get among all completions of G. If sMM (x,Gx→) ≥ n

2 , then we
have sMM (y, T ) ≤ wx→(y, x) ≤ n

2 for every y ∈ V \{x} and every completion T ∈ [Gx→] and
therefore x ∈ PWMM (G). Now consider sMM (x,Gx→) < n

2 . We will reduce the problem of
checking whether x ∈ PWMM (G) to that of finding a maximum cardinality matching, which
is known to be solvable in polynomial time [11]. We want to find a completion T ∈ [Gx→]
such that sMM (x, T ) ≥ sMM (y, T ) for all y ∈ V \ {x}. If there exists a y ∈ V \ {x} such
that sMM (x,Gx→) < sMM (y,Gx→), then we already know that x /∈ PWMM (G). Otherwise,
each y ∈ V \ {x} derives its maximin score from at least one particular edge (y, z) where
z ∈ V \ {x, y} and w(y, z) ≤ sMM (x,Gx→). Moreover, it is clear that in any completion, y
and z cannot both achieve a maximin score of less than sMM (x,Gx→) from edges (y, z) and
(z, y) at the same time.

Construct the following undirected and unweighted graph H = (VH , EH) where VH =
V \ {x} ∪ {{i, j} ⊆ V : i 6= j}. Build up EH such that: {i, {i, j}} ∈ EH if and only if i 6= j
and wx→(i, j) ≤ sMM (x,Gx→). In this way, if i is matched to {i, j} in H, then i derives a
maximin score of less than or equal to sMM (x,Gx→) from his comparison with j. Clearly,
H is polynomial in the size of G. Then, the claim is that x ∈ PWMM (G) if and only if there
exists a matching of cardinality |V | − 1 in H.

For NWMM we apply a similar technique as for NWBO : to see whether x ∈ NWMM (G),
we start from the graph Gx← and check whether some other alternative can achieve a higher
maximin score than x in a completion of Gx←.
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Theorem 11. NWMM can be solved in polynomial time.

We conclude the section by showing that PWSMM can be solved in polynomial time.
The proof proceeds by identifying the maximin values that could potentially be achieved
simultaneously by all elements of the set in question, and solving the problem for each of
these values using similar techniques as in the proof of Theorem 10. Only a polynomially
bounded number of problems need to be considered.

Theorem 12. PWSMM can be solved in polynomial time.

5.3 Ranked Pairs

The method of ranked pairs (RP) is the only resolute solution concept considered in this
paper. Given a weighted tournament T = (V,w), it returns the unique undominated al-
ternative of a transitive tournament T ′ on V constructed in the following manner. First
order the (directed) edges of T in decreasing order of weight, breaking ties according to
some exogenously given tie-breaking rule. Then consider the edges one by one according to
this ordering. If the current edge can be added to T ′ without creating a cycle, then do so;
otherwise discard the edge.7

It is readily appreciated that this procedure, and thus the winner determination problem
for RP , is computationally tractable. The possible winner problem, on the other hand, turns
out to be NP-hard. This also shows that tractability of the winner determination problem,
while necessary for tractability of PW , is not generally sufficient.

Theorem 13. PWRP is NP-complete.

Proof sketch. Membership in NP is obvious, as for a given completion and a given tie-
breaking rule, the ranked pairs winner can be found efficiently.

NP-hardness can be shown by a reduction from Sat. For a Boolean formula ϕ in
conjunctive normal-form with a set C of clauses and set P of propositional variables, we
construct a partial 8-weighted tournament Gϕ = (Vϕ, wϕ) as follows. For each variable
p ∈ P , Vϕ contains two literal alternatives p and p̄ and two auxiliary alternatives p′ and p̄′.
For each clause c ∈ C, there is an alternative c. Finally, there is an alternative d for which
membership in PWRP (Gϕ) is to be decided.

In order to conveniently describe the weight function wϕ, let us introduce the following
terminology. For two alternatives x, y ∈ Vϕ, say that there is a heavy edge from x to y if
wϕ(x, y) = 8 (and therefore wϕ(y, x) = 0). A medium edge from x to y means wϕ(x, y) = 6
and wϕ(y, x) = 2, and a light edge from x to y means wϕ(x, y) = 5 and wϕ(y, x) = 3.
Finally, a partial edge between x and y means wϕ(x, y) = wϕ(y, x) = 1.

We are now ready to define wϕ. For each variable p ∈ P , we have heavy edges from p to
p̄′ and from p̄ to p′, and partial edges between p and p′ and between p̄ and p̄′. For each clause
c ∈ C, we have a medium edge from c to d and a heavy edge from the literal alternative
`i ∈ {p, p̄} to c if the corresponding literal `i appears in the clause c. Finally, we have heavy
edges from d to all auxiliary alternatives and light edges from d to all literal alternatives.
For all pairs x, y for which no edge has been specified, we define wϕ(x, y) = wϕ(y, x) = 4.

Observe that the only pairs of alternatives for which wϕ is not fully specified are those
pairs that are connected by a partial edge. It can be shown that alternative d is a possible

7The variant of ranked pairs originally proposed by Tideman [23], which was also used by Xia and
Conitzer [25], instead chooses a set of alternatives, containing any alternative that is selected by the above
procedure for some way of breaking ties among edges with equal weight. We do not consider this irresolute
version of ranked pairs because it was recently shown that winner determination for this variant is NP-
hard [5]. As mentioned in Section 3, this immediately implies that all problems concerning possible or
necessary winners are NP-hard as well.
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ranked pairs winner in Gϕ if and only if ϕ is satisfiable. Intuitively, choosing a completion
w′ of wϕ such that w′(p′, p) is large and w′(p̄′, p̄) is small corresponds to setting the variable
p to “true.”

Since the ranked pairs method is resolute, hardness of PWSRP follows immediately.

Corollary 1. PWSRP is NP-complete.

Computing necessary ranked pairs winners turns out to be coNP-complete. This is
again somewhat surprising, as computing necessary winners is often considerably easier than
computing possible winners, both for partial tournaments and partial preference profiles [25].

Theorem 14. NWRP is coNP-complete.

Proof sketch. Membership in coNP is again obvious. For hardness, we give a reduction from
UnSat that is a slight variation of the reduction in the proof of Theorem 13. We introduce
a new alternative d∗, which has heavy edges to all alternatives in Vϕ except d. Furthermore,
there is a light edge from d to d∗. It can be shown that d∗ is a necessary ranked pairs winner
in this partial 8-weighted tournament if and only if ϕ is unsatisfiable.

6 Discussion

The problem of computing possible and necessary winners for partial preference profiles has
recently received a lot of attention. In this paper, we have investigated this problem in a
setting where partially specified (weighted or unweighted) tournaments instead of profiles
are given as input. We have summarized our findings in Table 1.

A key conclusion is that computational problems for partial tournaments can be signif-
icantly easier than their counterparts for partial profiles. For example, possible Borda or
maximin winners can be found efficiently for partial tournaments, whereas the corresponding
problems for partial profiles are NP-complete [25].

While tractability of the winner determination problem is necessary for tractability of
the possible or necessary winners problems, the results for ranked pairs in Section 5.3 show
that it is not sufficient. We further considered the problem of deciding whether a given
subset of alternatives equals the winner set for some completion of the partial tournament.
The results for the uncovered set in Section 4.4 imply that this problem cannot be reduced
to the computation of possible or necessary winners, but whether a reduction exists in the
opposite direction remains an open problem.

Partial tournaments have also been studied in their own right, independent of their
possible completions. For instance, Peris and Subiza [18] and Dutta and Laslier [10] have
generalized several tournament solutions to incomplete tournaments by directly adapting
their definitions. In this context, the notion of possible winners suggests a canonical way to
generalize a tournament solution to incomplete tournaments. The positive computational
results in this paper are an indication that this may be a promising approach.

Furthermore, we have not examined the complexity of computing possible and necessary
winners for some attractive tournament solutions such as the minimal covering set, the
bipartisan set [17] and weighted versions of the top cycle and the uncovered set [9].

An interesting related question that goes beyond the computation of possible and neces-
sary winners is the following: when the winners are not yet fully determined, which unknown
comparisons need to be learned, or which matches should be played? The construction of
a policy tree defining an optimal protocol minimizing the number of questions to be asked
or the number of matches to be played, in the worst case or on average, is an even more
challenging issue that we leave for further research.
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Housing Markets with Indifferences: a Tale of

Two Mechanisms

Haris Aziz and Bart de Keijzer

Abstract

The (Shapley-Scarf) housing market is a well-studied and fundamental model of an
exchange economy. Each agent owns a single house and the goal is to reallocate the
houses to the agents in a mutually beneficial and stable manner. Recently, Alcalde-
Unzu and Molis [2011] and Jaramillo and Manjunath [2011] independently examined
housing markets in which agents can express indifferences among houses.They pro-
posed two important families of mechanisms, known as TTAS and TCR respectively.
We formulate a family of mechanisms which not only includes TTAS and TCR but
also satisfies many desirable properties of both families. As a corollary, we show
that TCR is strict core selecting (if the strict core is non-empty). Finally, we settle
an open question regarding the computational complexity of the TTAS mechanism.
Our study also raises a number of interesting research questions.

1 Introduction

Housing markets are fundamental models of exchange economies of goods where the goods
could range from dormitories to kidneys [Sönmez and Ünver, 2011]. The classic housing
market (also called the Shapley-Scarf Market) consists of a set of agents each of which owns
a house and has strict preferences over the set of all houses. The goal is to redistribute
the houses to the agents in the most desirable fashion. Shapley and Scarf [1974] showed
that a simple yet elegant mechanism called Gale’s Top Trading Cycle (TTC) is strategy-
proof and finds an allocation which is in the core. TTC is based on multi-way exchanges of
houses between agents. Since the basic assumption in the model is that agents have strict
preferences over houses, TTC is also strict core selecting and therefore Pareto optimal.

Indifferences in preferences are not only a natural relaxation but are also a practical real-
ity in many cases. Many new challenges arise in the presence of indifferences: core stability
does not imply Pareto optimality; the strict core can be empty [Quint and Wako, 2004];
and strategic issues need to be re-examined. In spite of these challenges, Alcalde-Unzu and
Molis [2011] and Jaramillo and Manjunath [2011] proposed desirable mechanisms for hous-
ing markets with indifferences. Alcalde-Unzu and Molis [2011] presented the Top Trading
Absorbing Sets (TTAS) family of mechanisms which are strategy-proof, core selecting (and
therefore individually rational), Pareto optimal, and strict core selecting (if the strict core is
non-empty). Independently, Jaramillo and Manjunath [2011] came up with a different fam-
ily of mechanisms called Top Cycle Rules (TCR) which are strategy-proof, core selecting,
and Pareto optimal. Whereas it was shown in [Jaramillo and Manjunath, 2011] that each
TCR mechanism runs in polynomial time, the time complexity of TTAS was raised as an
open problem in [Alcalde-Unzu and Molis, 2011].

We first highlight the commonality of TCR and TTAS by describing a simple class of
mechanisms called Generalized Absorbing Top Trading Cycle (GATTC) which encapsulates
the TTAS and TCR families. It is proved that each GATTC mechanism is core selecting,
strict core selecting, and Pareto optimal. As a corollary, TCR is strict core selecting. We
note that whereas a GATTC mechanism satisfies a number of desirable properties, the
strategy-proofness of a particular GATTC mechanism hinges critically on the order and
way of choosing trading cycles. Finally, we settle the computational complexity of TTAS.
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By simulating a binary counter, it is shown that a TTAS mechanism can take exponential
time to terminate.

2 Preliminaries

Let N be a set of n agents and H a set of n houses. The endowment function ω : N → H
assigns to each agent the house he originally owns. Each agent has complete and transitive
preferences %i over the houses and %= (%1, . . . ,%n) is the preference profile of the agents.
The housing market is a quadruple M = (N,H, ω,%). For S ⊆ N , we denote ω(S) = {ω(i) :
i ∈ S} by ω(S). A function x : S → H is an allocation on S ⊆ N if there exists a bijection π
on S such that x(i) = ω(π(i)) for each i ∈ S. The goal in housing markets is to re-allocate
the houses in a mutually beneficial and efficient way. An allocation is individually rational
(IR) if x(i) %i ω(i). A coalition S ⊆ N blocks an allocation x on N if there exists an
allocation y on S such that for all i ∈ S, y(i) ∈ ω(S) and y(i) �i x(i). An allocation x on
N is in the core (C) of market M if it admits no blocking coalition. An allocation that is in
the core is also said to be core stable. An allocation is weakly Pareto optimal (w-PO) if N
is not a blocking coalition. A coalition S ⊆ N weakly blocks an allocation x on N if there
exists an allocation y on S such that for all i ∈ S, y(i) ∈ ω(S), y(i) %i x(i), and there exists
an i ∈ S such that y(i) �i x(i). An allocation x on N is in the strict core (SC) of market M
if it admits no weakly blocking coalition. An allocation that is in the strict core is also said
to be strict core stable. An allocation is Pareto optimal (PO) if N is not a weakly blocking
coalition. It is clear that strict core implies core and also Pareto optimality. Core implies
weak Pareto optimality and also individual rationality.

A mechanism that always returns a Pareto optimal and (strict) core stable allocation is
said to be Pareto optimal and (strict) core-selecting respectively. A mechanism is strategy-
proof if for each agent, reporting false preferences to the mechanism will not be beneficial
to the agent (i.e., when the agent reports false preferences, he will not end up with a house
that he prefers more than the house he would get when he reports his true preferences to
the mechanism).

Desirable allocations of housing markets can be computed via a graph-theoretic ap-
proach. Each housing market M = (N,H, ω,%) has a corresponding simple digraph
G(%) = (N ∪ H,E) such that for each i ∈ N and h ∈ H, (i, h) ∈ E if h % h′ for all
h′ ∈ H, and (h, i) if h = ω(i). In other words, each agent points to his maximally preferred
houses and each house points to his owner. An absorbing set of a digraph is a strongly
connected component from which there are no outgoing edges. Two nodes constitute a
symmetric pair if there are edges from each node to the other. Both nodes are then called
paired-symmetric. An absorbing set is paired-symmetric if each node belongs to a symmetric
pair.

3 GATTC

In this section, we formulate a simple family of mechanisms called Generalized Absorbing
Top Trading Cycle (GATTC) which is designed for housing markets with indifferences and
extends not only TTC but also includes the two families TTAS and TCR. It is based on
multi-way exchanges of houses between agents. We will show that GATTC satisfies many
desirable properties of housing mechanisms such as being core-selecting and Pareto optimal.

Before we describe GATTC, we will introduce the original TTC mechanism which is
for the domain of housing markets with strict preferences. TTC works as follows. For a
housing market M with strict preferences, we first construct the corresponding graph G(%)
as defined above. Then, we start from an agent and walk arbitrarily along the edges until
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a cycle is completed. A cycle starting from any agent is of course guaranteed to exist as
each node in G(%) has positive outdegree. This cycle is removed from G(%). Within the
removed cycle, each agent gets the house he was pointing to. The graph G(%) is adjusted so
that the remaining agents point to the most preferred houses among the remaining houses.
The process is repeated until all the houses and agents are deleted from the graph.1

For a housing market with indifferences, TTC can still be used to return a core selecting
allocation: break ties arbitrarily and then run TTC [see e.g., Ehlers, 2012]. However such
an allocation may not be Pareto optimal [see e.g., Alcalde-Unzu and Molis, 2011, Jaramillo
and Manjunath, 2011]. GATTC achieves Pareto optimality and is based on absorbing sets
and the concept of a ‘good cycle’. A good cycle is any cycle in G(%) which contains at
least one node that is not paired-symmetric. By implementing a cycle we mean reallocating
the houses along the cycle. For example consider the cycle a0, h1, a1, . . . , hm, am, h0, a0.
Then for all i ∈ {0, . . . ,m}, house hi+1 mod m is made to point to ai. The following is the
description of a GATTC mechanism.

GATTC

Let G = G(%) and repeat the following until G is empty.

1. Repeat the following a finite number of times on G:

1.1. Either implement a non-good cycle (if G is not empty), or do nothing.

1.2. Either remove a paired-symmetric absorbing set and adjust2 G (if a

paired-symmetric absorbing set exists), or do nothing.

2. Repeatedly remove paired-symmetric absorbing sets and adjust G, until there

are no paired-symmetric absorbing sets in G.

3. If G is not empty, implement a good cycle.

We stress that the choices that a GATTC mechanism makes in steps 1.1. and 1.2. are
allowed to be different each time the mechanism executes these steps during the same run.
The same holds for the number of times that steps 1.1. and 1.2. are repeated, each time
that step 1 is executed. It is not even required that a GATTC mechanism is deterministic:
as long as it has the property that the output can always be obtained by a procedure that
respects the form above, it is part of the GATTC family.

Example 1 Consider a housing market M = (N,H, ω,%) where N = {a1, . . . , a5}, H =
{h1, . . . , h5}, ω is such that ω(ai) = hi for all i ∈ {1, . . . , 5}, and preferences % are defined
as follows:

agent a1 a2 a3 a4 a5

preferences h2 h3 h4, h5 h1 h2
h1 h2 h3 h5 h4

h4 h5
Then, if ties are broken in any way, TTC does not return a Pareto op-

timal allocation. However, GATTC (or TTAS/TCR) returns the follow-
ing Pareto optimal allocations: {{a1, h2}, {a2, h3}, {a3, h5}, {a4, h1}, {a5, h4}} or
{{a1, h1}, {a2, h3}, {a3, h4}, {a4, h5}, {a5, h2}}. Figure 2 (placed at the end of this pa-
per, due to space constraints) illustrates the first steps in the execution of a GATTC
mechanism on this housing market.

Illustration of the first steps of a GATTC mechanism applied to the housing market in
Example 1.

1Please see Section 2.2 of [Sönmez and Ünver, 2011] for an elegant illustration of how TTC works.
2Adjusting is defined here in the same way as for the TTC mechanism.
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Figure 1: Illustration of the first steps of a GATTC mechanism applied to the housing
market in Example 1. The top figure shows the graph as initialized. The algorithm proceeds
by executing step 1 zero times, removing no paired-symmetric absorbing sets in step 2
(as there are none), and implementing the cycle (a1, h2, a2, h3, a3, h4, a4, h1, a1) in step 3.
The graph after implementing this cycle is shown in the middle figure. Subsequently, the
mechanism removes the paired-symmetric absorbing sets, forcing a5 to point to his second-
most preferred houses, i.e., house h4.

We say that a housing market mechanism is valid if it terminates and returns a proper
allocation.

Theorem 1 GATTC is valid, core-selecting, and Pareto optimal.

Proof: We prove each property separately:

• Valid: At the beginning of every step, G has the property that each node has positive
out-degree. For non-empty graphs with this property, an absorbing set of cardinality
greater than 1 is guaranteed to exist [Kalai and Schmeidler, 1977]. Therefore, if G is
not empty, then at step 1.1. there is guaranteed to be a cycle, and at step 3. there
is guaranteed to be a good cycle (because there must be an absorbing set that is
not paired-symmetric). In each iteration (of steps 1, 2, and 3), if paired-symmetric
absorbing sets exist they are removed in Step 2.3 Also, at least one good cycle is
implemented in step 3 which reduces the number of non-paired-symmetric nodes.
Therefore, there can be a maximum of O(n) iterations until GATTC terminates. Since
each removed house is allocated to the agent it was last pointing to, GATTC returns
a proper allocation.

• Core selecting: When any agent i is removed from the graph along with his allocated
house h, then h is a maximal house for i from among the remaining houses. Therefore
i cannot be in a blocking coalition with the agents remaining in the graph.

• Pareto optimal : Let Sk be the kth paired-symmetric absorbing set that arises at some
point in the GATTC mechanism (and is thus removed from the graph by the GATTC
mechanism, and is included accordingly in the allocation produced by the GATTC
mechanism). In any allocation x in which none of the players in S1 are worse off than
in the allocation produced by GATTC, the players in S1 must be allocated to houses
in S1. Taking this as the base case, it follows by easy induction that in x, the players
of Sk must be allocated to houses in the kth paired-symmetric absorbing set. Next,
suppose that i is a player in Sk for some k. Then no house in Sk is more preferred
by i than the house that the GATTC mechanism assigns him to. It follows that no
player is strictly better off in x than in the allocation produced by GATTC.

This completes the proof. �
3An absorbing set of a graph can be computed in linear time via the algorithm of Tarjan [1972].
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Theorem 2 GATTC is strict core selecting in case the strict core is non-empty.

Proof: We prove the statement by proving two claims.

Claim 1 GATTC ensures that if each agent in an absorbing set A can get his maximal
house within A, then it will.

Proof: Define an inward set as a set of vertices without edges pointing outward from A.
An absorbing set is by definition an inward set. We prove this claim for the more general
notion of inward sets. Let A be an inward set that arises at some point in time t during
execution of the GATTC mechanism, and assume that each agent can simultaneously get
a maximal house in A. If A eventually becomes paired-symmetric, then every agent in A
surely gets a maximal house within A. Let us thus assume that A does not eventually
become paired-symmetric. Consider the first point in time t′ where vertices are removed
from A by the mechanism. This point t′ exists because the mechanism terminates. All
cycles that are implemented in between t and t′ either lie completely inside A or completely
outside A, because there are no edges pointing from outside A to a vertex in A. It follows
that at point t′, the removed paired-symmetric absorbing set A′ is a strict subset of A. Note
that agents in A \ A′ cannot get a house from within A′ without some agent in A′ getting
a worse house. Hence, by the assumption that each agent in A can get his maximal house
within A, it follows that agents in A\A′ can still all get a maximal house from within A\A′.
The proof follows by induction; repeating the same argument on the inward set A \A′ that
arises when removing A′ from the graph. �

Claim 2 The returned allocation x is in the strict core if and only if for each absorbing set
A encountered in the algorithm, each agent in A will get his maximal house in A.

Proof: (⇒) Assume there is an agent i ∈ A such that there exists a house h in A for which
h %i x(i). But then i can be involved in a weakly blocking coalition by forming a cycle
within A.

(⇐) Assume that each agent i in A gets a maximal house from within A. Thus i cannot
be part of a blocking coalition. It could still be part of a weakly blocking coalition if an
agent i in A had a maximal house h outside A within the remaining graph and there exists
a cycle of the form i, h, . . . , i. But this is not possible since A is absorbing. �

From the two claims, the theorem follows. �

We also observe that on the domain of strict preferences, GATTC is equivalent to TTC.
The reason is that implementation of any cycle results in a paired-symmetric absorbing set
which is then removed from the graph. Ma [1994] proved that for housing markets with
strict preferences, a mechanism is strict core selecting if and only if it is individually rational,
Pareto optimal, and strategy-proof. On the other hand, we note that in the presence of ties,
even if a mechanism is (strict) core selecting, and Pareto optimal, it is not necessarily
strategy-proof.

Theorem 3 Not every GATTC mechanism is strategy-proof.

Proof Sketch: Consider the following GATTC mechanism in which no non-good cycle is
implemented and every good cycle is found in the following way. Consider ai ∈ N , hj ∈ H
such that (ai, hj) ∈ E , (hj , ai) /∈ E, and ai and hj are in a strongly connected component.
Then, there exists a shortest path P from hj to ai. Find this path P by Dijkstra’s shortest
path algorithm. Path P gives us a good cycle ai, hj , P, ai.
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For this subclass of GATTC, it can be shown that an agent may have incentive to lie
about his preferences to obtain a better allocation. Informally, there exist instances of a
housing market in which if an agent a does not lie, it may only get a third most preferred
house. However, if a points to his second most preferred house h in the graph, it can manage
to influence which good cycle is selected and be included in that good cycle. Agent a then
gets allocated h. �

4 TTAS and TCR

We now describe the two families of mechanisms in the literature — TTAS [Alcalde-Unzu
and Molis, 2011] and TCR [Jaramillo and Manjunath, 2011] — designed for housing markets
with indifferences. Both families of mechanisms are extensions of TTC. We will later show
that both families are subclasses of GATTC.

TTAS

Fix a priority ranking of the houses; i.e., a complete, transitive and

antisymmetric binary relation over H. Construct the graph G(%), and run the

following procedure on it (starting with i = 1, incrementing i every iteration)

until no more agents are remaining in the graph.

Step i

(i.1) Let each remaining agent point to her maximal houses among the remaining

ones. Select the absorbing sets of this digraph.

(i.2) Consider the paired-symmetric absorbing sets. Their agents are allocated

the house that the agents currently point to in the graph. These

absorbing sets are removed from the graph.

(i.3) Consider the remaining absorbing sets. Select for each agent a unique

house to point to by using the following criterion: each agent i
currently owning house h provisionally points only to the house that i
likes most (according to %i) among the houses remaining. Ties are broken

by selecting among the candidate houses the one that comes after h in the

priority order (if there is no such house, then select among the candidate

houses the first house in the priority order).

(i.4) Then, in this subgraph, there is necessarily at least one cycle and no two

cycles intersect. Assign (provisionally) to each agent in these cycles

the house that he is pointing to, but do not remove them from the graph.

The algorithm terminates when no agents and houses remain, and the outcome is the
assignment formed during its execution.

TCR

Consider a priority ranking of the agents; i.e., a complete, transitive and

antisymmetric binary relation over A. Do the following until no more agents

are left.

1. Departure: A group of agents is chosen to ‘‘depart’’ if two conditions are

met: i) What each agent in the group holds is among his most preferred

houses (among the remaining ones), and ii) All of the most preferred houses

(among the remaining ones) of the group are held by them. Once a group

departs, each agent in it is assigned what he holds and is removed from the

set of remaining agents. In addition, their houses are removed from the

remaining houses. There may be another group that can be chosen to depart.
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The process continues until there are no more groups that can depart. If the

two conditions are not met by any group, then nobody departs.

2. Pointing: Each agent points to an agent holding one of his top houses (among

the remaining ones). Since there may be more than one such agent, the problem

of figuring whom each agent points to is a complicated one.

We solve it in stages as follows:

Stage 1 For each remaining j such that j holds the same house that he held in the

previous step, each i that pointed at j in the previous step points to j

in the current step. Of course, this does not apply for the very first

step.

Stage 2 Each i with a unique top house (among the remaining ones) points to the

agent holding it.

Stage 3 Each agent who has at least one of his top houses (among the remaining

ones) held by an unsatisfied agent points to whomever has the highest

priority among such unsatisfied agents.

Stage 4 Each agent who has at least one of his top houses (among the remaining

ones) held by a satisfied agent who points to an unsatisfied agent points

to whomever points to the unsatisfied agent with highest priority. If

two or more of his satisfied ‘‘candidates’’ point to the unsatisfied

agent with highest priority, he points to the satisfied candidate with the

highest priority.

Stage ... And so on.

3. Trading: Since each remaining agent points to someone, there is at least

one cycle of remaining agents. For each such cycle, agents trade according

to the way that they point and what they hold for the next step is updated

accordingly.

Note that TTAS and TCR mechanisms depend on the priority ordering over H and A
respectively. The variation in priority rankings leads to classes of mechanisms rather than a
single mechanism. Next, we show that TTAS and TCR are subclasses of GATTC in which
cycles are selected via the strict order over houses and agents respectively.

Theorem 4 GATTC generalizes both the TTAS and TCR families of mechanisms.

Proof: (GATTC generalizes TTAS ). (GATTC generalizes TTAS ). Step i.2 of TTAS corre-
sponds to repeatedly executing step 1.2. (and skipping step 1.1). After that, TTAS may
implement a number of non-good cycles. This corresponds in GATTC to executing step
1.1 (skipping step 1.2). However, the proof of Proposition 1 in [Alcalde-Unzu and Molis,
2011] shows that TTAS can never perpetually implement non-good cycles: Either the graph
becomes empty, or eventually a good cycle is found and implemented. So executing in TTAS
step i.2 to i.4 on iterations where a good cycle is implemented, corresponds to executing
steps 3 and 4 of GATTC.

(GATTC generalizes TCR). A TCR rule reduces to the GATTC mechanism if zero
non-good cycles are implemented in Step 1. and if in Step 3 of GATTC, a good cycle is
implemented in the particular way as outlined in the definition as TCR. It is clear from the
Step 2 (pointing) of TCR that the way agents are made to point, the cycle induced involves
at least one node which is not paired-symmetric. Therefore the cycle in question is a good
cycle. �

In contrast to TTAS (which is strict core-selecting), it was not known whether TCR is
also strict core-selecting. As a corollary of Theorems 2 and 4, we obtain the following.
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Corollary 1 Each TCR mechanism is strict core selecting (if the strict core is non-empty).

In the next section, we answer an open question concerning the running time of the
TTAS mechanism.

5 Complexity of TTAS

An important property of TTAS is that if an agent i is reallocated a house h during the
running of TTAS but i and h are not yet deleted from the graph, then agent i is guaranteed
to be finally allocated a house h′ ∈ H such that h ∼i h′ [Lemma 1, Alcalde-Unzu and Molis,
2011]. Therefore the number of symmetric pairs can only increase during the running of the
algorithm although it may stay constant in a number of iterations. Alcalde-Unzu and Molis
[2011] showed that despite a number of stages in which no obvious progress is being made,
TTAS eventually terminates [Proposition 1, Alcalde-Unzu and Molis, 2011]. Although, we
know that TTAS terminates and results in a proper allocation, the proof of [Proposition 1,
Alcalde-Unzu and Molis, 2011] does not help shed light on how many steps are taken in the
running of TTAS.We will show the following.

Theorem 5 There exists a family of housing markets {Mk = (Nk, Hk, ωk,�k) : k ∈ N>0}
with |Nk| = |Hk| = 2k + 1, and corresponding priority rankings {Rk : k ∈ N>0} such that
if the TTAS mechanism receives input Mk and chooses Rk as its priority ranking in step 0,
then the TTAS mechanism runs for at least 2k = 2(|Nk|−1)/2 steps until it terminates.

This theorem shows thus that the TTAS mechanism, according to its current description,
does not run in polynomial time. It still might be that for each instance, there is some
priority ranking such that the TTAS mechanism runs in polynomial time, but then at least
some additional details are needed in the description on how to choose the priority ranking.
The algorithm described in Alcalde-Unzu and Molis [2011] is not sufficient.

Proof: The houses and agents of housing market Mk are named as Hk =
{h1, h′1, h2, h′2, . . . , hk, h′k, hk+1} and {a1, a′1, a2, a′2, . . . , ak, a′k, ak+1} respectively. In the ini-
tial endowment, house hj is assigned to agent aj for all j ∈ [k+1],4 and house h′j is assigned
to agent a′j for all j ∈ [k]. The preference profile of agent aj , j ∈ [k] is described by two
equivalence classes: his class of most preferred houses is {h′j , hj , hj+1}, and the remainder
of the houses is in his other equivalence class, i.e., his class of least preferred houses. The
preference profile of agent a′j , j ∈ [k], is also described by two equivalence classes: His
class of most preferred houses is {hj , h′j , h1} (so for j = 1, this set has cardinality 2), and
the remainder of the houses are in the other equivalence class, i.e., his class of least pre-
ferred houses. The preference profile of agent ak+1 is also described by two equivalence
classes: His class of most preferred houses is {h1}, and the remainder of the houses is in his
other equivalence class, i.e., his class of least preferred houses. The priority ranking R is
(h1, h

′
1, h2, h

′
2, . . . , hk, h

′
k, hk+1).

The high level idea of this example is to simulate a binary counter. The graph that the
TTAS mechanism maintains will contain a single absorbing set at every step: the entire
graph. At every step except the last one, the only agent that prevents the graph from being
paired-symmetric will be agent ak+1. We associate bit-strings of length k to the graphs that
may arise in some of the steps of the TTAS algorithm: Let b ∈ {0, 1}k be any bit-string of
length k, then we define the graph Gb as the graph where for all j,

• aj and a′j all point to their set of most preferred houses,

4Suppose x ∈ N, then [x] stands for the set {1, . . . , x}.
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• if bj = 0, then hj points to aj and h′j points to a′j .

• if bj = 1, then hj points to a′j and h′j points to aj .

We prove that for all bit-strings b of length k there is a step ib such that the graph at the
beginning of step ib is equal to Gb. Because there are 2k possible bit-strings, it then follows
that there are at least 2k steps before the algorithm terminates.

In order to understand what happens during the execution of the TTAS algorithm on
an instance Mj , it will be helpful to look at the example of Figure 2, where the graph at
the beginning of every step is shown when we run the TTAS mechanism on M3.

Let us assume that at the beginning of step i of the execution of the TTAS mechanism,
the graph is equal to Gb for some b. We can prove that Gb is strongly connected:

Claim 3 For each length k bit-string b, Gb is strongly connected.

Proof: We first show that there is a path from h1 to every other vertex v.
If b1 = 0, then h1 points to a1 and h′1 points to a′1. If b2 = 0, then there exists a path

(h1, a1, h2, a2, h
′
2, a
′
2). If b2 = 1, then there exists a path (h1, a1, h2, a2, h

′
2, a2).

If b1 = 1, then h1 points to a′1 and h′1 points to a1. If b2 = 0, then there exists a path
(h1, a

′
1, h
′
1, a1, h2, a2, h

′
2, a
′
2). If b2 = 1, then there is a path (h1, a

′
1, h
′
1, a1, h2, a

′
2, h
′
2, a2).

Therefore h1 has a path to each of the following vertices: a1, a2, h1, h2, a
′
1, a
′
2, h
′
1, h
′
2.

Using the same argument, we can see that for each aj , there is a path to aj+1; for each
a′j , there is a path to a′j+1; for each hj there is a path to hj+1; for each h′j , there is a path
to h′j+1. Therefore, it holds that: From h1, there is a path to each aj for j ∈ [k + 1]; From
h1, there is a path to each a′j for j ∈ [k]; From h1, there is a path to each hj for j ∈ [k+ 1];
and from h1, there is a path to each h′j for j ∈ [k].

Similarly, it can be shown that from every vertex, there is a path to h1. This completes
the argument of the claim.

�

Therefore, Gb has only one absorbing set: the whole of Gb.
Also observe that for all b, Gb is not paired symmetric, because of player k + 1. From

this we conclude that if the graph at the beginning of a step i is equal to Gb, for some
b ∈ {0, 1}k, then the TTAS mechanism does not terminate at step i, and the mechanism
will certainly reach step i+ 1.

For some step i of the TTAS mechanism, and for every agent a ∈ N , let Sia denote the
set of most preferred houses of a that are ranked lower than the house assigned to a in step
i. However, if this set is empty, then define Sia to be the set of most preferred houses of a.
Let us assume that for step i, the following property holds, which we will call Property Ai:
for every agent a ∈ N , it holds that the set of most preferred houses of a that have been
provisionally assigned to a the least number of times (including 0 times), is Sia.

We define a straightforward bijection c : {0, 1}k → [2k − 1] ∪ {0} as follows: bit-string b

corresponds to the integer
∑k
j=1 2j−1bj . We then see that the following happens:

Claim 4 Let b be a bit-string of length k, suppose that i is a step in the TTAS mechanism
such that the graph at step i is equal to Gb, and suppose that Property Ai holds.

• If c(b) is even, then the graph at step i + 1 of the TTAS algorithm is equal to Gb+1,
and Property Ai+1 holds.

• If c(b) is odd and not equal to 2k−1, then the graph at step i+2 of the TTAS algorithm
is equal to Gb+1, and Property Ai+2 holds.
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Proof: If c(b) is even, it is easy to see that at the beginning of step i+ 1, the graph will be
Gc−1(c(b)+1): the only cycle found in part 3 of step i is (h1, a1, h

′
1, a
′
1, h1). Any other cycles

would have to make use of one of the arcs pointing toward h′1, but that is not possible by
the vertex-disjointness property of the cycles in the subgraph used at part 3 of step i. After
augmenting Gb according to cycle (h1, a1, h

′
1, a
′
1, h1), it is easy to check that the graph is

equal to Gb+1. Also, observe that Property Ai+1 holds.
If c(b) is odd and not equal to 2k − 1, then define j to be the largest in-

dex such that bj′ = 1 for all j′ ≤ j. Then, in part 3 of step i, the cy-
cle (h1, a

′
1, h
′
1, a1, h2, a

′
2, h
′
2, a2, . . . , hj , a

′
j , h
′
j , aj , hj+1, aj+1, h

′
j+1, a

′
j+1, h1) is found, and no

other cycle is found, because otherwise h1 would be in such a cycle: a contradiction. It
is not hard to verify that property Ai+1 holds, and the graph that now arises at the be-
ginning of step i + 1 is again a single absorbing set that is not paired symmetric, because
of ak+1. Step i + 2 will therefore certainly be reached, and it can be verified by similar
reasoning as before that again a single cycle is found in part 3 of step i + 1. This cycle
is (h1, a

′
j+1, hj+1, aj , hj , aj−1, hj−1, aj−2, hj−2, . . . , a1, h1). Augmenting the graph on this

cycle makes the graph exactly equal to Gc−1(c(b)+1). Moreover, Property Ai+2 holds. �

Property A1 is certainly satisfied, and the graph at step 1 is G000.... By straightforward
induction, using the claim above, it follows that for all bit-strings b of length k there is
indeed a step ib such that the graph at the beginning of step ib is equal to Gb. �

6 Discussion

Properties TTAS TCR GATTC

Core, Pareto optimal X X 4Th. 1

Strict core (if non-empty) X 4 Cor. 1 4Th. 2

Strategy-proof X X 7 Th. 3

Polynomial-time 7 Th. 5 X 7 Th. 5

Table 1: Housing market mechanisms: new results are in a bolder font.

We analyzed and compared two recently introduced housing market mechanisms.
Whereas it was shown that TTAS may take exponential time, TCR was shown to be strict
core selecting just like TTAS. The new and old results are summarized in Table 1. Our ab-
straction from TTAS and TCR to GATTC helps identify the crucial higher level details and
commonality of both TTAS and TCR. This leads to simple proofs for properties satisfied
by any GATTC mechanism. Whereas core, strict core, and Pareto optimality are properties
that can be fulfilled by any GATTC mechanism, additionally satisfying strategy-proofness
requires subtlety in choosing which cycles are implemented in which order. This additional
complexity leads to an exponential time lower bound in the case of TTAS and a difficulty in
having a very simple description in the case of TCR. It is easily seen that GATTC, and in
particular TTAS and TCR not only apply to housing markets but also to other extensions
such as agents having multiple number of initial endowments or no endowments or there
being some social endowments i.e., not owned initially by any agent.

Our study leads to a number of further research questions. It will be interesting to charac-
terize the subset of GATTC mechanisms which are strategy-proof or are both strategy-proof
and polynomial-time. Another question is to see whether being a GATTC mechanism is
a necessary condition to simultaneously achieve core stability, Pareto optimality and strict
core stability. We have seen that all known housing market mechanisms which are core
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selecting and Pareto optimal are also strict core selecting (if the strict core is non-empty).
This raises the question whether every housing market mechanism which is core selecting
and Pareto optimal is also strict core selecting (if the strict core is non-empty).
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Bribery and Control in Judgment Aggregation1

Dorothea Baumeister, Gábor Erdélyi, Olivia J. Erdélyi,and Jörg Rothe

Abstract

In computational social choice, the complexity of changingthe outcome of elections via ma-
nipulation, bribery, and various control actions, such as adding or deleting candidates or voters,
has been studied intensely. Endriss et al. [13, 14] initiated the complexity-theoretic study of
problems related to judgment aggregation. We extend their results on manipulation to a whole
class of judgment aggregation procedures, and we obtain stronger results by considering not
only the classical complexity (NP-hardness) but the parameterized complexity (W[2]-hardness)
of these problems with respect to natural parameters. Furthermore, we introduce and study the
closely related concepts of bribery and control in judgmentaggregation. In particular, we study
the complexity of changing the outcome of such procedures via control by adding, deleting, or
replacing judges.

1 Introduction

Decision-making processes are often susceptible to various types of interference. In social choice
theory and in computational social choice, ways of influencing the outcome of elections—such
as manipulation, bribery, and control—have been studied intensely, with a particular focus on the
complexity of the related problems (see, e.g., the early work of Bartholdi et al. [2, 1, 3] and the
recent surveys and bookchapters by Faliszewski et al. [21, 18], Brandt et al. [5], and Baumeister
et al. [4]). In particular, (coalitional)manipulation[2, 1, 7] refers to (a group of) strategic voters
casting their votes insincerely to reach their desired outcome; inbribery [17, 20] an external agent
seeks to reach her desired outcome by bribing (without exceeding a given budget) some voters to
alter their votes; and incontrol [3, 23, 16] an external agent (usually called the “Chair”) seeks to
change the structure of an election (e.g., by adding/deleting/partitioning either candidates or voters)
in order to reach her desired outcome.

Decision-making mechanisms or systems that are susceptible to strategic behavior, be it from the
agents involved as in manipulation or from external authorities or actors as in bribery and control,
are obviously not desirable, as that undermines the trust wehave in these systems. We therefore have
a strong interest in accurately assessing how vulnerable a system for decision-making processes is
to these internal or external influences. Unfortunately, inmany concrete settings of social choice,
“perfect” systems are impossible to exist. For example, theGibbard–Satterthwaite theorem says
that no reasonable voting system can be “strategyproof” [22, 29] (see also the generalization by
Duggan and Schwartz [11]), many natural voting systems are not “immune” to most or even all of
the standard types of control [3, 23, 16], and Dietrich and List [9] give an analogue of the Gibbard–
Satterthwaite theorem in judgment aggregation. To avoid this obstacle, a common approach in
computational social choice is to apply methods from theoretical computer science to show that
undesirable strategic behavior is blocked, or at least hindered, by the corresponding task being a
computationally intractable problem.

Here we focus on judgment aggregation, which is an importantframework for collective
decision-making. In a judgment aggregation process, we seek to find a collective judgment set from
given individual judgment sets over a set of possibly logically interconnected propositions. For fur-
ther information on judgment aggregation, we refer the reader to the surveys by List and Puppe [26]

1This paper extends the results that appeared inProceedings of the 2nd International Conference on Algorithmic Decision
Theory, pages 1–15. Springer-VerlagLNCS #6992, 2011. This work was supported in part by DFG grant RO 1202/15-1,
NRF (Singapore) grant NRF-RF 2009-08, an SFF grant from HHU,and a DAAD PPP/PROCOPE grant.
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and by List [25]. This paper follows up the study of manipulation in judgment aggregation initiated
by Endriss et al. [14] and it is the first to study bribery and control in judgment aggregation.

In particular, Endriss et al. [13, 14], defined the winner determination problem and the manip-
ulation problem in judgment aggregation and studied their complexity for two important judgment
aggregation rules. We extend their complexity-theoretic investigation for manipulation and also in-
troduce various bribery problems in judgment aggregation.Furthermore, we introduce and motivate
three types of control in judgment aggregation (namely, control by adding, deleting, or replacing
judges), and study their computational complexity. These problems are each closely related to the
corresponding problems in voting, yet are specifically tailored to judgment aggregation scenarios.

2 Formal Framework

We follow and extend the judgment aggregation framework described by Endriss et al. [14].
Let PSbe the set of all propositional variables andLPS the set of propositional formulas built

from PS, where the following connections can be used in their usual meaning: disjunction (∨),
conjunction (∧), implication (→), equivalence (↔), and the boolean constants 1 and 0. To avoid
double negations, let∼α denote the complement ofα, i.e., ∼α = ¬α if α is not negated, and
∼α = β if α = ¬β . The judges have to judge over all formulas in theagendaΦ, which is a finite,
nonempty subset ofLPS without doubly negated formulas. The agenda is required to be closed
under complementation, i.e.,∼α ∈ Φ if α ∈ Φ. A judgment set for an agendaΦ is a subsetJ ⊆ Φ.
It is said to be anindividual judgment setif it is the set of propositions in the agenda accepted by
an individual judge. Acollective judgment setis the set of propositions in the agenda accepted by
all judges as the result of a judgment aggregation procedure. A judgment setJ is completeif for
all α ∈ Φ, α ∈ J or ∼α ∈ J; it is complement-freeif for no α ∈ Φ, α and∼α are inJ; and it is
consistentif there is an assignment that makes all formulas inJ true. If a judgment set is complete
and consistent, it is obviously complement-free. ByJ (Φ) we denote the set of all complete and
consistent subsets ofΦ.

The famous doctrinal paradox [24] in judgment aggregation shows that if the majority rule is
used, the collective judgment set can be inconsistent even if all individual judgment sets are con-
sistent. One way of circumventing the doctrinal paradox is to impose restrictions on the agenda.
Endriss et al. [13] studied the question of whether one can guarantee for a specific agenda that the
outcome is always complete and consistent. They established necessary and sufficient conditions
on the agenda to satisfy these criteria, and they studied thecomplexity of deciding whether a given
agenda satisfies these conditions. They also showed that deciding whether an agenda guarantees a
complete and consistent outcome for the majority rule is an intractable problem.

Endriss et al. [14] studied the winner and manipulation problem for two specific judgment ag-
gregation procedures that always guarantee consistent outcomes. In the premise-based procedure,
this is achieved by applying the majority rule only to the premises of the agenda, and then to derive
the outcome for the conclusions from the outcome of the premises. We will study the complexity of
manipulation and control also for the more general class of premise-based quota rules as defined by
Dietrich and List [8].

Definition 1 (Premise-based Quota Rule)The agendaΦ is divided into two disjoint subsetsΦ =
Φp ⊎ Φc, whereΦp is the set of premises andΦc is the set of conclusions. We assume bothΦp

andΦc to be closed under complementation. The premisesΦp are again divided into two disjoint
subsets,Φp = Φ1 ⊎Φ2, such that eitherϕ ∈ Φ1 and∼ϕ ∈ Φ2, or ∼ϕ ∈ Φ1 andϕ ∈ Φ2. For each
literal ϕ ∈ Φ1, define a quota qϕ ∈ Q, 0 ≤ qϕ < 1. The quota for the literalsϕ ∈ Φ2 is q′

ϕ = 1−qϕ .
A premise-based quota rule is then defined to be a function PQR: J (Φ)n → 2Φ such that, for
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Φ = Φp ⊎Φc, each profileJ = (J1, . . . ,Jn) is mapped to the judgment set

PQR(J) = △q ∪{ϕ ∈ Φc | △q |= ϕ}, where

△q = {ϕ ∈ Φ1 | ‖{i | ϕ ∈ Ji}‖ > nqϕ}∪{ϕ ∈ Φ2 | ‖{i | ϕ ∈ Ji}‖ > ⌈nq′
ϕ −1⌉}.

To guarantee complete and consistent outcomes for this procedure, it is enough to require thatΦ
is closed under propositional variables and thatΦp consists of all literals. The number of affirmations
needed to be in the collective judgment set is⌊nqϕ + 1⌋ for literals ϕ ∈ Φ1 and⌈nq′

ϕ⌉ for literals
ϕ ∈ Φ2. Note that⌊nqϕ +1⌋+ ⌈nq′

ϕ⌉ = n+1 ensures that eitherϕ ∈ PQR(J) or ∼ϕ ∈ PQR(J) for
everyϕ ∈ Φ. Note that the quotaqϕ = 1 for a literalϕ ∈ Φ1 is not allowed here, asn+1 affirmations
were then needed forϕ ∈ Φ1 to be in the collective judgment set, which is impossible. However,
qϕ = 0 is allowed, as in that caseϕ ∈ Φ1 needs at least one affirmation and∼ϕ ∈ Φ2 needsn
affirmations, which is possible. In the special case ofuniform premise-based quota rules, there is
one quotaq for every literal inΦ1, and the quotaq′ = 1− q for every literal inΦ2. We will focus
on such rules and denote them byUPQRq. Forq = 1/2 and the case of an odd number of judges, we
obtain the premise-based procedure defined by Endriss et al.[14], and we will denote it byPBP.

Furthermore, we will consider yet another variant of premise-based procedure, which was in-
troduced by Dietrich and List [8] and is calledconstant premise-based quota ruleand is defined by
CPQR(J) = △′

q ∪{ϕ ∈ Φc | △′
q |= ϕ}. Here, the number of affirmations needed to be in the set△′

q
is a fixed constant. Thusqϕ ∈ N, 0≤ qϕ < n, and△′

q = {ϕ ∈ Φ1 | ‖{i | ϕ ∈ Ji}‖ > qϕ}∪{ϕ ∈ Φ2 |
‖{i | ϕ ∈ Ji}‖ > q′

ϕ}. Again, to ensure that for everyϕ ∈ Φ, eitherϕ ∈ CPQR(J) or∼ϕ ∈ CPQR(J),
we require thatqϕ + q′

ϕ = n− 1 for all ϕ ∈ Φ1. The uniform variant,UCPQRq, is defined analo-
gously. If the number of judges who take part in the process isfixed, both classes represent the same
judgment aggregation procedures. However, we will study control problems where the number of
judges can vary. The constant premise-based quotan can then be seen as an upper bound on the
highest number of judges possibly participating in the process. This definition is closely related to
(a simplified version of) a referendum. Suppose that there isa fixed number of possible participants
who are allowed to go to the polls, and there is a fixed number ofaffirmations needed for a cer-
tain decision, independent of the number of people who are actually participating. Of course, this
number may depend on the number of possible participants, for example 20% of them.

3 Motivation for Control in Judgment Aggregation

We study three types of control for judgment aggregation. Sofar control has been studied exten-
sively for voting systems (see, e.g., [3, 23, 4, 16]), where control is normally perceived as dishonest
and thus as an undesired behavior. Therefore, this researchfocuses on finding ways to avoid it.
Looking at real-world examples, this point of view is not always justified; in fact, some “control”
attempts may be justified by fairly decent considerations (e.g., excluding children from elections is
some reasonable kind of exerting control). Nevertheless, one is well advised to be aware of con-
trol attempts, since their objective is indeed frequently enough abusive (e.g., excluding voters from
elections based on racial or gender grounds, as is still common in certain countries, is abusive and
unacceptable). If control is generally possible, one way ofcircumventing it is to study the compu-
tational complexity of the underlying decision problems. If it turns out to be NP-hard, the desired
control action can, in general, not be performed in polynomial time, unless P= NP. For practical
purposes, showing hardness in appropriate typical-case models is even more useful, but also more
challenging [28]. As motivation for studying control in judgment aggregation, we will now illus-
trate the three different control types for judgment aggregation considered in this paper with some
examples from the American jury trial system and international arbitration.

Adding Judges: This first control type is analogous to control by adding voters in elections.
An example for this control setting can be found in the field ofinternational arbitration, which is
becoming increasingly important as an alternative disputeresolution method to litigations conducted
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by national courts. Parties of arbitration proceedings maychoose to entrust a single arbitrator with
deciding their dispute. They might, however, also opt for the appointment of several arbitrators and
thereby control the arbitral decision-making process by adding judges.2 Mostly they do so because
they feel that due to the complicated nature of the matter or for some other reason, a tribunal with
several arbitrators is better suited to arbitrate their case. Their action may also be motivated by the
hope of being able to appoint an arbitrator sympathetic to their arguments.

Deleting judges:Also very natural is the problem of control by deleting judges as it is a com-
monly applied method in both jury trials and international arbitration. The empaneling procedure
of a jury for a trial is basically a control process via deleting judges and works roughly as follows.
First, a certain number of potential jurors is summoned at the place of trial. In the next stage of
the selection procedure, all or part of them are subjected tothe so-called “voir dire” process, i.e., a
questioning by the trial judge and/or the attorneys aiming to obtain information about their person.
Admittedly, the purpose of collecting this information is to determine whether they can be impar-
tial, which is a well-justified purpose; but again, attorneys may use it for another reason, namely to
indoctrinate prospective jurors laying a foundation for arguments they later intend to make. Driven
by good or bad intentions, the lawyers may then challenge jurors for cause, that is, by arguing that
and for what reason the juror in question is impartial. The trial judge decides over the attorneys’
challenges for cause, moreover she may excuse further jurors due to social hardship. Finally, the
lawyers may challenge a limited number of potential jurors peremptorily, i.e., without having to jus-
tify their reason for doing so. Peremptory challenges are legitimate and useful means of eliminating
such jurors that are either presumably biased but the bias cannot be proved to the extent necessary
for challenging them for cause, or are for some other reason undesirable. Because their use does not
require any explanation, such challenges can also be easilyabused; especially until the introduction
of the Batson rule, peremptory challenges were often exercised in discriminatory ways, mostly on
racial grounds, violating the equal protection rights of jurors. As we can see, deleting judges/jurors
is a central part of the empaneling procedure. However, since the total number of jurors is fixed, a
new juror needs to be appointed for each deleted juror, whichmotivates the next scenario.

Replacing judges: Control by replacing judges is used in international arbitration when the
parties successfully challenge an arbitrator leading to her disqualification and the subsequent ap-
pointment of a substitute arbitrator. The institution of challenge is designed to serve as a tool for
parties of arbitral proceedings to remove arbitrators posing a possible threat to the integrity of the
proceedings. It may be based on several grounds; arbitrators are most commonly challenged because
of doubts regarding their impartiality or independence.3 Challenges are, however, occasionally used
as “black art” or “guerrilla tactics” with a view to achieve dishonest purposes, such as eliminating
arbitrators that are likely to render an unfavorable award or to delay the proceedings to evade, or at
least postpone, an anticipated defeat.

Control by replacing judges can be seen as a combined action of control by deleting judges and
control by adding judges. For a related general model in voting theory, we refer to the work of
Faliszewski et al. [19] on “multimode control attacks.”

4 Problem Definitions

Bribery problems in voting theory, as introduced by Faliszewski et al. [17] (see also, e.g., [12, 20]),
model scenarios in which an external actor seeks to bribe some of the voters to change their votes
such that a distinguished candidate becomes the winner of the election. In judgment aggregation it
is not the case that one single candidate wins, but there is a decision for every formula in the agenda.

2See, for instance, Articles 37–40 of the ICSID Convention and Rules 1–4 of the ICSID Arbitration Rules, Articles 11–12
of the ICC Arbitration Rules, or Articles 7–10 of the UNCITRAL Arbitration Rules.

3For rules regarding the challenge, disqualification, and replacement of arbitrators, see Articles 56–58 of the ICSID
Convention, Rules 9–11 of the ICSID Arbitration Rules, Articles 14–15 of the ICC Arbitration Rules, and Articles 12–14 of
the UNCITRAL Arbitration Rules.
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So the external actor might seek to obtain exactly his or her desired collective outcome by bribing
the judges, or he or she might be interested only in the desired outcome of some formulas inΦ. The
exact bribery problem is then defined as follows for a given aggregation procedureF .

F -EXACT BRIBERY

Given: An agendaΦ, a profileT ∈ J (Φ)n, a consistent and complement-free judgment setJ
(not necessarily complete) desired by the briber, and a positive integerk.

Question: Is it possible to change up tok individual judgment sets inT such that for the resulting
new profileT′ it holds thatJ ⊆ F(T′)?

Note that ifJ is a complete judgment set then the question is whetherJ = F(T′).
Since in the case of judgment aggregation there is no winner,we also adopt the approach Endriss

et al. [14] used to define the manipulation problem in judgment aggregation. In their definition,
an outcome (i.e., a collective judgment set) is more desirable for the manipulator if its Hamming
distance to the manipulator’s desired judgment set is smaller, where for an agendaΦ the Hamming
distanceH(J,J′) between two complete and consistent judgment setsJ,J′ ∈ J (Φ) is defined as the
number of positive formulas inΦ on whichJ andJ′ differ. The formal definition of the manipulation
problem in judgment aggregation is as follows, for a given aggregation procedureF.

F -MANIPULATION

Given: An agendaΦ, a profileT ∈ J (Φ)n−1, and a consistent and complete judgment setJ
desired by the manipulator.

Question: Does there exist a judgment setJ′ ∈ J (Φ) such thatH(J,F(T,J′)) < H(J,F(T,J))?

A specific judgment aggregation procedure is calledstrategyproofif a manipulator can never
benefit from reporting an insincere preference. Now, we can give the formal definition of bribery in
judgment aggregation, where the briber seeks to obtain a collective judgment set having a smaller
Hamming distance to the desired judgment set, then the original outcome has. In bribery scenarios,
we extend the above approach of Endriss et al. [14] by allowing that the desired outcome for the
briber may be an incomplete (albeit consistent and complement-free) judgment set. This reflects
a scenario where the briber may be interested only in some part of the agenda. The definition
of Hamming distance is extended accordingly as follows. LetΦ be an agenda,J ∈ J (Φ) be a
complete and consistent judgment set, andJ′ ⊆ Φ be a consistent and complement-free judgment
set. TheHamming distance H(J,J′) between J and J′ is defined as the number of formulas fromJ′

on whichJ does not agree:H(J,J′) = ‖{ϕ | ϕ ∈ J′ ∧ϕ 6∈ J}‖. Observe that ifJ′ is also complete,
this extended notion of Hamming distance coincides with thenotion Endriss et al. [14] use.

F -BRIBERY

Given: An agendaΦ, a profileT ∈ J (Φ)n, a consistent and complement-free judgment setJ
(not necessarily complete) desired by the briber, and a positive integerk.

Question: Is it possible to change up tok individual judgment sets inT such that for the resulting
new profileT′ it holds thatH(F(T′),J) < H(F(T),J)?

Faliszewski et al. [20] introduced microbribery for votingsystems. We adopt their notion so as
to apply to judgment aggregation. In microbribery for judgment aggregation, if the briber’s budget
is k, he or she is not allowed to change up tok entire judgment sets but instead can change up to
k premise entries in the given profile (the conclusions changeautomatically if necessary). We will
denote this problem byF -M ICROBRIBERY, and the exact variant byF -EXACT M ICROBRIBERY.

We will now formally define the underlying decision problemsfor the complexity-theoreticstudy
of control in judgment aggregation, closely related to the corresponding problems in elections. For
a given judgment aggregation procedureF, the problem of control by adding judges is defined as
follows:
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F -CONTROL BY ADDING JUDGES

Given: An agendaΦ, complete profilesT ∈ J (Φ)n andS∈ J (Φ)‖S‖, a positive integerk, and
a consistent and complement-free judgment setJ (not necessarily complete).

Question: Is there a subsetS′ ⊂ S, ‖S′‖ ≤ k, such thatH(J,F(T ∪S′)) < H(J,F(T))?

If we consider the variantF-EXACT CONTROL BY ADDING JUDGES, we ask if there is a subset
S′ ⊂ S, ‖S′‖ ≤ k, such thatJ ⊆ F(T ∪S′).

Control by deleting judges is defined as follows for a given judgment aggregation procedureF:

F -CONTROL BY DELETING JUDGES

Given: An agendaΦ, a complete profileT ∈ J (Φ)n, a positive integerk, and a consistent and
complement-free judgment setJ (not necessarily complete).

Question: Is there a subsetT′ ⊂ T with ‖T′‖ ≤ k such thatH(J,F(T \T′)) < H(J,F(T))?

The exact variant is defined analogously to the case of addingjudges.
The new control problem we introduce here is specific to judgment aggregation. It considers the

case where some judges may be replaced (see our motivating examples in Section 3):

F -CONTROL BY REPLACING JUDGES

Given: An agendaΦ, complete profilesT ∈ J (Φ)n andS∈ J (Φ)‖S‖, a positive integerk, and
a consistent and complement-free judgment setJ (not necessarily complete).

Question: Are there subsetsT′ ⊂ T andS′ ⊂ S, with ‖T′‖ = ‖S′‖ ≤ k such that

H(J,F((T \T′)∪S′)) < H(J,F(T))?

DefineF -EXACT CONTROL BY REPLACING JUDGES analogously to the exact variants of the
adding and deleting judges problems. To study the computational complexity of adding, deleting,
and replacing judges, we adopt the terminology introduced in [3] for control problems in voting
and adapt it to judgment aggregation. LetF be an aggregation procedure and letC be a given
control type.F is said to beimmuneto control byC if it is never possible for an external person to
successfully control the judgment aggregation procedure via C -control. F is said to besusceptible
to control byC if it is not immune.F is said to beresistantto control byC if it is susceptible and
the corresponding decision problem is NP-hard.F is said to bevulnerableto control byC if it is
susceptible and the corresponding decision problem is in P.

We assume that the reader is familiar with the basic conceptsof complexity theory and with
complexity classes such as P and NP; see, e.g., [27]. Downey and Fellows [10] introducedpa-
rameterizedcomplexity theory; in their framework it is possible to do a more fine-grained multi-
dimensional complexity analysis. In particular, NP-complete problems may be easy (i.e., fixed-
parameter tractable) with respect to certain parameters confining the seemingly unavoidable combi-
natorial explosion. If this parameter is reasonably small,a fixed-parameter tractable problem can be
solved efficiently in practice, despite its NP-hardness. Formally, aparameterized decision problem
is a setL ⊆ Σ∗ × N, and we say it isfixed-parameter tractable(FPT) if there is a constantc such
that for each input(x,k) of sizen = |(x,k)| we can determine in timeO( f (k) · nc) whether(x,k) is
in L, wheref is a function depending only on the parameterk. The main hierarchy of parameterized
complexity classes is: FPT= W[0] ⊆ W[1] ⊆ W[2] ⊆ ·· · ⊆ W[ℓ] ⊆ XP.

In our results, we will focus on only the class W[2], which refers to problems that are con-
sidered to be fixed-parameter intractable. In order to show that a parameterized problem is W[2]-
hard, we will give a parameterized reduction from the W[2]-complete problemk-DOMINATING SET

(see [10]). We say that a parameterized problemA parameterized reducesto a parameterized prob-
lemB if each instance(x,k) of A can be transformed in timeO(g(k) · |x|c) (for some functiong and
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some constantc) into an instance(x′,k′) of B such that(x,k) ∈ A if and only if (x′,k′) ∈ B, where
k′ = g(k). Note thatg(k) ≡ c may also be a constant function not depending onk.

In our proofs we will make use of three different problems. First, we will use the NP-complete
problem EXACT COVER BY 3-SETS (X3C for short), where an instance consists of a given set
X = {x1, . . . ,x3m} and a collectionC = {C1, . . . ,Cn} of 3-element subsets ofX, and the question
is whether there is anexact cover for X, i.e., a subcollectionC′ ⊆ C such that every element ofX
occurs in exactly one member ofC′. We will also use the DOMINATING SET problem, where we are
given a graphG = (V,E) and a positive integerk, and the question is whether there is adominating
set for G of size at most k, i.e., whether there is a subsetV ′ ⊆ V, ‖V‖ ≤ k, such that for eachv ∈ V,
eitherv ∈ V ′ or there is aw ∈ V ′ with {v,w} ∈ E. DOMINATING SET is NP-complete and, when
parameterized by the upper boundk on the size of the dominating set, its parameterized variant
(denoted byk-DOMINATING SET, to be explicit) is W[2]-complete [10]. Finally, we will also use
the following problem for our parameterized complexity results:

OPTIMAL LOBBYING

Given: An m×n 0-1 matrixL (whose rows represent the voters, whose columns represent the
referenda, and whose 0-1 entries represent No/Yes votes), apositive integerk ≤ m, and a
target vectorx ∈ {0,1}n.

Question: Is there a choice ofk rows in L such that by changing the entries of these rows the
resulting matrix has the property that, for eachj , 1 ≤ j ≤ n, the j th column has a strict
majority of ones (respectively, zeros) if and only if thej th entry of the target vectorx of
The Lobby is one (respectively, zero)?

OPTIMAL LOBBYING has been introduced and, parameterized by the numberk of rows The
Lobby can change, shown to be W[2]-complete by Christian et al. [6] (see also [15] for a more
general framework and more W[2]-hardness results).

Note that a multiple referendum as in OPTIMAL LOBBYING can be seen as the special case of
a judgment aggregation scenario where the agenda is closed under complementation and proposi-
tional variables and contains only premises and where the majority rule is used for aggregation. For
illustration, consider the following simple example of a multiple referendum. Suppose the citizens
of a town are asked to decide by a referendum whether two projects,A andB (e.g., a new hospital
and a new bridge), are to be realized. Suppose the building contractor (who, of course, is interested
in being awarded a contract for both projects) sets some money aside to attempt to influence the
outcome of the referenda, by bribing some of the citizens without exceeding this budget. Observe
that anPBP-EXACT BRIBERY instance with only premises in the agenda and with a completede-
sired judgment setJ is nothing other than an OPTIMAL LOBBYING instance, whereJ corresponds
to The Lobby’s target vector.4 Requiring the citizens to give their opinion only for the premisesA
andB of the referendum and not for the conclusion (whether both projects are to be realized) again
avoids the doctrinal paradox. Again, the citizens might also vote strategically in these referenda.
Both projects will cost money, and if both projects are realized, the amount available for each must
be reduced. Some citizens may wish to support some project, say A, and may be unhappy with
reducing the amount forA due to both projects being realized. They might even prefer none of the
projects being realized over onlyB being realized. For them it is natural to consider the possibility
of reporting insincere votes (provided they know how the others will vote); this may turn out to be
more advantageous for them, as then they can possibly prevent that both projects are realized.

4Although exact bribery in judgment aggregation generalizes optimal lobbying in the sense of Christian et al. [6] (whichis
different from bribery in voting, as defined by Faliszewski et al. [17]), we will use the term “bribery” rather than “lobbying”
in the context of judgment aggregation.

43



5 Results

We start by extending the result of Endriss et al. [14] thatPBP-MANIPULATION is NP-complete.
We study a parameterized version of the manipulation problem and establish a W[2]-hardness result
with respect to the uniform premise-based quota rule. Due tospace restrictions all proofs except one
will be omitted.

Theorem 2 For each rational quota q,0 ≤ q < 1 and for any fixed number n≥ 3 of judges,
UPQRq-MANIPULATION is W[2]-hard when parameterized by the maximum number of changes
in the premises needed in the manipulator’s judgment set.

Since the reduction is from the NP-complete problem DOMINATING SET, NP-completeness of
UPQRq-MANIPULATION , 0 ≤ q < 1, for any fixed numbern ≥ 3 of judges follows immediately
from the proof of Theorem 2. Note that NP-hardness ofUPQRq-MANIPULATION could have also
been shown by a modification of the proof of Theorem 2 in [14], but this reduction would not be
appropriate to establish W[2]-hardness, since the corresponding parameterized versionof SAT is
not known to be W[2]-hard.

As mentioned above, studying the case of a fixed total number of judges is very natural. The
second parameter we have considered for the manipulation problem in Theorem 2 is the “maximum
number of changes in the premises needed in the manipulator’s judgment set.” Hence this theorem
shows that the problem remains hard even if the number of premises the manipulator can change is
bounded by a fixed constant. This is also very natural, since the manipulator may wish to report a
judgment set that is as close as possible to his or her sincerejudgment set, because for a completely
different judgment set it might be discovered too easily that he was judging strategically.

In contrast to the hardness results stated in Theorem 2, the following proposition shows that,
depending on the agenda, there are cases in which manipulation for UPQRq, 0≤ q < 1, is outright
impossible, and thusUPQRq-MANIPULATION is trivially in P.

Proposition 3 If the agenda contains only premises then UPQRq, 0 ≤ q < 1, is strategyproof.

NP-completeness forUPQRq-MANIPULATION with a fixed number of judges, which is stated
in Theorem 2, implies that there is little hope to find a polynomial-time algorithm for the general
problem even when the number of participating judges is fixed. However, Proposition 3 tells us that
if the agenda is simple and contains no conclusions,UPQRq is even strategyproof.

Now we will study the complexity of various bribery problemsfor the premise-based procedure
PBP, i.e., UPQR1/2 for an odd number of judges. We will establish NP-completeness for bribery,
microbribery, and exact microbribery, and a W[2]-hardness result for exact bribery with respect to a
natural parameter. We start with bribery.

Theorem 4 PBP-BRIBERY is NP-complete, even when the total number of judges (n≥ 3 odd) or
the number of judges that can be bribed is a fixed constant.

Next, we turn to microbribery. Here the briber can change only up to a fixed number of entries
in the individual judgment sets. We again prove NP-completeness when the number of judges or the
number of microbribes allowed is a fixed constant.

Theorem 5 PBP-M ICROBRIBERY is NP-complete, even when the total number of judges (n≥ 3
odd) or the number of microbribes allowed is a fixed constant.

Theorem 6 PBP-EXACT BRIBERY is W[2]-hard when parameterized by the number of judges that
can be bribed.
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This result follows from the fact that OPTIMAL LOBBYING is a special case ofPBP-EXACT

BRIBERY. Note that W[2]-hardness with respect to any parameter directly implies NP-hardness for
the corresponding unparameterized problem, soPBP-EXACT BRIBERY is also NP-complete; all
(unparameterized) problems considered here are easily seen to be in NP.

Theorem 7 PBP-EXACT M ICROBRIBERY is NP-complete, even when the total number of judges
(n ≥ 3 odd) or the number of microbribes allowed is a fixed constant.

As for the manipulation problem, Theorems 4, 5, and 7 are concerned with a fixed number of
judges. It turns out that even in this case BRIBERY, M ICROBRIBERY, and EXACT M ICROBRIBERY

are NP-complete forPBP. Furthermore, we consider the case of a fixed number of judgesallowed to
bribe forPBP-BRIBERY, the corresponding parameter for its exact variant, and thecase where the
number of microbribes allowed is a fixed constant forPBP-M ICROBRIBERY and its exact variant.
Both parameters concern the budget of the briber. Since the briber aims at spending as little money
as possible, it is also natural to consider these cases. But again, NP-completeness was shown even
when the budget is a fixed constant and in one case W[2]-hardness for this parameter, so bounding
the budget does not help to solve the problem easily. Although the exact microbribery problem
is computationally hard in general for the aggregation procedurePBP, there are some interesting
naturally restricted instances where it is computationally easy.

Theorem 8 If the desired judgment set J is complete or if the desired judgment set is incomplete but
contains all of the premises or only premises, then PBP-EXACT M ICROBRIBERY is in P.

In the last part of this section we study control in judgment aggregation. In the manipulation
and bribery problems studied in this paper the number of participating judges is constant and hence
uniform premise-based quota rules and uniform constant premise-based quota rules describe the
same judgment aggregation procedures. However, this is notthe case if the number of participating
judges isnot fixed, as in control by adding or deleting judges. For the uniform premise-based quota
rule the number of affirmations needed to be in the collectivejudgment set varies with the number
of judges, whereas for the constant premise-based quota rule the number of affirmations remains
the same regardless of the number of judges participating. Since the number of participating judges
varies for both control by adding and by deleting judges, we study these problems with respect to
both judgment aggregation procedures.

We will first consider the uniform constant premise-based quota rule and show NP-hardness of
UCPQRq for control by adding and by deleting judges in the Hamming distance based and in the
exact variant.

Theorem 9 For each admissible value of q, UCPQRq is resistant toCONTROL BY ADDING

JUDGESand toEXACT CONTROL BY ADDING JUDGES.

Theorem 10 For each admissible value of q, UCPQRq is resistant toCONTROL BY DELETING

JUDGESand toEXACT CONTROL BY DELETING JUDGES.

Now we turn to the results for the uniform premise-based quota rule in the case of control by
adding and by deleting judges. Here we only considerUPQR1/2, which equals the premise-based
procedurePBPdefined by Endriss et al. [14] for an odd number of judges. We show NP-hardness
for control by adding and by deleting judges in both problem variants.

Theorem 11 UPQR1/2 is resistant toEXACT CONTROL BY ADDING JUDGESand toCONTROL BY

ADDING JUDGES.

Proof. Membership in NP is obvious for both problems. Again, we showNP-hardness for
UPQR1/2-EXACT CONTROL BY ADDING JUDGES only and UPQR1/2-CONTROL BY ADDING
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JUDGES at the same time, by a reduction from the NP-complete problemX3C. Given an X3C
instance(X,C) with X = {x1, . . . ,x3m} andC = {C1, . . . ,Cn}, define the following judgment aggre-
gation scenario. The agendaΦ contains{α0,α1, . . . ,α3m} and their negations. The quota is1/2 for
every positive literal. The profile of the individual judgment sets initially taking part in the pro-
cess isT = (T1, . . . ,Tm+1) with T1 = {α0,α1, . . . ,α3m}, Ti = {¬α0,α1, . . . ,α3m}, 2 ≤ i ≤ m, and
Tm+1 = {¬α0,¬α1, . . . ,¬α3m}. The profile of the judges who can be added isS= (S1, . . . ,Sn) with
Si = {α0,α j ,¬αℓ | x j ∈ Ci ,xℓ 6∈ Ci ,1 ≤ j, ℓ ≤ 3m}. The maximum number of judges fromS who
can be added ism. The desired outcome of the external person isJ = {α0,α1, . . . ,α3m}. Then it
holds, that there is a profileS′ ⊆ S, ‖S′‖ ≤ m, such thatH(J,F(T ∪ S′)) < H(J,F(T)) if and only
if there is an exact cover for the given X3C instance. The collective judgment set forUPQR1/2(T)
is {¬α0,α1, . . . ,α3m}. Observe thatH(J,F(T)) = 1, since the only difference lies inα0. Hence,
F(T ∪S′)) must be exactlyJ, and the reduction will hold for both problems at hand.

(⇐) Assume that there is an exact coverC′ ⊆ C for the given X3C instance(X,C). Then the
profile S′ contains those judgesSi with Ci ∈ C′. The total number of judges is then 2m+ 1. The
number of affirmations needed to be in the collective judgment set is strictly greater thanm+(1/2),
so m+ 1 affirmations are needed. Note thatα0 gets one affirmation from the judges inT andm
affirmations from the judges inS′. Everyαi , 1≤ i ≤ 3m, getsm affirmations from the judges inT
and one affirmation from a judge inS′. Hence, the collective judgment set isJ, as desired.

(⇒) Assume that there is a profileS′ with ‖S′‖ ≤ m such thatUPQR1/2(T ∪ S′) = J. Since
α0 is contained in the collective judgment set it must receive enough affirmations of the judges in
S′. Adding less thanm new affirmations forα0 is not enough, sincem− 1 ≤ (2m)(1/2), but since
(2m+1)(1/2) < m+1,mnew affirmations are enough. As above, if there is a total number of 2m+1
judges then the number of affirmations needed for a positive formula to be in the collective judgment
set ism+ 1. Since theαi , 1 ≤ i ≤ 3m, receive onlym affirmations fromT, they must all get one
additional affirmation fromS′. Since‖S′‖ ≤ m and every judge affirms of exactly four formulas,
includingα0, the setsCi corresponding to the judges inS′ must form an exact cover for the given
X3C instance. ❑

One important point regarding the proof of Theorem 11 is thatthe agenda contains only premises.
For UPQR1/2-EXACT CONTROL BY DELETING JUDGES, the proof of Theorem 12 below also es-
tablishes NP-hardness even if the agenda contains only premises. By contrast, in Proposition 3
we showed that if the agenda contains only premises thenUPQRq is strategyproof (thus,UPQRq-
MANIPULATION is in P) for each rational quotaq, 0 ≤ q < 1, and in Theorem 5 we showed that
UPQR1/2-EXACT M ICROBRIBERY is also in P if the desired judgment set contains only premises.

Theorem 12 UPQR1/2 is resistant toEXACT CONTROL BY DELETING JUDGESandCONTROL BY

DELETING JUDGES.

In contrast toUPQR1/2-CONTROL BY ADDING JUDGES it remains open whetherUPQR1/2-
CONTROL BY DELETING JUDGES is still NP-complete if the agenda contains only premises.

Unlike for manipulation and bribery, we have not been able toidentify natural restrictions for
which one of our NP-hard control problems can be solved in polynomial time.

Finally, we consider CONTROL BY REPLACING JUDGES. In contrast to the problems of control
by adding and by deleting judges, the number of judges here isconstant, just as in the corresponding
manipulation and bribery problems for judgment aggregation. Thus, there is no difference between
the uniform constant premise-based quota rule and the uniform premise-based quota rule. The fol-
lowing theorem implies NP-completeness for both classes ofrules.

Theorem 13 For each rational quota q,0 ≤ q < 1, UPQRq is resistant toEXACT CONTROL BY

REPLACING JUDGESandCONTROL BY REPLACING JUDGES.

To conclude, we mention some possible future research questions. First, we have introduced
some very natural control problems for judgment aggregation. Are there any others? Second, it
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would be very interesting to complement our NP-hardness results by typical-case analyses, as has
been done for voting problems (see the survey [28]). Third, from all W[2]-hardness results we imme-
diately obtain the corresponding NP-hardness results, andsince all problems considered are easily
seen to be in NP, we have NP-completeness results. It remainsopen, however, whether one can
also obtain matching upper bounds in terms of parameterizedcomplexity. We suspect that all W[2]-
hardness results in this paper in fact can be strengthened toW[2]-completeness results. Finally, note
that we have considered only “constructive” control scenarios. For voting problems, constructive
control means that the Chair’s goal is to make some candidatewin, whereas “destructive” con-
trol [23] refers to making any other than the most hated candidate win the election. Constructive
control in judgment aggregation, however, means that we seek an outcomecloser to the desired out-
come, or exactly the desired outcome. Note that defining destructive variants of control by adding,
deleting, or replacing judges would thus lead to the same definitions as for their constructive coun-
terparts: We have an undesired (possibly partial) judgmentsetJ ∈ J (Φ) and seek an outcome with
a smaller Hamming distance to the complement ofJ than from the original outcome to the com-
plement ofJ, but replacing the (partial) judgment setJ with its complement leads to essentially the
same question, as the complement of a partial judgment setJ is simply the negation of the formulas
in J. Therefore, it does not make sense to distinguish between constructive and desctructive control.

Acknowledgments: We thank the reviewers for helpful comments.
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Gábor Erdélyi
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The Possible Winner Problem with Uncertain
Weights1

Dorothea Baumeister, Magnus Roos, Jörg Rothe, Lena Schend, and Lirong Xia

Abstract

The original possible winner problem is: Given an unweighted election with partial preferences
and a distinguished candidatec, can the preferences be extended to total ones such thatc wins?
We introduce a novel variant of this problem in which not someof the voters’ preferences
are uncertain but some of their weights. Not much has been known previously about the
weighted possible winner problem. We present a general framework to study this problem,
both for integer and rational weights, with and without upper bounds on the total weight to be
distributed, and with and without ranges to choose the weights from. We study the complexity
of these problems for important voting systems such as scoring rules, Copeland, ranked pairs,
plurality with runoff, and (simplified) Bucklin and fallback voting.

1 INTRODUCTION

Much of the previous work in computational social choice hasfocused on the complexity of manipu-
lation, control, and bribery problems in voting (see the surveys by Faliszewski et al. [18, 21]). More
recently, many papers studied the possible winner problem,which generalizes the (unweighted)
coalitional manipulation problem. The original possible winner problem was introduced by Kon-
czak and Lang [24]. The input to this problem is an election with partial (instead of total) preferences
and a distinguished candidate, and the question is whether it is possible to extend the partial pref-
erences to total ones such that the distinguished candidatewins. Xia and Conitzer [28] studied this
and also the necessary winner problem. Betzler and Dorn [7] and Baumeister and Rothe [5] estab-
lished a dichotomy result for the possible winner problem, and Betzler et al. [8, 6] investigated the
parameterized complexity of this problem.

A number of variants of the possible winner problem have beenstudied as well. Bachrach, Betz-
ler, and Faliszewski [1] investigated a probabilistic variant thereof. Chevaleyre et al. [10] introduced
the possible winner with respect to the addition of new alternativesproblem, which is related to,
yet different from the problem of control via adding candidates2(see [2, 23]) and is also similar, yet
not identical to the cloning problem in elections [16]. Their variant was further studied by, e.g.,
Xia, Lang, and Monnot [29] and Baumeister, Roos, and Rothe [4]. The latter paper in particular
considered a weighted variant of the possible winner problem, and it also introduced and studied
this problem under voting rule uncertainty, an approach that was followed up recently by Elkind and
Erdélyi [14] who applied it to coalitional manipulation [11]. Baumeister et al. [3] studied variants of
the possible winner problem with truncated ballots. Lang etal. [25] and Pini et al. [27] investigated
the possible and necessary winner problem for voting trees and multi-round election systems such
as STV. Most of the papers listed above consider onlyunweightedelections. We present a general
framework to study theweightedpossible winner problem, and we focus on elections where not
some of the voters’ preferences, but some of theirweights, are uncertain. The problems we study
in our framework come with integer or rational weights, withor without upper bounds on the total
weight to be assigned, and with or without given ranges to choose the weights from. An interesting
point in this regard is that while the original possible winner problem generalizes the coalitional
manipulation problem [11], certain variants of the possible winner problem with uncertain weights
generalize constructive control by adding/deleting voters [2, 23].

1To appear inProceedings of the 20th European Conference on Artificial Intelligence, Montpellier, France, August 2012.
2We usecandidateandalternativesynonymously.
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The following situation may motivate why it is interesting to study the possible winner problem
with uncertain weights. Imagine a company that is going to decide on its future strategy by voting at
the annual general assembly of stockholders. Among the parties involved, everybody’s preferences
are common knowledge. However, who will succeed with its preferred alternative for the future
company strategy depends on the stockholders’ weights, i.e., on how many stocks they each own, and
there is uncertainty about these weights. Is it possible to assign weights to the parties involved (e.g.,
by them buying new stocks) such that a given alternative wins? As another example, suppose we
want to decide which university is the best in the world basedon different criteria (e.g., graduation
and retention rates, faculty resources, student selectivity, etc.). Each criterion can be seen as a
voter who gives a ranking over all universities (candidates). Suppose the voting rule is fixed (e.g.,
plurality), but the chair can determine the weights of thesecriteria. It is interesting to know whether
a given university can win if the chair chooses the weights carefully.

2 PRELIMINARIES

An electionis a pair(C,V) consisting of a finite setC of candidates and a finite listV of voters
that are represented by their preferences over the candidates inC and are occasionally denoted by
v1, . . . ,v|V|. A voting systemE is a set of rules determining the winning candidates according to the
preferences inV. The voting systems considered here are all preference-based, that is, the votes are
given as linear orders overC. For example, ifC = {a,b,c,d} then a votea > c > b > d means that
this voter (strictly) prefersa to c, c to b, andb to d. If such an order is not total (e.g., when a voter
only specifiesa > c > d as her preference over these four candidates), we say it is a partial order.
For winner determination in weighted voting systems, a votev of weightw is considered as if there
werew unweighted (i.e., unit-weight) votesv.

For a given election(C,V), theweighted majority graph (WMG)is defined as a directed graph
whose vertices are the candidates, and we have an edgec → d of weightN(c,d) between any two
verticesc andd, whereN(c,d) is the number of voters preferringc to d minus the number of voters
preferringd to c. Note that in the WMG of any election, all weights on the edgeshave the same parity
(and whether it is odd or even depends on the parity of the number of votes), andN(c,d) = −N(d,c)
(which is why it is enough to give only one of these two edges explicitly).

We will consider the following voting rules.

• Positional Scoring Rules:These rules are defined by ascoring vector~α = (α1,α2, . . . ,αm),
wherem is the number of candidates, theαi are nonnegative integers, andα1 ≥ α2 ≥ ·· · ≥ αm.
Let ρi(c) denote the position of candidatec in votervi ’s vote. Thenc receivesαρi(c) points
from vi , and the total score ofc is ∑n

i=1 αρi(c) for n voters. All candidates with the largest score
are the~α winners. In particular, we will considerk-approval elections,k ≤ m, whose scoring
vector has a 1 in the firstk positions, and the remainingm− k entries are all 0. The special
case of 1-approval is also known asplurality and that of(m−1)-approval asveto. The scoring
vector(m−1,m−2, . . .,2,1,0) defines theBordarule.

• Copelandα (for each rational number α, 0≤ α ≤ 1):3 For any two alternativesc andc′, we
can simulate apairwise electionbetween them, by seeing how many voters preferc to c′, and
how many preferc′ to c; the winner of the pairwise election is the one preferred more often.
Then, an alternative receives one point for each win in a pairwise election,α points for each
tie, and zero points for each loss. This is the Copeland scoreof the alternative. A Copeland
winner maximizes the Copeland score.

• Ranked pairs: This rule first creates an entire ranking of all the candidates. In each step,
we consider a pair of candidatesc,c′ that we have not previously considered; specifically, we

3The original Copeland system [12] is defined for the specific value ofα = 1/2; the generalization to otherα values is due
to Faliszewski et al. [20].
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choose among the remaining pairs one with the highestN(c,c′) value (in case of ties, we use
some tie-breaking mechanism) and then fix the orderc > c′, unless this contradicts previous
orders already fixed (i.e., unless this order violates transitivity). We continue until we have
considered all pairs of candidates (and so we have a full ranking). A candidate at the top of
the ranking for some tie-breaking mechanism is a winner.

• Plurality with runoff: This rule proceeds in two rounds. First, all alternatives except those
two with the highest plurality score are eliminated; in the second round (the runoff), the
plurality rule is used to select a winner among these two. Some tie-breaking rule is applied in
both rounds if needed.

• Bucklin and fallback voting (both simplified): In a Bucklin election, the voters’ preferences
are linear orders and the levelℓ score of a candidatec is the number of voters rankingc among
their topℓ positions. The Bucklin score of a candidatec is the smallest numbert such that
more than half of the voters rankc somewhere in their topt positions. A Bucklin winner
minimizes the Bucklin score.4 In (simplified) fallback elections, on the other hand, nontotal
(more specifically, “top-truncated” as defined in [3]) preference orders are allowed. Every
Bucklin winner is also a fallback winner, but if no Bucklin winner exists (which may happen
due to the voters’ partial orders) andℓ is the length of a longest preference order among the
votes, all candidates with the greatest levelℓ score are the fallback winners. Throughout this
paper we will refer to “simplified Bucklin” and “simplified fallback” simply as Bucklin and
fallback voting.

We will use the following notation. If the set of candidates is, say,C = B∪ D ∪{c}, then we
mean byc >

−→
D > · · · thatc is preferred to all candidates, where

−→
D is an arbitrarily fixed ordering

of the candidates occurring inD, and “· · · ” indicates that the remaining candidates (those fromB in
this example) can be ranked in an arbitrary order afterwards.

Some proofs in this paper useMcGarvey’s trick[26] (applied to WMGs), which constructs a list
of votes whose WMG is the same as some targeted weighted directed graph. This will be helpful
because when we present our proofs, we only need to specify the WMG instead of the whole list of
votes, and then by using McGarvey’s trick for WMGs, a votes list can be constructed in polynomial
time. More specifically, McGarvey showed that for every unweighted majority graph, there is a
particular list of preferences that results in this majority graph. Extending this to WMGs, the trick
works as follows. For any pair of candidates,(c,d), if we add two votes,c > d > c3 > · · · > cm and
cm > cm−1 > · · · > c3 > c > d, to a vote list, then in the WMG, the weight on the edgec → d is
increased by 2 and the weight on the edged → c is decreased by 2, while the weights on all other
edges remain unchanged.

3 PROBLEM DEFINITIONS AND DISCUSSION

We now define our variants of the possible winner problem withuncertain weights. LetE be a given
voting system andF ∈ {Q+,N}.

E -Possible-Winner-with-Uncertain-Weights-F (E -PWUW-F)

Given: An E election(C,V0∪V1), V0∩V1 = /0, where the weights of the voters inV0 are
not specified yet and weight zero is allowed for them, yet all voters inV1 have
weight one, and a designated candidatec ∈ C.

Question: Is there an assignment of weightswi ∈ F to the votesvi in V0 such thatc is anE
winner of election(C,V0 ∪V1) whenvi ’s weight iswi for 1 ≤ i ≤ |V0|?

4We consider only this simplified version of Bucklin voting. In the full version (see, e.g., [17]), among all candidates with
smallest Bucklin score, sayt, for c to win it is also required thatc’s level t score is largest.
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We distinguish between allowing nonnegative rational weights (i.e., weights inQ+) and non-
negative integer weights (i.e., weights inN). In particular, we allow weight-zero voters inV0. Note
that for inputs withV0 = /0 (which is not excluded in the problem definition), we obtain the ordinary
unweighted (i.e., unit-weight) winner problem forE . Allowing weight zero for voters inV0 in some
sense corresponds to control by deleting voters (see [2, 23]); later in this section we also briefly dis-
cuss the relationship with control by adding voters. The reason why we distinguish between votes
with uncertain weights and unit-weight votes in our probleminstances is that we want to capture
these problems in their full generality; just as votes with total preferences are allowed to occur in
the instances of the original possible winner problem. The requirement of normalizing the weights
in V1 to unit-weight, on the other hand,is a restriction (that doesn’t hurt) and is chosen at will. This
will somewhat simplify our proofs.

We also consider the following restrictions ofE -PWUW-F:

• In E -PWUW-RW-F, anE -PWUW-F instance and regions (i.e., intervals)Ri ⊆ F, 1≤ i ≤ |V0|,
are given, and the question is the same as inE -PWUW-F, except that each weightwi must
be chosen fromRi in addition.

• In E -PWUW-BW-F, anE -PWUW-F instance and a positive boundB ∈ F is given, and the

question is the same as inE -PWUW-F, except that∑|V0|
i=1wi ≤ B must hold in addition (i.e.,

the total weight that can be assigned must be bounded byB).

• In E -PWUW-BW-RW-F, anE -PWUW-BW-F instance and regions (i.e., intervals)Ri ⊆ F,
1 ≤ i ≤ |V0|, are given, and the question is the same as inE -PWUW-BW-F, except that each
weightwi must be chosen fromRi in addition.

One could also define other variants ofE -PWUW-F (e.g., thedestructivevariant where the
question is whetherc’s victory can be prevented by some weight assignment) or other variants of
E -PWUW-BW-RW-F andE -PWUW-RW-F (e.g., by allowingsets of intervalsfor each weight),
but here we focus on the eight problems defined above. We focuson thewinner model (aka. the
co-winneror thenonunique-winnermodel) where the question is whetherc can be madea winner
by assigning appropriate weights. By minor proof adjustments, most of our results can be shown to
also hold in theunique-winnermodel where we ask whetherc can be made the only winner.

We assume that the reader is familiar with common complexity-theoretic notions, such as the
complexity classes P and NP, and the notions of hardness and completeness with respect to the
polynomial-time many-one reducibility, which we denote by≤p

m.
The following reductions hold trivially among our problems, by setting the bound on the total

weight allowed to the sum of the highest possible weights forthe first two reductions and by setting
the intervals to[0,B] (whereB is the bound on the total weight) for the last two reductions:

PWUW-RW-Q+ ≤p
m PWUW-BW-RW-Q+ (1)

PWUW-RW-N ≤p
m PWUW-BW-RW-N (2)

PWUW-BW-Q+ ≤p
m PWUW-BW-RW-Q+ (3)

PWUW-BW-N ≤p
m PWUW-BW-RW-N. (4)

Related to our variants of the PWUW problem is the problem of constructive control by adding
voters (see [2]), CCAV for short. Here, a setC of candidates with a distinguished candidatec ∈ C,
a listV of registered voters, an additional listV ′ of as yet unregistered voters, and a positive integer
k are given. The question is whether it is possible to makec win the election by adding at mostk
voters fromV ′ to the election.

Obviously, there is a direct polynomial-time many-one reduction from CCAV to PWUW-BW-
RW-N. The voters inV1 are the registered voters fromV and the voters inV0 are those fromV ′, where
the weights can be chosen from{0,1} for all votes inV0, and the total bound on the weightB is set
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Scoring Rules, Plurality, 3-AV k-AV, Bucklin, Copeland,
PWUW- Plurality 2-AV, k ≥ 4 Fallback Ranked

with runoff Veto Pairs

Q+ P P P P P ?
N ? P P P NP-c. NP-c.
BW-RW-Q+ P P P P P ?
BW-RW-N ? P ? NP-c. NP-c. NP-c.
BW-Q+ P P P P P ?
BW-N ? P ? NP-c. NP-c. NP-c.
RW-Q+ P P P P P ?
RW-N ? P P P NP-c. NP-c.

Table 1: Overview of results. “NP-c.” stands for NP-complete.

to k. If succinct representation is assumed,5 there is also a polynomial-time many-one reduction in
the other direction. The registered voters are those fromV1, and the unregistered voters are those
from V0, where each vote is added according to its maximal weight in the PWUW instance. The
numberk of voters who may be added equals the boundB on the total weight.

Since there are reductions in both directions, complexity results carry over from CCAV to
PWUW-BW-RW-N when we assume succinct representation. For the voting systems considered
in this paper, this implies that PWUW-BW-RW-N is NP-complete for Copeland0 and Copeland1,
and is solvable in polynomial time for plurality (see [20, 2]). (Note that the NP-hardness results on
CCAV for Bucklin and fallback voting from [17] concern the full, not the simplified versions of
these voting rules.) These already known cases are nevertheless covered by our proofs in the next
section, since they handle several restrictions of the PWUWproblems at the same time. Conversely,
the results from the next section for PWUW-BW-RW-N all carry over to CCAV if we assume suc-
cinct representation.

4 RESULTS AND SELECTED PROOFS

Table 1 gives an overview of our results. In the next section,we will provide or sketch some of the
proofs for these results. Due to space constraints, not all proofs can be presented in full detail.

4.1 Integer Weights

We begin with the results for the integer cases.

Proposition 1 1. Each of the four variants ofplurality-PWUW-N, veto-PWUW-N, and 2-
approval-PWUW-N studied in this paper is inP.

2. For each k≥ 1, k-approval-PWUW-N and k-approval-PWUW-RW-N are inP.

PROOF. For the first statement, we present the proof details for 2-approval-PWUW-BW-RW-N,
where for each vote inV0 the range of allowed weights is{0,1}. The proof can be adjusted to also
work when other ranges are given.

Given a 2-approval-PWUW-BW-RW-N instance as above, we construct the following max-flow
instance. LetV ′

0 denote the list of votes inV0 wherec is ranked among the top two positions. We
may assume, without loss of generality, that the given boundB on the total weight satisfiesB≤ |V ′

0|.6
The vertices are{s,s′, t}∪V′

0∪ (C\ {c}) with the following edges:

5This means that when there are several identical votes, we don’t list them all but rather store a number in binary saying
how often this vote occurs.

6Otherwise, the optimal strategy is to let the weights of the votes inV′
0 be 1 and to let the weights of all other votes be 0.
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• There is an edges→ s′ with capacityB and an edge froms′ to each node inV ′
0 with capacity 1.

• There is an edge from a nodeL in V ′
0 to a noded in C\ {c} with capacity 1 if and only ifd is

ranked besidesc among the top two positions inL.

• There is an edge from each noded ∈C\{c} to t with capacityB+score(c,V1)−score(d,V1),
wherescore(e,V1) is the 2-approval score of anye∈ C in vote listV1.7

In the max-flow problem, we are asked whether there exists a flow whose value isB. We note that in
the PWUW instance, it is always optimal to chooseB votes inV ′

0 and to let their weights be 1. The
bound ond → t for d ∈C\{c} ensures that the 2-approval score ofd is no more than the 2-approval
score ofc.

The claims for 2-approval-PWUW-RW-N and 2-approval-PWUW-BW-N follow from (2)
and (4).

For the second statement, it suffices to maximize the weightsof the votes inV ′
0 that rankc among

their topk positions, and to minimize the weights of the other votes.
❑

In particular, it is open whether 3-approval-PWUW-BW-RW-N and 3-approval-PWUW-BW-N
are also in P. Fork ≥ 4, however, we can show that these problems are NP-complete.

Theorem 2 For each k≥ 4, k-approval-PWUW-BW-RW-N and k-approval-PWUW-BW-N areNP-
complete.

PROOF. It is easy to see that both problems belong to NP. For provingNP-hardness, we give a proof
for 4-approval-PWUW-BW-N by a reduction from the NP-complete problem EXACT COVER BY

3-SETS (X3C): Given a setB = {b1, . . . ,b3q} and a collectionS = {S1, . . . ,Sn} with |Si | = 3 and
Si ⊆ B, 1 ≤ i ≤ n, doesS contain an exact cover forB, i.e., a subcollectionS ′ ⊆ S such that
every element ofB occurs in exactly one member ofS ′?

Construct an instance ofk-approval-PWUW-BW-N with the set

C = {c,b1, . . . ,b3q,b
1
1, . . . ,b

1
3q,b

2
1, . . . ,b

2
3q,b

3
1, . . . ,b

3
3q}

of candidates, wherec is the designated candidate, and with the setV0 of n votes of the formc >−→
Si > · · · , the setV1 of q−1 votes of the formb j > b1

j > b2
j > b3

j > · · · for eachj, 1≤ j ≤ 3q, and the
boundB = q on the total weight of the votes inV0. Recall that the votes inV1 all have fixed weight
one, and those of the votes inV0 are fromN. We show thatS has an exact cover forB if and only
if we can set the weights of the voters in this election such thatc is a winner.

Assume that there is an exact coverS ′ ⊆ S for B. By setting the weights of the votesc >−→
Si > · · · to one for thoseq subsetsSi contained inS ′, and to zero for all other votes inV0, c is a
winner of the election, asc and allb j , 1≤ j ≤ 3q, receive exactlyq points, whereasb1

j , b2
j , andb3

j ,
1 ≤ j ≤ 3q, receiveq−1 points each.

Conversely, assume thatc can be made a winner of the election by choosing the weights ofthe
votes inV0 appropriately. Note that the bound on the total weight for the votes inV0 is B = q. Every
bi getsq−1 points from the votes inV1, andc gets points only from the votes inV0. Since there are
always someb j getting points if a vote fromV0 has weight one, there are at least threeb j havingq
points if a vote fromV0 has weight one. Hencec must getq points from the votes inV0 by setting
the weight ofq votes to one. Furthermore, everyb j can occur only once in the votes having weight
one inV0, as otherwisec would not win. Thus, theSi corresponding to the votes of weight one inV0

must form an exact cover forB.
7Note that if this capacity is negative, the given 2-approval-PWUW-BW-RW-N instance is trivially a no-instance, sincec

can never be made a winner.
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By adding dummy candidates to fill the positions receiving points, we can adapt this proof for
k-approval for any fixedk > 4. NP-hardness fork-approval-PWUW-BW-RW-N, k ≥ 4, then follows
from the trivial reduction (4) stated in Section 3. ❑

We now show that all variants of PWUW with integer weights areNP-complete for Copelandα ,
ranked pairs, Bucklin, and fallback elections.

Theorem 3 For each rational numberα, 0 ≤ α ≤ 1, every variant ofCopelandα -PWUW-N stud-
ied in this paper isNP-complete.

PROOF. NP membership is easy to see for all problem variants. We first prove NP-hardness for
Copelandα -PWUW-N, and then show how to modify the proof for the variants of the problem.
Given an X3C instance(B,S ) with B = {b1, . . . ,b3q} andS = {S1, . . . ,Sn}, we construct the
following PWUW instance for Copelandα , where the set of candidates isB ∪ {c,d,e}. Without
loss of generality we assume thatq ≥ 4 and we are asked whetherc can be made a winner.

The votes onC are defined as follows.V0 will encode the X3C instance andV1 will be used to
implement McGarvey’s trick.V0 consists of the followingn votes: For eachj, 1≤ j ≤ n, there is a
voted > e>

−→
Sj > c > · · · . V1 is the vote list whose WMG has the following edges:

• c → d with weightq+1,d → ewith weightq+1, ande→ c with weightq+1.

• For everyi, 1 ≤ i ≤ 3q, d → bi ande→ bi each with weightq+ 1, andbi → c with weight
q−3.

• The weight on any other edge not defined above is no more than 1.

It follows that no matter what the weights of the votes inV0 are,d beatse ande beatsc in
pairwise elections, and bothd ande beat all candidates inB in pairwise elections. Forc to be a
winner,c must beatd in their pairwise election, which means that the total weight of the votes inV0

is no more thanq. On the other hand,c must beat all candidates inB. This happens if and only if
the votes inV0 that have positive weights correspond to an exact cover ofB, and all of these votes
must have weight one. This means that Copelandα -PWUW-N is NP-hard.

For theBW andBW-RW variants, we letB= q; for theRW andBW-RW variants, we let the range
of each vote inV0 be{0,1}. ❑

Theorem 4 All variants ofranked-pairs-PWUW-N studied in this paper areNP-complete.

PROOF. The proof is similar to the proof of Theorem 3. That the problems are in NP is easy
to see. For the hardness proof, given an X3C instance(B,S ) with B = {b1, . . . ,b3q} and
S = {S1, . . . ,Sn}, we construct the following ranked-pairs-PWUW-N instance, where the set of
candidates isB∪{c,d}. We are asked whetherc can be made a winner.V0 consists of the following

n votes: For eachj,1 ≤ j ≤ n, there is a votee>
−→
Sj > c > d > · · · . V1 is the vote list whose WMG

has the following edges, and is constructed by applying McGarvey’s trick:

• c → d with weight 2q+1,d → e with weight 4q+1, ande→ c with weight 2q+1.

• For everyi, 1≤ i ≤ 3q, d → bi ande→ bi each with weight 2q+1, andbi → c with weight
4q−1.

• The weight on any other edge not defined above is 1.

If the total weight of votes inV0 is larger thanq, then the weight one → c ande→ bi in the
WMG is at least 3q+ 2, and the weight ond → e is no more than 3q, which means thatc is not
a winner for ranked pairs. Moreover, ifc is a winner, then the weight on anybi → c should not
be strictly higher than the weight onc → d, otherwisebi → c will be fixed in the final ranking. It
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follows that if c is a winner, then the votes inV0 that have positive weights correspond to an exact
cover ofB, and all of these votes must have weight one. This means that ranked-pairs-PWUW-N
is NP-hard.

For theBW andBW-RW variants, we letB= q; for theRW andBW-RW variants, we let the range
of each vote inV0 be{0,1}. ❑

Theorem 5 All variants of Bucklin-PWUW-N studied in this paper areNP-complete.

PROOF. NP membership is easy to see for all problem variants. We first prove NP-hardness for
Bucklin-PWUW-N, and then show how to modify the proof for the variants of the problem. Given
an X3C instance(B,S ) with B = {b1, . . . ,b3q} andS = {S1, . . . ,Sn}, we construct the following
Bucklin-PWUW-N instance. The set of candidates isB∪{c,d}∪D∪D′, whereD = {d1, . . . ,d3q}
and D′ = {d′

1, . . . ,d
′
3q} are sets of auxiliary candidates. We are asked whetherc can be made a

winner.V0 consists of the followingn votes: For eachj, 1≤ j ≤ n, there is a voted >
−→
Sj > c>

−→
D >−→

D′ > · · · . V1 consists ofq−1 copies of
−→
B > c>

−→
D′ >

−→
D > d and one copy of

−→
D′ > c>

−→
B > d >

−→
D .

If the total weight of votes inV0 is larger thanq, thend is the unique candidate that is ranked in
top positions for more than half of the votes, which means that c is not a winner. Suppose the total
weight of the votes inV0 is at mostq. Then, the Bucklin score ofc is 3q+1 and the Bucklin score
of any candidate inD andD′ is larger than 3q+ 1. Therefore,c is a Bucklin winner if and only if
the Bucklin score of any candidate inB is at least 3q+ 1. This happens if and only if the votes in
V0 that have positive weights correspond to an exact cover ofB, and all of these votes must have
weight one. This means that Bucklin-PWUW-N is NP-hard.

For theBW andBW-RW variants, we letB= q; for theRW andBW-RW variants, we let the range
of each vote inV0 be{0,1}. ❑

Bucklin voting can be seen as the special case of fallback voting where all voters give complete
linear orders over all candidates. So the NP-hardness results for Bucklin voting transfer to fallback
voting, while the upper NP bounds are still easy to see.

Corollary 6 All variants offallback-PWUW-N studied in this paper areNP-complete.

4.2 Rational Weights and Voting Systems that Can Be Represented by Linear
Inequalities

Chamberlin and Cohen [9] observed that various voting rulescan be represented by systems of linear
inequalitites, see also [19]. We use this property to formulate linear programs, thus being able to
solve the PWUW problem variants with rational weights for these voting rules efficiently, provided
that the size of the systems describing the voting rules is polynomially bounded. Note that an LP
with rational instead of integer values can be solved in polynomial time [22].

What voting rules does this technique apply to? The crucial requirement a voting rule needs
to satisfy is that the scoring function used for winner determination can be described by linear
inequalities and that this description is in a certain senseindependent of the voters’ weights. By
“independent of the voters’ weights” we mean that the pointsa candidate gains from a vote are
determined essentially in the same way in both a weighted andan unweighted electorate, but in the
former we have a weighted sum of these points that gives the candidate’s score, whereas in the latter
we have a plain sum. Scoring functions satisfying this condition are said to beweight-independent.
This requirement is fulfilled by, e.g., the scoring functions of all scoring rules, Bucklin, and fallback
voting. Copeland’s scoring function, on the other hand, does not satisfy it. In a Copeland election,
every candidate gets one point for each other candidate she beats in a pairwise contest. Who of
the two candidates wins a pairwise contest and thus gains a Copeland point depends directly on
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the voters’ weights. Thus, the Copeland score in a weighted election is not a weighted sum of the
Copeland scores in the corresponding unweighted election in the above sense.

In what follows, we have elections where the voter list consists of the two sublistsV0 andV1.
We have to assign weightsx1, . . . ,x|V0| to the voters inV0. We don’t exclude the case where weight
zero can be assigned, but we will seek to find solutions where all weights are strictly positive, since
assigning weight zero to a voter is equivalent to excluding this voter entirely from the election. For
c ∈ C, let ρ0

i (c) denote the position ofc in the preference of theith voter inV0, 1≤ i ≤ |V0|, and let
ρ1

j (c) denote the position ofc in the preference of thejth voter inV1, 1≤ j ≤ |V1|.

Lemma 7 LetE be a voting rule with a weight-independent scoring functionthat can be described
by a system A of polynomially many linear inequalities. ThenE -PWUW-Q+, E -PWUW-BW-Q+,
E -PWUW-RW-Q+, andE -PWUW-BW-RW-Q+ are each inP.

PROOF. Let x1,x2, . . . ,xn be the variables of the systemA that describesE for anE election withn
voters. The following linear program can be used to solveE -PWUW-BW-RW-Q+. Let an instance
of this problem be given: an election(C,V0∪V1) with as yet unspecified weights inV0, a designated
candidatec ∈ C, a boundB ∈ Q+, and regionsRi ⊆ Q+, 1 ≤ i ≤ |V0|. Thevector of variablesof
our linear program is~x= (x1,x2, . . . ,x|V0|,χ) ∈ R|V0|+1 and we maximize theobjective function~c·~xT

with~c = (0,0, . . . ,0,1) and the following constraints:

A (5)

xi − χ ≥ 0 for 1≤ i ≤ |V0| (6)

χ ≥ 0 (7)

|V0|
∑
i=1

xi ≤ B (8)

xi ≤ r i for 1 ≤ i ≤ |V0| (9)

−xi ≤ −ℓi for 1 ≤ i ≤ |V0| (10)

Constraint (5) gives the linear inequalitites that have to be fulfilled for the designated candidate
c to win underE . By maximizing the additional variableχ in the objective function we try to
find solutions where the weights are positive, this is accomplished by constraint (6). Constraint (8)
implements our given upper boundB for the total weight to be assigned and constraints (9) and (10)
implement our given rangesRi = [ℓi , r i ] ⊆ Q for each weight.

Omit (8) for E -PWUW-RW-Q+, omit (9) and (10) forE -PWUW-BW-Q+, and omit (8), (9),
and (10) forE -PWUW-Q+.

A solution in Q for a linear program with polynomially bounded constraintscan be found in
polynomial time. ❑

In the following theorems we present the specific systems of linear inequalities describing scor-
ing rules in general, and the voting systems Bucklin, fallback, and plurality with runoff. These can
be used to formally specify the complete linear program stated in the proof of Lemma 7.

Theorem 8 For each scoring rule~α,~α-PWUW-Q+,~α-PWUW-BW-Q+,~α-PWUW-RW-Q+, and
~α-PWUW-BW-RW-Q+ are inP.

PROOF. We are given an election withm different candidates inC, wherec ∈ C is the distinguished
candidate. Recall thatρ0

i (c) denotesc’s position in the preference of votervi ∈ V0, and thatαρ0
i (c)

denotes the number of pointsc gets for this position according to the scoring vector~α. Let SV1(c)
denote the number of points candidatec gains from the voters inV1 (recall that those have all weight
one). Then the distinguished candidatec is a winner if and only if for all candidatesc′ ∈ C with
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c′ 6= c, we have

((
αρ0

j (c)
− αρ0

j (c
′)

)
1≤ j≤|V0|

)
~xT ≥ SV1(c

′)− SV1(c), where~x = (x1,x2, . . . ,x|V0|) ∈

R|V0| are the weights that will be assigned to the voters inV0. The linear program for scoring rule
~α is of the following form. As in the proof of Lemma 7, we have thevector of variables~x =
(x1,x2, . . . ,x|V0|,χ) ∈ R|V0|+1 and we maximize the objective function~c ·~xT with ~c = (0,0, . . . ,0,1)
and the following constraints:

−
|V0|
∑
i=1

(
αρ0

i (c) − αρ0
i (c′)

)
xi ≤ SV1(c)−SV1(c

′) ∀ c′ 6= c (11)

xi − χ ≥ 0 for 1≤ i ≤ |V0| (12)

χ ≥ 0 (13)

|V0|
∑
i=1

xi ≤ B (14)

xi ≤ r i for 1 ≤ i ≤ |V0| (15)

−xi ≤ −ℓi for 1 ≤ i ≤ |V0| (16)

Here again, constraints (14) to (16) are needed only for the restricted variants.
Since we have at most(m−1)|V0|+3|V0|+2 = (m+2)|V0|+2 constraints, this linear program

can be solved in polynomial time. ❑

Note that by addingχ to the left-hand side of (11), a solution whereχ is positive is an assignment
of weights making the distinguished candidate a unique winner.

Being level-based voting rules, for Bucklin and fallback voting we have to slightly expand the
presented approach. Due to space constraints, we omit the proof of Theorem 9 and only briefly
sketch the idea. Intuitively, it is clear that we first try to make the distinguished candidate a level 1
winner; if this attempt fails, we try the second level; and soon. So the linear program in the proof of
Theorem 9 has to be solved for each level beginning with the first until a solution has been found. For
Bucklin voting, the representation by linear inequalitiesis due to Dorn and Schlotter [13], and we
adapt it for the simplified version of Bucklin and fallback voting. For the latter, we add appropriate
constraints if the approval stage is reached.

Theorem 9 Let E be either Bucklin or fallback voting.E -PWUW-Q+, E -PWUW-BW-Q+, E -
PWUW-RW-Q+, andE -PWUW-BW-RW-Q+ are each inP.

Note that the proof of Theorem 9 does not work in the unique-winner case.
For plurality with runoff we can take a similar approach: Foreach candidated different fromc,

we use a set of linear inequalities to figure out whether thereexists a set of weights such that (1)c
andd enter the runoff (i.e., the plurality scores ofc andd are at least the plurality score of any other
candidate), and (2)c beatsd in their pairwise election. Therefore, we have the following corollary
whose proof does not work in the unique-winner case.

Theorem 10 Let PR be the plurality with runoff rule.PR-PWUW-Q+, PR-PWUW-BW-Q+, PR-
PWUW-RW-Q+, andPR-PWUW-BW-RW-Q+ are each inP.

PROOF. For each candidated different from c, there exists a set of linear inequalities that are
similar to those in the proof of Theorem 8 such thatc andd enter the runoff if and only if these
inequalities can be satisfied. We also add the following inequality: ∑{i |c>ρ0,i d} xi + |{k|c>ρ1,k d}| ≥

∑{i |d>ρ0,i c}
xi + |{k|d >ρ1,k c}|, where{i |c >ρ j,i d} denotes those votersvi ∈ Vj for j ∈ {0,1} that

preferc to d. Then, for each candidated different fromc we construct an LP that is similar to the LP
in the proof of Theorem 8. It follows thatc is a possible winner if and only if at least one of these
LPs has a feasible solution. ❑
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5 CONCLUSIONS AND OPEN QUESTIONS

We introduced the possible winner problem with uncertain weights, where not the preferences but
the weights of the voters are uncertain, and we studied this problem and its variants in a general
framework. We showed that some of these problem variants areeasy to solve and some are hard to
solve for some of the most important voting rules. Interestingly, while the original possible winner
problem (in which there is uncertainty about the voters’ preferences) generalizes the coalitional
manipulation problem and is a special case of swap bribery [15], the possible winner problem with
uncertain weights generalizes the problem of constructivecontrol by adding or deleting voters.

Some interesting issues remain open, as indicated in Table 1, e.g., regarding 3-approval,
Copeland voting, positional scoring rules, and plurality with runoff. Also, it would be interest-
ing to study an even more general variant: the weighted possible winner problem with uncertainty
about both the voters’ preferences and their weights.
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College admissions with stable score-limits

Péter Biró1 and Sofya Kiselgof2

Abstract

A common feature of the Hungarian, Irish, Spanish and Turkish higher education
admission systems is that the students apply for programmes and they are ranked
according to their scores. Students who apply for a programme with the same score
are in a tie. Ties are broken by lottery in Ireland, by objective factors in Turkey (such
as date of birth) and other precisely defined rules in Spain. In Hungary, however,
an equal treatment policy is used, students applying for a programme with the same
score are all accepted or rejected together. In such a situation there is only one
question to decide, whether or not to admit the last group of applicants with the
same score who are at the boundary of the quota. Both concepts can be described
in terms of stable score-limits. The strict rejection of the last group with whom a
quota would be violated corresponds to the concept of H-stable (i.e. higher-stable)
score-limits that is currently used in Hungary. We call the other solutions based on
the less strict admission policy as L-stable (i.e. lower-stable) score-limits. We show
that the natural extensions of the Gale-Shapley algorithms produce stable score-
limits, moreover, the applicant-oriented versions result in the lowest score-limits
(thus optimal for students) and the college-oriented versions result in the highest
score-limits with regard to each concept. When comparing the applicant-optimal H-
stable and L-stable score-limits we prove that the former limits are always higher for
every college. Furthermore, these two solutions provide upper and lower bounds for
any solution arising from a tie-breaking strategy. Finally we show that both the H-
stable and the L-stable applicant-proposing score-limit algorithms are manipulable.

Keywords: stable matchings, college admissions, ties, manipulation
JEL classification: C78, I21

1 Introduction

Gale and Shapley [12] introduced a model and solution concept to solve the college ad-
missions problem fifty years ago. In their model they suppose that the students submit
preference lists containing the colleges they apply to, and each college ranks their applicants
in a strict order and also provides an upper quota. Based on the submitted preferences
a central body computes a fair solution. The fairness criterion they proposed is stability,
which essentially means that if an application is rejected then it must be the case that the
college must have filled its quota with applicants better than the our applicant’s concerned.
They gave an efficient method to find a stable matching and they proved that is actually
optimal for the students in that sense that no student can be admitted to a better college in
another stable matching. The Gale-Shapley algorithm has linear time implementation (see
e.g. Knuth ), which means that the running time of the algorithm is proportional to the
number of applications. Another attractive property of this matching mechanism, proved
by Roth , that it is strategy-proof for the students, i.e., no student can be admitted to any
better college by submitting false preferences.

Later, it turned out (Roth [16]) that the algorithm proposed by Gale and Shapley had
already been implemented in 1952 in the National Resident Matching Program and has

1This work was supported by OTKA grant K69027 and by the Hungarian Academy of Sciences under
its Momemtum Programme (LD-004/2010).

2This work is partially supported by DecAN Laboratory NRU HSE.
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been used since to coordinate junior doctor recruitment in the US. Moreover, the very
same method has been implemented recently in the Boston [4] and New York [3] high
school matching programs. However, college admissions are still organized in a completely
decentralized way in the US, with all its flaws, that is unraveling through early admissions
and the coordination problems caused by too many or not enough students admitted. See
some representative stories on American college admissions practices in the blog of Al Roth
[26].

There are many other countries where higher education admissions are more regulated,
but yet not centralized. In Russia, the common timetable of the admissions prevent the
unraveling and the use of ’original documents’ provide better coordination regarding the
number of students admitted, but yet the solution is far from being optimal.3 In the
UK, there is a common platform to manage the admissions by UCAS [27] but there is no
centralized matching mechanism, the decisions and actions of the users (students and higher
education institutions) are still decentralized.

Finally, there are some countries which do have centralized matching schemes for higher
education admissions. In particular, there are scientific papers on the Chinese [19, 20],
German [9, 18, 22], Hungarian [6, 7], Spanish [15], Turkish [5] schemes.4

The Chinese higher education admissions system is certainly the largest in the world,
with more that 20 million students enrolled in 2009 [20]. The system is based on a centralized
exam, called National College Entrance Examinations, which provides a score assigned to
each students and this induce a ranking of the students by universities. The matching process
(see [19]) is a kind of Boston-mechanism with some extra tweaks that makes the system
manipulable and controversial. The German clearinghouse for higher education admissions
deals only with a small segment of subjects (about 13,000 student from the total 500,000,
see [22]). The clearinghouse is a mixed system, in the first phase the Boston-mechanism
is used and in the second phase the college-proposing Gale-Shapley, so the process is not
incentive compatible [9, 18].

The Hungarian, Irish, Spanish and Turkish higher education matching schemes are all
based on a centralized scoring system. The Irish system has not been described yet in a
scientific paper to the best of our knowledge.5 In the other three countries students are
assigned a score with regard to each programme they applied to, these scores are coming
mainly from their grades and entrance exams. The scores of a student may differ at two
programmes, since when calculating the score of a student for a particular programme only
those subjects are considered which are relevant for that programme. The solution of the
admission processes are represented by the so-called score-limits, which are referred to as
’base scores’ in Turkey [5] and ’cutoff marks’ in Spain. The score-limit of a programme
means the lowest score that allows a student to be admitted to that programme. The score-

3Each applicant applies to at most five universities, but does not inform universities about her preferences
among them. Universities rank students using results of Unified State Exams. Two ’admission rounds’ are
organized that are similar to the first two steps of a deferred acceptance procedure. After the second step,
universities that still have empty seats are allowed to organize additional admissions.

4However, we shall note that regrettably these scientific papers deal only with some special features of
these systems (as we also do in this paper) so not all the aspects of these schemes are described. But
luckily, there is a new European research network, called Matching in Practice [25], one of whose aim is to
collect and describe current matching practices in Europe. So hopefully we will have a better picture and
understanding on the current practices, at least in Europe.

5From the information published at the website of the Central Applications Office [21] it seems that
the college-proposing Gale-Shapley algorithm is used in Ireland with some special features. One is that
students can apply for ’level 8’ and ’level 7/6’ courses simultaneously, and these applications are processed
separately, so a student may receive more than one offer at a time. There are deadlines for accepting offers
and if offers are rejected then further offers are made by the higher education institutions, so the mechanism
is somewhat decentralized. The tie-breaking is based on ’random-numbers’ assigned to students with regard
to each programme they applied for, so the ties are broken differently for different programmes involving
perhaps the same applicants.
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limits together with the preferences of the students naturally induce a matching, where each
student is admitted to the first place on her list where she achieved the score-limit.

In Turkey [5] the ties are broken according to the date of birth of the students and
the college-proposing Gale-Shapley algorithm is used. In Spain the scoring method is fine
enough (the admission marks are from 5 to 14 with 3 decimal fractions, and some further
priority rules are also used), so ties are very unlikely. They use the applicant-proposing
Gale-Shapley algorithm with the special feature of limiting the length of the preference
lists, a setting that creates strategic issues that were studied in detail by Romero-Medina
[15] and Calsamiglia et al. [10].

In fact, in most applications where ties may occur, the programme coordinators break
these ties. In the high school matching schemes in New York [3] and Boston [4] lottery is
used for breaking ties. However, this may lead to suboptimal solutions as Erdil and Erkin
[11] pointed out, but according to the study by Abdulkadiroglu et al [1] this is the only way
to keep the mechanism strategy-proof. In the Scottish Foundation Allocation Scheme [24],
where the junior doctors are matched to hospitals, the organizers attempt to break the ties
in such a way that in the resulted matching as many doctors are allocated as possible (see
Irving and Manlove [14]).6

In contrast, in the Hungarian higher education admission scheme [23] the ties are not
broken, therefore the students applying for a particular programme with equal scores are
either all accepted or all rejected. We call this an equal treatment policy.

In particular, the ties are handled in the following way in Hungary. No quota may be
violated, so the last group of students with the same score, with whom the quota would
be exceeded, are all rejected. There is however an alternative policy that could be followed
where the quotas may be exceeded by the admission of the last group of students with the
same score, but only if there were unfilled places left otherwise.

As we will show in Section 3, both concepts can lead to matchings that satisfy special
stability conditions based on score-limits that we formalize in Section 2. We refer to the first,
more restrictive solution as H-stable (i.e., higher-stable) score-limits and we call the second,
more permissive solution L-stable (i.e., lower-stable) score-limits. Note that these stable
score-limit concepts generalize the original notion of stability by Gale and Shapley, since
they are equivalent to that if no tie occurs. In Section 4, we show how one can extend the
Gale-Shapley algorithm to find H-stable and L-stable score-limits. Moreover, in Section 5 we
prove that the applicant-oriented versions provide the minimal stable score-limits (therefore
they are the best possible solutions for the applicants), whilst the college-oriented versions
provide maximal stable score-limits (therefore, they are the worst possible solutions for the
applicants).

Furthermore, we show in Section 5 that comparing the H-stable and L-stable score-
limits, the L-stable score-limits are more favorable for the applicants as they are lower. In
particular, we show that no college can have a higher score-limit in the applicant-optimal
L-stable solution than in the applicant-optimal H-stable solution (and the same applies for
the applicant-pessimal solutions produced by the college-oriented versions). Interestingly,
we also show that the applicant-optimal solution produced after a tie-breaking is always
between these two kinds of solutions. Therefore the matchings corresponding to the H-
stable and L-stable score-limits may provide upper and lower bounds for every applicant
regarding her match in a scheme which uses any kind of tie-breaking strategy. Finally, in
Section 6 we give examples showing that neither the H-stable nor the L-stable version of

6In SFAS [24], applicants are ranked by NHS Education for Scotland in a so-called master list, in order
of score each applicant has a numerical score allocated partly on the basis of academic performance and
partly as a result of the assessment of their application form. The range of possible scores (approximately 40
100) is much smaller than the number of applicants (around 750 each year), so there are ties of substantial
length in the master list.
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the applicant-oriented score-limit algorithm is strategy-proof. We conclude in Section 7.

2 The definition of stable score-limits

Let A = {a1, a2, . . . , an} be the set of applicants and C = {c1, c2, . . . , cm} be the set of
colleges, where qu denotes the quota of college cu. Let the ranking of the applicant ai be
given by a preference list P i, where cv >i cu denotes that cv precedes cu in the list, i.e. the
applicant ai prefers cv to cu. Let si

u be ai’s final score at college cu. Final scores are positive
numbers, as in practice the students with scores below a common minimum threshold are
rejected automatically (this minimum score is currently 200 in Hungary, and it applies for
every study).

The score-limits of the colleges are represented with a non-negative integer mapping
l : C → N. An applicant ai is admitted to a college cu if she achieves the score-limit at
college cu, and that is the first such place in her list, i.e. when si

u ≥ l(cu), and si
v < l(cv)

for every college cv such that cv >i cu.
If the score-limits l imply that applicant ai is allocated to college cu, then we set the

Boolean variable xi
u(l) = 1, and 0 otherwise. Let xu(l) =

∑
i xi

u(l) be the number of
applicants allocated to cu under score-limits l.

Furthermore, let lu,t be defined as follows: lu,t(cu) = l(cu) + t and lu,t(cv) = l(cv) for
every v ̸= u. That is, we increase the score-limit of college cu by t (or decrease it if t is
negative), but we leave the other score-limits unchanged.

To introduce the H-stable and L-stable score-limits, first we define the corresponding
feasibility notions. Score-limits l are H-feasible if xu(l) ≤ qu for every college cu ∈ C. That
is, the number of applicants may not exceed the quota at any college. This means that the
last group of students with equal scores, with whom the quota would be exceeded, are all
rejected. Score-limits l are L-feasible if for every college cu ∈ C such that xu(l) ≥ qu it must
be the case that xu(lu,1) < q. So the quotas may be exceeded at any college, but only with
the worst group of students who are admitted there with equal scores.

We say that score-limits l are H-stable (resp. L-stable) if l are H-feasible (L-feasible)
and for each college cu either l(cu) = 0 or lu,−1 are not H-feasible (resp. L-feasible). Thus
H-stability means that we cannot decrease the score-limit of any college without violating
its quota assuming that the others do not change their limits. L-stability means that no
college cu can admit a student if at least qu of its current assignees have a higher score, but
otherwise the score limits must be as small as possible. H-stability is the concept that is
currently applied in the Hungarian higher education matching scheme.

We note that if no tie occurs (i.e. every pair of applicants have different scores at each
college), then the two feasibility and stability conditions are the same and they are both
equivalent to the original stability concept defined by Gale and Shapley. The correspon-
dence between stable score-limits and stable matchings in case of strict preferences was first
observed by Balinski and Sönmez [5] in relation with the Turkish college admissions scheme
(where ties do not occur due to a tie-breaking strategy based on the age of the applicants).
Furthermore Azevedo and Leshno [2] have also used this observation in a general college
admissions model involving continuum number of students.

3 Stable score-limit algorithms

Both the H-stable and L-stable score-limit algorithms are natural extensions of the Gale–
Shapley algorithm. The only difference is that now, the colleges cannot necessarily select
exactly as many best applicants as their quotas allow, since the applicants may have equal
scores. If the scores of the applicants are all different at each college then these algorithms
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are equivalent to the original one. In this section we will present the applicant-proposing
and the college-proposing score-limit algorithms. For simplicity we describe these algorithms
with regard to the H-stability concepts only and we add some information about the L-stable
versions in brackets whenever they differ from the H-stable versions.

College-oriented algorithms:

In the first stage of the algorithm, let us set the score-limit at each college independently to
be the smallest value such that, when all applicants are considered, the number of applicants
offered places does not exceed its quota (resp. may exceed the quota but only if without
the last tie of these students the quota is unfilled). Let us denote these score-limits by l1.
Obviously, there can be some applicants who are offered places by several colleges. These
applicants keep their best offer, and reject all the less preferred ones, moreover they also
cancel their less preferred applications.

In the subsequent stages, the colleges check whether their score-limits can be further
decreased, since some of their offers may have been rejected in the previous stage, hence
they look for new students to fill the empty places. So each college sets its score-limit
independently to be the least possible that keeps the solution H-feasible (resp. L-feasible)
considering their actual applications. If an applicant get a proposal from some new, better
college, then she accepts the best offer, at least temporarily, and rejects or cancels her other,
less preferred applications.

Formally, let lk be the score-limit after the k-th stage. In the subsequent stage, at
each college cu, the largest integer tu is chosen, such that tu ≤ lk(cu) and xu(lu,−tu

k ) ≤ qu

(resp. if xu(lu,−tu

k ) ≥ qu then xu(lu,−tu+1
k ) < qu). That is, by decreasing its score-limit by

the largest score tu that keeps the solution H-feasible, i.e., where the number of applicants
offered a place by cu does not exceed its quota (resp. may exceed the quota but only if
without the last tie of these students the quota is unfilled), by supposing that all other
score-limits remained the same. For each college cu let lk+1(cu) := lu,−tu

k (cu) be the new
score-limit. Again, some applicants can be offered a place by more than one college, so
xu(lk+1) ≤ xu(lu,−tu

k ). Obviously, the new score-limits remain feasible.
Finally, if no college can decrease its score-limit then the algorithm stops. The H-

stability (resp. L-stability) of the final score-limits is obvious by definition. Let us denote
the corresponding solutions of the H-stable and L-stable versions by lHC and lLC , respectively.

Applicant-oriented algorithms:

Let each applicant propose to her first choice in her list. If a college receives more appli-
cations than its quota, then let its score-limit be the smallest value such that the number
of provisionally accepted applicants does not exceed its quota (resp. may exceed the quota
but only if without the last tie of these students the quota is unfilled). We set the other
score-limits to be 0.

Let the score-limits after the k-th stage be lk. If an applicant has been rejected in the
k-th stage, then let her apply to the subsequent college in her list, say cu, where she achieves
the actual score-limit lk(cu), if there remains such a college in her list. Some colleges may
receive new proposals, so if the number of provisionally accepted applicants exceeds the
quota at a college (resp. exceeds the quota and without the last tie of these students the
quota is still filled), then it sets a new, higher score-limit lk+1(cu).

Again, for each such college cu, this is the smallest score-limit such that the number of
applicants offered a place by cu does not exceed its quota (resp. may exceed the quota but
only if without the last tie of these students the quota is unfilled), by supposing that all
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other score-limits remained the same. This means that cu rejects all those applicants that
do not achieve this new limit.

The algorithm stops if there is no new application. The final score-limits are obviously
H-feasible (resp. L-feasible). The solution is also H-stable (resp. L-stable), because after
a score-limit has increased for the last time at a college, the rejected applicants get less
preferred offers during the algorithm. So if the score-limit in the final solution were decreased
by one for this college, then these applicants would accept the offer, and the solution would
not remain H-feasible (resp. L-feasible). Let us denote the corresponding solutions by the
H-stable and L-stable applicant-oriented versions by lHA and lLA, respectively. The following
result is therefore immediate.

Theorem 3.1. The score-limits lHC and lLC obtained by the college-oriented score-limit al-
gorithms are H-stable and L-stable, respectively. The score-limits lHA and lLA obtained by the
applicant-oriented score-limit algorithms are H-stable and L-stable, respectively.

4 Optimality of the outputs

It is easy to give an example to show that not only some applicants can be admitted by
preferred places in lHA as compared to lHC , but the number of admitted applicants can also
be larger in lHA (and the same applies for the L-stable setting). We say that score-limits l
are better than l∗ for the applicants if l ≤ l∗, i.e., if l(cu) ≤ l∗(cu) for every college cu. In
this case every applicant is admitted to the same or to a preferred college under score-limits
l than under l∗.

Theorem 4.1. Given a college admission problem with scores, lHC are the worst possible
and lHA are the best possible stable score-limits for the applicants, i.e. for any H-stable
score-limits l, lHA ≤ l ≤ lHC holds.

Proof. Suppose first for a contradiction that there exists a H-stable score-limit l∗ and a
college cu such that l∗(cu) > lHC (cu). During the college-oriented algorithm there must be
two consecutive stages with score-limits lk and lk+1, such that l∗ ≤ lk and l∗(cu) > lk+1(cu)
for some college cu.

Obviously, lu,−tu

k (cu) = lk+1(cu) by definition. Also, xu(lu,−tu

k ) ≤ qu < xu(lu,−1
∗ ), where

the first inequality holds by definition of tu, as we choose the new limit for college cu such
a way that the number of temporarily admitted applicants does not exceed its quota. The
second inequality holds by the H-stability of l∗. So there must be an applicant, say a1, who
is admitted to cu at lu,−1

∗ but not admitted to cu at lu,−tu

k .

On the other hand, the indirect assumption implies that lu,−tu

k (cu) = lk+1(cu) ≤ l∗(cu)−
1 = lu,−1

∗ (cu). Applicant a1 has a score of at least lu,−tu

k (cu), which is enough to be accepted

to cu, so she must be admitted to some college cv under lu,−tu

k (cu) which is preferred to cu.
Obviously a1 must be also admitted to cv under lk. But the H-stability of l∗ implies that
l∗(cv) > lk(cv), a contradiction.

To prove the other direction, we suppose for a contradiction that there exists H-stable
score-limits l∗ and a college cu such that l∗(cu) < lHA (cu). During the applicant-oriented
algorithm there must be two consecutive stages with score-limits lk and lk+1, such that
l∗ ≥ lk and l∗(cu) < lk+1(cu) for some college cu. At this moment, the reason for the
incrementation is that more than qu students are applying for cu with a score of at least
l∗(cu). This implies that one of these students, say ai, is not admitted to cu under l∗
(however she has a score of at least l∗(cu) there). So, by the H-stability of l∗, she must be
admitted to a preferred college, say cv under l∗. Consequently, ai must have been rejected
by cv in a previous stage of the algorithm, and that is possible only if l∗(cv) < lk(cv), a
contradiction.
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Theorem 4.2. Given a college admission problem with scores, lLC are the worst possible
and lLA are the best possible L-stable score-limits for the applicants, i.e. for any L-stable
score-limits l, lLA ≤ l ≤ lLC holds.

Proof. Suppose first for a contradiction that there exist stable score-limits l∗ and a college
cu such that l∗(cu) > lLC(cu). During the college-oriented algorithm there must be two
consecutive stages with score-limits lk and lk+1, such that l∗ ≤ lk and l∗(cu) > lk+1(cu) for
some college cu.

This assumptions imply that xu(lu,−tu+1
k ) < qu ≤ xu(l∗). Here, the first inequality holds

by the L-feasibility of lk+1, and the second inequality by the L-stability of l∗. At the same
time, by our assumption, l∗(cu) > lk+1(cu), so l∗(cu) ≥ lk+1(cu) + 1 = lu,−tu+1

k (cu).
From the two above statements it follows that there must be an applicant, say a1, who

has a score su(a1) ≥ l∗(cu) and is admitted to cu under l∗, but is not admitted to cu under
lu,−tu+1
k . So a1 must have a seat at some college cv under lu,−tu+1

k such that cv >a1 cu.
Obviously, a1 is also admitted to cv under lk. But a1 is not admitted to cv under l∗, therefore
lk(cv) < l∗(cv), a contradiction.

To prove the other direction, we suppose for a contradiction that there exist stable score-
limits l∗ and a college cu such that l∗(cu) < lLA(cu). During the applicant-oriented algorithm
there must be two consecutive stages with score-limits lk and lk+1, such that l∗ ≥ lk and
l∗(cu) < lk+1(cu) for some college cu.

At this moment, the reason for the incrementation is that more than qu students are
applying for cu with score at least l∗, and cu can choose a new score-limit lk+1(cu) =
lu,−tu

k (cu), where tu > l∗(cu) − lk(cu).
This implies that one of those students, who are admitted by cu under lk+1, say a1, is

not admitted to cu under l∗. However she has a score higher than score-limit l∗(cu) there.
So, by the L-stability of l∗, she must be admitted to a preferred college, say cv, under l∗.
Consequently, in the applicant-proposing procedure a1 must have been rejected by cv at
some previous stage, and that is possible only if l∗(cv) < lk(cv), a contradiction.

5 Comparison of the H-stable and L-stable versions

Intuitively it seems that the L-stable version of the algorithm is more applicant-friendly
than the H-stable version. It turns out that we can prove the following result.

Theorem 5.1. The score-limits obtained in the L-stable version of the applicants-oriented
procedure are always equal or lower than the score-limits obtained in the H-stable version of
the applicant-oriented procedure: i.e. lLA ≤ lHA .

Proof. Part I. Some colleges may have number of admitted students less than or equal to
their quota under lHA , i.e. qu −xu(lHA ) ≥ 0. Each college cu has a ”waiting” list of applicants,
who would prefer to be admitted to cu rather than to their currently assigned colleges.

Let us apply some random tie-breaking to the original preference relation of the colleges.
Each applicant ai will get a new score pi

u ≥ si
u such that no two applicants will have the same

score at any college. Moreover, the new scores satisfy the following condition: if sj
u < si

u,
then pj

u < si
u. These pi

u scores are positive real numbers. For example, if there are three
applicants with scores s1

u = s2
u = 1, s3

u = 2, the new scores might be p1
u = 1, p2

u = 1.5,
p3

u = 2.
After that the following procedure is organized. If the number of applicants on cu

college’s waiting list is more than the number of empty seats then college cu sets it’s new
score-limit mH

A (cu) ≤ lHA (cu) equal to the score pi
u of the last admitted applicant in its
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waiting list. Otherwise let mH
A (cu) = 0. Note that the new score-limits mH

A are non-
negative real numbers. This means that each college make offers to applicants from its
waiting list who fit the new score-limit.

Some applicants may receive more than one proposal. Each applicant accepts one, from
the most preferred college, and rejects the others. If there remain any empty seat in colleges
then the second step is organized in the same manner and so on. Thus essentially we
run a college-proposing deferred-acceptance procedure with regard to the new scores. At
the end of this procedure some new score-limits mR are achieved such that mR ≤ lHA by
construction. These new score-limits mR and the corresponding matching µR are stable (in
the Gale-Shapley sense) according to new strict preferences of colleges, also by construction.

Part II. For the strict preference profile and corresponding scores pi
u from Part I we

can organize applicant-proposing deferred acceptance procedure (which is, in case of strict
preferences, equivalent to both the H-stable and L-stable applicant-oriented algorithms).
The resulting matching µR

A is, of course, stable under strict preferences. Furthermore, we
can define score-limits mR

A that are equal to the score of the last accepted applicant if college
has no empty seats and to 0 otherwise. These score-limits mR

A must be the lowest among
all stable score-limits by the optimality theorem of Gale and Shapley. Therefore mR

A ≤ mR

in particular.
Part III. Now we deal with mR

A score-limits. Let us get back to the original weak order
preferences of the colleges and corresponding applicants’ scores si

u. For each college with
xu(lRA) = qu we can construct a ”waiting” list of applicants, who prefer college cu to their
current matches under mR

A.
Let us now apply the L-feasibility concept. At the first stage each college sets it’s new

score-limit lRA(cu) ≤ mR
A(cu), that is the largest value, which allows to admit equal or more

than the quota under weak order preferences as L-feasibility prescribes. For example, if
there are two applicants with the same score si

u, such that one of them is admitted to cu

under mR
A and the other is on the waiting list then we have to ’treat them equally’, so we

should lower the score-limit. Each college makes offers to these additional applicants.
Some applicants may receive more than one offer from colleges; in this case each applicant

chooses the most preferred college. After that if there is any college with number of admitted
applicants less than its quota then a new round starts. Each college chooses new, lower,
L-feasible limit, and so on. That is we run the college-proposing score-limit procedure
under L-stability. At the end, some new score-limits lL are achieved such that lL ≤ mR

A by
construction. These new score limits are L-feasible and L-stable, obviously.

Part IV. For each L-stable score-limit lL we know that lLA ≤ lL from Theorem 4.2, where
lLA are stable score-limits obtained by the L-stable applicant-oriented algorithm.

Now we can construct the following inequalities: lLA ≤ lL ≤ mR
A ≤ mR ≤ lHA . So we can

conclude that for any college admissions problem with score-limits the outcome by the L-
stable applicant-oriented algorithm is better for the applicants (i.e. yields lower score-limits)
than the outcome of the H-stable applicant-oriented algorithm.

Theorem 5.2. The score-limits obtained in the L-stable version of the college-oriented
procedure are always equal or lower than the score-limits obtained in the H-stable version of
the college-oriented procedure: i.e. lLC ≤ lHC .

Proof. Part I. Let us consider the lLC score-limits. Some colleges may have number of
admitted students more than or equal to their quota, xu(lHC ) ≥ qu.

Let us apply a random tie-breaking to the original preference relation of the colleges.
Each applicant ai gets a new score pi

u ≥ si
u such that no two applicants have the same score

at any college, and these new scores do not contradict with the original ordering. Moreover,
if sj

u < si
u, then pj

u < si
u). These pi

u scores are positive real numbers.
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After that the following procedure is organized. At the first stage each college sets its
new score-limit mL

C(cu) ≥ lLC(cu) such that according to the new scores pi
u the number of

applicants who fit this score-limit would be exactly qu. The new score-limits mL
C are non-

negative real numbers. Let mL
C(cu) be equal to 0 if the number of students admitted to

cu is less than cu’s quota and otherwise let mL
C(cu) be equal to the lowest score pi

u of any
admitted student.

Some applicants are rejected from colleges they were assigned under lLC . Each rejected
applicant then applies to the subsequent college in her list. Colleges receive new applications
and, if necessary, raise the limits so that number of accepted applicants are equal to their
quota. Some new applicants may be rejected, so a second round is organized in the same
manner and so on. Thus we run an applicant-proposing deferred-acceptance procedure with
respect to the perturbed strict preferences. At the end, some new score-limits mR are
obtained such that mR ≥ lLC by construction. These new score-limits are stable (in the
Gale-Shapley sense) according to the new strict preferences of colleges by construction.

Part II. For strict preference profile and corresponding scores pi
u from Part I we can

organize a college-oriented deferred-acceptance procedure. The resulting score-limits mR
C

are, of course, stable according to these strict preferences. Furthermore, the corresponding
score-limits must be the lowest among all stable score-limits [12]. So, mR

C ≥ mR.
Part III. Now we deal with mR

C score-limits. For each college cu, xu(lRA) ≤ qu holds under
mR

C . Each college cu with number of assigned students lower than its quota has score-limit
lRA(cu) = 0. Now we get back to the original weak order preferences of the colleges and
original applicants’ scores si

u.
Let us now apply the H-feasibility concept. For each college we can construct a list

of applicants, who prefer college cu to their current matches under mR
C . After that the

following deferred acceptance procedure is organized. At the first stage each college sets it’s
new score-limit lRC(cu) ≥ mR

C(cu) that is the smallest value, which allows to admit equal or
less than the quota under weak order preferences as H-feasibility prescribes. Therefore some
colleges may reject applicants. Each rejected applicant applies to the next college in her list.
Colleges receive new applications and, if necessary, raise their score-limits in such a way that
the number of accepted applicants is less than or equal to their quota. Some applicants may
be rejected and a second round is organized in the same manner and so on. Thus we run
an applicant-proposing deferred-acceptance procedure with regard to H-stability. At the
end, each applicant is either accepted to some college or rejected by all acceptable colleges.
Some new score-limits lH are achieved such that lH ≥ mR

C by construction. These new
score-limits are H-feasible and H-stable, obviously.

Part IV. For each H-stable score-limit lH we know that lHC ≥ lH from theorem 4.1, where
lHC is a H-stable score-limit obtained by the applicant-oriented score-limit algorithm.

Now we can construct the following inequalities: lLC ≤ mR ≤ mR
C ≤ lH ≤ lHC . So we

can conclude that for any college admissions problem with score-limits the outcome by the
L-stable college-oriented algorithm is better for the applicants (i.e. yields lower score-limits)
than the outcome of the H-stable college-oriented algorithm.

Corollary 1. Applicant-optimal H-stable and L-stable scorelimits (lHA and lLA) are upper
and lower bounds (respectively) for scorelimits under any Pareto-optimal stable matching
with random tie-breaking.

6 Strategic issues

Here we give two examples showing that neither of the above described score-limit algorithms
is strategy-proof. The manipulability from the applicants’ side is only interesting in the case
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of applicant-oriented algorithms, as the applicants may successfully manipulate the college-
oriented versions even for strict preferences (i.e., for scores with no ties). Therefore we only
consider the applicant-oriented versions in the examples below.

Example 1. Suppose that we have two colleges, cu and cv with one seat in each of them,
and two applicants s1 and s2 applying to both cu and cv with a preference towards cu and
with equal scores at both places. So the preference list of the colleges and students are as
follows.

a1 : cu, cv cu : (a1, a2)
a2 : cu, cv cv : (a1, a2)

Figure 1: An example for the manipulability of the H-stable applicant-proposing algorithm

Here the only stable solution is the empty matching (i.e., score-limits higher than the
scores of a1 and a2 at both colleges). However, if either of the students, say a1 withdraws her
application at cu then the unique H-stable solution (under falsified preferences) is matching
where a1 is allocated to cv and a2 is allocated to cu. So the manipulator (and actually the
other student also) would improve.

The following example is essentially the same as the one that Hatfield and Milgrom [13]
constructed in a different setting but for a similar purpose.

Example 2. Suppose that we have two colleges, cu and cv with one seat in each of them,
and three applicants a1, a2 and a3 applying to both cu and cv with the following scores,
s1

u = 1, s2
u = 1, s3

u = 2, s1
v = 3, s2

v = 2 and s3
v = 1. These can be described equivalently with

the preference lists below.

a1 : cu, cv cu : a3, (a1, a2)
a2 : cv, cu cv : a1, a2, a3

a3 : cv, cu

Figure 2: An example for the manipulability of the L-stable applicant-proposing algorithm

Here the only L-stable solution is the matching {(a1, cv), (a3, cu)} (i.e., with score-limits
l(cu) = 2 and l(cv) = 3). However, if a2 were to reverse her preferences with regard to
the two colleges then the L-stable applicant-oriented algorithm would produce the matching
{(a1, cu), (a2, cu), (a3, cv)}, where the manipulator (and actually both the two other appli-
cants) would improve.

7 Further notes

In this paper we studied the concept of stable score-limits for higher education admissions.
In particular we introduced and analyzed the notions of H-stability and L-stability when
ties occur, a situation currently present in the Hungarian scheme.

As future research, we would like to investigate the college admissions practices of other
countries, in particular those which have centralized systems based on score-limits. Re-
garding the Hungarian application, we would like to conduct an experiment with real data
and compute the four possible extreme stable score-limits, namely the applicant-optimal vs
applicant-pessimal score-limits under H-stability and L-stability. Finally, it would be also
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interesting to see how these concepts can be used in other settings, e.g. what could be the
corresponding solutions for the Boston and New York high school matching programs.

Regarding the theoretical problems, we would like to investigate whether there is any
structure behind the H-stable and L-stable score-limits. It would be also worth to study
further the relation of solutions satisfying equal treatment policy and those produced by
tie-breaking strategies. For instance, one may can show some intuitive statements such
that finer scoring methods lead to solutions ’closer’ to the stable matchings obtained by
tie-breaking strategies, and finer scoring methods are ’harder’ to manipulate.
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[7] P. Biró, T. Fleiner, R.W. Irving, and D.F. Manlove. College admissions with lower and
common quotas. Theoretical Computer Science, 411:3136–3153, 2010.
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Robust Winners and Winner Determination Policies
under Candidate Uncertainty

Craig Boutilier, Jérôme Lang, Joel Oren and Héctor Palacios

Abstract

We consider voting situations in which a group considers a set of options or candidates, but
where some candidates may turn out to be unavailable. If determining availability is costly
(e.g., in terms of money, time, or computation), it may be beneficial for the group to vote prior
to determining candidate availability, and only test the winner’s availability after the vote.
However, since few voting rules are robust to candidate deletion, winner determination usually
involves a number of such availability tests. We outline a model for analyzing such problems.
We define robust winners relative to potential candidate unavailability, a notion that is tightly
related to control by candidate addition. Then assuming a distribution over availability and
costs for availability tests (or queries), we define an optimal query policy for a vote profile
to be one with minimal expected query cost that determines the true winner. We describe a
dynamic programming algorithm for computing optimal query policies, as well as a myopic
heuristic approach using information gain to choose queries. Finally, we outline a number of
theoretical and practical questions raised by our model.

1 Introduction
There are many social choice situations in which members of a group may need to specify their
preferences over a set of alternatives or candidates without knowing whether any specific candidate
is in fact viable or available for selection. Lu and Boutilier [12] propose the unavailable candidate
model for studying situations in which potential winners are approached sequentially and the first
available candidate is the winner (e.g., consider a hiring committee deciding on the order in which
to make job offers, knowing that candidates may refuse). In this paper, we consider a more flexible
situation in which determining candidate availability is costly, but does not commit one to selecting
the first available candidate as the winner.

In our setting, voting over the set of potential candidates prior to determining availability can
often make sense. For example, a group of friends deciding on a restaurant may attempt to (perhaps
partially) determine their aggregate preferences prior to calling (or walking to) restaurants to find
out if reservations are possible. A legislative body deciding amongst various public projects may
vote prior to knowing their precise financial costs, since the process of budgeting—with engineering
estimates, environmental impact studies, etc.—is itself costly. In an AI planning context, a group
may vote on the collection of goals to pursue prior to knowing their feasibility, since determining
the feasibility of any specific goal set involves solving a computationally difficult problem. In each
of these cases, having some idea of who might potentially win an election can narrow the set of
availability tests that need to be performed, hence the financial, time or computational cost of deter-
mining the true winner. But since almost no practical voting rules are robust to candidate deletion,
reliably declaring a winner requires making some availability tests.

In this paper, we describe a model for addressing such problems, identify a number of key con-
cepts and interesting computational questions that arise in this model, and make some first steps
toward solving them. In rough outline, our model assume a set of potential candidates X , voter
preferences over X in the form of a vote profile v, and some voting rule r. Since candidate avail-
ability is uncertain, we assume some distribution P over subsets ofX , where P (A) is the probability
of A being the true available set, and we assume that each candidate x can be queried, for a cost,
to determine its availability. Our aim is to determine the winner r(v↓A) of the election (where v↓A
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is the restriction of v to available candidates) in a way that minimizes expected query cost (e.g.,
number of phone calls, planning problems to be solved, etc.).

To this end, we are primarily interested in query policies that propose a (conditional) sequence,
or tree, of queries designed to determine enough information about the available set A to declare a
winner. Notice that we need not know A precisely to determine the winner of an election. Given
responses to some set of queries, we know that some candidates Q+ ⊆ X are available, and some
Q− ⊆ X are not. Relative to such an information set 〈Q+, Q−〉, we say x is a robust winner
if r(v↓A) = x for any Q+ ⊆ A ⊆ X \ Q−. In other words, this information set is sufficient
to determine the winner regardless of the availability of the remaining candidates (e.g., if x is a
majority winner in a plurality election, the status of other candidates is irrelevant if x is available).
The problem of determining a robust winner has very tight connections to the problem of control by
candidate addition [2], as we discuss in Sec. 3.

Query policies need only ask enough queries to determine a robust winner. While computing
robust winners can be computationally difficult for some voting rules, our primary concern is min-
imizing query costs, which are much more important than winner determination costs. In Sec. 4
we formulate the query problem as one of constructing a minimal cost decision tree over features
corresponding to the availability of specific candidates, and whose goal is to classify available setsA
according to their winners. We describe a (relatively) inexpensive dynamic programming algorithm
for computing optimal query policies; but we also explore the use of standard decision tree induction
methods based on information gain [16] which are much more computationally tractable. We also
consider policies tuned to extreme availability probabilities. Finally, in Sec. 5 we outline a number
of interesting theoretical questions, some of which whose answers can have further practical impact
on the construction of optimal query policies.

2 Voting with Uncertain Candidate Availability
We first outline our model for winner determination with uncertainty in candidate availability and
briefly discuss relevant related work.

2.1 The Model and Decision Problem
We assume a set of n voters N and a set of m potential candidates X , with each voter i ∈ N having
a complete, strict preference ordering or vote vi over X , with vote profile v denoting the vector of
all votes. A voting rule r maps every profile to a (unique) winning candidate (we assume ties are
broken in some fashion). We consider rules such as plurality, Borda, and Copeland below, but our
framework is completely general. Given a profile v, let m(v) be its majority graph, and m(v)∗ the
transitive closure of m(v). To make things simpler, we assume an odd number of voters so that
m(v) is a tournament. The top cycle TC (v) of v is the set of all candidates x such that for all
y 6= x, (x, y) ∈ m(v)∗. TC (plus a tie-breaking mechanism) is also considered as a voting rule.
A voting rule r is Smith-consistent if r(v) ∈ TC (v) for any profile v. We assume that r can be
applied directly to profiles over arbitrary subsets of X: we use v↓A to denote the restriction of v
to candidates A, obtained by deleting elements of X \ A from each vote, and r(v↓A) to denote
the winner w.r.t. this restricted profile. We sometimes use the notation w(A) to denote this winner,
suppressing mention of r and v.

We now turn our attention to the possibility that certain candidates in X may be unavailable.
There are two natural ways to address this. First, we might first check the availability of all candi-
dates in X , and elicit votes over the set of available candidates A ⊆ X . This has the advantage of
minimizing vote elicitation costs: voters need not rank or compare unavailable candidates. However,
if testing the availability of candidates is itself costly, as discussed above, this may make far more
availability tests than needed given voter preferences.
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A second approach is to first elicit voter rankings over the entire set X , then use this information
to focus attention on “relevant” availability tests. This has the advantage of reducing the cost of
availability tests. This is most appropriate when such tests are costly relative to preference assess-
ment or elicitation, as in our examples above. Determining suitable tests is, nonetheless, far from
straightforward. One obvious approach is to use the voting rule r to rank candidates, test availability
in the order of this aggregate ranking, and select the first available candidate as the winner. However,
this assumes that the choice function implemented by voting rule r is rationalizable, which is rarely
the case. Consider the profile v with 4 votes abc, 3 votes bca and 2 votes cab. Ranking candidates
by their plurality score gives aggregate ranking abc. The policy above, once learning a is available,
would select a as the winner without further tests; but if we were to learn that b is unavailable and c
available, the true plurality winner for v↓{a,c} is c. This paradox arises since, under mild conditions,
no non-dictatorial voting rule is robust to the deletion of non-winning alternatives [4]. As a result,
choosing a winner usually requires confirming the availability of specific candidates.1 Furthermore,
minimizing the costs of such availability tests is non-trivial.

We model candidate availability as follows: we partition X into a (possibly empty) known set
Y ⊆ X of candidates that are sure to be available, and an unknown set U = X \ Y for which
availability is uncertain.2 Let A denote the family of subsets Y ⊆ A ⊆ X , where A ∈ A is a
possible available set. The general unavailable candidate model [12] requires a distribution P over
2U , where P (S) denotes the probability that S ⊆ U is the actual available set of candidates from
those in U . We assume for simplicity that the availability of each candidate x ∈ U is independent,
given by probability px. This induces the obvious distribution over the available sets A.

For any x ∈ U , we assume one can query x using some availability test to determine its avail-
ability (e.g., calling for a restaurant reservation, computing plan for some goal x), which incurs a
cost cx. Informally, a query policy (see Sec. 4) consists of a tree whose interior nodes are labeled
by queries, edges by availability, and leaves by winners. We desire policies that, given a profile
v, accurately determine the winner w.r.t. the actual available set A with minimum expected query
cost. After any sequence of queries and responses, we have refined information about the avail-
able set: an information set is an ordered pair Q = 〈Q+, Q−〉, where Q+ ⊆ U , Q− ⊆ U , and
Q+ ∩Q− = ∅; intuitively, Q+ (resp. Q−) is the set of queries (candidates) for which positive (resp.
negative) availability has been determined.

Clearly, winners can often be determined without full knowledge of candidate availability. In
our example above, knowing that a and b are available suffices to declare a the winner: availability
of c is irrelevant; knowing a is available and c is unavailable is also sufficient to select a.

Definition 1 Let r be a voting rule, v a profile over candidate setX , and Y ⊆ X a set of candidates
known to be available. We say that x ∈ Y is a robust winner w.r.t. 〈X,Y,v, r〉 if, for any A such
that Y ⊆ A ⊆ X , r(v(A)) = x.

Intuitively, a winner is robust if it not only wins in the original profile v, but continues to win no
matter which candidates inX \Y are deleted. In our setting, the existence of a robust winner relative
to the current information set is necessary and sufficient to stop any querying process. Specifically,
we say that information setQ is r-sufficient if there is a robust winner xw.r.t. 〈X\Q−, Y ∪Q+,v, r〉.
For any r-sufficient information set Q, let w(Q) denote this (unique) robust winner.

2.2 Related Work
Lu and Boutilier [12] study a setting where the set of available candidates is unknown at the time of
voting, and assume a distribution over available sets A as we do. Unlike our model, they assume a’s
availability cannot be tested without “offering it the win,” hence focus on computing optimal ranking

1At a minimum, one might require that the winner itself be available, but we consider exceptions to this below.
2If any candidates are known to be unavailable a priori, we remove them from set X .
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policies, as discussed above (see also Baldiga and Green [1] who develop a related availability model
with different motivations). Wojtas and Faliszewski [19] also consider candidates with uncertain
availability in a counting version of control by adding candidates (see below), a problem that is
closely related to ours. Their input consists of a subset of candidates Y known to be available, a
distribution over subsets of X \ Y , and votes over X; given a fixed voting rule, they consider the
complexity of computing the probability that a given candidate is the winner.

Considerable recent research, starting with Chevaleyre et al. [3], studies a variant of the possible
winner problem where the candidate set is not known at the time of voting, but take the opposite
perspective to ours. A lower bound on the candidate set is known initially, and new candidates
may join after preferences for the initial set have been elicited. Efficient preference elicitation (as
opposed to availability testing) protocols are developed to identify the winner.

Our model is also strongly related to control via adding candidates [2, 10], in which the initial
candidates can be augmented by set of “spoiler” candidates, and a chair, with perfect knowledge
of the votes, attempts to find a subset of spoiler candidates whose addition makes her preferred
candidate win. We develop the connections to our model further in Sec. 3. Rastegari et al. [17]
also look for optimal knowledge-gathering policies in a social choice context, although their setting
and assumptions differ from ours. Their goal is to find a stable matching (e.g., between companies
and job applicants), and knowledge-gathering actions (e.g., interviews of applicants) are intended to
reduce uncertainty in the agents’ rankings (e.g., a company’s assessment of an applicant).

3 Computing Robust Winners
We first consider the problem of identifying or verifying robust winners given some available set. If
x is a robust winner w.r.t. 〈X,Y,v, r〉, it must meet two obvious necessary conditions: x ∈ Y and
x = r(v) (obtained by setting A = Y and A = X). We have the following key result:

Proposition 1 Let r be a voting rule, v a profile over X , and Y ⊆ X a set of available candidates.
Candidate x is a robust winner w.r.t. 〈X,Y,v, r〉 iff there is no destructive control against x by
adding candidates, where the spoiler set is U = X \ Y .

The proof is immediate: the chair has a destructive control against x via adding candidates iff there
is a spoiler set S ⊆ U such that r(v↓Y ∪S) 6= x (i.e., x is not a robust winner). Since the robust
winner problem is equivalent to the complement of the problem of DESTRUCTIVE CONTROL BY
ADDING CANDIDATES, results in the literature on election control directly determine the complexity
of checking the existence of robust winners for several voting rules: it is coNP-complete for plurality
[2, 10], Bucklin [5] and ranked pairs [15]; and it is polynomial for Copeland [6] and maximin [7].
The latter two results come with efficient algorithms for the robust winner problem. These results
suggest that the problem tends to be simpler for voting rules that are based on the (unweighted or
weighted) majority graph, because majority preference between two candidates x, y does not depend
on the availability of other candidates. We provide a simple characterization of robust winners for
the top cycle rule (recall that we assume n odd):

Proposition 2 Let r be the top cycle rule. Candidate x is a robust winner w.r.t. 〈X,Y,v, r〉 iff, for
all y ∈ X , there is a path from x to y in m(v) that goes only through candidates in Y .3

As a corollary, checking whether x is a robust winner can be done in polynomial time.
Another interesting notion is that of an irrelevant candidate, which can be exploited in comput-

ing both robustness and optimal query policies (Sec. 4).

Definition 2 Let v be a profile over X , x ∈ X , Y ⊆ X \ {x} be the known available candidates,
and r a voting rule. Candidate x is irrelevant w.r.t. 〈v, Y, r〉 if for any A ⊆ X \ (Y ∪ {x}), we have
r(v↓Y ∪A∪{x}) = r(v↓Y ∪A).

3Proofs of results omitted for space reasons can be found in a longer version of the paper.
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Figure 1: A plurality-sufficient query policy for vote profile shown.

Notice that if x is irrelevant for Y , we need not consider the availability of x when testing the
robustness of any candidate inX \(Y ∪{x}) w.r.t. Y (or any superset of Y ). Similarly, in any policy
for determining winners, an availability test for an irrelevant x is useless once Y (or any superset) is
known to be available, a fact we can exploit below. We have the following simple characterization
of irrelevant candidates for a rich class of voting rules—informally, it says that once we know that at
least one candidate in the top cycle is available, removing any candidate that is not in the top cycle
cannot impact the choice of winner.

Proposition 3 Let r be a voting rule satisfying the following property: for any profile v, if x /∈
TC (v) then r(v↓X\{x}) = r(v). For any v, any Y ⊆ X s.t. Y ∩ TC (v) 6= ∅, and any x ∈
X \ TC (v), x is irrelevant w.r.t. 〈v, Y, r〉.

Prop. 3 applies, in particular, to the top cycle, Copeland, Slater and Banks rules.

4 Minimizing Expected Query Cost
We now consider the problem of computing optimal query policies that determine enough informa-
tion about candidate availability to be able to declare a (robust) winner. We formulate the problem
as one of cost-sensitive decision tree construction, present some experiments comparing the perfor-
mance of myopic heuristics to optimal dynamic programming, and discuss a number of interesting
theoretical and practical directions for future research.

4.1 Optimal Query Policies
A query policy is a binary decision tree T in which each non-leaf node n is labeled by a query q(n) ∈
U , the two outgoing edges from non-leaf node n are labeled by responses yes (or “available”) and
no (or “unavailable”), and each leaf l is labeled by an element w(l) ofX (the proposed winner given
the query-response path to l). Let yes(n) and no(n) denote the yes/no successors of node n in T .
Any path from the root of T to a leaf l induces the obvious information set Q(l) = 〈Q+(l), Q−(l)〉.
A policy/tree T is r-sufficient w.r.t. v if: (a) the information set Q(l) for each leaf l is r-sufficient;
and (b) each leaf l is labeled with the robust winner w(Q(l)). For any A ∈ A, let l(A) denote the
(unique) leaf that will be reached when responses are dictated by A, and π(A) the corresponding
path. Fig. 1 shows a vote profile and an r-sufficient tree for plurality voting.

The query cost of a (complete) path π in T is c(π) =
∑
x∈π c(x), i.e., the sum of the costs of

the queries on π. The expected query cost c(T ) of policy T is simply EA∼P c(π(A)). This can be
computed in bottom up fashion as follows, with c(T ) being the cost of the root of T .

c(l) =0 for leaf l;
c(n) =cq(n) + pq(n)c(yes(n)) + (1− pq(n))c(no(n)) for non-leaf n.
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If all candidates are available with probability p = 0.9, the tree in Fig. 1 has an expected query cost
of 2.10. Our aim is to find a minimal cost, r-sufficient (i.e., optimal) policy T :

argmin{c(T ) : T is r-sufficient for v}.

The problem of computing a minimal cost policy can be cast as a standard decision tree con-
struction (or induction) problem [16]. We can view every available set A ∈ A as a training example
labeled with its winner w(A). We encode A using a binary feature vector f(A), where each feature
corresponds to the presence or absence of a specific candidate in U , and label it with associated
probability P (A). Thus our initial set of training examples is simply

{〈A,w(A), P (A)〉 : A ∈ A},

where each A is encoded by a binary feature vector of length |U |.
Clearly the set of training examples has exponential size, requiring winner computation for ex-

ponentially many “elections” (of various sizes). Even if winner determination for a fixed candidate
set is easy (i.e., polynomial time) for the voting rule in question, simply constructing the inputs for
DP (or our myopic decision tree approach to follow) will be difficult.4 We discuss ways to prune the
set of training examples below. Cost-optimal decision trees can be computed readily using dynamic
programming (DP) [8] or branch-and-bound [13]. For general binary classification, the (decision
variant of) the problem of computing optimal decision trees is NP-complete, even with uniform
probabilities and costs [11].5 However, given the importance of minimizing query costs, we believe
even intense computation will be worthwhile.

Standard DP for decision trees structures the problem by considering sets of training examples
E ⊆ E = 2A. A set E is pure if all examples in E are labeled with the same winner. The optimal
cost function c∗ for an arbitrary example setE ⊆ E is the cost of the optimal policy knowing initially
that the available set A lies within E:

c∗(E) =

{
0 if E is pure
minq∈U p(q+|E)c∗(E+

q ) + p(q−|E)c∗(E−q ) + cq if E is not pure

Since c∗(E) depends only on the optimal optimal costs for subsets ofE, DP can be used, computing
optimal costs for smaller sets before larger ones.

Naı̈ve DP is doubly exponential in the size of the candidate set U : |E| = 2|A| = 22
|U|

. But the
structure in our problem gives us very restricted subsets of training examples. First, observe that
example set E0 at the root consists of all subsets A (i.e., E0 = A). Second, every query-response
path of length k gives a set E equal to E0 restricted to the instantiation of k queries, i.e., the set of
feature vectors where k positions are fixed to some k-bit vector, and all 2|U |−k instantiations of the
remaining |U | − k features are present. Thus the only realizable sets E have size 2|U |−k, for some
0 ≤ k ≤ |U |, and each such E has the form described above. Hence, the number of “reachable”
example sets required for DP is exponential rather than doubly exponential:

|U |∑

k=0

2k
(|U |
k

)
= 3|U |.

Thus the optimal query policy can be computed in O(3|U |) time for any profile and any voting rule.
The DP approach is generic and exploits no structure at all in the profile, nor any special proper-

ties of the voting rule itself. An important research direction is the refinement of the DP algorithm
for specific voting rules in a way that could (perhaps drastically) prune the subsets A that need to be
explicitly considered. For example, for rules such as top cycle, Copeland, Slater and Banks, Prop. 3

4Indeed, it will be NP-hard in general; we thank one of the reviewers for this observation.
5We are exploring reductions to confirm the complexity of our problem, which we believe to be PSPACE-complete.
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allows us to “collapse” potentially large numbers of candidate subsets—those that vary only in the
availability of “irrelevant candidates”—and treat them as a single training example with a unique
winner. Similarly, rules that satisfy the “majority winner property”—i.e., if a candidate is in the
first position of the majority of votes, it must win—allows significant pruning as well: in any subset
Y with such a majority winner x, x’s availability renders all remaining candidates irrelevant. This
type of pruning has two direct benefits: it reduces both the (explicit) set A (i.e., number of training
examples), and the number of subsets E of A that must be considered (as we discuss below).

4.2 Myopic Query Tree Construction
Because of the NP-hardness of optimal decision tree construction in general, and the exponential
complexity of DP in particular, the machine learning community has considered heuristic, myopic
approaches to decision tree induction, one of the most popular being C4.5, which is based on infor-
mation gain [16]. Extensions to cost-sensitive classification have been considered as well [9, 18],
and such schemes can be adapted to our setting easily. We now outline such an approach.

For any set of training examples E ⊆ E , define w(E) to be the set of winners w(A) that occur
in some example A ∈ E. Let pE(x) =

∑{P (A) : A ∈ E,w(A) = x} be the probability that x
wins in training set E. The entropy of E is

H(E) =
∑

x∈w(E)

−pE(x) log pE(x).

A split of E on a feature (i.e., candidate, query) q partitions E into those examples E+
q ⊆ E where

q is available, and E−q ⊆ E where q is not. The conditional entropy of training set E given q is:

H(E|q) = p(q+|E)H(E+
q ) + p(q−|E)H(E+

q ).

We define the information gain associated with query q to be:

IG(E|q) = H(E)−H(E|q).

Myopic decision tree construction proceeds as follows. We first initialize the tree with a single
leaf (root) node n0 and associate with n0 the set E0 = A all labeled training examples. Then we
repeat the following operations on unprocessed nodes until no nodes are unprocessed. Let n be an
unprocessed node and E(n) be its associated training set:

1. If n is pure, designate it processed; label it with its (unique) winner (it now becomes a leaf).

2. If n is not pure, then:

(a) For each (non-redundant) feature split q ∈ U , compute its information gain IG(E(n)|q).
(b) Split n using the query q with maximum information gain, creating children: n+q =

yes(n) on the yes edge, associated with examples E+
q ; and n−q = no(n) on the no

edge, associated with examples E−q .

(c) Designate n processed, and n+q and n−q unprocessed.

Processing of any node is linear in the number of training examples at a node, hence the com-
plexity of myopic decision tree induction is linear in (a possibly pruned) A and the size of the
resulting tree. SinceA has size 2|U | in the worst case (if unpruned), complexity of myopic induction
is O(2|U |), i.e., significantly more efficient than optimal tree construction using DP (which has un-
pruned complexityO(3|U |)). This improved efficiency comes at a price, since the use of information
gain is not guaranteed to result in a policy with minimal expected query cost. However, we expect
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it to work well in practice; and it is guaranteed to provide a correct policy (i.e., one that determines
the true winner).

If we are willing to live with potential error in the declaration of the winner, other forms of
approximation can be considered in constructing the policy. We describe two here, but leave their
detailed investigation to future research. The approaches above ensure we always obtain the correct
winner, since the policy tree has only pure leaves (i.e., all candidate sets A at a leaf have the same
winner). One form of approximation is to terminate the querying process at impure leaves, requiring
only that we be “sure enough” about the identity of the winner, and predicting a winner despite this
residual uncertainty. This is analogous to cost-sensitive classification [9, 18], where both tests and
and prediction errors have costs. In our setting, we have two distinct types of misclassification er-
rors/costs: (a) if we predict/choose a winner who turns out to be unavailable; (b) if we predict/choose
a winner that is available, but is not the true winner given the actual (unknown) available set. In gen-
eral, we expect the former to be much worse than the latter.6 An important research direction will
be to to modify the query policy algorithms so these costs are taken into account.

Another important approximation, which can help reduce the number of training examples and
render myopic decision tree construction fully tractable, is to build the tree using sampled avail-
ability sets, where training examples A are drawn from the distribution P over A. With a constant
number of sampled sets, decision tree induction becomes linear in the number of candidates and size
of T . Sample complexity results then become an important research direction [9].

4.3 Extreme Availability Probabilities
When candidate availability probabilities are extreme, i.e., close to close to 1 or 0, constructing opti-
mal query policies becomes much easier. Assume px = p for all x and all query costs are identical.
We first consider the case where p is very close to 1, reflecting settings where an unavailable candi-
date would be exceptional. Let p = 1 − O(ε). Consider the following query policy Extreme(v),
which (informally) proceeds as follows. We initialize the potential set X to contain all candidates,
the known set Y = ∅, and the current winner w = r(v). We then repeat the following steps:

1. look for a minimum-cardinality subset Z of X \ Y such that w is a robust winner for Y ∪ Z
(note that Z must contain w if w is not known to be available);

2. check the availability of all candidates in Z;

3. if all candidates in Z are available, stop and output w;

4. if not, remove the unavailable candidates from the profile v, recompute w = r(v), and go
back to step 1.

As an example, let r be plurality and consider the profile v shown in Fig. 1. The (initial) current
winner r(v) is a. We then have Z = {a, b}. Under our extreme availability assumption, with
high probability we will learn that both a and b are available, in which case we stop and output a.
However, suppose that we learn a is available but b is not. We would then replace v by v↓{a,c,d,e},
giving a new current winner c, and Z = {c}. After checking Z, suppose we learn c is not available;
we then replace v by v↓{a,d,e}, giving new current winner a, and Z = ∅: we stop and output a.

It is not hard to show that Extreme(v) terminates, and returns the true winner r(v↓A) for the
actual available set A, provided at least one candidate is actually available. Now suppose Y ⊆ X is
a smallest (cardinality) set of candidates such that r(v) is a robust winner for Y , and |Y | = k. Then
we have that the expected cost of the policy is k + O(ε). We can also show that any query policy
must have this expected cost:

6For instance, going to a restaurant without confirming availability, then arriving to find out it has no space, is worse than
going to that same restaurant having obtained a reservation and then finding out another restaurant might have been preferable
because some others became unavailable.
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Figure 2: Probability an available naı̈ve winner is the true winner.

Lemma 1 Any r-sufficient query policy has an expected query cost of at least k −O(ε).

Proof: With probability p|X|, all candidates are available. When all candidates are available, x =
r(v) is the true winner, and to verify it we must check the availability of k−1 other candidates (this
being the smallest size set that admits a robust winner). Therefore, the expected cost of any query
policy is at least p|X| · k = k −O(ε). �

These facts together directly demonstrate the following:

Proposition 4 The policy Extreme(·) is asymptotically optimal as ε→ 0.

The opposite case, where all candidates are highly unlikely to be available, is much less inter-
esting: it is very likely that we must check the availability of all candidates—even then it is highly
likely that no candidate is available—and run the voting on the available set. The naı̈ve policy that
tests all candidates in advance of voting is (asymptotically) optimal.

4.4 Empirical Evaluation
We now describe some simple experiments designed to test the effectiveness of our algorithms for
computing query policies, and examine the expected costs of these policies for various voting rules,
preference distributions and availability distributions. In all of the experiments that follow, we gen-
erate vote profiles using Mallows distributions over rankings [14]. The Mallows model is a distribu-
tion over rankings given by a modal ranking σ over X and dispersion φ ∈ (0, 1]: the probability of
vote v is Pr(v|σ, φ) ∝ φd(r,σ), where d is Kendall’s τ -distance (each vote is drawn independently).
Smaller φ concentrates mass around σ while φ = 1 gives the uniform distribution, i.e., Mallows with
φ = 1 corresponds precisely to the impartial culture assumption. In all experiments, we consider
m = 10 candidates and n = 100 voters. We generate vote profiles for φ ∈ {0.3, 0.8, 1.0}, and con-
sider three different voting rules: plurality, Borda and Copeland. We consider various availability
probabilities p, which vary depending on the circumstance, but in all cases each candidate has the
same availability probability. Results for each problem instance (combination of voting rule, φ, p
combination) are reported as averages (and other statistics) over 25 randomly drawn vote profiles.

Before exploring the performance of query policies, we first measure the probability of error
(i.e., selecting an incorrect winner) associated with a naı̈ve policy which simply selects the naı̈ve
winner, r(v), without regard to candidate unavailability. Obviously, a lower bound on this error is
1− p, since the winner will be unavailable with that probability. Fig. 2 shows this error probability
conditional on the winner being available for the three voting rules considered, for different φ, as we
vary the availability probability p. For p near 1, the naı̈ve winner is, of course, almost always correct.
At the other extreme, when candidates are usually not available, the naı̈ve winner is usually correct
also, since it is highly likely to be the only available option. We see that when preferences are very
peaked (φ = 0.3), candidate deletion has little impact, since most voters rank all candidates very
similarly; but as preferences become more uniform—in particular, for impartial culture (φ = 1)—the
impact is dramatic, especially for plurality, and somewhat less so for Copeland. This suggests that
testing availability is important even for reasonably high availability probabilities. It is important to
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Figure 3: Expected query cost of decision trees for plurality using (a) dynamic programming and (b) the
information gain heuristic.

φ 0.3 0.8 1.0
p 0.3 0.5 0.9 0.3 0.5 0.9 0.3 0.5 0.9

Plur-DP 3.2 (3.2,3.2) 2.0 (2.0,2.0) 1.1 (1.1,1.1) 4.1 (3.2,5.2) 3.4 (2.0,5.4) 2.7 (1.1,5.4) 6.7 (5.9,7.6) 6.6 (4.9,7.4) 5.4 (2.4,7.9)
Borda-DP 3.2 (3.2,3.2) 2.0 (2.0,2.0) 1.1 (1.1,1.1) 3.7 (3.2,4.5) 2.7 (2.0,3.9) 1.7 (1.1,5.0) 5.4 (4.4,6.7) 4.8 (3.2,6.4) 3.3 (1.2,6.2)
Cope-DP 3.2 (3.2,3.2) 2.0 (2.0,2.0) 1.1 (1.1,1.1) 3.2 (3.2,3.6) 2.0 (2.0,2.5) 1.1 (1.1,1.3) 4.6 (3.4,5.9) 3.6 (2.1,5.6) 2.2 (1.1,4.5)

Plur-IG 3.2 (3.2,3.2) 2.0 (2.0,2.0) 1.1 (1.1,1.1) 4.1 (3.2,5.2) 3.5 (2.0,5.5) 2.8 (1.1,5.6) 7.0 (6.2,8.0) 6.9 (5.0,7.7) 5.6 (2.4,8.2)
Borda-IG 3.2 (3.2,3.2) 2.0 (2.0,2.0) 1.1 (1.1,1.1) 3.7 (3.2,4.6) 2.7 (2.0,3.9) 1.7 (1.1,5.0) 5.5 (4.5,7.0) 4.9 (3.2,6.7) 3.3 (1.2,6.2)
Cope-IG 3.2 (3.2,3.2) 2.0 (2.0,2.0) 1.1 (1.1,1.1) 3.2 (3.2,3.6) 2.0 (2.0,2.5) 1.1 (1.1,1.3) 4.7 (3.5,6.7) 3.7 (2.1,5.9) 2.2 (1.1,4.5)

Table 1: Avg. query cost (min, max) for optimal (DP) and myopic (IG) query policies.

realize that these plots give only a sense of the “degree of robustness” of a winner who is assumed
to be available, even for low p (where the odds of winner availability is low): as such, they do not
necessarily provide insight into the value of intelligent availability testing.

We now consider the expected number of queries required to determine the winner under the
scenarios described above (using the different values of φ) under three different availability prob-
abilities: p = 0.3, 0.5, 0.9. Fig. 3 plots expected query cost for plurality, using both dynamic
programming (which gives the optimal policy) and the myopic information gain heuristic, for all
nine parameter settings. The plots show average expected cost, standard error, and maximum and
minimum expected costs over 25 trials. The results for all three rules are shown in Table 1.

The first thing to notice is that, in most settings, the use of optimal query policies can offer
significant savings in availability tests relative to the standard approach of first testing the availability
of all ten candidates. We see that the myopic heuristic tends to produce trees with costs very close
to the optimum: even in the problems instances with the largest average gap (i.e., for plurality
with φ = 1), the myopically constructed trees have an expected cost of only 0.3 more queries than
optimal on average; in most cases, these trees are almost identical to the corresponding optimum.
This suggests that the more efficient myopic approaches will work well at minimizing availability
query costs in practice. Not surprisingly, we see strong (negative) correlations between query costs
and availability probability in all three voting rules. The query cost is also correlated with dispersion
φ: when φ is greater (more uniform) query costs are higher since preferences are more diverse. When
dispersion φ is low, given a fixed p, expected query cost is the essentially the same for each voting
rule, and the myopic algorithm produces virtually optimal policies (indeed, identical in cost to the
optimum up to the reported precision).

Table 2 shows the sizes of the decision trees that result when running both of our algorithms:
tree size is only indirectly related to expected query cost, since the relative balance of the trees also
impacts expected query costs. Nonetheless we see an expected correlation, though we notice that
plurality tends to result in larger trees, especially for φ = 1. We also see that the myopic trees
are not significantly larger than the optimal trees, though the differences in size are somewhat more
pronounced than the differences in expected query cost described above.
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φ 0.3 0.8 1.0
p 0.3 0.5 0.9 0.3 0.5 0.9 0.3 0.5 0.9

Plur-DP 9.0 (9,9) 9.0 (9,9) 9.0 (9,9) 52.0 (9,128) 49.6 (9,124) 57.0 (9,148) 233.8 (133,311) 221.2 (121,302) 249.6 (136,318)
Borda-DP 9.0 (9,9) 9.0 (9,9) 9.0 (9,9) 24.4 (9,61) 24.0 (9,57) 26.2 (9,63) 114.8 (42,209) 110.3 (41,197) 125.1 (44,226)
Cope-DP 9.0 (9,9) 9.0 (9,9) 9.0 (9,9) 10.3 (9,19) 10.3 (9,19) 10.3 (9,19) 58.4 (17,161) 57.8 (17,160) 63.1 (17,185)

Plur-IG 9.0 (9,9) 9.0 (9,9) 9.0 (9,9) 59.5 (9,140) 55.4 (9,140) 62.2 (9,163) 290.8 (163,379) 258.6 (145,351) 296.9 (171,402)
Borda-IG 9.0 (9,9) 9.0 (9,9) 9.0 (9,9) 26.8 (9,63) 24.1 (9,59) 26.5 (9,68) 136.5 (49,264) 117.8 (42,229) 135.1 (46,253)
Cope-IG 9.0 (9,9) 9.0 (9,9) 9.0 (9,9) 10.3 (9,19) 10.3 (9,19) 10.4 (9,20) 67.1 (21,211) 60.8 (18,178) 70.2 (18,213)

Table 2: Avg. tree size (min, max) for optimal (DP) and myopic (IG) (number of query nodes).

4.5 Query Complexity
Apart from optimizing query policies, the theoretical question of both worst-case query (availability
test) complexity, and average-case query complexity for specific distributions, is of interest. Here
we sketch some partial results just to offer a flavor for the types of questions one might ask in the
unavailable candidate model under our availability testing regime.

Worst-case results take the form: given a voting rule r and availability distribution P , what is
the greatest (over possible vote profiles v) expected (over availabilities) query cost of the optimal
query policy? Distributions where candidates are highly likely to be available allow one to construct
profiles where determining the winner requires almost m queries in expectation, for both plurality
and Borda. Our constructions partition votes into two sets each with a distinct “winning” candidate
in each set with equal scores (and arranging other candidates appropriately “uniformly” so that a
precise subset of available candidates is needed to determine which of the two top candidates wins).
The hardness of these cases lies in the high concentration of the binomial distribution. In the extreme
case where p is very close to 1, for any voting rule the expected query complexity is

min{|Y | s.t. w = r(v) is a robust winner w.r.t. (r,X, Y )}+O(ε)

(this can be seen from our earlier construction). By contrast, if p is very close to 0, it is highly
likely that we must check the availability of every candidate, giving an expected query complexity
m+O(ε).

With regard to expected query complexity, interesting questions arise when considering the ex-
pected optimal query cost not for worst-case profiles, but on average for preference or vote profiles
drawn from particular distributions, such as impartial culture, various forms of Mallows models or
mixtures, distributions over single-peaked preferences, etc., for various voting rules.

5 Future Directions
We have offered a new perspective on voting in the unavailable candidate model, assuming that test-
ing the viability or availability of candidates is costly. We have presented several new concepts, in-
cluding those of robust winners, irrelevant candidates, and availability/query policies, and provided
algorithms for the computation of both optimal and myopic query policies by exploiting connections
to decision tree induction. Our experimental results with plurality, Borda and Copeland voting show
the value of optimal querying, with significant savings (relative to determining availability of all
candidates) realized over a variety of preference and availability distributions.

There are of course a variety of interesting directions to be pursued in this nascent line of re-
search. Many of these have been suggested above, but we summarize some of them here. A critical
direction of both practical and theoretical interest is developing efficient methods for pruning the
available sets used in policy construction based on specific properties of voting rules. Heuristic
methods for constructing policies could be useful; e.g., we might exploit the probability a given
candidate will win—as in the control problem addressed in [19]—to determine the next candidate to
query. Sample-based procedures, where only some available sets are classified, may also prove to be
important in minimizing computational costs. Other representations of winner determination poli-
cies (e.g., decision lists or graphs) may be of value. Extensions to policies that “predict” winners,
rather than guaranteeing robustness—whether in a speculative (choosing winners that may not be
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available) or safe (only selecting known available candidates) fashion—is of great interest. We are
exploring some of the query and communication complexity questions mentioned above. Finally,
the question of new opportunities for manipulation under this model seem rather intriguing.
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A characterization of the single-crossing

domain

Robert Bredereck, Jiehua Chen, and Gerhard J. Woeginger

Abstract

We characterize single-crossing preference profiles in terms of two forbidden sub-
structures, one of which contains three voters and six (not necessarily distinct) al-
ternatives, and one of which contains four voters and four (not necessarily distinct)
alternatives. We also provide an efficient way to decide whether a preference profile
is single-crossing.

1 Introduction

Restricted domains of preferences. Single-peaked and single-crossing preferences have
become standard domain restrictions in many economic models. Preferences are single-
peaked if there exists a linear ordering of the alternatives such that any voter’s preference
relation along this ordering is either always strictly increasing, always strictly decreasing,
or first strictly increasing and then strictly decreasing. Preferences are single-crossing if
there exists a linear ordering of the voters such that for any pair of alternatives along this
ordering, there is a single spot where the voters switch from preferring one alternative above
the other one. In many situations, these assumptions guarantee the existence of a strategy-
proof collective choice rule, or the existence of a Condorcet winner, or the existence of an
equilibrium.

Single-peaked preferences go back to the work of Black [5] and have been studied ex-
tensively over the years. Single-peakedness implies a number of nice properties, as for
instance non-manipulability (Moulin [19]) and transitivity of the majority rule (Inada [14]).
Single-crossing preferences go back to the seminal paper of Roberts [20] on income taxa-
tion. Grandmont [12], Rothstein [21], and Gans & Smart [11] analyze various aspects of
the majority rule under single-crossing preferences. Furthermore, single-crossing preferences
play a role in the areas of income redistribution (Meltzer & Richard [18]), coalition forma-
tion (Demange [8]; Kung [15]), local public goods and stratification (Westhoff [24]; Epple &
Platt [9]), and in the choice of constitutional voting rules (Barberà & Jackson [3]). Saporiti
& Tohmé [23] study single-crossing preferences in the context of strategic voting and the
median choice rule, and Saporiti [22] investigates them in the context of strategy proof
social choice functions. Barberà & Moreno [4] develop the concept of top monotonicity as
a common generalization of single-peakedness and single-crossingness (and of several other
domain restrictions).

Forbidden substructures. Sometimes mathematical structures allow characterizations
through forbidden substructures. For example, Kuratowski’s theorem [16] characterizes
planar graphs in terms of forbidden subgraphs: a graph is planar if and only if it does not
contain a subdivision ofK5 orK3,3. For another example, Hoffman, Kolen & Sakarovitch [13]
characterize totally-balanced 0-1-matrices in terms of certain forbidden submatrices. In a
similar spirit, Lekkerkerker & Boland [17] characterize interval-graphs through five (infinite)
families of forbidden induced subgraphs.

In the area of social choice, a beautiful result by Ballester & Haeringer [2] characterizes
single-peaked preference profiles in terms of two forbidden substructures. The first forbidden
substructure concerns three voters and three alternatives, where each of the voter ranks
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another one of the alternatives worst. The second forbidden substructure concerns two
voters and four alternatives, where (sloppily speaking) both voters rank the first three
alternatives in opposite ways with the second alternative in the middle, but prefer the
fourth alternative to the second one.

Contribution of this paper. Inspired by the approach and by the results of Ballester &
Haeringer [2], we present a forbidden substructure characterization of single-crossing prefer-
ence profiles. One of our forbidden substructures consists of three voters and six alternatives
(as described in Example 2.4) and the other one consists of four voters and four alternatives
(as described in Example 2.5). We stress that the (six respectively four) alternatives in
these forbidden substructures are not necessarily distinct: the substructures only partially
specify the preferences of the involved voters; hence by identifying and collapsing some of
the involved alternatives we can easily generate a number of smaller forbidden substructures
(which of course are just special cases of our larger forbidden substructures). Finally, we will
discuss the close relation of single-crossing preference profiles to consecutive ones matrices.
A 0-1-matrix has the consecutive ones property if its columns can be permuted such that
the 1-values in each row are consecutive. We hope that our results will turn out useful for
future research on single-crossing profiles.

In Section 2 we summarize the basic definitions and provide some examples. In Section 3
we formulate and prove our main result (Theorem 3.1). In Section 4 we discuss the tightness
of our characterization, and we argue that there does not exist a characterization that works
with smaller forbidden substructures. Finally in Section 5 we show how to recognize the
single-crossing property in polynomial time by using the connection to consecutive ones
matrices.

2 Definitions, notations, and examples

Let a1, . . . , am be m alternatives and let V1, . . . , Vn be n voters. A preference profile specifies
the preference orderings of the voters, where voter Vi ranks the alternatives according to
a strict linear order �i. For alternatives a and b, the relation a �i b means that voter Vi
strictly prefers a to b.

An unordered pair of two distinct alternatives is called a couple. A subset V of the voters
is mixed with respect to couple {a, b}, if V contains two voters one of which ranks a above
b, whereas the other one ranks a below b. If V is not mixed with respect to {a, b}, then it
is said to be pure with respect to {a, b}. Hence, an empty set of voters is pure with respect
to any pair of alternatives. A couple {a, b} separates two sets V1 and V2 of voters from
each other, if no voter in V1 agrees with any voter in V2 on the relative ranking of a and
b; in other words, sets V1 and V2 must both be pure with respect to {a, b}, and if both are
non-empty then their union V1 ∪ V2 is mixed.

An ordering of the voters is single-crossing with respect to couple {a, b}, if the ordered list
of voters can be split into an initial piece and a final piece that are separated by {a, b}. An
ordering of the voters is single-crossing, if it is single-crossing with respect to every possible
couple. Finally a preference profile is single-crossing, if it allows a single-crossing ordering
of the voters. It is easy to see that single-crossing is a monotone property of preference
profiles:

Lemma 2.1 Let P be a preference profile, and let P ′ result from P by removing some
alternatives and/or voters. If P is single-crossing, then also P ′ is single-crossing. �

In the remaining part of this section we present several instructive examples of preference
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V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11

1 1 1 1 5 5 5 5 5 5 5
2 2 2 5 1 1 1 4 4 4 4
3 3 5 2 2 2 4 1 1 3 3
4 5 3 3 3 4 2 2 3 1 2
5 4 4 4 4 3 3 3 2 2 1

Figure 1: A single-crossing preference profile with 11 voters and 5 alternatives.

profiles that are single-crossing (Section 2.1) respectively that are not single-crossing (Sec-
tion 2.2).

2.1 Profiles from weak Bruhat orders

Let Sm denote the set of permutations of 1, . . . ,m. We specify permutations π ∈ Sm by list-
ing the entries as π = 〈π(1), π(2), . . . , π(n)〉. The identity permutation 〈1, 2, . . . ,m〉 arranges
the integers in increasing order, and the order reversing permutation 〈m,m− 1, . . . , 2, 1〉 ar-
ranges them in decreasing order. A descent in π is a pair (π(i), π(i+1)) of consecutive entries
with π(i) > π(i + 1). We write π C ρ, if permutation π can be obtained from permutation
ρ by a series of swaps, each of which interchanges the two elements of a descent.

The partially ordered set (Sm,C) is known as weak Bruhat order ; see for instance
Bóna[6]. The weak Bruhat order has the identity permutation as minimum element and
the order reversing permutation as maximum element. Every maximal chain (that is: every
maximal subset of pairwise comparable permutations) in the weak Bruhat order has length
1
2m(m− 1) + 1 and contains the identity permutation and the order reversing permutation.

The following example illustrates the well-known connection between weak Bruhat orders
and single-crossing preference profiles; we refer the reader to Abello [1] or Galambos &
Reiner [10] for more information.

Example 2.2 Let C = (π1 C π2 C · · · C πn) be a maximal chain with n = 1
2m(m − 1) + 1

permutations in the weak Bruhat order (Sm,C). We construct a profile by using 1, . . . ,m as
alternatives, and by interpreting every permutation π as preference ordering π(1) � π(2) �
. . . � π(n) over the alternatives. Voter Vi has preference ordering πi. See Figure 1 for an
illustration with m = 5 alternatives and n = 11 voters.

The resulting profile is single-crossing: any two alternatives a and b start off in the
right order in the identity permutation π1, eventually are swapped into the wrong order,
and then can never be swapped back again at later steps. Furthermore, the profile contains
n = 1

2m(m− 1) + 1 voters with pairwise distinct preference orderings. �

If one starts the construction in Example 2.2 from arbitrary (not necessarily maximal!)
chains in the weak Bruhat order, then one can generate this way every possible single-
crossing preference profile (up to isomorphism). This is another well-known connection,
which follows from the fact that π C ρ if and only if every inversion of permutation π also
is an inversion of permutation ρ.

2.2 Some profiles that are not single-crossing

We next present three examples of profiles that are not single-crossing. The first example
is due to Saporiti & Tohmé [23] and shows a profile that is single-peaked but fails to be
single-crossing. The other two examples introduce two principal actors of this paper.
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Example 2.3 Consider four alternatives 1, 2, 3, 4 and three voters V1, V2, V3 with the fol-
lowing preference orders:

Voter V1: 2 �1 3 �1 4 �1 1

Voter V2: 4 �2 3 �2 2 �2 1

Voter V3: 3 �3 2 �3 1 �3 4

It can be verified that this profile is not single-crossing but single-peaked (with respect to the
ordering 1 < 2 < 3 < 4 of alternatives, for instance). �

Example 2.4 (γ-Configuration)
A profile with three voters V1, V2, V3 and six (not necessarily distinct) alternatives
a, b, c, d, e, f is a γ-configuration, if it satisfies the following:

Voter V1: b �1 a and c �1 d and e �1 f

Voter V2: a �2 b and d �2 c and e �2 f

Voter V3: a �3 b and c �3 d and f �3 e

This profile is not single-crossing, as none of the three voters can be arranged between the
other two: the couple {a, b} prevents us from putting V1 into the middle, the couple {c, d}
forbids voter V2 in the middle, and the couple {e, f} forbids V3 in the middle. �

The observations stated in Example 2.4 provide a cheap proof that the profile in Exam-
ple 2.3 is not single-crossing, as this profile contains a γ-configuration with a = 3, b = c = 2,
d = e = 4, and f = 1.

Example 2.5 (δ-Configuration)
A profile with four voters V1, V2, V3, V4 and four (not necessarily distinct) alternatives
a, b, c, d is a δ-configuration, if it satisfies the following:

Voter V1: a �1 b and c �1 d

Voter V2: a �2 b and d �2 c

Voter V3: b �3 a and c �3 d

Voter V4: b �4 a and d �4 c

This profile is not single-crossing: the couple {a, b} forces us to place V1 and V2 next to each
other, and to put V3 and V4 next to each other; the couple {c, d} forces us to place V1 and
V3 next to each other, and to put V2 and V4 next to each other. Then no voter can be put
into the first position. �

3 A characterization through forbidden configurations

Examples 2.4 and 2.5 demonstrate that preference profiles that contain a γ-configuration or
a δ-configuration cannot be single-crossing. It turns out that these two configurations are
the only obstructions for the single-crossing property.

Theorem 3.1 A preference profile P is single-crossing if and only if P contains neither a
γ-configuration nor a δ-configuration.

The rest of this section is dedicated to the proof of Theorem 3.1. The (only if) part
immediately follows from the monotonicity of the single-crossing property (Lemma 2.1) and
from the observations stated in Examples 2.4 and 2.5.
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For the (if) part, we first introduce some additional definitions and notations. An or-
dered partition 〈X1, . . . , Xp〉 of the voters V1, . . . , Vn satisfies the following properties: every
partXi is non-empty, distinct parts are disjoint, and the union of all parts is the set of all vot-
ers. The trivial ordered partition has p = 1 and hence consists of a single part {V1, . . . , Vn}.
We let {ak, bk} with 1 ≤ k ≤ 1

2m(m− 1) be an enumeration of all the possible couples, and
we define Ck as the set containing the first k couples in this enumeration.

Now let us prove the (if) part of the theorem. We consider some arbitrary preference
profile P that neither contains a γ-configuration nor a δ-configuration. Our argument is
algorithmic in nature. We start from the trivial partition X (0) of the voters, and then
step by step refine this partition while working through 1

2m(m − 1) phases. The kth such
phase generates an ordered partition X (k) = 〈X(k)

1 , . . . , X(k)
p 〉 of the voters that satisfies the

following two properties.

(i) For 1 ≤ j ≤ p − 1, the union of parts X(k)

1 , . . . , X(k)

j is separated from the union of

parts X(k)

j+1, . . . , X
(k)
p by one of the couples in Ck.

(ii) For every couple in Ck, there is a j with 1 ≤ j ≤ p− 1 such that the couple separates
the union of X(k)

1 , . . . , X(k)

j from the union of X(k)

j+1, . . . , X
(k)
p .

Note that property (ii) implies that every part X(k)

j is pure with respect to every couple in
Ck. The following four lemmas summarize some useful combinatorial observations on the
ordered partition X (k) and how it relates to couple {ak+1, bk+1}.

Lemma 3.2 At most one part in the ordered partition X (k) is mixed with respect to cou-
ple {ak+1, bk+1}.

Proof. Suppose for the sake of contradiction that the parts X(k)
s and X(k)

t with 1 ≤ s < t ≤ p
both are mixed with respect to couple {ak+1, bk+1}. In other words, part X(k)

s contains a
voter V ′1 with ak+1 � bk+1 and another voter V ′2 with bk+1 � ak+1, and part X(k)

t contains
a voter V ′3 with ak+1 � bk+1 and another voter V ′4 with bk+1 � ak+1.

Property (i) yields the existence of a couple {x, y} ∈ Ck that separates the union of
parts X(k)

1 , . . . , X(k)
s from the union of the parts X(k)

s+1, . . . , X
(k)
p . In particular, this couple

separates X(k)
s from X(k)

t . This implies that voters V ′1 and V ′2 agree on couple {x, y} (say,
with x � y), whereas voters V ′3 and V ′4 have the opposite ranking (say y � x). Then the
four voters V ′1 , V ′2 , V ′3 , and V ′4 together with the four alternatives ak+1, bk+1, x, and y form
a δ-configuration; this yields the desired contradiction. �

Lemma 3.3 Consider s and t with 2 ≤ s < t ≤ p. If some voter V ′1 in part X(k)

1 ranks
ak+1 � bk+1 and if some voter V ′2 in part X(k)

s ranks bk+1 � ak+1, then every voter V ′3 in
part X(k)

t ranks bk+1 � ak+1.

Proof. Suppose for the sake of contradiction that the voter V ′3 ranks ak+1 � bk+1. Then the
couple {ak+1, bk+1} separates V ′2 from V ′1 and V ′3 . Property (i) yields a couple {x, y} ∈ Ck
that separates X(k)

1 from X(k)
s ∪X(k)

t ; this couple separates V ′1 from V ′2 and V ′3 . Property (i)
yields also a couple {u, v} ∈ Ck that separates X(k)

t from X(k)

1 ∪X(k)
s ; this couple separates

V ′3 from V ′1 and V ′2 .
Then the three voters V ′1 , V ′2 , and V ′3 together with the six alternatives ak+1, bk+1, x, y,

u, and v form a γ-configuration; a contradiction. �

The statement of the following lemma is symmetric to the statement of Lemma 3.3, and
it can be proved by symmetric arguments.
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Lemma 3.4 Consider s and t with 1 ≤ s < t ≤ p− 1. If some voter V ′2 in part X(k)

t ranks
ak+1 � bk+1 and some voter V ′3 in part X(k)

p ranks bk+1 � ak+1, then every voter V ′1 in
part X(k)

s ranks ak+1 � bk+1. �

Lemma 3.5 There exists an index ` with 1 ≤ ` ≤ p such that the couple {ak+1, bk+1}
separates the union of parts X(k)

1 , . . . , X(k)

`−1 from the union of parts X(k)

`+1, . . . , X
(k)
p .

Proof. If p = 1 or if all voters in the profile agree on the relative ranking of ak+1 and bk+1,
the choice ` = 1 works. Hence we assume that p ≥ 2 and that there are two voters who
disagree on the ranking of ak+1 and bk+1. By Lemma 3.2 the parts X(k)

1 and X(k)
p cannot

both be mixed with respect to {ak+1, bk+1}.
If the first part X(k)

1 is pure with respect to {ak+1, bk+1}, we pick an arbitrary voter V ′1
from X(k)

1 . We choose ` as the smallest index for which X(k)

` contains some voter V ′2 who
ranks ak+1 versus bk+1 differently from voter V ′1 . Then Lemma 3.3 yields that every voter V ′3
in the parts X(k)

`+1, . . . , X
(k)
p must rank ak+1 versus bk+1 differently from voter V ′1 . Hence

the chosen index ` has all the desired properties, and this case is closed. In the remaining
case the last part X(k)

p is pure with respect to {ak+1, bk+1}; this case can be settled in a
symmetric fashion while using Lemma 3.4. �

Now let us finally describe how to construct the ordered partition X (k+1) in the (k+1)th
phase. Our starting point is the ordered partition X (k), and we determine an index ` as
defined in Lemma 3.5. If part X(k)

` is pure with respect to {ak+1, bk+1}, then we make the
new partition X (k+1) coincide with the old partition X (k); properties (i) and (ii) are satisfied
in X (k+1). If part X(k)

` is mixed with respect to {ak+1, bk+1}, then we subdivide it into two
parts Y and Z so that {ak+1, bk+1} separates the union of parts X(k)

1 , . . . , X(k)

`−1, Y from the

union of parts Z,X(k)

`+1, . . . , X
(k)
p . Then the resulting partition

X (k+1) = 〈X(k)

1 , . . . , X(k)

`−1, Y, Z, X
(k)

`+1, . . . , X
(k)

p 〉

satisfies properties (i) and (ii) by construction.
We keep working like this and complete phase after phase, until in the very last phase

k = 1
2m(m−1) we generate the final partition X ∗ = 〈X∗1 , . . . , X∗q 〉. We construct an ordering

π∗ of the voters that lists the voters in every part X∗j before all the voters in part X∗j+1

(1 ≤ j ≤ q − 1). Property (ii) guarantees that every couple separates an initial piece of
partition X ∗ from the complementary final piece, which implies that the ordering π∗ for the
voters in P is single-crossing. This completes the proof of Theorem 3.1.

We conclude this section with several comments on the above proof.
(1) Let 〈X(k)

1 , . . . , X(k)
p 〉 be the ordered partition determined in phase k, and consider

an ordering σ of the voters that lists the voters in every part X(k)

j before all the voters in

the succeeding part X(k)

j+1. Let ordering σ− list the voters in reverse order to σ. Then σ

and σ− are single-crossing with respect to all couples in Ck. In fact, any ordering that is
single-crossing with respect to all couples in Ck can be constructed in that fashion. This can
be established by an inductive argument.

(2) By property (ii), every part X∗j in the final partition X ∗ is pure with respect to
every possible couple of alternatives. This means that all voters in part X∗j have identical
preference orderings, and that the ordering π∗ is uniquely determined except for swapping
voters with identical preference orderings.

(3) The preceding two comments imply the following. Let P be a preference profile in
which distinct voters always have distinct preference orderings. If P is single-crossing, then
there exist exactly two single-crossing orderings of the voters and these two orderings are
mirror images of each other.
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(4) By property (i), every two consecutive parts X∗j and X∗j+1 must be separated by

one of the couples. Since there are only 1
2m(m − 1) distinct couples, there are at most

1
2m(m − 1) + 1 parts in the final partition. This shows that a single-crossing preference
profile contains at most 1

2m(m − 1) + 1 voters with distinct preference orderings. (This
bound of course is already known from the connection between single-crossing profiles and
weak Bruhat orders as indicated in Section 2.1.)

4 The size of forbidden configurations

Throughout this short section, we speak of preference profiles with m alternatives and
n voters as m × n configurations. Theorem 3.1 characterizes single-crossing preference
profiles through certain forbidden 6 × 3 and 4 × 4 configurations. Are there perhaps other
characterizations that work with smaller forbidden configurations? The following lemma
shows that this is not the case, and hence our characterization uses the smallest possible
forbidden configurations.

Lemma 4.1 Every characterization of single-crossing preference profiles through forbidden
configurations must forbid (a) some m × n configuration with m ≥ 6 and n ≥ 3 and (b)
some m× n configuration with m ≥ 4 and n ≥ 4.

Proof. Consider an arbitrary characterization of single-crossing profiles with forbidden con-
figurations F1, . . . , Fk. Consider the following 6× 3 configuration C.

Voter V1: b �1 a �1 c �1 d �1 e �1 f

Voter V2: a �2 b �2 d �2 c �2 e �2 f

Voter V3: a �3 b �3 c �3 d �3 f �3 e

This profile contains a γ-configuration and thus is not single-crossing. If we remove any al-
ternative from C, the resulting 5×3 configuration is single-crossing and cannot be forbidden.
And if we remove any voter from C, the resulting 6×2 configuration is again single-crossing
and again cannot be forbidden. Hence the only possibility for correctly recognizing C as
not single-crossing is by either forbidding C itself or by forbidding appropriate larger con-
figurations that contain C. This proves (a). The proof of (b) is based on the following 4× 4
configuration C ′ which contains a δ-configuration.

Voter V1: a �1 b �1 c �1 d

Voter V2: a �2 b �2 d �2 c

Voter V3: b �3 a �3 c �3 d

Voter V4: b �4 a �4 d �4 c

Since the argument is analogous to the one in (a), we omit the details. �

5 Recognizing the single-crossing property

In this section, we sketch how to produce all (if any) single-crossing orderings of the voters
by utilizing the PQ-tree algorithm as developed by Booth & Lueker [7]. The PQ-tree
algorithm was designed to recognize, inter alia, consecutive ones matrices. A 0-1-matrix has
the consecutive ones property, if its columns can be permuted such that the ones in each
row are consecutive (and hence form an interval).

Hence let us consider an arbitrary preference profile P, and let us transform it into a
corresponding 0-1-matrix M(P) in the following way. For each voter, the matrix M(P)
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contains a corresponding column. For each ordered pair 〈a, b〉 of alternatives, matrix M(P)
has a corresponding row with value 1 at column j if voter j prefers alternative a to alterna-
tive b, and value 0 otherwise. For a preference profile with n voters and m alternatives, the
resulting 0-1-matrix M(P) has n columns and m(m− 1) rows. Example 5.1 illustrates this
construction for a concrete profile with four voters and three alternatives.

Example 5.1 (A single-crossing profile and its 0-1-matrix representation)
Suppose that there are four voters V1, V2, V3, and V4 voting over three alternatives 1, 2, and
3. The preference orderings of the voters are as follows:

Voter V1: 3 �1 1 �1 2

Voter V2: 2 �2 3 �2 1

Voter V3: 2 �3 1 �3 3

Voter V4: 3 �4 2 �4 1

Our construction yields the following 0-1-matrix corresponding to this profile.

V1 V2 V3 V4

〈1, 2〉 1 0 0 0
〈2, 1〉 0 1 1 1
〈1, 3〉 0 0 1 0
〈3, 1〉 1 1 0 1
〈2, 3〉 0 1 1 0
〈3, 2〉 1 0 0 1

By applying the PQ-tree algorithm of Booth & Lueker [7], one can find all permutations of
the columns with the consecutive ones property. One possible consecutive ones permutation
of the columns is 〈V1, V4, V2, V3〉. As one can easily verify, this is also a single-crossing
ordering of the voters in the original profile. �

Lemma 5.2 A preference profile P is single-crossing if and only if the corresponding 0-1-
matrix M(P) has the consecutive ones property.

Proof. An ordering of the voters is single-crossing for P if and only if this ordering permutes
the columns of M(P) so that the ones in each row are consecutive. �

The PQ-algorithm [7] solves the consecutive ones matrix problem in O(x+ y + z) time,
where x and y are respectively the number of columns and rows, and z is the total number
of 1s in the matrix. Hence, single-crossing profiles can be recognized in O(m2 +n+nm2) =
O(nm2) time.

6 Conclusion

In this paper, we give an equivalent characterization of single-crossing preferences through
two minimal forbidden substructures: γ- and δ-configurations. We demonstrate the close
relation between single-crossing preferences and weak Bruhat orders. Futhermore, we can
find all single-crossing orderings of a preference profile by transforming them into a binary
matrix and asking whether this matrix has the consecutive ones property. This process needs
subquadratic time and utilizes the consecutive ones matrix problem. Hence, searching for a
direct and more efficient way of detecting the single-crossing property would be an interesting
challenge.
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The Price of Neutrality for the Ranked Pairs

Method∗

Markus Brill and Felix Fischer

Abstract

The complexity of the winner determination problem has been studied for almost
all common voting rules. A notable exception, possibly caused by some confusion
regarding its exact definition, is the method of ranked pairs. The original version of
the method, due to Tideman, yields a social preference function that is irresolute and
neutral. A variant introduced subsequently uses an exogenously given tie-breaking
rule and therefore fails neutrality. The latter variant is the one most commonly
studied in the area of computational social choice, and it is easy to see that its winner
determination problem is computationally tractable. We show that by contrast,
computing the set of winners selected by Tideman’s original ranked pairs method
is NP-complete, thus revealing a trade-off between tractability and neutrality. In
addition, several results concerning the hardness of manipulation and the complexity
of computing possible and necessary winners are shown to follow as corollaries from
our findings.

1 Introduction

The fundamental problem of social choice theory can be concisely described as follows:
given a number of individuals, or voters, each having a preference ordering over a set of
alternatives, how can we aggregate these preferences into a collective, or social, preference
ordering that is in some sense faithful to the individual preferences? By a preference ordering
we here understand a (transitive) ranking of all alternatives, and a function aggregating
individual preference orderings into social preference orderings is called a social preference
function (SPF).1

A natural idea to construct an SPF is by letting an alternative a be socially preferred
to another alternative b if and only if a majority of voters prefers a to b. However, it was
observed as early as the 18th century that this approach might lead to paradoxical situations:
the collective preference relation may be cyclic even when all individual preferences are
transitive [7].

To remedy this situation, a large number of SPFs have been suggested, together with
a variety of criteria that a reasonable SPF should satisfy. Neutrality and anonymity, for
instance, are basic fairness criteria which require, loosely speaking, that all alternatives and
all voters are treated equally. Another criterion we will be interested in is the computational
effort required to evaluate an SPF. Computational tractability of the winner determination
problem is obviously a significant property of any SPF: the inability to efficiently compute
social preferences would render the method virtually useless, at least for large problem in-
stances that do not exhibit additional structure. As a consequence, computational aspects of
preference aggregation have received tremendous interest in recent years (see, e.g., [9, 5, 4]).

In this paper, we study the computational complexity of the ranked pairs method [15]. To
the best of our knowledge, this question has not been considered before, which is particularly

∗An earlier version of this paper has appeared in the proceedings of AAAI-2012.
1In contrast to a social welfare function as studied by Arrow [1], an SPF can output multiple social

preference orderings with the interpretation that all those rankings are tied for winner. The rationale
behind this is to allow for a symmetric outcome when individual preferences are symmetric, like in the case
of two individuals with diametrically opposed preferences.
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surprising given the extensive literature that is concerned with computational aspects of
ranked pairs.2 A possible reason for this gap might be the confusion of two variants of the
method, only one of which satisfies neutrality. In Section 2, we address this confusion and
describe both variants. After introducing the necessary notation in Section 3, we show in
Section 4 that deciding whether a given alternative is a ranked pairs winner for the neutral
variant is NP-complete. Section 5 presents a number of corollaries, and Section 6 discusses
variants of the ranked pairs method that are not anonymous.

2 Two Variants of the Ranked Pairs Method

In this section we address the difference between two variants of the ranked pairs method
that are commonly studied in the literature. Both variants are anonymous, i.e., treat all
voters equally. Non-anonymous variants of the ranked pairs method have been suggested
by Tideman [15] and Zavist and Tideman [20], and will be discussed in Section 6.

The ranked pairs method is most easily described as the result of the following procedure.
First define a “priority” ordering over the set of all unordered pairs of alternatives by giving
priority to pairs with a larger majority margin. Then, construct a ranking of the alternatives
by starting with the empty ranking and iteratively considering pairs in order of their priority.
When pair {a, b} is considered, the ranking is extended by fixing that the majority-preferred
alternative precedes the other alternative in the ranking, unless this would create a cycle
together with the previously fixed pairs, in which case the opposite precedence between a
and b is fixed. Clearly, this procedure is guaranteed to terminate with a complete ranking
of all alternatives.

What is missing from the above description is a tie-breaking rule for cases where two
or more pairwise comparisons have the same support from the voters. This turns out to
be a rather intricate issue. In principle, it is possible to employ an arbitrary tie-breaking
rule. However, each fixed tie-breaking rule biases the method in favor of some alternative
and thereby destroys neutrality.3 In order to avoid this problem, Tideman [15] originally
defined the ranked pairs method to return the set of all those rankings that result from the
above procedure for some tie-breaking rule.4 We will henceforth denote this variant by RP.

In a subsequent paper, Zavist and Tideman [20] showed that tie-breaking rules of a
certain kind are in fact necessary in order to achieve the property of independence of clones,
which was the main motivation for introducing the ranked pairs method. While Zavist and
Tideman [20] proposed a way to define a tie-breaking rule based on the preferences of a
distinguished voter (see Section 6 for details), the variant that is most commonly studied
in the literature considers the tie-breaking rule to be exogenously given and fixed for all
profiles. This variant of ranked pairs will be denoted by RPT. Whereas RP may output a
set of rankings, with the interpretation that all the rankings in the set are tied for winner,
RPT always outputs a single ranking. In social choice terminology, RP is an irresolute SPF,
and RPT is a resolute one. It is straightforward to see that RP is neutral, i.e., treats all
alternatives equally, and that RPT is not. An easy example for the latter statement is the
case of two alternatives and two voters who each prefer a different alternative.

Rather than completely ranking all alternatives, it is often sufficient to identify the
socially “best” alternatives. This is the purpose of a social choice function (SCF). An SCF

2Typical problems include the hardness of manipulation [3, 18, 14] and the complexity of computing
possible and necessary winners [19, 12].

3Neutrality can be maintained if the tie-breaking rule varies with the individual preferences (Section 6).
4This definition, sometimes called parallel universes tie-breaking (PUT), can also be used to “neutralize”

other voting rules that involve tie-breaking [6]. PUT can be interpreted as a possible winner notion: if the
ranked pairs method is used with an unknown tie-breaking rule, the PUT version of ranked pairs selects
exactly those alternatives that have a chance to be chosen in the actual election.
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has the same input as an SPF, but returns alternatives instead of rankings. Each SPF gives
rise to a corresponding SCF that returns the top elements of the rankings instead of the
rankings themselves, and we will frequently switch between these two settings. Interestingly,
deciding whether a given ranking is chosen by an SPF can be considerably easier than
deciding whether a given alternative is chosen by the corresponding SCF.

From a computational perspective, RPT is easy: constructing the ranking for a given
tie-breaking rule takes time polynomial in the size of the input (see Proposition 1). For RP,
however, the picture is different: as the number of tie-breaking rules is exponential, executing
the iterative procedure for every single tie-breaking rule is infeasible. Of course, this does
not preclude the existence of a clever algorithm that efficiently computes the set of all
alternatives that are the top element of some chosen ranking.5 Our main result states that
such an algorithm does not exist unless P equals NP.6

3 Preliminaries

For a finite set X, let L(X) denote the set of all rankings of X, where a ranking of X
is a complete, transitive, and asymmetric relation on X. The top element of a ranking
L ∈ L(X), denoted by top(L), is the unique element x ∈ X such that x L y for all
y ∈ X \ {x}. Furthermore,

(
X
2

)
denotes the set of all two-element subsets of X.

Let N = {1, . . . , n} be a set of voters with preferences over a finite set A of alternatives.
The preferences of voter i ∈ N are represented by a ranking Ri ∈ L(A). The interpretation
of a Ri b is that voter i strictly prefers a to b. A preference profile is an ordered list
containing a ranking for each voter.

A social choice function (SCF) f associates with every preference profile R a non-empty
set f(R) ⊆ A of alternatives. A social preference function (SPF) f associates with every
preference profile R a non-empty set f(R) ⊆ L(A) of rankings of A.

An SCF or SPF is neutral if permuting the alternatives in the individual rankings also
permutes the set of chosen alternatives, or the set of chosen rankings, in the exact same way.
Formally, f is neutral if f(π(R)) = π(f(R)) for all preference profiles R and all permutations
π of A. An SCF or SPF is anonymous if the set of chosen alternatives, or the set of chosen
rankings, does not change when the voters are permuted.

For a given preference profile R = (R1, . . . , Rn) and two distinct alternatives a, b ∈ A,
the majority margin mR(a, b) is defined as the difference between the number of voters who
prefer a to b and the number of voters who prefer b to a, i.e.,

mR(a, b) = |{i ∈ N : a Ri b}| − |{i ∈ N : b Ri a}|.

Thus, mR(b, a) = −mR(a, b) for all distinct a, b ∈ A.
The resolute variant of the ranked pairs method takes as input a preference profile R

and a tie-breaking rule τ ∈ L(A×A). It constructs a priority ordering of
(
A
2

)
by ordering all

two-element subsets by the size of their majority margin, using τ to break ties: {a, b} has
priority over {c, d} if |mR(a, b)| > |mR(c, d)|, or if |mR(a, b)| = |mR(c, d)| and (a, b) τ (c, d).7

The priority ordering is then used to obtain a ranking �Rτ ∈ L(A) by way of the following
iterative procedure. Initialise �Rτ as the empty relation. Iteratively consider the pair {a, b}

5As the number of chosen rankings might be exponential, it immediately follows that computing all of
them requires exponential time in the worst case.

6A similar discrepancy can be observed for an SCF known as the Banks set [2]. Whereas Woeginger [17]
has proven that computing Banks winners is NP-complete, Hudry [10] has shown that an arbitrary Banks
winner can be found efficiently.

7Here we assume without loss of generality that the pairs (a, b) and (c, d) are ordered in such a way that
(a, b) τ (b, a) and (c, d) τ (d, c).
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with the highest priority among all pairs in
(
A
2

)
that have not been considered so far. There

are two cases.

• Case 1: |mR(a, b)| 6= 0. Without loss of generality assume mR(a, b) > 0. If the
relation �Rτ ∪{(a, b)} is acyclic, the (ordered) pair (a, b) is added to the relation �Rτ .
Otherwise, the pair (b, a) is added to �Rτ .

• Case 2: |mR(a, b)| = 0. Without loss of generality assume (a, b) τ (b, a). If the relation
�Rτ ∪{(a, b)} is acyclic, the pair (a, b) is added to the relation �Rτ . Otherwise, the pair
(b, a) is added to �Rτ .

After all pairs in
(
A
2

)
have been considered, �Rτ is a ranking of A. The resolute variant of

ranked pairs, interpreted as an SCF, returns the top element of �Rτ .

Definition 1. RPT(R, τ) = {top(�Rτ )}.

RPT depends on the choice of τ , and it is not neutral. Tideman [15] defined an irresolute
and neutral variant that chooses all alternatives that are at the top of �Rτ for some tie-
breaking rule τ .

Definition 2. RP(R) = {a ∈ A : there exists τ ∈ L(A×A) such that a = top(�Rτ )}.

The alternatives in RP(R) are called ranked pairs winners for R. In the SPF setting, RP
returns the rankings {�Rτ : τ ∈ L(A×A)}, which are henceforth called ranked pairs rankings
for R.

We will work with an alternative characterization of ranked pairs rankings that was
introduced by Zavist and Tideman [20]. Given a preference profile R, a ranking L of A,
and two alternatives a and b, we say that a attains b through L if there exists a sequence of
distinct alternatives a1, a2, . . . , at, where t ≥ 2, such that a1 = a, at = b, ai L ai+1, and

mR(ai, ai+1) ≥ mR(b, a) for all i with 1 ≤ i < t.

In this case, we will say that a attains b via (a1, a2, . . . , at). A ranking L is called a stack if
for any pair of alternatives a and b it holds that a L b implies that a attains b through L.

Lemma 1 (Zavist and Tideman [20]). A ranking of A is a ranked pairs ranking if and only
if it is a stack.

It follows that an alternative is a ranked pairs winner if and only if it is the top element
of a stack.

4 Complexity of Winner Determination

We are now ready to study the computational complexity of RP. We first consider the
SPF setting and observe that finding and checking ranked pairs rankings is easy. This also
provides an efficient way to find some ranked pairs winner, i.e., some alternative that is
chosen in the SCF setting. The problem of deciding whether a particular alternative is a
ranked pairs winner, on the other hand, turns out to be NP-complete. Finally, we extend
the hardness result to a variant of the winner determination problem that asks for unique
winners.
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4.1 Ranked Pairs Rankings

It can easily be seen that an arbitrary ranked pairs ranking can be found efficiently.

Proposition 1. Finding a ranked pairs ranking is in P.

Proof. We fix some arbitrary tie-breaking rule τ ∈ L(A × A) and compute �Rτ , which, by
definition, is a ranked pairs ranking. When constructing �Rτ , in each round we have to check
whether the addition of a pair (a, b) to the relation �Rτ creates a cycle. This can efficiently
be done with a depth-first search.

Deciding whether a given ranking is a ranked pairs ranking is also feasible in polynomial
time, by checking whether the given ranking is a stack.

Proposition 2. Deciding whether a given ranking is a ranked pairs ranking is in P.

Proof. By Lemma 1, it suffices to check whether the given ranking L is a stack. This reduces
to checking, for every pair (a, b) with a L b, whether a attains b through L. Let a and b with
a L b be given, and define w = mR(b, a). We construct a directed graph with vertex set A as
follows. For all x, y ∈ A, there is an edge from x to y if and only if x L y and mR(x, y) ≥ w.
It is easily verified that a attains b through L if and only if there exists a path from a to b
in this graph. The latter property can be efficiently checked with a depth-first search. Since
the number of pairs in L is polynomial, this proves the statement.

4.2 Ranked Pairs Winners

We now consider the SCF setting. As every ranked pairs ranking yields a ranked pairs
winner, Proposition 1 immediately implies that an arbitrary element of RP(R) can be found
efficiently.

Corollary 1. Finding a ranked pairs winner is in P.

Deciding whether a given alternative is a ranked pairs winner, on the other hand, turns
out to be NP-complete.

Theorem 1. Deciding whether a given alternative is a ranked pairs winner is NP-complete.

Membership in NP follows from Proposition 2. For hardness, we give a reduction from
the NP-complete Boolean satisfiability problem (SAT, see, e.g., [13]). An instance of SAT
consists of a Boolean formula ϕ = C1 ∧ · · · ∧ Ck in conjunctive normal form over a finite
set V = {v1, . . . , vm} of variables. Denote by X = {v1, v1, . . . , vm, vm} the set of all literals,
where a literal is either a variable or its negation. Each clause Cj is a set of literals. An
assignment α ⊆ X is a subset of the literals with the interpretation that all literals in α are
set to “true.” Assignment α is valid if ` ∈ α implies ` /∈ α for all ` ∈ X, and α satisfies
clause Cj if Cj ∩ α 6= ∅. A valid assignment that satisfies all clauses of ϕ is a satisfying
assignment for ϕ, and a formula that has a satisfying assignment is called satisfiable.

For a particular Boolean formula ϕ = C1 ∧ · · · ∧ Ck over a set V = {v1, . . . , vm} of
variables, we will construct a preference profile Rϕ over a set Aϕ of alternatives such that a
particular alternative d ∈ Aϕ is a ranked pairs winner for Rϕ if and only if ϕ is satisfiable.

Let us first define the set Aϕ of alternatives. For each variable vi ∈ V , 1 ≤ i ≤ m,
there are four alternatives vi, v̄i, v

′
i, and v̄′i. For each clause Cj , 1 ≤ j ≤ k, there is one

alternative yj . Finally, there is one alternative d for which we want to decide membership
in RP(Rϕ).

99



d

v1

v′1

v̄1

v̄′1

v̄2

v′2

v2

v̄′2

y1 y2 y3

Figure 1: Graphical representation of mRϕ(·, ·) for the Boolean formula ϕ = {v1, v̄2} ∧
{v1, v2} ∧ {v̄1, v2}. The relation �2 is represented by arrows, and �4 is represented by
double-shafted arrows. For all pairs (a, b) that are not connected by an arrow, we have
m(a, b) = m(b, a) = 0.

Instead of constructing Rϕ explicitly, we will specify a number m(a, b) for each pair
(a, b) ∈ Aϕ × Aϕ. Debord [8] has shown that there exists a preference profile R such
that mR(a, b) = m(a, b) for all a, b, as long as m(a, b) = −m(b, a) for all a, b and all the
numbers m(a, b) have the same parity.8 In order to conveniently define m(·, ·), the following
notation will be useful: for a natural number w, a �w b denotes setting m(a, b) = w and
m(b, a) = −w.

For each variable vi ∈ V , 1 ≤ i ≤ m, let vi �4 v̄′i �2 v̄i �4 v′i �2 vi. For each
clause Cj , 1 ≤ j ≤ k, let vi �2 yj if variable vi ∈ V appears in clause Cj as a positive literal,
and v̄i �2 yj if variable vi appears in clause Cj as a negative literal. Finally let yj �2 d
for 1 ≤ j ≤ k and d �2 v′i and d �2 v̄′i for 1 ≤ i ≤ m. For all pairs (a, b) for which m(a, b)
has not been specified so far, let m(a, b) = m(b, a) = 0. An example is shown in Figure 1.

Asm(a, b) ∈ {−4,−2, 0, 2, 4} for all a, b ∈ Aϕ, Debord’s theorem guarantees the existence
of a preference profile Rϕ with mRϕ

(a, b) = m(a, b) for all a, b ∈ Aϕ, and such a profile can
in fact be constructed efficiently, i.e., in polynomial time.

The following two lemmata show that alternative d is a ranked pairs winner for Rϕ if
and only if the formula ϕ is satisfiable.

Lemma 2. If d ∈ RP(Rϕ), then ϕ is satisfiable.

Proof. Assume that d is a ranked pairs winner for Rϕ and let L be a stack with top(L) = d.
Consider an arbitrary j with 1 ≤ j ≤ k. As L is a stack and d L yj , d attains yj through L,
i.e., there exists a sequence Pj = (a1, a2, . . . , at) with a1 = d and at = yj such that ai L ai+1

and m(ai, ai+1) ≥ 2 for all i with 1 ≤ i < t. If d attains yj via several sequences, fix one of
them arbitrarily.

8Also see the article by Le Breton [11].
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The definition of m(·, ·) implies that

Pj = (d, `
′
, `, `′, `, yj) or

Pj = (d, `′, `, yj),

where ` is some literal. The former is in fact not possible because m(`, `
′
) = 4 implies that `

′

does not attain ` through L. Therefore, each Pj is of the form Pj = (d, `′, `, yj) for some
` ∈ X.

Now define assignment α as the set of all literals that are contained in one of the sequences
Pj , 1 ≤ j ≤ k, i.e., α = X ∩ (

⋃k
j=1 Pj). We claim that α is a satisfying assignment for ϕ.

In order to show that α is valid, suppose there exists a literal ` ∈ X such that both `
and ` are contained in α. This implies that there exist i and j such that d attains yi via

Pi = (d, `′, `, yi) and d attains yj via Pj = (d, `
′
, `, yj). In particular, `′ L ` and `

′
L `.

It follows that either `′ L ` or `
′
L `, as otherwise (`, `

′
, `, `′) would form an L-cycle,

contradicting the transitivity of L. However, neither does `′ attain ` through L, nor does `
′

attain ` through L, a contradiction.
In order to see that α satisfies ϕ, consider an arbitrary clause Cj . As d attains yj via

Pj = (d, `′, `, yj) and m(yj , d) = 2, we have that m(`, yj) ≥ 2. By definition of m(·, ·), this
implies that ` ∈ Cj .
Lemma 3. If ϕ is satisfiable, then d ∈ RP(Rϕ).

Proof. Assume that ϕ is satisfiable and let α be a satisfying assignment. Let Vi =
{vi, v̄i, v′i, v̄′i}, 1 ≤ i ≤ m, and Y = {y1, y2, . . . , yk}. We define a ranking L of Aϕ as
follows, using B L C as shorthand for b L c for all b ∈ B and c ∈ C.

• For all 1 ≤ i ≤ m, let d L Vi and Vi L Y .

• For all 1 ≤ i < j ≤ m, let Vi L Vj .

• For the definition of L within Vi, we distinguish two cases. If vi ∈ α, i.e., if vi is
set to “true” under α, let vi L v′i L vi L v′i. If, on the other hand, vi /∈ α, let
vi L v

′
i L vi L v

′
i.

• Within Y , define L arbitrarily.

We now prove that L is a stack. For each pair (a, b) with a L b, we need to verify that
a attains b through L. If m(b, a) ≤ 0, it is easily seen that a attains b through L. We can
therefore assume that m(b, a) > 0. By definition of L and m(·, ·), a particular such pair
(a, b) satisfies either

a = d and b ∈ Y , or

a, b ∈ Vi for some i with 1 ≤ i ≤ m.

First consider a pair of the former type, i.e., (a, b) = (d, yj) for some j with 1 ≤ j ≤ k.
As α satisfies Cj , there exists ` ∈ Cj with ` ∈ α. Consider the sequence Pj = (d, `′, `, yj).
As m(yj , d) = 2 and d �2 `′ �2 ` �2 yj , d attains yj via Pj .

Now consider a pair of the latter type, i.e., a, b ∈ Vi for some i with 1 ≤ i ≤ m. Assume
that vi ∈ α and, therefore, vi L v

′
i L vi L v

′
i. The only non-trivial case is the pair (vi, v

′
i) with

vi L v′i and m(v′i, vi) = 2. But vi attains v′i via (vi, v
′
i, vi, v

′
i) because vi �4 v′i �2 vi �4 v′i.

The case vi /∈ α is analogous.
We have shown that L is a stack. Lemma 1 now implies that d ∈ RP(Rϕ), which

completes the proof.

Combining Lemma 2 and Lemma 3, and observing that both Aϕ and Rϕ can be con-
structed efficiently, completes the proof of Theorem 1.
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4.3 Unique Winners

An interesting variant of the winner determination problem concerns the question whether a
given alternative is the unique winner for a given preference profile. Despite its similarity to
the original winner determination problem, this problem is sometimes considerably easier.9

For RP, the picture is different: verifying unique winners is not feasible in polynomial time,
unless P equals coNP.

Theorem 2. Deciding whether a given alternative is the unique ranked pairs winner is
coNP-complete.

Proof. Membership in coNP follows from the observation that for every “no” instance there
is a stack whose top element is different from the alternative in question.

For hardness, we modify the construction from Section 4.2 to obtain a reduction from
the problem UNSAT, which asks whether a given Boolean formula is not satisfiable. For a
Boolean formula ϕ, define A′ϕ = Aϕ∪{d∗}, where d∗ is a new alternative and Aϕ is defined as
in Section 4.2. R′ϕ is defined such that d �2 d∗ and d∗ �4 a for all a ∈ Aϕ \{d}. Within Aϕ,
R′ϕ coincides with Rϕ. We show that RP(R′ϕ) = {d∗} if and only if ϕ is unsatisfiable.

For the direction from left to right, assume for contradiction that RP(R′ϕ) = {d∗} and ϕ
is satisfiable. Consider a satisfying assignment α and let L be the ranking of Aϕ defined in
the proof of Lemma 3. Define the ranking L′ of A′ϕ by

L′ = L ∪ {(d, d∗)} ∪ {(d∗, a) : a ∈ Aϕ \ {d}}.

That is, L′ extends L by inserting the new alternative d∗ in the second position. As in the
proof of Lemma 3, it can be shown that L′ is a stack. It follows that top(L′) = d ∈ RP(R′ϕ),
contradicting the assumption that RP(R′ϕ) = {d∗}.

For the direction from right to left, assume for contradiction that ϕ is unsatisfiable and

RP(R′ϕ) 6= {d∗}. Then there exists a tie-breaking rule τ such that top(�R
′
ϕ

τ ) = a 6= d∗.
From the definition of R′ϕ it follows that a = d, as d∗ �4 b for all b ∈ Aϕ \ {d} and there are
no �4-cycles. By the same argument as in the proof of Lemma 2, it can be shown that ϕ is
satisfiable, contradicting our assumption.

5 New Proofs for Old and New Results

In this section we briefly consider computational problems other than winner determination.
We show that our findings imply several hardness results, some of which are already known.
We also point out some errors in the literature that are due to the assumption that winner
determination for ranked pairs is in P. By Theorem 1, this assumption is incorrect unless
P=NP. All results concern the neutral variant RP, and we refer to the respective papers for
formal definitions of the computational problems.

An alternative a is a possible winner for a partially specified preference profile R if there
exists a completion R′ of R such that a is a winner for R′. It is a necessary winner if it is
a winner for every completion of R. Both the possible and the necessary winner problem
have a variant that requires an alternative to be the unique winner for the completions.

Corollary 2. Computing possible ranked pairs winners is NP-complete. Computing possible
unique ranked pairs winners is both NP-hard and coNP-hard.

9The Banks set, discussed in Footnote 6, constitutes an example: although deciding membership is NP-
complete in general, it can be checked in polynomial time whether an alternative is the unique Banks winner.
The reason for the latter is that an alternative is the unique Banks winner if and only if it is a Condorcet
winner.
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Proof. NP-completeness of the non-unique variant was already shown by Xia and Conitzer
[18]. Membership in NP holds because for every “yes” instance there exists a completion
and a tie-breaking rule that yields the alternative in question. Hardness also follows from
Theorem 1, because the possible winner problem is equivalent to the winner determination
problem in the special case when the preference profile is completely specified.

NP-hardness of the unique variant was shown by Xia and Conitzer [18]; coNP-hardness
follows from Theorem 2, because the possible unique winner problem is equivalent to the
unique winner determination problem in the special case when the preference profile is
completely specified. Xia and Conitzer [18] in fact claimed NP-completeness, but their
argument for membership in NP assumes that winner determination is in P.

Corollary 3. Computing necessary ranked pairs winners is both NP-hard and coNP-hard.
Computing necessary unique ranked pairs winners is coNP-complete.

Proof. Hardness of the non-unique variant for coNP was shown by Xia and Conitzer [18];
NP-hardness follows from Theorem 1, because the necessary winner problem is equivalent
to the winner determination problem in the special case when the preference profile is
completely specified. Xia and Conitzer [18] in fact claim coNP-completeness, but their
argument for membership in coNP assumes that winner determination is in P.

Completeness of the unique variant for coNP was shown by Xia and Conitzer [18].
Membership in coNP holds because for every “no” instance there is a completion and a
tie-breaking rule that produces a different winner. Hardness also follows from Theorem 2,
because the necessary unique winner problem is equivalent to the unique winner determi-
nation problem in the special case when the preference profile is completely specified.

The unweighted coalitional manipulation (UCM) problem asks whether it is possible for
a group of voters to cast their votes in such a way that a distinguished alternative becomes
a (non-unique or unique) winner.

Corollary 4. The non-unique UCM problem under ranked pairs is NP-complete. The
unique UCM problem under ranked pairs is both NP-hard and coNP-hard.

Proof. NP-completeness of the non-unique variant was already shown by Xia et al. [19].10

Membership in NP holds because for every “yes” instance there is a preference profile for
the manipulators and a tie-breaking rule that outputs the alternative in question. Hardness
also follows from Theorem 1, because the non-unique UCM problem with zero manipulators
is equivalent to the winner determination problem.

NP-hardness of the unique variant was shown by Xia et al. [19]; coNP-hardness follows
from Theorem 2, because the unique UCM problem with zero manipulators is equivalent to
the unique winner determination problem. Xia et al. [19] in fact claimed NP-completeness,
but their argument for membership in NP assumes that winner determination is in P.

6 Non-Anonymous Variants

As mentioned in Section 2, Tideman [15] and Zavist and Tideman [20] suggested ways to
use the preferences of a distinguished voter, say, a chairperson, to render the ranked pairs
method resolute. There are essentially two ways to achieve this, which differ in the point in
time when ties are broken. For the sake of simplicity, we only consider the SCF setting in
this section.

10The proof of Theorem 4.1 by Xia et al. [19] actually works for both RP and RPT (Xia, personal com-
munication, March 29, 2012).
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The a priori variant uses the preferences of the chairperson to construct a tie-breaking
rule τ ∈ L(A × A), which is then used to compute RPT(·, τ). The a posteriori variant
first computes RP(·) and then chooses the alternative from this set that is most preferred
by the chairperson. Both variants are neutral: if the alternatives are permuted in each
ranking, including the ranking of the chairperson, the tie-breaking rule and thus the chosen
alternative will change accordingly.

Whereas the a priori variant is a special case of RPT and therefore efficiently com-
putable, the a posteriori variant is intractable by the results in Section 4. It follows that
neutrality and tractability can be reconciled at the expense of anonymity. By moving to
non-deterministic SCFs, one can even regain anonymity: choosing the chairperson for the
a priori variant uniformly at random results in a procedure that is neutral, anonymous,
and tractable, for appropriate generalizations of anonymity and neutrality to the case of
non-deterministic SCFs. The winner determination problem for the a posteriori variant
remains intractable when the chairperson is chosen randomly.

7 Conclusion

We have studied the complexity of the ranked pairs method. While some ranked pairs
winner is easy to find, deciding whether a given alternative is a winner turns out to be NP-
complete. If one is interested in ranked pairs rankings, both problems are computationally
easy.

From a practical point of view, the ranked pairs method is easier than most other in-
tractable SCFs. The reason is that the expected number of ties among two or more pairs
is rather small. This is particularly true when the number of voters is large compared to
the number of alternatives, which is the case in many realistic settings. It is therefore to
be expected that ranked pairs winners are easy to compute on average for most reasonable
distributions of individual preferences.

Our results reveal a trade-off between neutrality and tractability in the context of the
ranked pairs method: while the efficiently computable variant RPT fails neutrality, the
neutral variant RP is intractable. A very similar trade-off can be observed for the single
transferable vote rule [6, 16].

We have finally discussed variants of the ranked pairs method that achieve neutrality at
the expense of anonymity, by using individual preferences to break ties. The tractability of
those variants depends on the point in time ties are broken.
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Group Activity Selection Problem
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Abstract

We consider a setting where we have to organize one or several group activities for a group
of agents. Each agent will participate in at most one activity; her preference over activities
generally depends on the number of participants in the activity. The goal is to assign agents
to activities in a desirable way. We give a general model, which is a natural generalization
of anonymous hedonic games (and can also be expressed, in a less natural way, as a hedonic
game). Two well-known solution concepts in hedonic games, namely individual rationality and
Nash stability, are particularly meaningful for our model. We study, from the computational
point of view, some existence and optimization problems related to these two solution concepts,
in the general case as well as for natural restrictions on the agents’ preferences.

1 Introduction
There are many real-life situations where a group of agents is faced with a choice of multiple activ-
ities, and the members of the group have differing preferences over these activities. Sometimes, it
is feasible for the group to split into smaller subgroups, so that each subgroup can pursue its own
activity. Consider, for instance, a workshop whose organizers would like to arrange one or more
social activities for the free afternoon. The available activities, which will have to take place simul-
taneously, include a hike, a bus trip, and a table tennis competition. As the activities are scheduled
to take place at the same time, each attendee can select at most one activity (or choose not to par-
ticipate). It is easy enough to elicit the attendees’ preferences over the activities, and divide the
attendees into groups based on their choices. However, the situation becomes more complicated if
one’s preferences may depend on the number of other attendees who choose the same activity. For
instance, the bus trip has a fixed transportation cost that has to be shared among its participants,
which implies that, typically, an attendee i is only willing to go on the bus trip if the number of other
participants of the bus trip exceeds a threshold `i. Similarly, i may only be willing to play table
tennis if the number of attendees who signed up for the tournament does not exceed a threshold ui:
as there is only one table, the more participants, the less time each individual spends playing.

Neglecting to take the number of participants of each activity into account may lead to highly
undesirable outcomes, such as a bus that is shared by two persons, each of them paying a high cost,
and a 48-participant table tennis tournament with one table. Adding constraints on the number of
participants for each activity is a practical, but imperfect solution, as the agents’ preferences over
group sizes may differ: while some attendees (say, senior faculty) may be willing to go on the
bus trip with just 4–5 other participants, others (say, graduate students) cannot afford it unless the
number of participants exceeds 10. A more fine-grained approach is to elicit the agents’ preferences
over pairs of the form “(activity, number of participants)”, rather than over activities themselves,
and allocate agents to activities based on this information. In general, agents’ preferences can be
thought of as weak orders over all such pairs, including the pair “(do nothing, 1)”, which we will
refer to as the void activity. A simpler model, which will be the main focus of this paper, assumes
that each agents classifies all pairs into ones that are acceptable to him and ones that are not, and if
an agent views his current assignment as unacceptable, he prefers (and is allowed) to switch to the
void activity (so the assignment is unstable unless it is acceptable to all agents).

The problem of finding a good assignment of agents to activities, which we will refer to as the
Group Activity Selection Problem (GASP), may be viewed as a mechanism design problem (or, more
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narrowly, a voting problem) or as a coalition formation problem, depending on whether we expect
the agents to act strategically when reporting their preferences. Arguably, in our motivating example
the agents are likely to be honest, so throughout the paper we assume that the central authority knows
(or, rather, can reliably elicit) the agents’ true preferences, and its goal is to find an assignment of
players to activities that, informally speaking, is stable and/or maximizes the overall satisfaction.
This model is closely related to that of anonymous hedonic games [3], where, just as in our setting,
players have to split into groups and each player has preferences over possible group sizes. The main
difference between anonymous hedonic games and our problem is that, in our setting, the agents’
preferences depend not only on the group size, but also on the activity that has been allocated to
their group; thus, our model can be seen as a generalization of anonymous hedonic games. On the
other hand, we can represent our problem as a general (i.e., non-anonymous) hedonic game [4, 3], by
creating a dummy agent for each activity and endowing it with suitable preferences (see Section 2.2
for details). However, our setting has useful structural properties that distinguish it from a generic
hedonic game: for instance, it allows for succinct representation of players’ preferences, and, as we
will see, has several natural special cases that admit efficient algorithms for finding good outcomes.

In this paper, we initiate the formal study of GASP. Our goal is to put forward a model for this
problem that is expressive enough to capture many real-life activity selection scenarios, yet simple
enough to admit efficient procedures for finding good assignments of agents to activities. We de-
scribe the basic structure of the problem, and discuss plausible constraints of the number and type of
available activities and the structure of agents’ preferences. We show that even under a fairly simple
preference model (where agents are assumed to approve or disapprove each available alternative)
finding an assignment that maximizes the number of satisfied agents is computationally hard; how-
ever, we identify several natural special cases of the problem that admit efficient algorithms for this
problem. We also briefly discuss the issue of stability in our setting.

We do not aim to provide a complete analysis of the group activity selection problem; rather, our
work should be seen as a first step towards understanding the algorithmic and incentive issues that
arise in this setting. We hope that our paper will lead to future research on this topic; to facilitate
this, towards the end of the paper we discuss several possible extensions of our model as well as list
some problems left open by our work.

2 Formal Model
Definition 1. An instance of the Group Activity Selection Problem (GASP) is given by a set of
agents N = {1, . . . , n}, a set of activities A = A∗ ∪ {a∅}, where A∗ = {a1, . . . , ap}, and a
profile P , which consists of n votes (one for each agent): P = (V1, . . . , Vn). The vote of agent i
describes his preferences over the set of alternativesX = X∗∪{a∅}, whereX∗ = A∗×{1, . . . , n};
alternative (a, k) is interpreted as “activity a with k participants”, and a∅ is the void activity.

The vote Vi of an agent i ∈ N is a weak order over X∗; for readability we will also denote
it by �i, and its induced strict preference and indifference relations are denoted by �i and ∼i,
respectively. We set Si = {(a, k) ∈ X∗ | (a, k) �i a∅}; we say that voter i approves of all
alternatives in Si, and refer to the set Si as the induced approval vote of voter i.

Throughout the paper we will mostly focus on a special case of our problem where no agent
is indifferent between the void activity and any non-void activity (i.e., for any i ∈ N we have
{x ∈ X | x ∼i a∅} = {a∅}), and each agent is indifferent between all the alternatives in Si; we
denote this special case of our problem by a-GASP.

It will be convenient to distinguish between activities that are unique and ones that exist in
multiple copies. For instance, if there is a single tennis table and two buses, then we can organize
one table tennis tournament, two bus trips (we assume that there is only one potential destination
for the bus trip, so these trips are identical), and an unlimited number of hikes (again, we assume
that there is only one hiking route). This distinction will be useful for the purposes of complexity
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analysis: for instance, some of the problems we consider are easy when we have k copies of one
activity, but hard when we have k distinct activities. Formally, we say that two activities a and b
are equivalent if for every agent i and every j ∈ {1, . . . , n} it holds that (a, j) ∼i (b, j). We say
that an activity a ∈ A∗ is k-copyable if A∗ contains exactly k activities that are equivalent to a
(including a itself). We say that a is simple if it is 1-copyable; if a is k-copyable for k ≥ n, we
will simply say that it is copyable (note that we would never want to organize more than n copies
of any activity). If some activities in A∗ are equivalent, A∗ can be represented more succinctly by
listing one representative of each equivalence class, together with the number of available copies.
However, as long as we make the reasonable assumption that each activity exists in at most n copies,
this representation is at most polynomially more succinct.

Our model can be enriched by specifying a set of constraints Γ. One constraint that arises
frequently in practice is a global cardinality constraint, which specifies a bound K on the number of
activities to be organized. More generally, we could also consider more complex constraints on the
set of activities that can be organized simultaneously, which can be encoded, e.g., by a propositional
formula or a set of linear inequalities. We remark that there can also be external constraints on the
number of participants for each activity: for instance, a bus can fit at most 40 people. However,
these constraints can be incorporated into agents’ preferences, by assuming that all agents view the
alternatives that do not satisfy these constraints as unacceptable.

2.1 Special Cases
We now consider some natural restrictions on agents’ preferences that may simplify the problem of
finding a good assignment. We first need to introduce some additional notation.

Given a vote Vi and an activity a ∈ A∗, let S↓ai denote the projection of Si onto {a}×{1, . . . , n}.
That is, we set

S↓ai = {k | (a, k) ∈ Si}.
Example 1. Let A∗ = {a, b} and consider an agent i whose vote Vi is given by

(a, 8) �i (a, 7) �i (b, 4) �i (a, 9) �i (b, 3) �i (b, 5) �i (b, 6) �i (a, 6) �i a∅ �i . . .
Then Si = {a} × [6, 9] ∪ {b} × [3, 6] and S↓ai = {6, 7, 8, 9}.

We are now ready to define two types of restricted preferences for a-GASP that are directly
motivated by our running example, namely, increasing and decreasing preferences. Informally,
under increasing preferences an agent prefers to share each activity with as many other participants
as possible (e.g., because each activity has an associated cost, which has to be split among the
participants), and under decreasing preferences an agent prefers to share each activity with as few
other participants as possible (e.g., because each activity involves sharing a limited resource). Of
course, an agent’s preferences may also be increasing with respect to some activities and decreasing
with respect to others, depending on the nature of each activity. We provide a formal definition for
a-GASP only; however, it can be extended to GASP in a straightforward way.

Definition 2. Consider an instance (N,A, P ) of a-GASP. We say that the preferences of agent i
are increasing (INC) with respect to an activity a ∈ A∗ if there exists an integer threshold `ai ∈
{1, . . . , n+ 1} such that S↓ai = [`ai , n] (where we assume that [n+ 1, n] = ∅).

Similarly, we say that the preferences of agent i are decreasing (DEC) with respect to an activity
a ∈ A∗ if there exists an integer threshold uai ∈ {0, . . . , n} such that S↓ai = [1, uai ] (where we
assume that [1, 0] = ∅).

We say that an instance (N,A, P ) of a-GASP is increasing (respectively, decreasing) if the
preferences of each agent i ∈ N are increasing (respectively, decreasing) with respect to each
activity a ∈ A∗. We say that an instance (N,A, P ) of a-GASP is mixed increasing-decreasing
(MIX) if there exists a set A+ ⊆ A∗ such that for each agent i ∈ N his preferences are increasing
with respect to each a ∈ A+ and decreasing with respect to each a ∈ A− = A∗ \A+.
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For some activities, an agent may have both a lower and an upper bound for the acceptable group
size: e.g., one may prefer to go on a hike with at least 3 other people, but does not want the group to
be too large in order to maintain a good pace. In this case, we say that an agent has interval (INV)
preferences; note that increasing/decreasing/mixed increasing-decreasing preferences are a special
case of interval preferences.

Definition 3. Consider an instance (N,A, P ) of a-GASP. We say that the preferences of agent i
are interval (INV) if for every a ∈ A∗ there exists a pair of integer thresholds `ai , u

a
i ∈ {1, . . . , n}

such that S↓ai = [`ai , u
a
i ] (where we assume that [i, j] = ∅ for i > j).

Other natural constraints on preferences include restricting the size of Si (or, more liberally, that
of S↓ai for all a ∈ A∗), or requiring agents to have similar preferences: for instance, one could
limit the number of agent types, i.e., require that the set of agents can be split into a small number
of groups so that the agents in each group have identical preferences. We will not define such
constraints formally, but we will indicate if they are satisfied by the instances constructed in the
hardness proofs in Section 4.1.

2.2 GASP and Hedonic Games
Recall that a hedonic game is given by a set of agents N , and, for each agent i ∈ N , a weak order
≥i over all coalitions (i.e., subsets ofN ) that include him. That is, in a hedonic game each agent has
preferences over coalitions that he can be a part of. A coalition S, i ∈ S, is said to be unacceptable
for player i if {i} ≥i S, i.e., i prefers being alone to being in S. A hedonic game is said to be
anonymous if each agent is indifferent among all coalitions of the same size that include him, i.e.,
for every i ∈ N and every S, T ⊆ N \ {i} such that |S| = |T | it holds that S ∪ {i} ≥i T ∪ {i} and
T ∪ {i} ≥i S ∪ {i}.

At a first glance, it may seem that the GASP formalism is more general than that of hedonic
games, since in GASP the agents care not only about their coalition, but also about the activity they
have been assigned to. However, we will now argue that GASP can be embedded into the hedonic
games framework.

Given an instance of the GASP problem (N,A, P ) with |N | = n, where the i-th agent’s prefer-
ences are given by a weak order�i, we construct a hedonic gameH(N,A, P ) as follows. We create
n+ p players; the first n players correspond to agents in N , and the last p players correspond to ac-
tivities in A∗. The last p players are indifferent among all coalitions. For each i = 1, . . . , n, player i
ranks every non-singleton coalition with no activity players as unacceptable; similarly, all coalitions
with two or more activity players are ranked as unacceptable. The preferences over coalitions with
exactly one activity player are derived naturally from the votes: if S, T are two coalitions involving
player i, x is the unique activity player in S, and y is the unique activity player in T , then i weakly
prefers S to T in H(N,A, P ) if and only if (x, |S| − 1) �i (y, |T | − 1), and i weakly prefers S
to {i} in H(N,A, P ) if and only if (x, |S| − 1) �i a∅. We emphasize that the resulting hedonic
games are not anonymous. Further, while this embedding allows us to apply the standard solution
concepts for hedonic games without redefining them, the intuition behind these solution concepts is
not always preserved (e.g., because activity players never want to deviate). Therefore, in Section 3,
we will provide formal definitions of the relevant hedonic games solution concepts adapted to the
setting of a-GASP.

We remark that when A∗ consists of a single copyable activity (i.e., there are n activities in A∗,
all of them equivalent to each other), GASP become equivalent to anonymous hedonic games. Such
games have been studied in detail by Ballester [2], who provides a number of complexity results for
them. In particular, he shows that finding an outcome that is core stable, Nash stable or individually
stable (see Section 3 for the definitions of some of these concepts in the context of a-GASP) is NP-
hard. Clearly, all these complexity results also hold for GASP. However, they do not directly imply
similar hardness results for a-GASP.
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3 Solution Concepts
Having discussed the basic model of GASP, as well as a few of its extensions and special cases, we
are ready to define what constitutes a solution to this problem.

Definition 4. An assignment for an instance (N,A, P ) of GASP is a mapping π : N → A; π(i) =
a∅ means that agent i does not participate in any activity. Each assignment naturally partitions
the agents into at most |A| groups: we set π0 = {i | π(i) = a∅} and πj = {i | π(i) = aj} for
j = 1, . . . , p. For each j = 1, . . . , p, the agents in πj form a coalition; also, each agent in π0 forms
a singleton coalition.

Clearly, not all assignments are equally desirable. As a minimum requirement, no agent should
be assigned to a coalition that he deems unacceptable. More generally, we prefer an assignment to
be stable, i.e., no agent (or group of agents) should have an incentive to change its activity. Thus, we
will now define several solution concepts, i.e., classes of desirable assignments. We will state our
definitions for a-GASP only, though all of them can be extended to the more general case of GASP
in a natural way. Given the connection to hedonic games pointed out in Section 2.2, we will proceed
by adapting the standard hedonic game solution concepts to our setting; however, this has to be done
carefully to preserve intuition that is specific to our setting.

The first solution concept that we will consider is individual rationality.

Definition 5. Given an instance (N,A, P ) of a-GASP an assignment π : N → A is said to be
individually rational if for every agent i ∈ N such that π(i) = aj 6= a∅ it holds that (aj , |πj |) ∈ Si.

Clearly, if an assignment is not individually rational, there exists an agent that can benefit from
abandoning his coalition in favor of the void activity. Further, an individually rational assignment
always exists: for instance, we can set π(i) = a∅ for all i ∈ N . However, a benevolent central au-
thority would usually want to maximize the number of agents that are assigned to non-void activities.
Formally, let #(π) = |{i | π(i) 6= a∅}| denote the number of agents assigned to a non-void activity.
We say that π is maximum individually rational if π is individually rational and #(π) ≥ #(π′) for
every individually rational assignment π. Further, we say that π is perfect if #(π) = n1. We denote
the size of a maximum individually rational assignment for an instance (N,A, P ) by #(N,A, P ).
In Section 4, we study the complexity of computing a perfect or maximum individually rational as-
signment for a-GASP, both for the general model and for the special cases considered in Section 2.1.

Besides individual rationality, there is a number of solution concepts for hedonic games that aim
to capture stability against individual or group deviations, such as Nash stability, individual stability,
contractual individual stability, and (weak and strong) core stability (see, e.g., [6]). In what follows,
due to lack of space, we only provide the formal definition (and some results) for Nash stability. We
briefly discuss how to adapt other notions of stability to our setting, but we leave the detailed study
of their algorithmic properties as a topic for future work.

Definition 6. Given an instance (N,A, P ) of a-GASP, an assignment π : N → A is said to be
Nash stable if it is individually rational and for every agent i ∈ N such that π(i) = a∅ and every
aj ∈ A∗ it holds that (aj , |πj |+ 1) 6∈ Si.

If π is not Nash stable, then there is an agent assigned to a void activity who wants to join a
group that is engaged in a non-void activity, i.e., he would have approved of the size of this group
and its activity choice if he was one of them. Note that a perfect assignment is Nash stable. The
reader can easily verify that our definition is a direct adaptation of the notion of Nash stability in
hedonic games: if an assignment is individually rational, the only agents who can profitably deviate
are the ones assigned to the void activity.

1The terminological similarity with the notion of perfect partition in a hedonic game [1] is not a coincidence; there a
perfect partition assigns each agent to her preferred coalition; here a perfect assignment assigns each agent to one of her
equally preferred alternatives.
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The requirement of Nash stability is considerably stronger than that of individual rationality,
and, in general, there are cases where a Nash stable assignment does not exist.

Proposition 1. For each n ≥ 2, there exists an instance (N,A, P ), |N | = n, of a-GASP that
does not admit a Nash stable assignment. This holds even if |A∗| = 1 and all agents have interval
preferences.

Proof. Consider an instance (N,A, P ) of a-GASP withA∗ = {a} and induced approval votes given
by S1 = {(a, 1)}, S2 = {(a, 2)} and Si = ∅ for all i ≥ 3; note that all approved sets are intervals.
Whichever assignment π is chosen, either π is not individually rational or agent 2 wants to join a. �

In Definition 6 an agent is allowed to join a coalition even if the members of this coalition
are opposed to this. In contrast, the notion of individual stability only allows a player to join a
group if none of the existing group members objects. We remark that if all agents have increasing
preferences, individual stability is equivalent to Nash stability: no group of players would object to
having new members join.

A related hedonic games solution concept is contractual individual stability: under this concept,
an agent is only allowed to move from one coalition to another if neither the members of his new
coalition nor the members of his old coalition object to the move. However, for a-GASP contractual
individual stability is equivalent to individual stability. Indeed, in our model no agent assigned to a
non-void activity has an incentive to deviate, so we only need to consider deviations from singleton
coalitions.

The solution concepts discussed so far deal with individual deviations; resistance to group de-
viations is captured by the notion of the core. One typically distinguishes between strong group
deviations, which are beneficial for each member of the deviating group, and weak group devia-
tions, where the deviation should be beneficial for at least one member of the deviating group and
non-harmful for others; these notions of deviation correspond to, respectively, weak and strong core.
We note that in the context of a-GASP strong group deviations amount to players in π0 forming a
coalition in order to engage in a non-void activity. This observation immediately implies that every
instance of a-GASP has a non-empty weak core, and an outcome in the weak core can be constructed
by a natural greedy algorithm; we omit the details due to space constraints.

4 Computing Good Outcomes
In this section, we consider the computational complexity of finding a “good” assignment for
a-GASP. We mostly focus on finding perfect or maximum individually rational assignment; towards
the end of the section, we also consider Nash stability. Besides the general case of our problem, we
consider special cases obtained by combining constraints on the number and type of activities (e.g.,
unlimited number of simple activities, a constant number of copyable activities, etc.) and constraints
on voters’ preferences (INC, DEC, INV, etc.). Note that if we can find a maximum individually ra-
tional assignment, we can easily check if a perfect assignment exists, by looking at the size of our
maximum individually rational assignment. Thus, we will state our hardness results for the “easier”
perfect assignment problem and phrase our polynomial-time algorithms in terms of the “harder”
problem of finding a maximum individually rational assignment.

4.1 Individual Rationality: Hardness Results
We start by presenting four NP-complete results, which show that finding a perfect assignment is
hard even under fairly strong constraints on preferences and activities. We remark that this problem
is obviously in NP, so in what follows we will only provide the hardness proofs. We omit most
proofs in this section due to space constraints.
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Our first hardness result applies when we have an unlimited number of simple activities, and the
agents’ preferences are increasing.

Theorem 1. It is NP-complete to decide whether a-GASP admits a perfect assignment, even when
all activities in A∗ are simple and all agents have increasing preferences.

Proof sketch. We provide a reduction from EXACT COVER BY 3-SETS (X3C). Recall that an in-
stance of X3C is a pair 〈X,Y〉, where X = {1, . . . , 3q} and Y = {Y1, . . . , Yp} is a collection of
3-element subsets of Y; it is a “yes”-instance if X can be covered by exactly q sets from Y , and a
“no”-instance otherwise. Given an instance 〈X,Y〉 of X3C, we construct an instance of a-GASP
as follows. We set N = {1, . . . , 3q} and A∗ = {a1, . . . , ap}. For each agent i, we define his
vote Vi so that the induced approval vote Si is given by Si = {(aj , k) | i ∈ Yj , k ≥ 3}, and let
P = (V1, . . . , Vn). Clearly, (N,A, P ) is an instance of a-GASP with increasing preferences. It is
not hard to check that 〈X,Y〉 is a “yes”-instance of X3C if and only if (N,A, P ) admits a perfect
assignment. �

Our second hardness result applies to simple activities and decreasing preferences, and holds
even if each agent is willing to share each activity with at most one other agent.

Theorem 2. It is NP-complete to decide whether a-GASP admits a perfect assignment, even when
all activities in A∗ are simple, all agents have decreasing preferences, and, moreover, for every
agent i ∈ N and every alternative a ∈ A∗ we have S↓ai ⊆ {1, 2}.

Proof sketch. Consider the following restricted variant of the problem of scheduling on unrelated
machines. There are n jobs and p machines. An instance of the problem is given by a collection of
numbers {pij | i = 1, . . . , n, j = 1, . . . , p}, where pij is the running time of job i on machine j, and
pij ∈ {1, 2,+∞} for every i = 1, . . . , n and every j = 1, . . . , p. It is a “yes”-instance if there is a
mapping ρ : {1, . . . , n} → {1, . . . , p} assigning jobs to machines so that the makespan is at most
2, i.e., for each j = 1, . . . , p it holds that

∑
i:ρ(i)=j pij ≤ 2. This problem is known to be NP-hard

(see the proof of Theorem 5 in [7]).
Given an instance {pij | i = 1, . . . , n, j = 1, . . . , p} of this problem, we construct an instance

of a-GASP as follows. We set N = {1, . . . , n}, A∗ = {a1, . . . , ap}. Further, for each agent i ∈ N
we construct a vote Vi so that the induced approval vote Si satisfies S↓aji = {1} if pij = 2, S↓aji =

{1, 2} if pij = 1, and S↓aji = ∅ if pij = +∞. Clearly, these preferences satisfy the constraints in the
statement of the theorem, and it can be shown that a perfect assignment for (N,A, P ) corresponds
to a schedule with makespan of at most 2, and vice versa. �

Our third hardness result also concerns simple activities in decreasing preferences. However,
unlike Theorem 2, it holds even if each agent approves of at most 3 activities. The proof proceeds
by a reduction from MONOTONE 3-SAT.

Theorem 3. It is NP-complete to decide whether a-GASP admits a perfect assignment, even when
all activities in A∗ are simple, all agents have decreasing preferences, and, moreover, for every
agent i ∈ N it holds that |{a | S↓ai 6= ∅}| ≤ 3.

Our fourth hardness result applies even when there is only one copyable activity and every agent
approves at most two alternatives; however, the agents’ preferences constructed in our proof do not
satisfy any of the structural constraints defined in Section 2.1. The proof proceeds by a reduction
from X3C.

Theorem 4. It is NP-complete to decide whether a-GASP admits a perfect assignment, even when
all activities in A∗ are equivalent (i.e., A∗ consists of a single copyable activity a) and for every
i ∈ N we have Si = {a} × {xi, yi}, where {xi, yi} ⊂ {1, 2, . . . , n}.
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4.2 Individual Rationality: Easiness Results
The hardness results in Section 4.1 imply that if A∗ contains an unbounded number of distinct
activities, finding a maximum individually rational assignment is computationally hard, even under
strong restrictions on agents’ preferences (such as INC or DEC). Thus, we can only hope to develop
an efficient algorithm for this problem if we assume that the total number of activities is small (i.e.,
bounded by a constant), or that most of the activities are equivalent to each other (i.e., there is a
small number of copyable activities) and the agents’ preferences satisfy additional constraints. We
will now consider both of these settings, starting with the case where the size of A∗ is bounded by a
constant.

Theorem 5. There exist an algorithm that given an instance of a-GASP finds a maximum individu-
ally rational assignment and runs in time n|A

∗|poly(n).

Proof. We will check, for each r = 0, . . . , n, if there is an individually rational assignment π with
#(π) = r, and output the maximum value of r for which this is the case.

Fix an r ∈ {0, . . . , n} and let K = |A∗|. For every vector (n1, . . . , nK) ∈ {0, . . . , n}K that
satisfies n1 + · · ·+ nK = r we will check if there exists an assignment of agents to activities such
that for each j = 1, . . . ,K exactly nj agents are assigned to activity aj (with the remaining agents
being assigned to the void activity), and each agent approves of the resulting assignment. Each
check will take poly(n) steps, and there are at most (n+ 1)K vectors to be checked; this implies our
bound on the running time of our algorithm.

For a fixed vector (n1, . . . , nK), we construct an instance of the network flow problem as fol-
lows. Our network has a source s, a sink t, a node i for each player i = 1, . . . , n, and a node aj for
each aj ∈ A∗. There is an arc of unit capacity from s to each agent, and an arc of capacity nj from
node aj to the sink. Further, there is an arc of unit capacity from i to aj if and only if (aj , nj) ∈ Si.
It is not hard to see that an integral flow F of size r in this network corresponds to an individually
rational assignment of size r. �

We remark that when A∗ consists of a single simple activity a, a maximum individually rational
assignment can be found by a simple greedy algorithm.

Proposition 2. Given an instance (N,A, P ) of a-GASP with A∗ = {a}, we can find a maximum
individually rational assignment for (N,A, P ) in time O(S logS), where S =

∑
i∈N |Si|.

Proof. Observe that (N,A, P ) admits an individually rational assignment π with #(π) = k if and
only if | {i | (a, k) ∈ Si} | ≥ k. Let R = {(i, k) | (a, k) ∈ Si}; note that |R| = S. We can sort the
elements ofR in descending order with respect to their second coordinate in time O(S logS). Now
we can scanR left to right in order to find the largest value of k such thatR contains at least k pairs
that have k as their second coordinate; this requires a single pass through the sorted list. �

Now, suppose thatA∗ contains many activities, but most of them are equivalent to each other; for
instance, A∗ may consist of a single k-copyable activity, for a large value of k. Then the algorithm
described in the proof of Theorem 5 is no longer efficient, but this setting still appears to be more
tractable than the one with many distinct activities. Of course, by Theorem 4, in the absence of any
restrictions on the agents’ preferences, finding a maximum individually rational assignment is hard
even for a single copyable activity. However, we will now show that this problem becomes easy if
we additionally assume that the agents’ preferences are increasing or decreasing.

Observe first that for increasing preferences having multiple copies of the same activity is not
useful: if there is an individually rational assignment where agents are assigned to multiple copies of
an activity, we can reassign these agents to the same copy of this activity without violating individual
rationality. Thus, we obtain the following easy corollary to Theorem 5.
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Corollary 1. Let (N,A, P ) be an instance of a-GASP with increasing preferences where A∗ con-
tains at mostK activities that are not pairwise equivalent. Then we can find a maximum individually
rational assignment for (N,A, P ) in time nKpoly(n).

For decreasing preferences, we can simply eliminate all copyable activities. Indeed, consider an
instance (N,A, P ) of a-GASP where some activity a ∈ A∗ is copyable. Then we can assign each
agent i ∈ N such that (a, 1) ∈ Si to his own copy of a; clearly, this will only simplify the problem
of assigning the remaining agents to the activities.

It remains to consider the case where the agents’ preferences are decreasing, there is a bounded
number of copies of each activity, and the number of distinct activities are small. While we do not
have a complete solution for this case, we can show that in the case of a single k-copyable activity a
natural greedy algorithm succeeds in finding a maximum individually rational assignment.

Theorem 6. Given a decreasing instance (N,A, P ) of a-GASP where A∗ consists of a single k-
copyable activity (i.e., A∗ = {a1, . . . , ak}, and all activities in A∗ are pairwise equivalent), we can
find a maximum individually rational assignment in time O(n log n).

Proof. Since all activities in A∗ are pairwise equivalent, we can associate each agent i ∈ N with a
single number ui ∈ {0, . . . , n}, which is the maximum size of a coalition assigned to a non-void
activity that he is willing to be a part of. We will show that our problem can be solved by a simple
greedy algorithm. Specifically, we sort the agents in non-increasing order of uis. From now on, we
will assume without loss of generality that u1 ≥ · · · ≥ un. To form the first group, we find the
largest value of i such that ui ≥ i, and assign agents 1, . . . , i to the first copy of the activity. In other
words, we continue adding agents to the group as long as the agents are happy to join. We repeat
this procedure with the remaining agents until either k groups have been formed or all agents have
been assigned to one of the groups, whichever happens earlier.

Clearly, the sorting step is the bottleneck of this procedure, so the running time of our algorithm
is O(n log n). It remains to argue that it produces a maximum individually rational assignment. To
show this, we start with an arbitrary maximum individually rational assignment π and transform
it into the one produced by our algorithm without lowering the number of agents that have been
assigned to a non-void activity. We will assume without loss of generality that π assigns all k copies
of the activity (even though this is is not necessarily the case for the greedy algorithm).

First, suppose that π(i) = a∅, π(j) = a` for some i < j and some ` ∈ {1, . . . , k}. Then we can
modify π by setting π(i) = a`, π(j) = a∅. Since i < j implies ui ≥ uj , the modified assignment
is individually rational. By applying this operation repeatedly, we can assume that the set of agents
assigned to a non-void activity forms a contiguous prefix of 1, . . . , n.

Next, we will argue that for each ` = 1, . . . , k the group of agents that are assigned to a`
forms a contiguous subsequence of 1, . . . , n. To this end, let us sort the coalitions in π in non-
decreasing order according to the smallest value of ui among the coalition members, breaking ties
arbitrarily. That is, we reassign the k copies of our activity to coalitions in π so that ` < r implies
mini∈π` ui ≤ mini∈πr ui. Now, consider the first coalition π` in our ordering that is not contiguous,
i.e., there exist players x, y, z with x > y > z such that π(x) = π(z) = a`, but π(y) 6= a`. Note
that since the set of agents assigned to a non-void activity forms a contiguous prefix of 1, . . . , n,
x > y, and π(x) = a`, it follows that π(y) 6= a∅. Suppose that π(y) = ar; our choice of ` implies
that r > `. Now, let us modify π by setting π(y) = a`, π(z) = ar. We claim that the resulting
assignment remains individually rational. Indeed, since the original assignment was individually
rational, and, in particular, x was happy, and x > y (and hence |π`| ≤ ux ≤ uy), agent y is happy
with the modified assignment. Now, consider agent z. He moved from π` to πr. Since the original
assignment was individually rational, and, in particular, y was happy, we have |πr| ≤ uy . Since
y > z implies uy ≤ uz , it follows that z is happy with the modified assignment. By repeatedly
applying such swaps, we can ensure that each coalition in π forms a contiguous subsequence of
1, . . . , n.
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Finally, let us renumber the coalitions in π again, this time according to their first element, i.e.,
assume that ` < r implies mini∈π` i < mini∈πr i (note that this numbering is different from the
numbering used in the previous step). Consider the smallest value of ` such that π` differs from the
`-th coalition constructed by the greedy algorithm (let us denote it by γ`), and let i be the first agent
in π`+1. The description of the greedy algorithm implies that π` is a strict subset of γ` and agent
i belongs to γ`. Thus, if we modify π by moving agent i to π`, the resulting allocation remains
individually rational (since i is happy in γ`). By repeating this step, we will gradually transform
π into the output of the greedy algorithm (possibly discarding some copies of the activity). This
completes the proof. �

The algorithm described in the proof of Theorem 6 can be extended to the case where we have
one k-copyable activity a and one simple activity b, and the agents have decreasing preferences over
both activities. For each s = 1, . . . , n we will look for the best solution in which s players are
assigned to b; we will then pick the best of these n solutions. For a fixed s let Ns = {i ∈ N |
(b, s) ∈ Si}. If |Ns| < s, no solution for this value of s exists. Otherwise, we can assign any subset
of Ns of size s to b. It is not hard to see that we should simply pick the agents in Ns that have the
lowest level of tolerance for a i.e., we order the agents in Ns by the values of uai from the smallest
to the largest, and pick the first s agents. Indeed, any assignment that is not of this form can be
transformed into one of this form by swaps without breaking the individual rationality constraints.
It would be interesting to see if this idea can be extended to the case where instead of a single simple
activity b we have a constant number of simple activities or a single k′-copyable activity.

We conclude this section by describing an O(
√
n)-approximation algorithm for finding a maxi-

mum individually rational assignment in a-GASP with a single copyable activity.

Theorem 7. There exists a polynomial-time algorithm that given an instance (N,A, P ) of a-GASP
whereA∗ consists of a single copyable activity a, outputs an individually rational assignment π with
#(π) = Θ( 1√

n
)#(N,A, P ).

Proof. We will say that an agent i is active in π if π(i) 6= a∅; we say that a a coalition of agents
is active if it is assigned to a single copy of a. We construct an individually rational assignment π
iteratively, starting from the assignment where no agent is active. Let N∗ = {i | π(i) = a∅} be the
current set of inactive agents (initially, we set N∗ = N ). At each step, we find the largest coalition
of agents that can be assigned to a single copy of a without breaking the individual rationality
constraints, and append this assignment to π. We repeat this step until the inactive agents cannot
form another coalition.

Now we compare the number of active agents in π with the number of active agents in an op-
timal individually rational assignment π∗. To this end, let us denote the active coalitions of π by
B1, . . . , Bs, where |B1| ≥ . . . ≥ |Bs|. If |B1| ≥

√
n, we are done, so assume that this is not the

case. Note that since B1 was chosen greedily, this implies that |C| ≤ √n for every active coalition
C ∈ π∗.

Let C be the set of active coalitions in π∗. We partition C into s groups by setting C1 = {C ∈
C | C ∩ B1 6= ∅} and Ci = {C ∈ C | C ∩ Bi 6= ∅, C 6∈ Cj for j < i} for i = 2, . . . , s. Note
that every active coalition C ∈ π∗ intersects some coalition in π: otherwise we could add C to π.
Therefore, each active coalition in π∗ belongs to one of the sets C1, . . . , Cs. Also, by construction,
the sets C1, . . . , Cs are pairwise disjoint. Further, since the coalitions in Ci are pairwise disjoint and
each of them intersects Bi, we have |Ci| ≤ |Bi| for each i = 1, . . . , s. Thus, we obtain

#(π∗) =
∑

i=1,...,s

∑

C∈Ci
|C| ≤

∑

i=1,...,s

∑

C∈Ci

√
n ≤

∑

i=1,...,s

|Ci|√n ≤
∑

i=1,...,s

|Bi|
√
n ≤ #(π)

√
n,

which is what we wanted to prove. �
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4.3 Nash Stability
We have shown that a-GASP does not not always admit a Nash stable assignment (Proposition 1).
In fact, it is difficult to determine whether a Nash stable assignment exists; we omit the proof due to
space constraints.

Theorem 8. It is NP-complete to decide whether a-GASP admits a Nash stable assignment.

However, we will now argue that if agents’ preferences satisfy INC, DEC, or MIX, a Nash stable
assignment always exists and can be computed efficiently.

Theorem 9. If (N,A, P ) is an instance of a-GASP that is increasing, decreasing, or mixed
increasing-decreasing, a Nash stable assignment always exists and can be found in polynomial
time.

Proof. For increasing preferences, we can start by choosing an arbitrary individually rational as-
signment π (e.g., π(i) = a∅ for all i ∈ N ). If π is not Nash stable, there exists an agent i ∈ N with
π(i) = a∅ and an activity aj ∈ A∗ such that (a, |πj | + 1) ∈ Si. We can then modify π by setting
π(i) = aj ; clearly, this assignment remains individually rational. If the resulting assignment is still
not Nash stable, we can repeat this step. Since at each step the number of agents assigned to the
void activity goes down by 1, this process stops after at most n steps.

For decreasing preferences, we proceed as follows. We consider the activities one by one; at step
j, we consider activity aj . Let Nj ⊆ N be the set of agents that remain unassigned at the beginning
of step j. Let Nj,` = |{i ∈ Nj | (aj , `) ∈ Si}|, and set k = max{` | Nj,` ≥ `}. Thus, k is the
size of the largest group of currently unassigned agents that can be assigned to aj . By our choice of
k, the set Nj contains at most k agents that are willing to share aj with k + 1 or more other agents.
We assign all these agents to aj ; if the resulting coalition contains ` < k agents, we assign k − `
additional agents that approve of (aj , k) to aj (the existence of these k − ` agents is guaranteed by
our choice of k). This completes the description of the j-th step. Note that no agent that remains
unassigned after this step want to be assigned to aj : indeed, this activity is currently shared among
k agents, so if he were to join, the size of the group that is assigned to aj would increase to k + 1,
and none of the unassigned agents is willing to share aj with k + 1 other agents. If some agents
remain unassigned after n steps, we assign them to the void activity. To see that this assignment is
Nash stable, consider an agent i assigned to the void activity. For each activity aj he did not want to
join the coalition of agents assigned to aj during step j. Since the set of agents assigned to aj did
not change after step j, this is still the case.

For mixed decreasing-increasing instances, we first remove all activities in A+ and apply our
second algorithm to the remaining instance; we then consider the unassigned agents and assign
them to activities in A+ using the first algorithm. �

We will now consider the problem of finding a Nash stable assignment that maximizes the num-
ber of agents assigned to a non-void activity. This problem admits an efficient algorithm if A∗

consists of a single simple activity.

Theorem 10. There exist a polynomial-time algorithm that given an instance (N,A, P ) of a-GASP
with A∗ = {a} finds a Nash stable assignment maximizing the number of agents assigned to a
non-void activity, or decides that no Nash stable assignment exists.

Proof. For each k = n, . . . , 0, our algorithm decides whether there exists a Nash stable assignment
π with #(π) = k, and outputs the largest value of k for which this is the case.

For each i ∈ N , let S′i = S↓ai . For k = n a Nash stable assignment π with #(π) = n exists if
and only if n ∈ S′i for each i ∈ N . Assigning every agent to a∅ is Nash stable if and only if 1 /∈ S′i
for each i ∈ N . Now we assume 1 ≤ k ≤ n − 1 and set U1 = {i ∈ N | k ∈ S′i, k + 1 /∈ S′i},
U2 = {i ∈ N | k /∈ S′i, k + 1 ∈ S′i}, and U3 = {i ∈ N | k ∈ S′i, k + 1 ∈ S′i}.
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If |U1| + |U3| < k there does not exist an individually stable assignment π with #(π) = k. If
U2 6= ∅ no Nash stable assignment π with #(π) = k can exist, since every agent from U2 would be
unhappy. If |U3| > k no Nash stable assignment π with #(π) = k can exist, since at least one agent
in U3 would not participate and thus would be unhappy. Thus, we can assume that |U1|+ |U3| ≥ k,
|U3| ≤ k, U2 = ∅. In this case we can construct a Nash stable assignment π by assigning all agents
from U3 and k − |U3| agents from U1 to a. Since we have π(i) 6= a∅ for all i ∈ U2 ∪ U3, no agent
is unhappy. �

5 Conclusions and Future Work
We have defined a new model for the selection of a number of group activities, discussed its connec-
tions with hedonic games, defined several stability notions, and for two of them, we have obtained
several complexity results. A number of our results are positive: finding desirable assignments
proves to be tractable for several restrictions of the problem that are meaningful in practice. In-
teresting directions for future work include exploring the complexity of computing other solution
concepts for a-GASP and extending our results to the more general setting of GASP.
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Email: Sascha.Kurz@uni-bayreuth.de Email: lang@lamsade.dauphine.fr

Joachim Schauer Gerhard Woeginger
Universität Graz, Austria TU Eindhoven, The Netherlands
Email: joachim.schauer@uni-graz.at Email: gwoegi@win.tue.nl

118



Cost-sharing of ontinuous knapsaks

Andreas Darmann and Christian Klamler

1

Abstrat

This paper provides a �rst insight into ost sharing rules for the ontinuous knapsak

problem. Assuming a set of divisible items with weights from whih a knapsak

with a ertain weight onstraint is to be �lled, di�erent suh (lasses of) rules are

disussed. Those - based on individual approvals of the items - optimally �ll the

knapsak and share the ost of the knapsak among the individuals. Using various

reasonable properties of ontinuous knapsak ost sharing rules, we provide three

haraterization results.

1 Introdution

Cost alloation in ombinatorial optimization problems has been intensively disussed in

reent years (see [14℄ for a summary). The major fous has been on the minimum ost

spanning tree problem, the earliest and most widely investigated ost sharing problem in

this area (e.g. [3℄, [4℄, [10℄). There the interest lies mainly in the fair division of the ost

of reating a network in whih eah agent is onneted diretly or indiretly to a soure.

A seond emphasis has been on sheduling and queuing problems, i.e., on the problem of

optimally proessing jobs of di�erent lengths or weights on a single server (e.g. [8℄, [12℄,

[13℄).

The above problem of �nding minimum ost spanning trees has a major advantage among

ombinatorial optimization problems. Its optimal solution an be found in polynomial time.

Only then, i.e., in the ase of �nding suh an optimal solution �quikly�, does it seem to

make sense to talk about fairly sharing the osts, beause otherwise any hanges to the

setting ould make it impossible to �nd the new ost alloation in reasonable time. The

fous ould only be on �xed solutions.

Among the ombinatorial optimization problems, the knapsak problem is onerned with

e�iently �lling a weight-restrited knapsak with items from a set of items with possi-

bly di�erent weights and pro�ts. E�ieny in that respet means maximizing some pro�t

funtion based on the items' pro�ts. In ase of indivisible items, this problem is typially

NP-hard. One exeption is the ontinuous knapsak problem in whih the items are divisible

and therefore the solution ould ontain a ertain fration of one item.

In usual ost sharing problems suh as the bankrupty problem ([1℄, [16℄) or the minimum

ost spanning tree problem, �objetive� preferenes suh as osts or laims play a major role

in determining a fair ost alloation. This will be di�erent in our framework, where we fous

on the approval or disapproval of ertain items by individuals ([5℄). The soial welfare of a

set of items is simply de�ned by the total number of approvals for the single items in the

set ([6℄). This ould be seen as a �rst step towards using (binary) preferene information in

determining a fair ost alloation.

The setting used in this paper an be summarized as follows: we start with a ertain

knapsak (a apaity, time interval, et.) and a set of items over whih individuals have

1

We are greatful to Ulrih Pfershy, Daniel Ekert and three anonymous referees for their omments on

a previous version of this paper.
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binary preferenes. Eah of the items has a (possibly di�erent) weight. First, the goal is to

�ll the knapsak suh that soial welfare, (i.e., the sum of approvals) is maximized. Then

the attempt is to fairly divide the ost of the knapsak (or maintaining the apaity, or

using the time) among the individuals.

As an example onsider a multi-national researh projet that has some pre-determined

ost. Spae and/or time onstraints might limit the number of researhers (out of a pool

of potential andidates) that an partiipate. In addition, the possible andidates might be

fored to use the provided resoure for their spei� researh for di�erent amounts of time.

The potential �naning ountries of the researh projet might approve and disapprove of

di�erent researhers. The question now is how to selet the set of researhers and how to

distribute the ost among the partiipating ountries.

2

In priniple we are onerned with sharing the ost of a seleted set of non-rival items that

provides di�erent utilities or payo�s to the individuals. Cost alloation aspets in suh a

binary knapsak problem have been onsidered before by Dror [9℄ and ertain rules suh as

the Shapley value or the equal harge method have been suggested. In this paper we want

to introdue and haraterize (a family of) possibly interesting ontinuous knapsak ost

sharing rules.

The following setion establishes the formal framework, de�nes the ontinuous knapsak

problem, and introdues reasonable properties of ontinuous knapsak ost sharing rules.

Setion 3 �rst introdues a whole family of suh rules and then fouses on two rules of whih

haraterization results are provided. Setion 4 onludes the paper.

2 Preliminaries

Let N = {1, . . . , n} denote a set of individuals, and I = {1, . . . ,m} a set of items. With

eah item j ∈ I, we assoiate a positive weight wj ∈ R+. The weights are summarized by

the vetor ω ∈ Rm+ , where the j-th entry ωj orresponds to wj .
Eah individual i ∈ N partitions the set I into a set Ai of items she approves of and a set

of items she disapproves of. For i ∈ N , the vetor representation ai ∈ {0, 1}m turns out to

be useful, where the j-th entry ai,j = 1 if individual i approves of item j, and ai,j = 0 if i
disapproves of j. These vetors are aptured by means of an n×m matrix A, whose rows
orrespond to the vetors ai; i.e., A = (ai,j)i∈N , j∈I .
A⊖ ai denotes the matrix resulting from A by deleting the row orresponding to ai. Let B
be a k ×m matrix for some k ∈ N. For some b ∈ {0, 1}m, B ⊕ b is the (k + 1) ×m matrix

reated by onatenating to B a (k + 1)-st row β and setting β = b.
For j ∈ I, let Nj be the set of individuals of N who approve of j, i.e., Nj = {i ∈ N : j ∈ Ai}.
The value pj of item j ∈ I is de�ned as the number of individuals that approve of j. Formally,

pj := |{i ∈ N : j ∈ Ai}| = |Nj |.
Given a apaity onstraint (or weight bound) W , we an represent a knapsak ost sharing

problem as the quadruple (N , A, ω,W ). A solution to this problem assigns to eah individual

a ost share. However, one of the major problems in this ombinatorial optimization exerise

is its omputational omplexity, i.e., �nding an optimal knapsak is NP-hard. Hene, we

need to restrit ourselves to a speial setting of the knapsak problem. Therefore we assume

the items to be divisible, i.e., a solution may ontain frations of (at most) one item. This

is alled the ontinuous knapsak problem introdued in the following subsetion.

2

A �fration� of a researher ould be seen as a part-time worker.
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2.1 The ontinuous knapsak

The following de�nition introdues a well-known optimization problem:

De�nition 2.1 (Continuous Knapsak Problem)

Given a set I = {1, . . . ,m} of items, and, for eah j ∈ I, positive real numbers pj and wj ,
the ontinuous knapsak problem is the following problem:

3

max
∑
j∈I pjxj

s.t.

∑
j∈I wjxj ≤ W

xj ∈ [0, 1]

It is known that the ontinuous knapsak problem an be solved in polynomial time (see [11℄).

In what follows, we assume that the items are sorted in a way suh that

p1

w1
>
p2

w2
> . . . >

pm
wm

(1)

Note that in pratie, the strit inequalities in (1) are not a limitation, sine these may

always be reahed by arbitrarily small �perturbations� of the weights or by modifying the

auray of measurement. In theory (ompare [11℄), inequality (1) ensures that the unique

solution the entity hooses is determined by

xj :=





1 for j = 1, . . . , s− 1
1
ws

(W −∑s−1
i=1 wi) for j = s

0 for j > s

(2)

where s is de�ned by

s−1∑

j=1

wj < W and

s∑

j=1

ws ≥ W

The orresponding objetive funtion value z is given by z =
∑
j∈I pjxj =

∑s−1
j=1 pj +

ps

ws
(W −∑s−1

i=1 wi).

Item s is alled split item.

4

For an optimal solution X = (x1, x2, . . . , xm), we abbreviate

X+ = {j ∈ I : xj > 0} = {1, . . . , s}. In what follows, and in order to simplify notation,

xj is identi�ed with its value in the optimal solution of the onsidered ontinuous knapsak

problem.

2.2 Dividing a ontinuous knapsak

Let the quadruple (N , A, ω,W ) be given. From the previous setion we know that a solution

an be alulated in polynomial time. Now, the goal is to divide the ost of the optimally

paked knapsak among the individuals in a fair manner. In that respet, we �rst have to

determine the ost of the knapsak. In this paper, we assume that every unit of weight

imposes a ost of one, and therefore the total ost of the knapsak is equal to the weight

3

In our approah we will fous on maximizing a sort of utilitarian soial welfare given by the sum

of approvals. This might, however, not be the only way to implement a fair solution. More egalitarian

approahes ould also be onsidered at that stage.

4

Note that possibly xs = 1 holds in the optimal solution. That is, the split item s is not neessarily

�split�, i.e., 0 < xs < 1 need not hold.
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onstraintW . However, dividing then the weight wj byW for eah j ∈ I and settingW = 1
does not hange the struture of the problem (and, in partiular, the optimal solutions of

the orresponding ontinuous knapsak problems are idential). Thus, in the major part of

the paper it is assumed that W = 1. In that ase, the ontinuous knapsak ost sharing

problem is denoted by the triple (N , A, ω), and we refer to the orresponding ontinuous

knapsak problem as the pair (A,ω).

In general, a ontinuous knapsak ost sharing rule is a funtion φ : (N , A, ω,W ) → Rn+.
The i-th entry φi of φ is interpreted as the share of the ost that individual i has to arry.

In the following we de�ne some desirable properties for a ontinuous knapsak ost sharing

rule, trying to apture ertain aspets of fairness.

Properties of ost sharing rules.

The �rst requirement � frequently used in the literature in various ontexts � is that the

total ost of the knapsak should be alloated exatly.

E�ieny: A ost alloation rule φ is e�ient, if

∑n
i=1 φi(N , A, ω,W ) = W .

For the sake of readability, the remaining properties (exept additivity) are de�ned for the

ase W = 1. However, the de�nitions oinide with the ones for the general ase.

The seond property, widely used e.g. in sheduling problems ([13℄), represents the idea that

voters should not bene�t from �splitting� into several voters with disjoint sets of approved

items (or, the other way round, in ase their approved items are disjoint, �merging� into a

single voter). At the same time, the remaining voters should not be disadvantaged if ertain

voters �split up� (or �merge�). In priniple this should prevent the reation of fake identities,

i.e., the individual possibility to manipulate the fair division proess.

5

To illustrate the idea of splitting, let voter i approve of items 1, 2, 3. Replaing voter i by
voters ij approving of item j only, 1 ≤ j ≤ 3, should have the result that the sum of the

ost shares of the three voters ij has to be equal to the ost share of voter i in the original

problem. In the following de�nition, given a set of individuals N ′
, A′

i′ refers to the set of

approved items of i′ ∈ N ′
(and a′

i′ denotes the orresponding vetor of approvals).

Split-proofness: Let i ∈ N . Let N ′ = (N \ {i}) ∪ {i1, . . . , ir}, suh that sets A′
iℓ

form a

partition of Ai, i.e.,
⊎r
ℓ=1A

′
iℓ

= Ai. Let A
′ = A⊕ (a′

i1 ⊕ . . .⊕ a′
ir ) ⊖ ai.

A ost alloation rule φ is alled split-proof, if

• φi(N , A, ω) =
∑|Ai|

j=1 φij (N ′, A′, ω) and

• φh(N ′, A′, ω) ≤ φh(N , A, ω) for all h ∈ N \ {i}

Remark. Note that for a split-proof rule φ, the �rst of the above onditions implies that∑
h∈N\{i} φh(N , A, ω) =

∑
h∈N\{i} φh(N ′, A′, ω). Thus, the mild seond ondition implies

that φh(N ′, A′, ω) = φh(N , A, ω) holds for all h ∈ N \ {i}. To see this, assume that the

share of an individual h beomes stritly smaller in problem (N ′, A′, ω). Then, for at least
one h′ ∈ N \ {j} we must have φh′(N ′, A′, ω) > φh′(N , A, ω), in ontradition to the above

de�nition.

Sine eah of the following two properties refers to an instane (N , A, ω), for the sake of

brevity we write φi instead of φi(N , A, ω) for i ∈ N .

5

It has to be added though, that the property is probably less ompelling in this setting ompared to

sheduling problems, as fake identities are not allowed to overlap with their (sets of) approvals.
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The �rst property re�ets the ompelling idea, well-known in the literature, that the ost

alloation should not depend on the label of the individual.

Anonymity: Let i, i′ ∈ N . A ost alloation rule φ is alled anonymous, if (Ai = Ai′ ⇒
φi = φi′).

The seond requirement is similar to the usual dummy-property. It states that an individual

who only approves of items not in the optimal solution, should not be harged. A �totally

unhappy� individual should not be fored to arry the knapsak or ontribute to its osts.

Dummy: If xj = 0 for all j ∈ Ai, then φi = 0.

The following property applies non-manipulability arguments to situations in whih pairs of

individuals, that only approve of one single item, try to improve their situation by swithing

their approvals. It requires their ost shares to be exatly the same, i.e., providing absolutely

no inentive to get involved into suh swithes.

Swith-proofness: Given (N , A, ω), let Ai = {j}, Ai′ = {j′} with xj = xj′ = 1. Let

(N , Ã, ω) with ãh = ah for all h ∈ N \ {i, i′} and ãf = ag for f, g ∈ {i, i′}, f 6= g. Then

φk(N , A, ω) = φk(N , Ã, ω) for all k ∈ N .

A further reasonable property requires the division proess to be independent of a possible

sequential struture, i.e., if the knapsak is divided into two di�erent and smaller knapsaks

that together have exatly the same weight onstraint as before, then applying the sharing

rule to eah of the smaller knapsaks separately should lead to the same total ost share as

applying the rule to the original knapsak. This property will be alled additivity and has

been used, e.g., by [7℄ w.r.t. rights problems.

Additivity: Let W (1),W (2) ∈ R+ with W (1) + W (2) = 1. Let φ(1) = φ(N , A, ω,W (1)), and
let X(1)

be the optimal solution of (A,ω,W (1)). Let Ã = (ãij)i∈N ,j∈I suh that, for i ∈ N ,

ãij = 0 if x
(1)
j = 1 and ãij = aij otherwise.

In addition, let ω̃ ∈ Rm+ suh that ω̃j = (1 − x
(1)
j )ωj for j ∈ X

(1)
+ with 0 < x

(1)
j < 1, and

ω̃j = ωj otherwise. Let φ
(2) = φ(N , Ã, ω̃,W (2)). Then, φ is additive, if φ = φ(1) + φ(2)

.

The �nal property is onerned with the hanges in the ost shares given a minimal weight-

hange of a non-split item ontained in the optimal solution of the ontinuous knapsak

problem, keeping the remaining weights unhanged. It is exlusively onerned with situ-

ations in whih everyone approves of exatly one item. A minimal weight hange in that

respet is one in whih the optimal solution does not hange, i.e., the set of items in the

optimal solution before and after the weight hange is idential.

De�nition 2.2 Given (N , A, ω), let X be an optimal solution of the ontinuous knapsak

problem (A,ω) with X+ = {1, . . . , s} and xs < 1. For some j < s, let w̃j < wj and

ω̃ = (w1, . . . , wj−1, w̃j , wj+1, . . . , wm).

We all w̃j insigni�antly smaller than wj , if for the optimal solution X̃ of (A, ω̃), we have

X̃+ = X+.

Now, let the weight of j insigni�antly derease in the sense of the above de�nition, and

let eah individual approve of exatly one item. Then, weight-monotoniity states that all

those that approve of the item that beame insigni�antly smaller should fae a derease

in their ost share relative to the hange in the value of the objetive funtion. The formal

de�nition of this ondition is as follows:

Weight-monotoniity: Let w̃j be insigni�antly smaller than wj . Then, for all i ∈ N with

Ai = {j}, φi(N ,A,ω̃)
φi(N ,A,ω) = z

z̃ , where z̃ denotes the objetive funtion value of the optimal

solution of (A, ω̃).

123



3 Charaterizations

In what follows, we onsider a ontinuous knapsak ost sharing problem (N , A, ω) where (as
previously) X with X+ = {1, . . . , s} orresponds to the optimal solution of the ontinuous

knapsak problem (A,ω).

We now want to investigate, whether ertain ombinations of the previous properties an

be used to determine spei� reasonable ost sharing rules. Our �rst result establishes a full

desription of the family of e�ient rules, that satis�es the dummy property, split-proofness

and swith-proofness. As a seond result, we present the haraterization of a speial repre-

sentative of this family by adding weight-monotoniity. Finally, a haraterization of another

reasonable ost sharing rule is given.

Theorem 3.1 The e�ient rules that satisfy the dummy property, split-proofness and

swith-proofness are exatly the funtions φc with 0 ≤ c ≤ 1∑
i<s pi

, de�ned by ( ∀i ∈ N )

φci (N , A, ω) = c ·
∑

j∈Ai

xj + 1Ai(s) · 1 − cz

ps

Proof. First, we show that φci ≥ 0 holds for all i ∈ N , i.e., φc is indeed a ost sharing rule.

Sine c ≥ 0 holds, we obviously have φci ≥ 0 for i with s /∈ Ai. If s ∈ Ai, then

φci =
∑
j∈Ai\{s} xjc+ xsc+ 1−cz

ps
=

∑
j∈Ai\{s} xjc+ xsc+ (

1−c∑s−1
i=1 pi−cpsxs

ps
)

=
∑
j∈Ai\{s} xjc+ (

1−c∑s−1
i=1 pi

ps
)

Due to c ≥ 0, we have
∑

j∈Ai\{s} xjc ≥ 0; in addition, 1 − c
∑s−1

i=1 pi ≥ 0 holds beause of

c ≤ 1∑s−1
i=1 pi

. Thus, φci ≥ 0 holds in the ase s ∈ Ai as well.

Now, it is shown that eah of the axioms is satis�ed by the proposed rule.

The dummy property is obviously satis�ed. Now, onsider

∑
i∈N φci =

∑
i∈N c

∑
j∈Ai

xj +∑
i∈N 1Ai(s)

1
ps

(1 − cz) = c
∑

i∈N
∑

j∈Ai
xj + 1

ps
(1 − cz)

∑
i∈N 1Ai(s). Sine item j is ap-

proved by exatly pj individuals of N , it holds that

∑
i∈N

∑
j∈Ai

xj =
∑

j∈I pjxj = z, and∑
i∈N 1Ai(s) = ps. Hene,

∑n
i=1 φ

c
i = cz + 1

ps
(1 − cz)ps = 1, whih proves e�ieny.

For a �xed i ∈ N , let (N ′, A′, ω) be as desribed in the de�nition of split-proofness. Note

that the optimal solution X ′
of (A′, ω) is also the optimal solution of (A,ω), and the re-

spetive objetive funtion values z′
and z oinide. Thus,

r∑

ℓ=1

φciℓ(N ′, A′, ω) =

r∑

ℓ=1

(c
∑

j∈A′
iℓ

xj+1A′
iℓ

(s)
1

ps
(1−cz)) = c

r∑

ℓ=1

∑

j∈A′
iℓ

xj+
1

ps
(1−cz)

r∑

ℓ=1

1A′
iℓ

(s)

By onstrution,

∑r
ℓ=1

∑
j∈A′

iℓ

xj =
∑

j∈Ai
xj , and

∑r
ℓ=1 1A

′
iℓ

(s) = 1Ai(s). Hene,

∑r
ℓ=1 φ

c
iℓ

(N ′, A′, ω) = c
∑

j∈Ai
xj + 1Ai(s)

1
ps

(1 − cz) = φci (N , A, ω). I.e., φc is split-proof.

For swith-proofness, let Ai = {j} and Ai′ = {j′} suh that xj = xj′ = 1. Let Ã be

built from A beause i and i′ �swith� their items (as in the de�nition of swith-proofness).

Then, φk(N , A, ω) = c = φk(N , Ã, ω) for k ∈ {i, i′}, sine the optimal solutions of (A,ω)
and (Ã, ω) oinide. The latter fat obviously implies φk(N , A, ω) = φk(N , Ã, ω) for all

k ∈ N \ {i, i′} as well.

On the other hand, assume there is a rule ψ that satis�es the stated onditions. Now in

order to reate the new instane (N ′, A′, ω) from (N , A, ω), replae eah voter i with the
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voters i1, . . . , i|Ai| suh that |A′
iℓ

| = 1 for eah 1 ≤ ℓ ≤ |Ai| and
⋃|Ai|
ℓ=1 A

′
iℓ

= Ai. Beause of
split-proofness, we know that

|Ai|∑

ℓ=1

ψiℓ(N ′, A′, ω) = ψi(N , A, ω) (3)

holds for eah i ∈ N .

Obviously, the optimal solutions of (A,ω) and (A′, ω) oinide; let X be suh an optimal

solution, with X+ = {1, . . . , s}. Note that the objetive funtion value is given by

z = p1x1 + . . . psxs = p1 + . . . ps−1 + psxs

First, we show that ψ is anonymous. Let i, j ∈ N with Ai = Aj . Starting with instane

(N ′, A′, ω), reate instane (N ′, Ã′, ω) by applying a �swith� between the individuals ik
and jk, k ∈ {1, . . . , |Ai|}, i.e., Ã′

g = A′
h holds for g, h ∈ {ik, jk}. Now, swith-proofness

and the fat that ψ is a funtion imply ψik(N , A′, ω) = ψik(N , Ã′, ω) = ψjk(N , A′, ω) for

all k ∈ {1, . . . , |Ai|}. Thus, ψi(N , A, ω) =
∑|Ai|
ℓ=1 ψiℓ(N ′, A′, ω) =

∑|Ai|
ℓ=1 ψjℓ(N ′, A′, ω) =

ψj(N , A, ω) is satis�ed; i.e., ψ is anonymous.

Let i, i′ ∈ N ′
with A′

i = {j}, A′
i′ = {j′} and j, j′ < s. Then, perform a swith between i

and i′ and all the new instane (N ′, A∗, ω). Beause of split-proofness, we an assume that

the last two rows of eah A and A∗
orrespond to a′

i and a
′
i′ (in the same order). Note that

in A∗
, the row a′

i displays A
∗
i′ and the row a′

i′ displays A
∗
i respetively. Thus, sine ψ is

a funtion, we must have ψi(N ′, A′, ω) = ψi′(N ′, A∗, ω). However, swith proofness yields

that ψi′(N ′, A′, ω) = ψi′(N ′, A∗, ω). Hene, we must have ψi(N ′, A′, ω) = ψi′(N ′, A′, ω).
Therefore, for some c ≥ 0, ψg′(N ′, A′, ω) = c must hold for all g′ ∈ N ′

with A′
g′ = {h′} and

xh′ = 1.
Anonymity together with the dummy property implies that, for some cs, c ∈ R+ ∪ {0},

ψi′(N ′, A′, ω) =





cs if Ai′ = {s}
c if Ai′ = {j′ : j′ < s}
0 otherwise

(4)

E�ieny yields

1 =
∑

i′∈N ′

ψi′ (N ′, A′, ω) =
∑

i′∈N ′
s

ψi′ +
∑

j<s

∑

i′∈N ′
j

ψi′ (5)

Note that, by onstrution, for eah j ∈ I, |N ′
j | = pj . Equation (5) an hene be rewritten

as

1 = pscs + c · (p1 + p2 + . . .+ ps−1) (6)

Reall that z = p1+p2+ . . .+ps−1+xsps, or, equivalently,
∑s−1
i=1 pi = z−xsps. Substituting

the last equality in (6), we get

1 − pscs = c(z − xsps)
⇔ cs = 1−cz

ps
+ xsc

(7)

With (3) and (4), we get ψi(N , A, ω) =
∑|Ai|

ℓ=1 ψiℓ(N ′, A′, ω) =
∑

j∈Ai\{s} xjc+ cs · 1Ai(s).

With (7), this yields

ψi(N , A, ω) =

{∑
j∈Ai

xjc if s 6∈ Ai∑
j∈Ai

xjc+ 1−cz
ps

if s ∈ Ai
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Analogously to the beginning of the proof, it follows that 0 ≤ c ≤ 1∑
i<s pi

must hold for ψ

to be a ost sharing rule. Therewith, ψ = φc. �
A representative of the above family of rules is derived from the idea, that a voter's ost

share should exlusively depend on the total number of the items in the optimal knapsak

she approves of, relative to the total number of approvals for the entire knapsak (in eah

ase taking frational values into aount

6

). In partiular, if someone likes twie as many

items (inluded as a whole) from the knapsak than another individual, then she should

also be given a ost share twie as high. Obviously this ost sharing rule is not onerned

with weights of items or number of approvals for one spei� item. Formally, this rule an

be de�ned as follows:

De�nition 3.1 Given a problem (N , A, ω), the simple proportional ontinuous knapsak

ost sharing rule is de�ned as (∀i ∈ N)

φsoli (N , A, ω) =

∑
j∈Ai

xj

z

The rule φsol an be haraterized as follows.

Theorem 3.2 φsoli (N , A, ω) is the only e�ient and split-proof rule that satis�es dummy,

swith-proofness, and weight-monotoniity.

Proof. φsol belongs to the family φc (setting c = 1
z . Hene, due to Theorem 3.1, it is

su�ient to show that φsol is the only among the rules φc that satis�es weight-monotoniity.

It is easy to verify that φsol satis�es weight-monotoniity. To proof the other diretion,

we follow the argumentation of the above proof. Consider instane (N ′, A′, ω) (of the above
proof) and assume xs < 1. Derease the weight of item j from wj insigni�antly to w̃j for

some j < s suh that x′
s = 1 in the optimal solution X̃ (with objetive funtion value z̃ of

(A′, ω̃), where (N ′, A′, ω̃) denotes this new instane). Call the new shares (aording to (4))

c′s and c
′
; note that due to x′

s = 1, with analogous arguments as in the proof of Theorem 3.1,

from swith-proofness we get c′s = c′.
From e�ieny, we thus get 1 = psc

′
s+c

′ ·(p1+p2+ . . .+ps−1) = c′(p1+p2+ . . .+ps) = c′ · z̃.
Therewith, c′ = 1

z̃ . Weight-monotoniity, however, implies

ψi(N ′,A′,ω)
ψi(N ′,A′,ω̃) = c′

c = z
z̃ for i ∈ N ′

with Ai = {j}. Hene, c = 1
z follows. Thus, ψ orresponds to φc with c = 1

z , i.e., ψ = φsol. �
The above rule puts its fous purely on the proportion of individual approvals to total ap-

provals. This might seem unreasonable or ine�ient in ertain situations for two reasons:

First, where extensive weight di�erenes between the single items an be observed, a rule

being sensitive to weights and weight hanges might be preferable. Seond, the more individ-

uals approve of a ertain item in the knapsak, the lower should probably be their ost share,

if one assumes a non-rival good whose ost it imposes on the knapsak does not depend on

the number of approvals. Hene, if we replae swith-proofness and weight-monotoniity

with additivity, we haraterize a rule, that takes into aount the �ine�ieny�

wj

pj
of item

j ∈ I diretly. The ost sharing rule is de�ned as follows:

De�nition 3.2 Given a problem (N , A, ω), the weight-and-approval-based proportional on-
tinuous knapsak ost sharing rule is de�ned as (∀i ∈ N)

φei (N , A, ω) =
∑

j∈Ai

wj
pj
xj

6

I.e, if a fration of an item is inluded in the knapsak, then only the respetive fration of the approval

is taken into aount.
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The rule φe an be haraterized as follows:

Theorem 3.3 φei (N , A, ω) is the only e�ient and split-proof rule that satis�es dummy,

anonymity, as well as additivity.

Proof. For readability, we write φ instead of φe within this proof. We �rst show that all

these axioms are satis�ed by φ.
∑

i∈N
φi =

∑

i∈N

∑

j∈Ai

wj
pj
xj =

∑

j∈I

∑

i∈Nj

wj
pj
xj =

∑

j∈I
pj
wj
pj
xj =

∑

j∈I
wjxj

However, the last sum in the above expression orresponds to 1 beause X is an optimal

solution of (A,ω); thus, φ is e�ient.

Split-proofness, dummy and anonymity are obviously satis�ed.

For additivity, let W (1),W (2) ∈ R+ with W (1) + W (2) = 1. Note that xj = 0 implies

x
(1)
j = 0 and x

(2)
j = 0. Thus, it is su�ient to onsider the items {1, . . . , s}. By onstrution,

X
(1)
+ = {1, ..., ℓ} for some ℓ ≤ s.

Case 1: x
(1)
ℓ = 1. By onstrution, this means that there is no voter that approves of any of

the items {1, ..., ℓ} in instane (N , Ã, ω̃,W (2)). Thus, x
(2)
j = 0 for all 1 ≤ j ≤ ℓ. Vie versa,

we have x
(1)
j = 0 and x

(2)
j = xj for all j ∈ {ℓ + 1, . . . , s}. In addition, w̃j = wj holds for

j ∈ {ℓ+ 1, . . . , s}. Hene, φ(1)
i + φ

(2)
i =

∑
j∈Ai

wj

pj
x

(1)
j +

∑
j∈Ai

w̃j

pj
x

(2)
j =

∑
j∈Ai

wj

pj
xj = φi.

Case 2: 0 < x
(1)
ℓ < 1. Then, in instane (N , Ã, ω̃,W (2)), eah of the items {1, . . . , ℓ − 1}

has zero approvals. Thus the ranking analogous to (1) (restrited to the remaining items) is

pℓ
w̃ℓ

>
pℓ+1

w̃ℓ+1
> . . . >

ps
w̃s

> . . . >
pm
w̃m

beause the number of approvals of these items remains unhanged, and only the weight of

item ℓ has dereased (ompared to the original instane).

Case 2a: ℓ 6= s. By the hoie of xs and w̃ℓ, W
(2) =

∑s−1
k=ℓ w̃ℓ + xsws must hold. Thus,

X
(2)
+ = {ℓ, ℓ+ 1, . . . , s}, and x(2)

ℓ = . . . = x
(2)
s−1 = 1 and x

(2)
s = xs. As in the above ase, by

onstrution for all ℓ + 1 ≤ j ≤ s we have w̃j = wj . Note that for j 6= ℓ, x
(1)
j + x

(2)
j = xj .

Thus, if ℓ /∈ Ai, we get

φ
(1)
i + φ

(2)
i =

∑

j∈Ai

wj
pj
x

(1)
j +

∑

j∈Ai

w̃j
pj
x

(2)
j =

∑

j∈Ai

wj
pj

(x
(1)
j + x

(2)
j ) =

∑

j∈Ai

wj
pj
xj = φi (8)

Let ℓ ∈ Ai. By onstrution, w̃ℓ = (1 − x
(1)
ℓ )wℓ. With x

(2)
ℓ = 1, analogously to equation (8)

we get

φ
(1)
i + φ

(2)
i =

∑
j∈Ai\{ℓ}

wj

pj
(x

(1)
j + x

(2)
j ) + wℓ

pℓ
x

(1)
ℓ + w̃ℓ

pℓ
x

(2)
ℓ

=
∑

j∈Ai\{ℓ}
wj

pj
xj + wℓ

pℓ
x

(1)
ℓ + wℓ

pℓ
(1 − x

(1)
ℓ )

=
∑

j∈Ai

wj

pj
xj

= φi

Case 2b: ℓ = s. For 1 ≤ j ≤ s− 1, we thus have x
(1)
j = xj = 1 and x

(2)
j = 0.

By onstrution, w̃s = (1 − x
(1)
s )ws and W (2) = (xs − x

(1)
s )ws. Hene, x

(2)
s = 1

w̃s
W (2) =

1
w̃s

(xs − x
(1)
s )ws =

xs−x(1)
s

1−x(1)
s

. As a onsequene,

ws
ps
x(1)
s +

w̃s
ps
x(2)
s =

ws
ps

(
x(1)
s + (1 − x(1)

s )
xs − x

(1)
s

1 − x
(1)
s

)
=
ws
ps
xs
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Therewith, φ
(1)
i + φ

(2)
i =

∑
j∈Ai

wj

pj
xj = φi holds in this ase as well. I.e., φ is additive.

Assume there is a rule ψ that satis�es e�ieny, split-proofness, dummy, anonymity, as well

as additivity. As in the above proofs, reate a new problem (N ′, A′, ω) from (N , A, ω) by

replaing eah voter i with the voters i1, . . . , i|Ai| suh that |A′
iℓ

| = 1 for eah 1 ≤ ℓ ≤ |Ai|
and

⋃|Ai|
ℓ=1 A

′
iℓ

= Ai. Sine ψ is split-proof, we get

|Ai|∑

ℓ=1

ψiℓ(N ′, A′, ω) = ψi(N , A, ω) for all i ∈ N (9)

Sine ψ is e�ient and split-proof,

1 =
∑

i∈N
ψi(N , A, ω) =

∑

i∈N

|Ai|∑

ℓ=1

ψiℓ(N ′, A′, ω) =
∑

k∈I

∑

i∈Nk

ψi(N ′, A′, ω) (10)

Beause ψ is anonymous, it holds that for eah j ∈ I, ψi(N ′, A′, ω) = ψi′(N ′, A′, ω) =: δj
for i, i′ ∈ Nj . Due to the dummy property, we have

δj = 0 ∀j > s (11)

Thus, (10) is equivalent to

1 =

s∑

j=1

pj · δj (12)

In what follows, we make use of additivity. In the �rst step, let W (1) = w1 and W (2) =∑s−1
j=2 wj+wsxs. Then, the optimal solution of (A′, ω,W (1)) is given by paking item 1 in the

knapsak, i.e., x
(1)
1 = 1 and x

(1)
j = 0 for j > 1. Anonymity implies that, for j ∈ I, there are

δ
(1)
j , δ

(2)
j ∈ R+ suh that δ

(1)
j = ψi(N ′, A′, ω,W (1)) and δ

(2)
j = ψi(N ′, Ã′, ω̃,W (2)) for i ∈ Nj .

Clearly, δ
(1)
j = 0 if j ≥ 2 beause of the dummy property. Hene, anonymity and e�ieny

imply p1δ
(1)
1 = w1, and thus δ

(1)
1 = w1

p1
. By onstrution, in instane (N , A′, ω̃,W (2)), there

is no voter who approves of item 1. By the dummy property, this means δ
(2)
1 = 0. Beause

of additivity, we have

δ1 = δ
(1)
1 + δ

(2)
1 =

w1

p1
(13)

In the seond step, let W (1) = w1 +w2 and W (2) =
∑s−1

j=3 wj +wsxs. The optimal solution

of (A′, ω,W (1)) is x
(1)
1 = x

(1)
2 = 1 and x

(1)
j = 0 for j > 2. The dummy property yields

δ
(1)
j = 0 for j > 2. This fat and e�ieny imply

w1 + w2 = p1δ
(1)
1 + p2δ

(1)
2 (14)

Note that there is no voter who approves of one of the items {1, 2} in instane

(N , A′, ω̃,W (2)). Thus, δ
(2)
j = 0 for j ∈ {1, 2}; beause of additivity, this means δj = δ

(1)
j

for j ∈ {1, 2}. In partiular, with δ1 = w1

p1
(see (13)), this turns equation (14) into

w1 + w2 = p1
w1

p1
+ p2δ2

⇔ δ2 = w2

p2
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Repeating this argumentation, after a total of s − 1 steps we have δk = wk

pk
for all 1 ≤

k ≤ s − 1. Considering the instane (N , A′, ω), from (12) we know that 1 =
∑s

k=1 pkδk
holds (due to e�ieny). Thus, we have 1 =

∑s−1
k=1 wk + psδs. On the other hand, 1 =∑s−1

k=1 wk+wsxs holds beause of the hoie of xs (see 2). Combining the two last equalities
yields psδs = wsxs, and thus δs = wsxs

ps
. With (11), we have

δj =





wj

pj
for j < s

ws

ps
xs for j = s

0 for j > s

Hene, equation (9) and the de�nition of δj imply ψi(N , A, ω) =
∑
j∈Ai

wj

pj
xj . I.e., ψ and

φe oinide. �

4 Conlusion

In this paper we have investigated ost sharing w.r.t. the ontinuous knapsak problem. In-

stead of osts or laims, we used the number of approvals to determine the optimal solution.

To share the osts of the knapsak, we �rst introdued a whole family of ost sharing rules,

and then provided expliit haraterizations of two partiular rules. The �rst rule assumed

eah item in the knapsak to impose the same ost, and made the individuals pay purely

relative to their number of approved items. An interesting question in that respet would

be to analyse the inentives to state one's true preferenes. The seond rule, however, was

aware of both, the weight of the items in the knapsak and the number of individuals that

approve of eah item. It seems absolutely reasonable that those individuals who almost ex-

lusively approve of items in the knapsak and/or approve of heavier items in the knapsak

should arry a larger share of the ost. Based on various reasonable properties for ontin-

uous knapsak ost sharing rules, we provided haraterization results for the two solution

methods. Of ourse, the rules disussed in this paper are perhaps of an obvious kind, not

taking too muh are of the step of �nding the optimal solution. However, many exten-

sions seem possible and of interest for future researh. On the one hand, further di�erent -

and probably less obvious - sharing rules ould be introdued and analysed. On the other

hand, more preferene information, suh as omplete individual rankings, and - in addition

- di�erent types of objetive funtions ould be used in the proess of �nding the optimal

solution.
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Voting with Partial Information:
What Questions to Ask?

Ning Ding and Fangzhen Lin

Abstract

Voting is a way to aggregate individual voters’ preferences. Traditionally a voter’s preference
is represented by a total order on the set of candidates. However, sometimes one may not
have a complete information about a voter’s preference, and in this case, can only represent a
voter’s preference by a partial order. Given this framework, there has been work on computing
the possible and necessary winners of a (partial) vote. In this paper, we take a step further, look
at sets of questions to ask in order to determine the outcome of such a vote. Specifically, we
call a set of questions a deciding set for a candidate if the outcome of the vote for the candidate
is determined no matter how the questions are answered by the voters, and a possible winning
(losing) set if there is a way to answer these questions to make the candidate a winner (loser)
of the vote. We discuss some interesting properties about these sets of queries and prove
some complexity results about them under some well-known voting rules such as plurality and
Borda.

1 Introduction
Voting is a general way to aggregate preferences when a group of people need to make a common
decision but have disagreements on which decision to take. Voting is traditionally studied in game
theory and social choice theory. Recently it has attracted much attention in AI for various reasons,
see for example the survey [Chevaleyre et al., 2007].

Traditionally, a voter’s preference is assumed to be a complete linear order over possible can-
didates (outcomes,or alternatives). One can easily imagine situations where this assumption is too
strong, either because the voter herself cannot rank all of the possibilities linearly or because as an
observer, we do not have a complete knowledge about her preferences. In fact, one of the well-
known formalisms for representing agents’ preferences in AI, CP-nets [Boutilier et al., 2004], as-
sumes agents’ preferences are partial-ordered. In the context of voting, there has been work in this
direction as well. Given a partial ordering for each voter, Konczak and Lang [2005] considered
the problem of deciding whether a candidate is a necessary winner and possible winner. A neces-
sary winner is a candidate who is always a winner in every possible completion of the given partial
preference profile, while a possible winner is one who is a winner in some of the completions.
The complexities of these two problems under a variety of voting rules, especially the so-called
positional scoring rules, have been extensively studied [Pini et al., 2007; Xia and Conitzer, 2011;
Betzler and Britta, 2010; Baumeister and Rothe, 2010]. More recently, Conitzer et al. [2011] con-
sidered a notion of manipulations in voting with partial information.

In this paper, we continue this line of work. Given a voting context consisting of a set of can-
didates, a set of voters, and for each voter, a partial order on the candidates, we consider in general
how much additional information is still needed in order to make a particular candidate a winner or
loser under a voting rule. If the candidate is already a necessary winner or a necessary loser, then
no additional information is needed. Otherwise, one may want to know which voter is crucial in
deciding the outcome, and for that voter what would be the important questions to ask. These are
obviously important issues to consider when doing voter preference solicitation, and should have
some interesting applications. For instance, in an election, a candidate’s team may want to know
that given what they already know about a group of people, whether more knowledge about their
voting preferences would make any differences to the outcome of the election.
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This “additional information or knowledge” can come in many forms. Here we take it to be a set
of pair-wise comparison questions [Conitzer, 2009] of the following form: voter i, which candidate
do you prefer, a or b? We then consider sets of these questions that can settle the outcome for a
candidate. There are at least two possible approaches here. A cautious approach looks for a set of
questions such that no matter how these questions are answered by the voters will determine whether
the candidate will win or lose. We call such a set of queries a deciding set for the candidate. This
amounts to saying that as far as the candidate is concerned, if a question is not in a deciding set, then
this question is irrelevant and can be ignored. It is thus not surprising that there is a unique minimal
deciding set regardless of which voting rule to use.

The cautious approach makes sense when we want additional information that can decide the
outcome for the candidate in question. If we want additional information that would make the
candidate a winner (or a loser), then another notion may be more appropriate. Consider the case
when we want a candidate to be a winner. Here we may be interested in a set of questions for
which there are answers that would lead to the candidate being a winner (or loser), hoping that when
voters are asked about these questions they will either indeed answer them as expected or that we
can somehow influence them to answer them that way. We call such a set of questions a possible
winning (or losing) set for the candidate. As can be expected, minimal possible winning (or losing)
sets may not be unique. In contrast to our static notion of query sets, [Conitzer and Sandholm,
2002] defined the dynamic notion of elicitation tree and studied some basic problems related to that
concept.

The rest of the paper is organized as follows. We first review some basic notions of voting with
complete and partial information, and the notions of possible and necessary winners [Konczak and
Lang, 2005]. We then define our notions of deciding sets, possible winning sets, and possible losing
sets. We then prove some interesting properties about deciding sets, and consider how to compute
minimal deciding set under various votin g rules. We next do the same for possible winning sets,
and then conclude the paper.

2 Preliminaries
We assume a finite setN = {1, ..., n} for voters (players, or agents), and a finite setO for candidates
(outcomes, or alternatives). A preference ordering pi of a voter i is a total (linear) order on O, and
a preference profile p is a tuple of preference orderings, one for each voter.

A voting rule (method) f is a function from preferences profiles to non-empty sets of outcomes.
For a preference profile p, f(p) is the set of winners. When a single winner is desired, a tie-breaking
rule can be used to select the one from f(p). Or f is required to be single-valued. In social choice
theory terminology, when f(p) can be a set of outcomes, it is called a social choice correspondence,
and when f(p) is always single-valued, it is called a social choice function.

Most of the popular voting rules can be defined using a score vector (s1, s2, · · · , sm), where m
is the number of candidates, and ∀i < m, si ≥ si+1. Given such a score vector, for each voter i and
preference ordering pi, the kth ranked candidate according to pi receives the score sk from the voter.
Given a preference profile p, a candidate’s score is then the sum of of the scores that she receives
from each voter, and the winners are those that have the highest score. Such voting rules are called
scoring rules.

For instance, the plurality voting rule uses the score vector (1, 0, · · · , 0), the veto rule uses the
score vector (1, · · · , 1, 0), and the Borda rule uses the score vector (m,m− 1, · · · , 1).

As mentioned in the introduction, we consider the situation when the preference ordering of
a voter may not be total, either because the onlooker who is studying the voting does not have a
complete knowledge of the voter’s preference or that the voter herself is not certain of her own
preferences.

Formally a partial preference ordering pi of voter i is a partial order on the set O of candidates:
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for each o ∈ O, (o, o) ∈ pi (reflexivity), if both (o1, o2) and (o2, o1) are in pi, then o1 = o2
(antisymmetry), and if (o1, o2) and (o2, o3) are in pi, then (o1, o3) ∈ pi (transitivity). A partial
preference profile is then a tuple of partial preference orderings, one for each voter.

Given a partial preference ordering pi, an extension of pi is a partial preference ordering p′i such
that pi ⊆ p′i. An extension of pi that is a total order is called a completion of pi. Similarly, an
extension of a partial preference profile p is a partial preference profile p′ such that for each i, p′i is
an extension of pi, and a completion of a partial preference profile p is a preference profile that is an
extension of p.

Under a voting rule f , a candidate o is said to be a necessary winner of a partial preference
profile p, if for all completion p′ of p, o ∈ f(p′). If there exists such a completion, then o is said to
be a possible winner [Konczak and Lang, 2005]. Furthermore, if o is not a possible winner, then we
call o a necessary loser; and if o is not a necessary winner, then we call o a possible loser.

3 Deciding sets, possible winning sets, and possible losing sets of
queries

As mentioned in the introduction, our interest in this paper is on getting additional information to
decide the outcome of a vote. This additional information will be in the form of comparison queries
[Conitzer, 2009] to voters.

Definition 1 A (comparison) query to voter i is one of the form i:{a, b} that asks i to rank candidates
a and b.

When presented with the query i:{a, b}, the voter i has to answer either “a” (she prefers a over
b) or “b” (she prefers b over a).

Definition 2 An answer to a set Q of questions is a function σ from Q to O such that for any
i:{a, b} ∈ Q, σ(i:{a, b}) ∈ {a, b}.

Intuitively, if an answer σ maps i:{a, b} to “a”, then the preference (a, b) (a ≥ b) is added to
voter i’s partial preference ordering, and this may entail some new preferences for i, and may even
lead to a contradiction. In the following, we require an answer to be consistent with the preferences
that the voters already have.

Definition 3 Let p be a partial preference profile and Q a set of queries. An answer σ to Q is legal
under p if for each voter i, the transitive closure of the following set

pi ∪ {(a, b) | i:{a, b} ∈ Q ∧ σ(i:{a, b}) = a}

which we denote by pi(σ,Q), is a partial order on O, the set of candidates. Given a legal answer σ
to Q under p, the resulting partial preference profile is then

p(σ,Q) = (p1(σ,Q), ..., pn(σ,Q)),

In the following, unless stated otherwise, we always assume that answers to sets of questions are
legal under the given partial preference profile.

We can now define the sets of questions that we are interested in this paper. A deciding set of
queries for a candidate o determines the outcome of the vote for o no matter how the queries in the
set are answered.

Definition 4 Let p be a partial preference profile, o a candidate, and f a voting rule. A set Q of
queries is a deciding set for o (in p under f ) if for every answer σ, o is either a necessary winner or
a necessary loser in the new partial profile σ(p,Q) under f . Q is a minimal deciding set for o if it
is a deciding set and there is no other deciding set Q′ such that Q′ ⊂ Q.
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Consider the incomplete profile in Table 1. If we take plurality as the voting rule, the minimal
deciding set for candidate a is {2:{a, b}, 3:{b, c}}. Firstly, it is a deciding set: if σ(2:{a, b}) = a
then a is necessary winner; otherwise if σ(2 :{a, b}) = b and σ(3 :{b, c}) = c, then a is also a
necessary winner; and otherwise if σ(2:{a, b}) = b and σ(3:{b, c}) = b, then a is a necessary loser.

Next we prove that all its proper subsets are not deciding sets. To prove this we only need to
look at its subsets with size one. For {2:{a, b}}, a counterexample is when σ(2:{a, b}) = b. Given
this answer, a is both a possible winner and a possible loser in the new partial preference profile.
Similarly for {3:{b, c}}, we get a counterexample when σ(3:{b, c}) = b.

Notice here that the comparison queries 2:{a, c} and 3:{a, b} are not in the minimal deciding set.

1 a > b > c
2 b > c
3 c > a

Table 1: Partial preference profile

Sometimes one may also be interested in knowing the ways to make a candidate a winner or a
loser in a vote. In this case, one may want to find sets of queries that when answered properly will
lead to the candidate being a winner (or loser).

Definition 5 Let p be a partial preference profile, o a candidate, and f a voting rule. A set Q of
queries is a possible winning (losing) set for o (in p under f ) if there is an answer σ such that o
is a necessary winner (loser) in the new partial profile σ(p,Q) under f . Q is a minimal possible
winning (losing) set for o if it is a possible winning (losing) set for o, and there is no other possible
winning (losing) set Q′ for a such that Q′ ⊂ Q.

For the example in Table 1, if we still use plurality as the voting rule, then Q1 = {2:{a, b}} is a
possible winning set for a to win because if we set σ1(2:{a, b}) = a then in the new partial profile
p(σ1, Q1) as shown in Table 2, a is a necessary winner. Notice that it is not a deciding set. And this
possible winning set is obviously minimal because its only proper subset ∅ is not a possible winning
set for a.

The set Q2 = {3:{a, b}} is also a minimal possible winning set because when σ2(3:{a, b}) = a
as shown in Table 3, then in the new partial profile a is again a necessary winner. From this we can
see that there could be multiple minimal possible winning sets for a candidate. Also notice that the
query 3:{a, b} is not in the minimal deciding set. So a minimal possible winning set may not have
any overlap with the minimal deciding set.

1 a > b > c
2 a > b > c
3 c > a

Table 2: σ1(p,Q1)

1 a > b > c
2 b > c
3 c > a > b

Table 3: σ2(p,Q2)
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It is easy to see that deciding sets always exist, and if Q is a deciding set, and Q ⊆ Q′, then Q′

is also a deciding set. Furthermore, if Q 6= ∅, and Q is a deciding set for o, then Q is both a possible
winning set and a possible losing set for a. But the converse is obviously not true in general.

In the following, we consider computing minimal deciding sets under the plurality and Borda
rules. The case for the veto voting rule is similar to that of plurality.

4 Computing minimal deciding sets
If Q is a deciding set for candidate o, then for any query q not in Q, as far as the outcome for o
is concerned, the answer to q is immaterial, thus can be totally ignored. This suggests that for any
voting rule, any partial preference profile, and any candidate, there is a unique minimal deciding set
for the candidate. This is indeed the case.

Theorem 1 For any voting rule f , partial preference profile p, and candidate o, there is a unique
minimal deciding set for o in p under f .

To prove this theorem, we need the following lemma about partial orders.

Lemma 1 Let R be a partial order on S, and a 6= b two elements in S that are not comparable in
R. Then there are two total orders R1 and R2 such that they both extend R, and are exactly the
same except on a and b: for any x and y, (x, y) ∈ R1 iff (x, y) ∈ R2 provided {x, y} 6= {a, b}, and
(a, b) ∈ R1 but (b, a) ∈ R2.

Proof of Theorem Since the number of voters is finite, there exists a minimal deciding set Q for o.
Let Q′ be any other deciding set for o. If Q is not a subset of Q′, then there is a q ∈ Q but q 6∈ Q′.
Let Q0 = Q \ {q}. We show that Q0 is also a deciding set. To show this, suppose σ is an answer
to Q0 under p. We need to show that o is either a necessary winner or a necessary loser in the new
partial profile p(σ,Q0). Suppose q is i:{x, y} for some voter i and candidates x 6= y. There are two
cases:

1. The answer σ already entails an answer to q, that is, either (x, y) or (y, x) is in pi(σ,Q0). This
basically means that σ is also an answer to Q. Thus o must be either a necessary winner or a
necessary loser in the new partial profile p(σ,Q0) as p(σ,Q0) = p(σ,Q) and Q is a deciding
set.

2. Otherwise, by applying Lemma 1 to the partial order pi(σ,Q0), we see that there are two
answers σ1 and σ2 to Q ∪ Q′ such that σ1 and σ2 are the same except on q where we have
σ1(q) = x and σ2(q) = y. Since q 6∈ Q′, σ1 and σ2 are the same answer when restricted to
Q′. SinceQ′ is a deciding set, this means that omust be either a necessary winner in p(σ1, Q′)
or a necessary loser in p(σ1, Q′). Suppose o is a necessary winner in p(σ1, Q′). Then o is also
a necessary winner in p(σ2, Q′) as p(σ1, Q′) is the same as p(σ2, Q′). It follows then that o
must also be a necessary winner in both p(σ1, Q ∪ Q′) and p(σ2, Q ∪ Q′). Since Q is also a
deciding set, o is also a necessary winner in both p(σ1, Q) and p(σ2, Q). This means that o is
a necessary winner in p(σ,Q0). Similarly, if a is a necessary loser in p(σ1, Q′), then o is also
a necessary loser in p(σ,Q0).

From this theorem, we get the following corollary.

Corollary 2 If Q1 and Q2 are both deciding sets for a candidate o, then Q1 ∩Q2 is also a deciding
set for o.
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Our next result provides a way to check if a query is in a minimal deciding set.
Suppose S is the set of all comparison queries. Then trivially, S is a deciding set for any candi-

date in any partial preference profile under any voting rule. Now consider any query q ∈ S, and any
given candidate o and partial profile p. Since there is a unique minimal deciding set for o in p, it is
clear that q is in the minimal deciding set iff S \ {q} is not a deciding set.

We thus have the following proposition.

Proposition 1 Let S be the set of all (comparison) queries. For any candidate o, and any partial
preference profile p, a query q = i:{a, b} is in the minimal deciding set if and only if there is an
answer σ to S \{q} such that it can be extended to two answers σ1 and σ2 to S such that σ1(q) = a,
σ2(q) = b, and the outcome of o is different in p(σ1, S) and p(σ2, S) (answer to the question “is o
is necessary winner or loser?” is different).

This proposition will be used in our algorithm for computing the minimal deciding sets under
the plurality rule.

4.1 Plurality
For the plurality and the veto rules, computing the minimal deciding set can be done in polynomial
time. We show this for the plurality rule.

Based on Proposition 1, it suffices to check each query independently. Now, for a given query
q = i:{o1, o2}, one may think that we need to check if there are two extensions σ1 and σ2 that are
different only for q, with a and b ranked top by i respectively, for every pair of candidates a and b.
Actually as plurality only concerns the number of times a candidate is ranked first, the answer to q
can affect the score vector only when o1 and o2 are ranked top in i’s vote in σ1 and σ2. Now we
come down to a problem of whether there exists an extension of all votes except i’s such that when
i’s vote is considered, the “outcome” for the targeted candidate o changes (when i’s top choice is o1
or o2). This problem is not solely a flow problem because it concerns the score of two candidates.
However, it can be reduced to a flow problem, as shown in EqualScore procedure below. Here is a
detailed description of our algorithm.

Our algorithm makes use of an algorithm for MAX-FLOW problem introduced in [Cormen
et al., 2001]. The problems is, given a graph with capacity as numbers assigned to every edge,
to determine the maximal amount of flow going from node s to t with the flow in each edge not
exceeding its capacity. Here we use MAX-FLOW(G, s, t) to denote the maximal flow from s to t in
the flow graph G. Note that there are polynomial algorithms for MAX-FLOW(G, s, t).

Given a partial preference profile p, we use a >i b to stand for (a, b) ∈ pi. When we add some
new preferences a >i b, c >i d, etc, to p, we mean that we get a new partial preference profile p′

such that p′j = pj for every j 6= i, and p′i is the transitive closure of pi ∪ {(a, b), (c, d), · · ·}. When
we delete some voters i1, i2, · · · , ik from p, we mean that we get a new partial preference profile p′

such that the set of voters is V \{i1, i2, · · · , ik}, and p′j = pj for all j /∈ {i1, i2, · · · , ik}. When we
delete some candidates o1, o2, · · · , ok from p, we mean that we get a new partial profile p′ such that
the set of candidates is O′ = O\{o1, o2, · · · , ok}, and p′j is just pj constrained to O′.

Algorithm:QueryInMDS(i:{o1, o2}, a, p)
Input: a query i:{o1, o2}, a candidate a and a partial preference profile p.
Output: yes or no of whether i:{o1, o2} is in the minimal deciding set of a in p.

1. If in p there is a w in O\{o1, o2} s.t. w >i o1 or w >i o2, then return no.

2. Else if a /∈ {o1, o2}, then we do the following. First, let p1 be the profile we get by adding
o1 >i o2 and o2 >i c for every c /∈ {o1, o2} to p. If EqualScore(a, o2, p

1) = yes, then return
yes, else let p2 be the profile we get by adding o2 >i o1 and o1 >i c for every c 6= o1, o2 into
p. If EqualScore(a, o1, p

2) = yes, then return yes, else return no.
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3. Else, a ∈ {o1, o2}. W.L.O.G, let a = o1. The case for a = o2 is exactly the same. Let p3 be
the profile we get by adding a >i c for all alternative c 6= a to p. If EqualScore(a,m, p3) =
yes for some candidate m ∈ O,m 6= a, then return yes, else let p4 be the profile we get by
deleting voter i from p. p4 has one less voter than p. If EqualScore(a, o2, p

4) = yes, then
return yes, else return no.

Algorithm:EqualScore(a, b, p)

Input: candidates a and b and a partial preference profile p.
Output: yes or no of whether there is a completion p′ of p s.t. the scores of a and b in p′ are the same
and the maximal among all candidates.

Let Sa = {i | ¬∃w ∈ O\{a}, w >i a ∈ p}, Sb = {i | ¬∃w ∈ O\{b}, w >i b ∈ p},
Si = Sa ∩ Sb, sa = |Sa|, sb = |Sb|, si = |Si|.

1. If |sa − sb| ≤ si and |sa + sb − si| mod 2 = 0, then let p′ be the new profile we get by
deleting all the voters in Sa ∪ Sb and candidates a and b from p, and T = |sa + sb − si|/2. If
Graph(p′, T ) = yes, return yes, else return no.

2. Else if |sa − sb| ≤ si and |sa + sb − si| mod 2 6= 0, then let T = (|sa + sb − si| − 1)/2. For
every i ∈ Sa ∪ Sb, let p′ be the profile we get from deleting all the voters in Sa ∪ Sb\{i} and
candidates a and b from p. If Graph(p′, T ) = yes then return yes. If none of these return yes,
then return no.

3. Else we have |sa− sb| > si. W.L.O.G., let sb > sa. The case for sa > sb is exactly the same.
Let p′ be the profile obtained by deleting all the votes in Sa and candidate a from p and set
T = sa. If Graph(p′, T ) = yes, then return yes, else return no.

Algorithm:Graph(p, T ).

Input: a partial preference profile p and a threshold T .
Output: yes or no of to indicate whether there is a completion p′ of p, in which the maximal score
of all candidates in p′ is ≤ T .

Let N be the set of voters and O the set of candidates in p. Let s and t be two new atoms not in
N ∪ O. Construct a flow graph G with {s, t} ∪N ∪ O as the set of nodes, and the following three
layers of edges:

1. For every node in N , an edge from s to it with capacity one.

2. For every node i ∈ N and every node o ∈ O s.t. ¬∃o′ ∈ O, o′ >i o, an edge from i to o with
capacity one.

3. For every o ∈ O, an edge from it to t with capacity T .

If MAX-FLOW(G, s, t) = |N |, then return yes, else return no.

Lemma 2 Graph(p, T ) returns yes iff p has a completion with every candidate getting at most score
T under plurality.

Lemma 3 EqualScore(a, b, p) returns yes iff there is a completion pc of p s.t. the scores of a and b
in pc are both the maximal score under plurality.

We omit the proofs of these two lemmas here because of the page limit.

Corollary 3 QueryInMDS(i:{o1, o2}, a, p) returns yes iff i:{o1, o2} is in the minimal deciding set
of a in p under plurality, and it runs in polynomial time.

137



The number of edges in the graph in procedure Graph is O(mn), and the max flow found by Graph
isO(n). So if we use FORD-FULKERSON algorithm in [Cormen et al., 2001] to implement MAX-
FLOW, Graph runs in O(mn2) time. EqualScore calls Graph for at most n times, so the complexity
of EqualScore is O(mn3). QueryInMDS calls EqualScore for O(m) times, so QueryInMDS runs
in O(m2n3) time.

As plurality only concerns the candidate ranked first by every voter, according to Proposition 1,
i:{o1, o2} is in the minimal deciding set of a iff there are two assignments of a top choice for every
voter, τ1 and τ2, which are consistent with p s.t. {τ1(i), τ2(i)} = {o1, o2}, and ∀j 6= i, τ1(j) =
τ2(j) and a is winner under assignment τ1 but loser under τ2. Firstly, we prove the “⇒” part of the
corollary. In step 1, if the procedure does not return no then o1 and o2 are both legal top choices
for i in p. In step 2, if the algorithm returns yes, then w.l.o.g we have EqualScore(a, o2, p

1) =
yes so there is an evidence τ1 assigning the maximal number of votes to both a and o2 with o1
the top choice of voter i. This is just the evidence τ1 in which a is a winner. And we can change
τ1(i) into o2 to get τ2, in which a is a loser. Notice that only τ2 and τ1 are different only on i. So
i :{o1, o2} is in the minimal deciding set of a. In step 3, the algorithm returns yes in two cases:
EqualScore(a,m, p3) is true for some m ∈ O or EqualScore(a, o2, p

4) is true. Here w.l.o.g we
suppose a = o1. If EqualScore(a,m, p3) is true, then we have an assignment τ1 in which a and
m both have the maximal score among all candidates and τ1(i) = a. We can just change voter
i’s top choice from a into o2 to get τ2. And a is winner under τ1 but loser under τ2. So, again
i :{o1, o2} is in the minimal deciding set of a in p. If EqualScore(a, o2, p

4) returns yes, then we
have an assignment of candidates to every voter except i, such that a and o2 have equal maximal
score. This is an incomplete assignment of top choices τ ′. Combining τ ′ with τ1(i) = a we get τ1
in which a wins, while combining it with τ2(i) = o2 we get τ2 in which a loses. So we can conclude
i:{o1, o2} is in the minimal deciding set of a.

Then we prove the “⇐” part of the corollary. As we just argued in the previous paragraph, there
are two assignments of top choice τ1 and τ2 for every voter as we described. Suppose we record
score of a candidate c under τ1 and τ2 as s1c and s2c , and the maximal score among all candidates
under τ1 and τ2 as s1max and s2max. Notice that we always have |s1a − s2a| ≤ 1, |s1max − s2max| ≤ 1
and s1a = s1max and s2a < s2max. If a /∈ {o1, o2}, then s1a = s2a, so s2max − s1max = 1, and
s1max = s1a. As the s2max > s1max and w.l.o.g only o2 has a higher score in τ2 than in τ1, so we have
that s1o2 = s1max = s1a and s2o2 = s2max. Notice that under τ1 which is consistent with p, o2 and a
both have maximal score among all candidates, so EqualScore(a, o2, p

2) = yes and so our algorithm
will return yes in step 2.

If a ∈ {o1, o2}, then by a similar analysis we could conclude that our algorithm will also return
yes. So we have proven Corollary 3. As there are only polynomial such queries, computing the
minimal deciding set is also in P.

If a ∈ {o1, o2}, then w.l.o.g, we suppose a = o1. Similarly, s1a = s2a + 1 and s2o2 = s1o2 + 1.
Also, |s1max − s2max| ≤ 1 and s1a = s1max and s2a < s2max. If a has unique maximal score in τ1, then
we have s1o2 = s1a − 1 because only o2 has a higher score under τ2 than under τ1. So our algorithm
will return yes because EqualScore(a, o2, p

4) = yes. If some other candidate m also has maximal
score under τ1, then it will also return yes because EqualScore(a,m, p3) = yes for candidate m.

4.2 Borda and other scoring voting rules
On the other hand, under the Borda voting rule and other scoring rules, computing minimal deciding
sets is NP-complete.

The Borda voting rule uses the score vector W = {m,m− 1, · · · , 1}, where m is the number of
candidates. Given a partial preference profile p, and a candidate o, it is known that checking if o is a
possible winner in p under Borda is an NP-complete problem [Xia and Conitzer, 2011]. It came as
no surprise that checking whether a query q is in the minimal deciding set is also an NP-complete
problem.
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Theorem 4 The problem of checking if a query q is in the minimal deciding set for a candidate o in
a partial profile p under the Borda voting rule is NP-complete.

Proof The problem is in NP follows from Proposition 1 as checking whether an answer σ to S \{q}
is legal in p, whether it can be extended to two different answers to q such that the outcomes of o in
the two extensions are different under the Borda rule can all be done in polynomial time, where S is
the set of all queries.

The problem is NP-hard because o is a possible winner iff either o is a necessary winner or the
minimal deciding set for o is not empty. Notice that checking if o is a necessary winner under Borda
can be done in polynomial time [Konczak and Lang, 2005].

In fact, the proof of this theorem gives a more general result:

Theorem 5 For any polynomial time voting rule under which the possible winner problem is NP-
complete and the necessary winner problem is in P, the problem of checking if a query is in the
minimal deciding set is NP-complete.

It is known that except for plurality and veto rules, all scoring rules have the property in the
above theorem [Xia and Conitzer, 2011; Betzler and Britta, 2010; Baumeister and Rothe, 2010]. We
thus have the following corollary.

Corollary 6 For any scoring voting rule that is different from the plurality and the veto rules, check-
ing if a query is in the minimal deciding set is NP-complete.

5 Computing possible winning sets
We have seen that there may be multiple minimal possible winning sets. This makes the problem of
computing these sets harder.

Proposition 2 A candidate o is a possible winner in a partial preference profile p iff the set of all
queries is a possible winning set for a. A candidate o is a possible loser iff she is not a necessary
winner iff the set of all queries is a possible losing set for a.

Thus just like Corollary 6, we have the following result.

Theorem 7 For any scoring voting rule that is different from the plurality and the veto rules, check-
ing if a set of queries is a possible winning set is NP-complete.

We do not at present know the complexity of computing a minimal possible winning set. Our
guess is that it is ΠP

2 -complete, same as the complexity of computing minimal models (circumscrip-
tion) in propositional logic [Eiter and Gottlob, 1993].

Neither do we know the exact complexity of checking if a set of queries is a possible losing set
for a candidate. While Proposition 2 implies that checking if the set of all queries is a possible losing
set for a candidate is in P, the problem seems to be harder in general as it requires checking whether
an answer has enough information to conclude that the candidate is a necessary loser, which is a
coNP-complete problem for voting rules such as Borda.

We now show that for the plurality voting rule, deciding whether a query set is a minimal possible
winning set is in P.
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5.1 Plurality

Algorithm: PossibleWinningSet(Q, p, a):

Input: A query setQ, a partial profile p and a candidate a, and we assume that ∀i:{b, c} ∈ Q, (b, c) /∈
pi, (c, b) /∈ pi.
Output: yes or no of whether Q is a possible winning set of a in p.

1. For every voter i, letGi be the undirected graph withO as nodes and {(b, c) | i:{b, c} ∈ Q} as
edges and Si be the set of all strongly connected components of Gi. For a strongly connected
component u, we use V (u) to represent the set of vertices of u. For every voter i, for every
strongly connected component u ∈ Si s.t. a ∈ V (u) and ¬∃o ∈ O, o >i a, add a >i c to p
for every c 6= a in V (u). Set sa = the minimal score of a in p.

2. ∀i ∈ N,Ui = {u ∈ Si | ∀o ∈ V (u),¬∃w ∈ O,w >i o}, U = U1 ∪ · · · ∪ Un
3. Let O be the set of candidates in p and U as defined. Let s and t be two new atoms not in
U ∪O. Construct a graph G with {s, t} ∪U ∪O\{a} as set of nodes, and the following three
layers of edges:

(a) for every node in U an edge from s to it with capacity one.

(b) for every node u ∈ U and every candidate o s.t. o ∈ O\{a} and o ∈ V (u), an edge from
u to o with capacity one.

(c) for every o ∈ O\{a} an edge from it to t with capacity sa.

If MAX-FLOW(G, s, t) = |U |, then return yes, else return no.

Corollary 8 PossibleWinningSet(Q, p, a) returns yes iff Q is a possible winning set of a in p, and it
runs in polynomial time.

As proven in [Konczak and Lang, 2005], a is a necessary winner in p iff the minimal score of a
is higher than the maximal score of any other candidate c ∈ O.

Intuitively, our algorithm tries to maximize the min score of a and see whether the max score of
other candidates can be less than the min score of a under some answer of Q. The detailed proof of
the correctness of the algorithm is omitted due to page limit.

The graph constructed has O(mn) edges, and the flow found by the algorithm is O(mn). So
if we use FORD-FULKERSON alogrithm to implement MAX-FLOW, the flow calculation takes
O(m2n2) time. And the strongly connected components part runs in O(m2n) time as SCC is
O(|V |+ |E|) and the size of the graph is O(m2). So PossibleWinningSet runs in O(m2n2) time.

To determine whetherQ is a minimal possible winning set, we just need |Q|+1 calls of the above
algorithm. So determining whether a query set is a minimal possible winning set under plurality is
also in P.

6 Related works
We have mentioned that this work generalizes the notions of necessary and possible winners [Kon-
czak and Lang, 2005]. It is also closely related to work on vote elicitation (e.g. [Conitzer and
Sandholm, 2002; Procaccia, 2008]). In vote elicitation, one is often interested in a dynamic question
and answering process [Conitzer and Sandholm, 2002]. Here we are looking at statically, in the
current state, how many possible questions one needs to ask in order to determine the outcome of a
vote w.r.t. to a particular candidate. These two approaches are closely related. For instance, given
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our notion of minimal deciding sets, we can proceed in the following way to decide the outcome
for a candidate x: in the current state, find a query that is in the minimal deciding set of x, ask the
query and add the answer to the current partial preference profile; repeat this in the new state until
one reaches a state where x is either a necessary winner or a necessary loser. The dynamic process
thus obtained seems to be new, and we plan to explore its properties and connections with existing
dynamic approaches in our future work.

Following the theoretical study of vote elicitation, researchers are recently doing some experi-
mental studies of elicitation processes (e.g. [Lu and Boutilier, 2011a; 2011b; Kalech et al., 2011]).
In the these work, the focus is mainly to save the number of questions in and rounds of the elicita-
tion process, and to develop approximations when the partial information is not enough to decide
the winner. In contrast to these approaches, ours may be more easily parallelised and more efficient
when we only care about one candidate.

7 Concluding remarks
We have considered sets of questions to ask the voters about in order to determine the outcome of a
vote with partial information.

A deciding set is one that will determine the outcome of a vote for a candidate no matter how
the queries in the set are answered. One fundamental property about this notion is that among
these sets, there is a unique minimal one. Thus as far as a candidate is concerned, a comparison
between two candidates is irrelevant to her if the associated query is not in her minimal deciding
set. Computationally we have shown that the minimal deciding set can be computed in polynomial
time for the plurality and veto rules, and is NP-complete to compute for other scoring rules. We will
study complexity for other voting rules in our future work.

On the other hand, a possible winning (losing) set for a candidate is one that has an answer that
will lead to the candidate being a necessary winner (loser). For a manipulator, these sets may be
of more interest as they could tell her how to influence the voters to make the candidate a winner
or a loser of the vote. We have shown that for plurality and veto rules, a minimal possible winning
set can be computed in polynomial time. We believe that the same is true for computing a minimal
possible losing set as well. For scoring voting rules such as Borda, the problem is again NP-hard for
checking if a set of queries is a possible winning set.
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Being Caught Between a Rock and a Hard

Place in an Election—Voter Deterrence by

Deletion of Candidates

Britta Dorn and Dominikus Krüger

Abstract

We introduce a new problem modeling voter deterrence by deletion of candidates in
elections: In an election, the removal of certain candidates might deter some of the
voters from casting their votes, and the lower turnout then could cause a preferred
candidate to win the election. This is a special case of the variant in the family
of ‘control’ problems in which an external agent is allowed to delete candidates and
votes in order to make his preferred candidate win, and a generalization of the variant
where candidates are deleted, but no votes. We initiate a study of the computational
complexity of this problem for several voting systems and obtain NP-completeness
and W[2]-hardness with respect to the parameter number of deleted candidates for
most of them.

1 Introduction

Imagine: finally, you have the chance of getting rid of your old mayor, whom you absolutely
cannot stand. Luckily, in addition to the normal unscrupulous opponents, the perfect can-
didate is running for the vote this year. You agree with everything he says and therefore
you are even looking forward to Election Day. But suddenly the word is spread that he has
withdrawn his candidacy. Again, you are feeling caught between a rock and a hard place.
Does it make any sense to go to the polls if you only have a choice between the lesser of two
evils?

Low voter turnouts caused by scenarios such as the one in the above example may lead
to modified outcomes of an election. This is reminiscent of a family of problems which has
been studied extensively in the computational social choice literature recently, the family
of ‘control’ problems [1, 10–12, 17] where an external agent can change the outcome of an
election by adding or deleting candidates and/or voters, respectively. In particular, in the
setting of constructive control by deleting candidates, the agent can prevent candidates from
running for office, which causes other candidates to rise in ranking for certain voters. This
may ultimately result in the external agent’s preferred candidate winning the election.

In real life, this process is a little bit more complicated and control of an election can
occur in a more entangled way: As in our introductory example, if some candidates do not
stand for election, then certain voters will not even take part in the election because they feel
that there is nothing interesting to decide or no relevant candidate to vote for. The lower
turnout could have consequences for the remaining candidates: the winner of the election
under normal conditions might lose points because of the lower polling after the deletion of
certain candidates, and this can produce a different winner. Hence, by deterring the voters
by means of deleting their favorite candidates, one might prevent them from casting their
votes and therefore change the outcome of the election. Therefore, we call this phenomenon
voter deterrence.

This situation can be observed in the primaries in US elections or in mayoral elections,
where mayors often are elected with single-digit turnout, sometimes caused by the with-
drawal of candidacy of one or several alternatives in the run-up.
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As to our knowledge, this problem has not yet been considered from a computational
point of view. In this paper, we want to initiate the study of the corresponding decision
problem Voter Deterrence defined below. We mainly consider the case where voters
are easily deterred: As soon as their most preferred candidate does not participate in the
election, they refrain from the election. This is what we denote as 1-Voter Deterrence,
but clearly, one can also consider x-Voter Deterrence, where a voter only refuses to
cast his vote if his top x candidates are removed. Surprisingly, it turns out that 1-Voter
Deterrence is already computationally hard for several voting systems, even for Veto.

This paper is organized as follows. After introducing notation and defining the decision
problem x-Voter Deterrence in Section 2, we investigate the complexity of this problem
for the case of x = 1 for the voting systems Plurality (for which it turns out to be solvable
in polynomial time, but it is NP-complete for x = 2), Veto, 2-approval, Borda, Maximin,
Bucklin, Fallback Voting, and Copeland (for all of which the problem turns out to be NP-
complete). As a corollary, we can show that the hard problems are also W[2]-hard with
respect to the solution size, i.e., with respect to the parameter number of deleted candidates,
which means that they remain hard even if only few candidates have to be deleted to make
the preferred candidate win. This is stated in Section 4 together with a short discussion
of the complexity with respect to the parameter number of candidates. We conclude with
a discussion of open problems and further directions that might be interesting for future
investigations.

2 Preliminaries

Elections. An election is a pair E = (C, V ) consisting of a candidate set C = {c1, . . . , cm}
and a multiset V = {v1, . . . , vn} of votes or voters, each of them a linear order over C, i.e.,
a transitive, antisymmetric, and total relation over the candidates in C, which we denote
by �. A voting system maps (C, V ) to a set W ⊆ C called the winners of the election. All
our results are given for the unique winner case, where W consists of a single candidate.

We will consider the voting systems Plurality, Veto, 2-approval, Borda, Maximin, Buck-
lin, Fallback Voting, and Copeland. A description of these systems can be found e.g. in [6].

Voter Deterrence, Control. In an x-Voter Deterrence instance, we are given an
election E = (C, V ), a preferred candidate p ∈ C, and natural numbers k, x ≤ |C|, as well
as a voting system. It will always be clear from the context which voting system we are
using, so we will not mention it explicitly in the problem description. Let R ⊆ C denote
a subset of candidates, and let VR ⊆ V denote the set of voters who have ranked only
candidates from R among the first x ranks in their vote. The task consists in determining a
set R of at most k candidates that are removed from C, and who therefore prevent the set of
voters VR from casting their votes, such that p is a winner in the election Ẽ = (C\R, V \VR).
The set R is then called a solution to the x-Voter Deterrence instance. The underlying
decision problem is the following.

x-Voter Deterrence
Given: An election E = (C, V ), a preferred candidate p ∈ C, and k, x ∈ N.
Question: Is there a subset of candidates R ⊆ C with |R| ≤ k, such that p is

the winner in the election Ẽ = (C \R, V \ VR)?

x-Voter Deterrence is a special case of one of the many variants in the family of
‘control’ problems [11], where the chair is allowed to delete candidates and votes, which is
defined as follows.

Constructive Control by Deleting Candidates and Votes
Given: An election E = (C, V ), a preferred candidate p ∈ C, and k, l ∈ N.
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Question: Is there a subset C ′ ⊆ C with |C ′| ≤ k, and a subset V ′ ⊆ V with

|V ′| ≤ l, such that p is a winner in the election Ẽ = (C \ C ′, V \ V ′)?
Note that in the Voter Deterrence problem, the deleted candidates and votes are

coupled, which is not necessarily the case in the above control problem. In [11], it is shown
that the above control problem is NP-hard for the voting systems Plurality, Condorcet,
Copelandα (0 ≤ α ≤ 1), Approval voting, and Maximin. However, since x-Voter Deter-
rence is a special case of this variant of control, this does not settle its complexity for these
voting systems.

If we set x = m, we obtain Constructive Control via Deleting Candidates,
which is the above control problem with l = 0. The latter variant hence is a special case
of m-Voter Deterrence, implying that the hardness results from [1, 12] carry over, i.e.,
m-Voter Deterrence is NP-hard for Plurality and Copelandα for 0 ≤ α ≤ 1.

In this paper, we will mainly consider 1-Voter Deterrence, i.e., a voter will refuse
to cast his vote if his most preferred candidate does not participate in the election. For
the voting system Plurality, we also consider 2-Voter Deterrence, where a voter only
refrains from voting if his two top ranked candidates are eliminated from the election.

Parameterized complexity. The computational complexity of a problem is usually stud-
ied with respect to the size of the input I of the problem. One can also consider the
parameterized complexity [8, 15, 18] taking additionally into account the size of a so-called
parameter k which is a certain part of the input, such as the number of candidates, or
the size of the solution set. A problem is called fixed-parameter tractable with respect to a
parameter k if it can be solved in f(k) · |I|O(1) time, where f is an arbitrary computable
function depending on k only. The corresponding complexity class consisting of all problems
that are fixed-parameter tractable with respect to a certain parameter is called FPT .

The first two levels of (presumable) parameterized intractability are captured by the
complexity classes W[1] and W[2]. Proving hardness with respect to these classes can be
done using a parameterized reduction, which reduces a problem instance (I, k) in f(k)·|I|O(1)

time to an instance (I ′, k′) such that (I, k) is a yes-instance if and only if (I ′, k′) is a yes-
instance, and k′ only depends on k but not on |I|, see [8, 15,18].

For all our hardness proofs, we use the W[2]-complete Dominating Set (DS) problem
for undirected graphs.

Dominating Set
Given: An undirected graph G = (V, E), and a nonnegative integer k.
Question: Is there a subset V ′ ⊆ V with |V ′| ≤ k such that every vertex v ∈ V
is contained in V ′ or has a neighbor in V ′?

Notation in our proofs. In all our reductions from Dominating Set, we will associate
the vertices of the given graph G = (V, E) with candidates of the election E = (C, V ) to be
constructed. For that sake, we use a bijection g : V → C. By N(v) := {u ∈ V | {u, v} ∈ E},
we denote the set of neighbors or the neighborhood of a vertex v ∈ V. Analogously, we
define the neighborhood of a candidate ci as N(ci) = g(N(vi)) for ci = g(vi), i.e., the set of
neighbors of a candidate ci ∈ C corresponding to the vertex vi ∈ V is the set of candidates
corresponding to the neighborhood of vi in G. By N(vi) we denote the set of non-neighbors
of vi, analogously for neighborhoods of candidates.

In our reductions, we usually need one dummy candidate for every ci ∈ C, these will
be denoted by ĉi. All other dummy candidates appearing are marked with a hat as well,
usually they are called d̂ or similarly. When building the votes in our reductions, we write
‘k ‖ a1 � · · · � al’ which means that we construct the given vote a1 � · · · � al exactly k
times.

In our preference lists, we sometimes specify a whole subset of candidates, e.g., c � D for
a candidate c ∈ C and a subset of candidates D ⊆ C. This notation means c � d1 � · · · � dl
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for an arbitrary but fixed order of D = {d1, . . . , dl}. If we use a set
→
D in a preference list, we

mean one specific, fixed (but arbitrary, and unimportant) order of the elements in D, which

is reversed if we write
←
D. Hence, if c �

→
D stands for c � d1 � · · · � dl, then c �

←
D means

c � dl � · · · � d1. Finally, whenever we use the notation Drest for a subset of candidates in
a vote, we mean the set consisting of those candidates in D that have not been positioned
explicitly in this vote.

3 Complexity-theoretic analysis

In this section, we will give several hardness proofs for Voter Deterrence for differ-
ent voting systems. All our results rely on reductions from the NP-complete problem
Dominating Set. We only prove NP-hardness for the different voting systems, but since
membership in NP is always trivially given, NP-completeness follows immediately. For
all these reductions we assume that every vertex of the input instance has at least two
neighbors, which is achievable by a simple polynomial time preprocessing.

3.1 Plurality

It is easy to see that 1-Voter Deterrence can be solved efficiently for Plurality. One
can simply order the candidates according to their score and if there are more than k
candidates ahead of p, this instance is a no-instance. Otherwise p will win after deletion of
the candidates that were ranked higher than him, because all the votes which they got a
point from are removed. Therefore the following theorem holds.

Theorem 1. 1-Voter Deterrence is in P for the voting system Plurality.

For 2-Voter Deterrence, it is not so easy to see which candidates should be deleted.
In fact, the problem is NP-complete.

Theorem 2. 2-Voter Deterrence is NP-complete for the voting system Plurality.

Proof. We prove Theorem 2 with a parameterized reduction from Dominating Set. Let
〈G = (V, E), k〉 be an instance of DS.
Candidates: For every vertex vi ∈ V we need one candidate ci and one dummy candidate ĉi,
as well as the preferred candidate p and his dummy candidate p̂, so C = I ∪D ∪ {p} with
I = {c1, . . . , cn} and D = {ĉ1, . . . , ĉn, p̂}. For ease of presentation we denote I ∪ {p} by I∗.
Votes: The votes are built as follows.

n ‖ p � p̂ � Crest, (1)

∀ci ∈ I :

|N(ci)| ‖ ci � ĉi � Crest, (2)

∀cj ∈ I∗ \ (N(ci) ∪ {ci}) :

1 ‖ ci � cj � Crest. (3)

Note that n votes are built for every candidate ci. Therefore each candidate in I∗ has
the score n. The score of a candidate can only be decreased if the corresponding candidate
himself is deleted. Note also that the score of every dummy candidate cannot exceed n− 1.
We will now show that one can make p win the election by deleting up to k candidates if
and only if the DS-instance has a solution of size at most k.

“⇒”: Let S be a given solution to the DS-instance. Then R = g(S) is a solution
to the corresponding 2-Voter Deterrence-instance. Since S is a dominating set, every
candidate in I will be at least once in the neighborhood of a candidate ci ∈ R or be a
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candidate in R himself. Therefore p is the only candidate who gains an additional point
from every deleted candidate cx ∈ R from the vote built by (3) and will therefore be the
unique winner.

“⇐”: Let R be a given solution to a 2-Voter Deterrence-instance. Since every
candidate in I∗ has the original score n and these scores can only be increased if the corre-
sponding candidate himself is not deleted, as discussed before, every candidate cx ∈ I must
not appear as cj on the second position of the votes built by (3) for at least one candidate
of R or be a member of R himself. Therefore S = g−1(R) is a solution to the equivalent
DS-instance.

3.2 Veto

Theorem 3. 1-Voter Deterrence is NP-complete for the voting system Veto.

Proof. We prove Theorem 3 with a parameterized reduction from Dominating Set. Let
〈G = (V, E), k〉 be an instance of DS.
Candidates: For every vertex vi ∈ V we need one candidate ci, as well as the preferred
candidate p and k + 1 dummy candidates, so C = I ∪ D ∪ {p} with I = {c1, . . . , cn} and

D = {d̂1, . . . , d̂k+1}. For ease of presentation we denote I ∪ {p} by I∗.
Votes: The votes are built as follows.

∀ci ∈ I :

∀cj ∈ I∗ \ (N(ci) ∪ {ci}) :

1 ‖ ci � Crest � D � cj , (1)

∀cj ∈ N(ci) ∪ {ci} :

1 ‖ p � Irest � D � cj , (2)

∀d̂j ∈ D :

2 ‖ p � I � Drest � d̂j . (3)

Note that every vote built by (2) and (3) can only be removed by deleting the candidate p,
who should win the election. Therefore these votes will not be removed. Note also that for
each set of votes constructed for a candidate ci ∈ I, every candidate in C \ D takes the
last position in one of theses votes, hence the score of every such candidate is the same. In
contrast, the dummy candidates cannot win the election at all, due to the fact that they are
on the last position of the constructed votes twice as often as the other candidates.
We will now show that one can make p win the election by deleting up to k candidates if
and only if the DS-instance has a solution of size at most k.

”⇒”: Let S be a given solution to the DS-instance. Then R = g(S) is a solution to
the corresponding 1-Voter Deterrence-instance. Since S is a dominating set, every
candidate in I will be on the last position of a vote built by (2) for a cj ∈ R at least once
and therefore lose a point relative to p, hence p is the unique winner.

“⇐”: Let R be a given solution to a 1-Voter Deterrence-instance. As discussed
before, only votes built by (1) can be removed by deleting a candidate. Since at most k
candidates can be deleted, it is not helpful to delete a dummy candidate, because they
have less points than p and their deletion cannot decrease the points of any candidate in I
(which are actually holding p from winning). Therefore only candidates in I are in R, or
there exists a solution R′ ⊆ R, for which this holds. With every candidate chosen from I,
the corresponding neighbors are losing one point relative to p. As p and every candidate
of I had the same amount of points in the beginning, every candidate in I has to be at
least neighboring one deleted candidate or be deleted himself. By the definition of the
neighborhood of candidates, S = g−1(R′) is a solution to the equivalent DS-instance.
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3.3 2-approval

Theorem 4. 1-Voter Deterrence is NP-complete for the voting system 2-approval.

Proof. We prove Theorem 4 by a parameterized reduction from Dominating Set. Let
〈G = (V, E), k〉 be an instance of DS.
Candidates: For every vertex vi ∈ V, we create one candidate ci and one additional dummy
candidate ĉi, finally we need the preferred candidate p. So with I = {c1, . . . , cn} and
D = {ĉ1, . . . , ĉn}, the candidates are C = I ∪D ∪ {p}.
Votes: The votes are built as follows.

∀ci ∈ I :

∀cj ∈ N(ci) :

1 ‖ ci � cj � ĉj � Crest � p, (1)

∀cj ∈ I \ (N(ci) ∪ {ci}) :

1 ‖ ĉi � cj � ĉj � Crest � p, (2)

2 ‖ ĉi � p � Crest, (3)

n− |N(ci)| ‖ ci � ĉi � Crest � p. (4)

Without any candidate deleted, all ci ∈ I and p have the same score of 2n, while the dummy
candidates ĉj ∈ D have a score less than 2n. Note that one decreases p’s score by deleting
a dummy candidate, because a deletion of this kind results in losing a vote built in (3).
Therefore one has to delete candidates in I to help p in winning.
We will now show that one can make p win the election by deleting up to k candidates if
and only if the DS-instance has a solution of size at most k.

“⇒”: Let S be a given solution to the DS-instance. Then R = g(S) is a solution
to the corresponding 1-Voter Deterrence-instance. Since S is a dominating set, every
candidate cx ∈ I will be at the second position of a vote built by (1) for one ci ∈ R at least
once and therefore lose a point. As a consequence, every corresponding dummy candidate ĉx
will have a score not greater than 2n− 2, as they gain points in votes built by (1) and (2),
by succeeding to position 2, but lose points as a result of the removal of votes built by (4).
Consequently, p wins being the only candidate remaining with a score of 2n.

“⇐”: Let R be a given solution to a 1-Voter Deterrence-instance. Since one cannot
increase p’s score by deleting a candidate ci ∈ I, the deletion of the candidates in R has
to reduce the scores of all candidates in I by at least 1. Whenever a dummy candidate
is deleted, p loses points instead of gaining them, therefore R ⊆ I must hold. To reduce
the score of every candidate in I by just deleting candidates in I, every such candidate has
to be in the neighborhood of at least one deleted candidate or be deleted himself. By the
definition of the neighborhood of candidates, S = g−1(R) is a solution to the equivalent
DS-instance.

3.4 Borda

Theorem 5. 1-Voter Deterrence is NP-complete for the voting system Borda.

Proof. We prove Theorem 5 by a parameterized reduction from Dominating Set. Let
〈G = (V, E), k〉 be an instance of DS.
Candidates: For every vertex vi ∈ V we create one candidate ci and one dummy candidate ĉi,
finally we need the preferred candidate p. So the candidates are C = I ∪ D ∪ {p} with
I = {c1, . . . , cn} and D = {ĉ1, . . . , ĉn}. For ease of presentation, we denote I ∪ {p} by I∗.
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Votes: The votes are built as follows.
∀ci ∈ I :

∀cj ∈ N(ci) :

1 ‖ ci �
→
I∗rest � cj � ĉj �

→
Drest � ĉi, (1)

1 ‖ ci � cj � ĉj �
←
I∗rest �

←
Drest � ĉi, (2)

1 ‖ ĉi � ĉj � cj �
←
I∗rest � ci �

←
Drest, (3)

1 ‖ ĉi �
→
I∗rest � ĉj � cj � ci �

→
Drest. (4)

Recall that
→
A denotes one specific order of the elements within the set A which is reversed

in
←
A. Keeping this in mind, it is easy to see that every candidate in I∗ has the same score

within one gadget constructed by the four votes built by (1) to (4) for one cj , while the
dummy candidates all have a lower score. Note that the deletion of any candidate will
decrease the score of every other candidate. Therefore the scores of the candidates in I have
to be decreased more than the one of p, whereas the scores of the candidates in I∗ can never
be brought below the score of any candidate in D.
We will now show that one can make p win the election by deleting up to k candidates if
and only if the DS-instance has a solution of size at most k.

“⇒”: Let S be a given solution to the DS-instance. Then R = g(S) is a solution
to the corresponding 1-Voter Deterrence-instance. Since S is a dominating set, every
candidate cx ∈ I will appear at least once as cj in the votes built by (1) to (4) for one
ci ∈ R and therefore lose two points relative to p. With the dummy candidates unable to
reach a higher score than p and every other candidate having a score below the one of p,
the preferred candidate wins.

“⇐”: Let R be a given solution to a 1-Voter Deterrence-instance. Since one cannot
increase the score of p, the deletion of the candidates in R has to decrease the score of every
candidate of I relative to p. Therefore every candidate in I has to appear at least once as cj
in the votes built by (1) to (4) for one ci ∈ R. Hence, every candidate of I must have at
least one neighbor in R or be a member of R himself. Therefore S = g−1(R) is a solution
to the equivalent DS-instance.

3.5 Maximin

Theorem 6. 1-Voter Deterrence is NP-complete for the voting system Maximin.

Proof. We prove Theorem 6 by a parameterized reduction from Dominating Set. Let
〈G = (V, E), k〉 be an instance of DS.
Candidates: For every vertex vi ∈ V we create one candidate ci and one dummy candidate ĉi,
finally we need the preferred candidate p. So the candidates are C = I ∪ D ∪ {p} with
I = {c1, . . . , cn} and D = {ĉ1, . . . , ĉn}.
Votes: The votes are built as follows.

∀ci ∈ I :

1 ‖ ci �
→
I rest �

→
N(ci) � p �

→
Drest � ĉi, (1)

1 ‖ ci �
←
N(ci) � p �

←
I rest �

←
Drest � ĉi, (2)

1 ‖ ĉi �
→
I rest � p �

→
N(ci) �

→
Drest � ci, (3)

1 ‖ ĉi � p �
←
N(ci) �

←
I rest �

←
Drest � ci. (4)

Recall that
→
A denotes one specific order of the elements within set A which is reversed

in
←
A. With this in mind, it is easy to see that every candidate in I has the same score as p,

149



namely 2n. The dummy candidates are not able to win the election as long as at least one
of the candidates in I or p is remaining.
We will now show that one can make p win the election by deleting up to k candidates if
and only if the DS-instance has a solution of size at most k.

“⇒”: Let S be a given solution to the DS-instance with |S| = k′ ≤ k. Then R = g(S) is
a solution to the corresponding 1-Voter Deterrence-instance. Since S is a dominating
set, every candidate cx ∈ I will belong to the neighborhood of a candidate in R or be a
member of R himself at least once. Therefore each candidate cx will have at most 2n−k′−2
votes in which he is preferred to p. Therefore the maximin score of these candidates will be
at most 2n − k′ − 2, while p is preferred to every other candidate in C in at least 2n − k′
votes, which makes p the unique winner of the election.

“⇐”: Let R be a given solution to a 1-Voter Deterrence-instance. Then the deletion
of the candidates in R decreases the score of every candidate in I more than the score of p.
Note that the score of p is always higher than the score of the dummy candidates. The
only way to decrease the score of a candidate cx ∈ I is to delete cx himself, or one of his
neighbors, since this removes the votes built by (1) and (2), in which the neighbors are
preferred to p, while p is preferred in the remaining votes built by (3) and (4). Since every
candidate has to be in the neighborhood of at least one deleted candidate or be deleted
himself, S = g−1(R) is a solution to the equivalent DS-instance.

3.6 Bucklin and Fallback Voting

A candidate c’s Bucklin score is the smallest number k such that more than half of the
votes rank c among the top k candidates. The winner is the candidate that has the smallest
Bucklin score [20].

Theorem 7. 1-Voter Deterrence is NP-complete for Bucklin.

Note that Bucklin is a special case of Fallback Voting, where each voter approves of each
candidate, see [9]. We therefore also obtain

Corollary 1. 1-Voter Deterrence is NP-complete for Fallback Voting.

Proof. We prove Theorem 7 by a parameterized reduction from Dominating Set. Let
〈G = (V, E), k〉 be an instance of DS.
Candidates: For every vertex vi ∈ V we create one candidate ci and one dummy candi-
date ĉi. Additionally, we need the preferred candidate p and several dummy candidates.
We need n(n + k) filling dummies f̂ , k(2n + k − 1) security dummies ŝ, and finally k − 1

leading dummies l̂. So the candidates are C = I ∪D∪S∪F ∪L∪{p} with I = {c1, . . . , cn},
D = {ĉ1, . . . , ĉn}, S = {ŝ1, . . . , ŝk(2n+k−1)}, F = {f̂1, . . . , f̂n(n+k)}, and L = {l̂1, . . . , l̂k−1}.
For ease of presentation, we denote I ∪ {p} by I∗.
Votes: The votes are built as follows.

∀ci ∈ I :

1 ‖ ci � N(ci) � {f̂(i−1)(n+1)+1, . . . , f̂i(n+1)−|N(ci)|−1}
� {ŝ(2i−2)(k+1)+1, . . . , ŝ2(i−1)(k+1)} � Crest � p, (1)

1 ‖ ĉi � N(ci) � {f̂i(n+1)−|N(ci)|, . . . , f̂(i)(n+1)} � p
� {ŝ(2i−1)(k+1)+1, . . . , ŝ2i(k+1)} � Crest, (2)

∀r ∈ {1, . . . , k − 1} : one vote of the form

1 ‖ l̂r � {f̂n(n+1)+(r−1)n+1, . . . , f̂n(n+1)+in}
� {ŝ2n(k+1)+(r−1)(k+1)+1, . . . , ŝ2n(k+1)+r(k+1)} � Crest � p. (3)
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Note that every candidate in I∗ occurs within the first n + 2 positions in the votes
built by (1) and (2) for every candidate ci ∈ I exactly once. Therefore p is not the unique
winner without modification. Note also that deleting some of the dummy candidates is not
helping p, as they all appear just once within the first n+2 positions. Because of the security
dummies, no candidate in I∗ can move up to one of the first n + 2 positions, if he has not
been there before. After the deletion of k candidates, up to k votes can be removed—note
that every removed vote has to be built by (1) or (3) if p wins the election with this deletion.
We will now show that one can make p win the election by deleting up to k candidates if
and only if the DS-instance has a solution of size at most k.

“⇒”: Let S be a given solution to a DS-instance with |S| = k′ ≤ k. Then R = g(S) ∪
{l̂1, . . . , l̂k−k′} is a solution to the corresponding 1-Voter Deterrence-instance. Since S
is a dominating set, every candidate cx ∈ I will lose at least one vote built by (1) because
he is the neighbor of at least one candidate in R or a member of R himself. Since |R| = k, k
votes are removed and therefore the score of p is n + 2, whereas the score of every other
candidate is greater than n+ 2, which makes p win the election.

“⇐”: Let R be a given solution to a 1-Voter Deterrence-instance. Since p wins
with the candidates in R deleted, R has to contain just candidates in I ∪ L, and |R| = k,
because everything else would increase the score of p to the maximum, which would keep p
from winning uniquely. Let R′ = R ∩ I be the intersection of R and I. Since the score of p
with k removed votes of this kind is n+ 2, and the score of every candidate in I was n+ 2
without the removal of any votes, every candidate in I has to be removed himself or has to
be neighboring at least one deleted candidate in R, because only then his score is greater
than n+ 2. Therefore S = g−1(R′) is a solution to the equivalent DS-instance.

3.7 Copeland

For any two distinct candidates i and j, let N(i, j) be the number of voters that prefer i to
j, and let C(i, j) = +1 if N(i, j) > N(j, i), C(i, j) = 0 if N(i, j) = N(j, i), and C(i, j) = −1
if N(i, j) < N(j, i). The Copeland score of candidate i is

∑
j 6=i C(i, j) [6].

Theorem 8. 1-Voter Deterrence is NP-complete for the voting system Copeland.

Proof. We prove Theorem 8 by a parameterized reduction from Dominating Set. Let
〈G = (V, E), k〉 be an instance of DS.
Candidates: For every vertex vi ∈ V we create one candidate ci and one dummy candidate ĉi.
Additionally we need the preferred candidate p, one thievish candidate t̂ and furthermore n
filling dummy candidates. So the candidates are C = I∪D∪F ∪{t̂, p} with I = {c1, . . . , cn},
D = {ĉ1, . . . , ĉn}, and F = {f̂1, . . . , f̂n}.
Votes: The votes are built as follows.

∀ci ∈ I :

1 ‖ ci �
→
N(ci) � t̂ �

→
I rest � p �

→
F �

→
Drest � ĉi, (1)

1 ‖ ci � p �
←
I rest �

←
N(ci) �

←
F � t̂ �

←
Drest � ĉi, (2)

1 ‖ ĉi � t̂ �
→
N(ci) �

→
I rest � p �

→
F � ci �

→
Drest, (3)

1 ‖ ĉi � p �
←
I rest �

←
F � t̂ �

←
N(ci) � ci �

←
Drest. (4)

After creating these n gadgets (consisting of the above 4 votes) the candidates have
different scores. Note that the candidates of each set are always tying with the other
candidates in their set, since every gadget has two votes with one specific order of the
members and another two of the reversed order. Since candidates in D are losing every
pairwise election against all other candidates, they have a score of −(2n+2). The candidates
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in F are just winning against the candidates in D and are tied against t̂ and therefore have
a score of −1. Since the candidates in I and p are on a par with t̂, this gives them a score
of 2n and t̂ a score of n. Note that if there exists a deletion of k candidates which makes p
win the election, there also exists a deletion of up to k candidates in I doing so. The main
idea here is that the thievish candidate can steal exactly one point from every candidate in I
by winning the pairwise election between them due to the deleted candidate and thereby
removed votes. Since t̂ starts with a score of n, this will only bring him to a score of 2n− k
with k deleted candidates. Therefore he cannot get a higher score than p initially had.
We will now show that one can make p win the election by deleting up to k candidates if
and only if the DS-instance has a solution of size at most k.

“⇒”: Let S be a given solution to a DS-instance. Then R = g(S) is a solution to
the corresponding 1-Voter Deterrence-instance. Since S is a dominating set, every
candidate cx ∈ I will be a neighbor of a deleted candidate, or a deleted candidate himself.
Therefore t̂ will win the pairwise election with every such candidate cx due to the fact that
initially they were tied, but at least one vote built by (1) and one by (2) are deleted, where cx
was in the neighborhood of the deleted ci, or cx got deleted himself. As a consequence, t̂
has a score of 2n− k and every candidate in I has a score of 2n− 1, which makes p win the
election with an unchanged score of 2n.

“⇐”: Let R be a given solution to a 1-Voter Deterrence-instance. As discussed
before, there must be a solution R′ of size at most k with R′ ∩ (C \ I) = ∅. Since p and the
candidates in I were leading initially with the same score of 2n, and p cannot get a higher
score if any candidate is deleted, the candidates in I must have their score lowered through
deletion of some candidates. Any deleted candidate himself cannot win anymore, but since
only up to k candidates are to delete, the remaining candidates in I have to lose at least
one pairwise election after the deletion, which they won or at least tied before. By design
of the gadget, this can only be achieved for a candidate cx by deleting ci with cx ∈ N(ci).
This makes cx lose the former tied pairwise election with t̂, giving cx a score of 2n−1. Since
this must hold for every candidate in I and therefore any non-deleted candidate must be a
neighbor of one candidate in M ′ at least. Hence S = g−1(R′) is a solution to the equivalent
DS-instance.

4 Parameterized complexity-theoretic analysis

In this section, we shortly take a closer look at the parameterized complexity of Voter
Deterrence for the previously considered voting systems.

Since all the NP-hardness proofs of the previous section are based on parameterized
reductions from Dominating Set, we immediately obtain

Corollary 2. 1-Voter Deterrence isW[2]-hard for Copeland, Veto, Borda, 2-approval,
Maximin, Bucklin, and Fallback Voting, and 2-Voter Deterrence is W[2]-hard for Plu-
rality, all with respect to the parameter number of deleted candidates.

In contrast, considering a different parameter, one easily obtains the following tractability
result.

Theorem 9. The problem x-Voter Deterrence is in FPT with respect to the parameter
number of candidates for all voting systems having a polynomial time winner determination.

Proof. It is easy to see that Theorem 9 holds: An algorithm trying out every combination of
candidates to delete has an FPT -running time O(mk ·n ·m ·Tpoly), where m is the number
of candidates, n the number of votes, k ≤ m is the number of allowed deletions, and Tpoly is
the polynomial running time of the winner determination in the specific voting system.

152



5 Conclusion

We have initiated the study of a voting problem that takes into account correlations that
appear in real life, but which has not been considered from a computational point of view
so far. We obtained NP-completeness and W[2]-hardness for most voting systems we con-
sidered. However, this is just the beginning, and it would be interesting to obtain results
for other voting systems such as k-approval or scoring rules in general. Also, we have
concentrated on the case of 1-Voter Deterrence and so far have investigated 2-Voter
Deterrence for Plurality only.

One could also look at the destructive variant of the problem in which an external agent
wants to prevent a hated candidate from winning the election, see e.g. [17] for a discussion
for the ‘control’ problems.

We have also investigated our problem from the point of view of parameterized
complexity. It would be interesting to consider different parameters, such as the num-
ber of votes, or even a combination of several parameters (see [19]), to determine the
complexity of the problem in a more fine-grained way. This approach seems especially
worthwile because Voter Deterrence, like other ways of manipulating the outcome
of an election, is a problem for which NP-hardness results promise some kind of resis-
tance against this dishonest behavior. Parameterized complexity helps to keep up this
resistance or to show its failure for cases where certain parts of the input are small, and
thus provides a more robust notion of hardness. See, e.g., [3–5,7,9], and the recent survey [2].

However, one should keep in mind that combinatorial hardness is a worst case concept,
so it would clearly be interesting to consider the average case complexity of the problem or
to investigate the structure of naturally appearing instances. E.g., when the voters have
single peaked preferences, many problems become easy [13]. Research in this direction is
becoming more and more popular, see for example [13,14,16].

Acknowledgments. We are grateful to the anonymous referees whose constructive feed-
back helped to improve this work. Finally, we thank Oliver Gableske for the fruitful discus-
sion which initiated our study of Voter Deterrence.
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Graph Aggregation

Ulle Endriss and Umberto Grandi

Abstract

Suppose a number of agents each provide us with a directed graph over a common set
of vertices. Graph aggregation is the problem of computing a single graph that best
represents the information inherent in this profile of individual graphs. We introduce
a simple formal framework for graph aggregation and then focus on the notion of
collective rationality, which asks whether a given property of graphs, such as tran-
sitivity, can be guaranteed to hold for the collective graph whenever it is satisfied
by all individual graphs. We refine the ultrafilter method for proving impossibility
theorems in social choice theory to arrive at a clear picture relating axiomatic prop-
erties of aggregation procedures, properties of graphs with respect to which we want
to ensure collective rationality, and properties of ultrafilters.

1 Introduction

Suppose a group of agents each supply us with a particular piece of information and we
want to aggregate this information into a collective view to obtain a good representation of
the individual views provided. In classical social choice theory the objects of aggregation
have been preference orders on a set of alternatives (Arrow, 1963). More recently, the same
methodology has also been applied to other types of information, notably beliefs (Konieczny
and Pino Pérez, 2002), judgments (List and Puppe, 2009), ontologies (Porello and Endriss,
2011), and rankings provided by Internet search engines (Dwork et al., 2001).

In this paper, we introduce the problem of graph aggregation, i.e., the problem of devising
methods to aggregate the information inherent in a profile of individual (directed) graphs,
one for each agent, into a single collective graph. Given that a preference order is a special
kind of directed graph, graph aggregation may be viewed as a direct generalisation of classical
preference aggregation. This is a useful generalisation, because also several other problem
domains in which aggregation is relevant are naturally modelled as graphs, e.g.:

• In abstract argumentation (Dung, 1995), collections of arguments available for a debate
are modelled as a graph (with an edge from A to B if argument A attacks B). The
question of how to integrate several such argument graphs naturally arises in this
context. Recent work of Coste-Marquis et al. (2007) has addressed this question.

• Social and economic networks are often modelled as graphs (Jackson, 2008).1 We
might want to merge the information from several such networks (e.g., the network of
work relations in a community, the network of friends in the same community, etc.).

• It is not always reasonable to take the classical assumptions of economic theory (ac-
cording to which preferences are transitive and complete orders) for granted when
modelling an agent’s preferences. The work of Pini et al. (2009) goes in this direction
by studying aggregation of preferences modelled as incomplete orders; but we might
want to go further and also allow for cycles and so forth.

Special instances of the graph aggregation problem we shall consider have previously been
studied in work on the aggregation of judgments regarding causal relations between variables

1While social networks are usually modelled as undirected graphs, here we shall work with directed
graphs (but note that we can model an undirected graph as a directed graph that is symmetric).
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(Bradley et al., 2011) and the design of voting agendas for multi-issue elections based on
individually reported preferential dependencies between issues (Airiau et al., 2011).

While graph aggregation is more general than preference aggregation, it is less general
than the frameworks of judgment aggregation (List and Puppe, 2009) or binary aggregation
(Dokow and Holzman, 2010; Grandi and Endriss, 2010): just like classical preference ag-
gregation, graph aggregation can—in principle—be embedded into these frameworks. For
a given problem domain, it is important to find the right level of abstraction, and graphs
appear to be a particularly useful level of abstraction for a wide range of problems.

In Section 2, we define a framework for graph aggregation and adapt well-known axioms
from the literature to express natural desiderata for such aggregators. We also suggest
concrete aggregators, including both adaptations from other areas of social choice theory
and the novel class of successor-approval rules.

Our main interest will then be in the notion of collective rationality. In Section 3, we
define collective rationality of a given aggregator F wrt. a given property of graphs P (such
as transitivity) as the guarantee that, whenever each of the individual graphs satisfies P , so
does the collective graph we obtain when we apply F to those individual graphs. That is,
assuming that each individual agent is “rational” in the sense of respecting the property P
under consideration, we ask whether we can be sure that the collective (as defined by our
aggregator F ) will be rational as well. This is a well-known concept: in classical preference
aggregation, P corresponds to the conjunction of the properties that define a weak order
(Arrow, 1963); in judgment aggregation, P corresponds to logical consistency (List and
Puppe, 2009); and in our own previous work on binary aggregation, P corresponds to an
integrity constraint expressed in a propositional language (Grandi and Endriss, 2010).

We first prove a series of simple results that identify certain (classes of) aggregators that
are collectively rational wrt. certain properties of graphs. Our main technical contribution
is a refinement of the ultrafilter method for proving impossibility theorems in social choice
theory (see, e.g., Kirman and Sondermann, 1972; Herzberg and Eckert, 2011). One way of
proving Arrow’s classical impossibility theorem (Arrow, 1963) is to show that the collection
of winning coalitions of individuals (determining which pieces of information need to be
accepted by an aggregator) is an ultrafilter (Davey and Priestley, 2002). We will show
how each of the conditions defining an ultrafilter corresponds directly to the requirement of
collective rationality wrt. a certain graph property. For example, any property that, given
the acceptance of two particular edges, forces the acceptance of a third edge can be used to
establish the ultrafilter condition of being closed under intersections. This means that we
can replace transitivity in the statement of an Arrow-like theorem by, say, the Church-Rosser
property or the Euclidean property (see Table 1 for definitions of these three properties, all
of which have the general template indicated before). We use our technique to prove several
variants of Arrow’s Theorem for graph aggregation.

Section 4 concludes with a discussion of related research and directions for future work.

2 A Formal Framework of Graph Aggregation

Fix a finite set of vertices V . A (directed) graph G = 〈V,E〉 based on V is defined by a
set of edges E ⊆ V 2. Let G be the set of all such graphs (for our fixed choice of V ). Let
N be a finite set of (two or more) individuals (or agents). Each individual i ∈ N provides
a graph Gi = 〈V,Ei〉 with some set of edges Ei. This gives rise to a profile of graphs
G = (G1, . . . , Gn), which we shall also write as G = 〈V, (E1, . . . , En)〉. An aggregator is a
function F : GN → G mapping any such profile into a single collective graph.

We require a few further pieces of notation: First, E(x) := {y ∈ V | (x, y) ∈ E} is the
set of successors of a vertex x in a set of edges E; and E−1(y) := {x ∈ V | (x, y) ∈ E} is the
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Property First-order Condition

Reflexivity ∀x.xEx
Irreflexivity ¬∃x.xEx
Symmetry ∀xy.(xEy → yEx)
Antisymmetry ∀xy.(xEy ∧ yEx→ x = y)
Transitivity ∀xyz.(xEy ∧ yEz → xEz)
Euclidean property ∀xyz.(xEy ∧ xEz → yEz)
Church-Rosser property ∀xy.[xEy ∧ xEz → ∃w.(yEw ∧ zEw)]
Seriality ∀x.∃y.xEy
Functionality ∀xyz.(xEy ∧ xEz → y = z)
Completeness ∀xy.[x 6= y → (xEy ∨ yEx)]
Strong completeness ∀xy.(xEy ∨ yEx)
Connectedness ∀xyz.[xEy ∧ xEz → (yEz ∨ zEy)]
Negative transitivity ∀xyz.[xEy → (xEz ∨ zEy)]

Table 1: Common Properties of Directed Graphs.

set of predecessors of y. Second, given an edge e, we sometimes write e ∈ G instead of e ∈ E
when G = 〈V,E〉. Third, xEy is a shorthand for (x, y) ∈ E. Fourth, NG

e := {i ∈ N | e ∈ Ei}
is the set of individuals accepting edge e under profile G.

A few fundamental properties of directed graphs (and, more generally speaking, of binary
relations) are shown in Table 1. Recall that a weak order is a binary relation that is reflexive,
transitive and complete, while a linear order is irreflexive, transitive and complete.

2.1 Properties of Graph Aggregators

We now introduce a number of axioms that define certain desirable properties of aggregators.
The first such axiom is an independence condition that requires that the decision of whether
or not a given edge e should be part of the collective graph should only depend on which of
the individual graphs include e. This corresponds to the well-known independence axioms
in preference aggregation (Arrow, 1963) and judgment aggregation (List and Puppe, 2009).

Definition 1 (IIE). F is independent of irrelevant edges if NG
e =NG′

e implies e ∈ F (G)⇔
e ∈ F (G′).

That is, if exactly the same individuals accept e under profiles G and G′, then e should
be part of either both or none of the corresponding collective graphs. Note that above
definition applies to all edges e ∈ V 2 and all pairs of profiles G,G′ ∈ GN . We shall leave
this kind of universal quantification implicit also in later definitions.

While very much a standard axiom, we might be dissatisfied with IIE for not making
reference to the fact that edges are defined in terms of vertices. Our next axiom is much more
graph-specific and does not have a close analogue in preference or judgment aggregation. It
requires that the decision of whether or not to collectively accept a given edge e = (x, y)
should only depend on which edges with the same source x are accepted by the individuals.
Below we abuse notation and write F (G)(x) for the set of successors of x in the set of edges
in the collective graph F (G) (and similarly F (G)−1(y) for the predecessors of y in F (G)).

Definition 2 (IIS). F is independent of irrelevant sources if Ei(x) = E′i(x) for all individ-
uals i ∈ N implies F (G)(x) = F (G′)(x).

Similarly, the next axiom requires that collective acceptance of an edge e = (x, y) should
only depend on the pattern of individual acceptance for those edges with the same target y.

Definition 3 (IIT). F is independent of irrelevant targets if E−1i (y) = E′−1i (y) for all
individuals i ∈ N implies F (G)−1(y) = F (G′)−1(y).
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Note that both IIS and IIT are strictly weaker than IIE. The precise relative strength of
our independence axioms is illustrated by the following fact, which is easy to verify.

Fact 1. An aggregator is IIE iff it is both IIS and IIT.

The fundamental economic principle of unanimity requires that an edge should be accepted
by the collective if all individuals accept it.

Definition 4 (Unanimity). F is unanimous if F (G) = 〈V,E〉 implies E ⊇ E1 ∩ · · · ∩ En.

A requirement that, in some sense, is dual to unanimity is to ask that the collective graph
should only include edges that are part of at least one of the individual graphs. In the context
of ontology aggregation this axiom has been called groundedness (Porello and Endriss, 2011).

Definition 5 (Groundedness). F is grounded if F (G) = 〈V,E〉 implies E ⊆ E1 ∪ · · · ∪En.

The remaining axioms are all standard and closely modelled on their counterparts in judg-
ment aggregation (List and Puppe, 2009).

Definition 6 (Anonymity). F is anonymous if F (G1, . . . , Gn) = F (Gπ(1), . . . , Gπ(n)) for
any permutation π : N → N .

Definition 7 (Neutrality). F is neutral if NG
e = NG

e′ implies e ∈ F (G)⇔ e′ ∈ F (G).

Definition 8 (Monotonicity). F is monotonic if e ∈ F (G) implies e ∈ F (G′) whenever G′

is obtained from G by having one additional individual accept the edge e.

That is, anonymity and neutrality are basic symmetry requirements wrt. individuals and
edges, respectively, while monotonicity requires that additional support for an edge should
never reduce that edge’s chances of being collectively accepted.

An extreme form of violating anonymity is to use an aggregator that is dictatorial in the
sense that a single individual can determine the shape of the collective graph.

Definition 9 (Dictatorships). F is dictatorial if there exists an individual i? ∈ N (the
dictator) such that e ∈ F (G)⇔ e ∈ Gi? for every edge e ∈ V 2.

Aggregators that are not dictatorial are called nondictatorial.
Sometimes we shall only be interested in the properties of an aggregator as far as the

nonreflexive edges e = (x, y) with x 6= y are concerned. Specifically, we call F NR-neutral if
NG

(x,y) = NG
(x′,y′) implies (x, y) ∈ F (G)⇔ (x′, y′) ∈ F (G) for all x 6= y and x′ 6= y′; and we

call F NR-nondictatorial if there exists no i? ∈ N such that (x, y) ∈ F (G)⇔ (x, y) ∈ Gi? for
all x 6= y. That is, NR-neutrality is slightly weaker than neutrality and NR-nondictatoriality
is slightly stronger than nondictatoriality.

2.2 Aggregators

Next, we define several concrete aggregators. Under a quota rule, an edge will be included
in the collective graph if the number of individuals accepting it meets a certain quota. If
that quota is the same for every edge, then we have a uniform quota rule.

Definition 10 (Quota rules). A quota rule is an aggregator Fq defined via a function
q : V 2 → {0, 1, . . . , n+1} by stipulating Fq(G) := 〈V,E〉 with E = {e ∈ V 2 | |NG

e | > q(e)}.
Fq is called uniform if q is a constant function.

The class of uniform quota rules includes several interesting special cases:
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• The (strict) majority rule accepts an edge if more than half of the individuals do. This
is the uniform quota rule with q = dn+1

2 e.
• The union rule is the aggregator that maps any given profile of graphs to their union:
〈V,E1 ∪ · · · ∪ En〉. This is the uniform quota rule with q = 1.

• The intersection rule is the aggregator that maps any given profile of graphs to their
intersection: 〈V,E1 ∩ · · · ∩ En〉. This is the uniform quota rule with q = n.

We call the uniform quota rules with q = 0 and q = n+1 the trivial quota rules; q = 0
means that all edges will be included in the collective graph and q = n+1 means that no
edge will be included. Quota rules have also been studied in judgment aggregation (Dietrich
and List, 2007).

Another important class of aggregators, familiar from both judgment aggregation and
belief merging, are the distance-based aggregators (Konieczny and Pino Pérez, 2002), which
in our context amount to selecting a collective graph that satisfies certain properties and
that minimises the distance to the individual graphs (for a suitable notion of distance and a
suitable form of aggregating such distances). While of great practical importance, we shall
not consider distance-based aggregators here, because they ensure that the collective graph
meets the required properties “by design”, i.e., the question of collective rationality does
not arise for these rules. Distance-based rules also violate several attractive axioms (Lang
et al., 2011) and are of high complexity (Endriss et al., 2010).

Inspired by approval voting (Brams and Fishburn, 2007), we now introduce a new class
of aggregators specifically for graphs. Imagine we associate with each vertex an election in
which all the possible successors of that vertex are the candidates (and in which there may
be more than one winner). Each individual votes by stating which vertices they consider
acceptable successors. We might then elect those vertices that receive the most support or
that receive above average support. We might also give each voter a certain weight, which
could be inversely proportional to the number of successors they propose, and so forth.

Definition 11 (Successor-approval rules). A successor-approval rule is an aggregator Fv
defined via a function v : (2V )N → 2V by stipulating F (〈V,E1, . . . , En〉) := 〈V,E〉 with
E = {(x, y) ∈ V 2 | y ∈ v(E1(x), . . . , En(x))}.
We call v the choice function associated with Fv. We shall only be interested in choice func-
tions v that are anonymous and neutral, i.e., that satisfy v(S1, . . . , Sn) = v(Sπ(1), . . . , Sπ(n))
for any permutation π : N → N and for which {i ∈ N | e ∈ Si} = {i ∈ N | e′ ∈ Si} entails
e ∈ v(S1, . . . , Sn)⇔ e′ ∈ v(S1, . . . , Sn) .

2.3 Characterisations

A simple adaptation of a result by Dietrich and List (2007) yields:

Fact 2. An aggregator is a quota rule iff it is anonymous, IIE and monotonic.

If we add the axiom of neutrality, then we obtain the class of uniform quota rules. If we
furthermore impose unanimity and groundedness, then this excludes the trivial quota rules.
Similarly, IIS characterises the class of successor-approval rules:

Fact 3. An aggregator is a successor-approval rule (with an anonymous and neutral choice
function) iff it is anonymous, neutral and IIS.

3 Collective Rationality

We now analyse to what extent aggregators can ensure that a given property that is satisfied
by each of the individual graphs is preserved when we move to the corresponding collective
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graph. This is known as collective rationality. For instance, in preference aggregation we may
ask whether an aggregator can guarantee that the structure it will produce as output, when
all the input structures are transitive and complete preference orders, will also be transitive
and complete. Arrow’s Theorem shows that the answer to this question is negative for
any “reasonable” aggregator (Arrow, 1963). Much of this line of work has concentrated
on properties that are natural to consider in the context of preference modelling. In our
own previous work on binary aggregation, we have concentrated on properties that can be
expressed in simple logical languages (Grandi and Endriss, 2010). Here, instead, we focus
on fundamental properties of binary relations and graphs.

Definition 12 (Collective rationality). An aggregator F is collectively rational (CR) wrt.
a property P if F (G) satisfies P whenever each of the individual graphs in the profile G do.

Example 1. Suppose four individuals each provide a graph over the same set of vertices:

•

��

�� • �� • ��

•

OO •

��

• �� • ��

•

OO • �� •

��

• ��

•

GG • �� • �� •

}}•

==

1 2 3 4

If we apply the strict majority rule, we obtain a graph where the only edges are those con-
necting the upper three worlds with themselves. That is, this rule is not CR wrt. seriality,
because each of the individual graphs is serial, while the collective graph computed is not.
Symmetry, on the other hand, is preserved. There also is no violation of collective rational-
ity wrt. reflexivity, because the individual graphs are not reflexive to begin with. A rule that
does preserve seriality is the simple successor-approval rule that accepts an edge if it is (tied
for being) most often accepted amongst those with the same source.

3.1 Basic Results

We begin with two very simple positive results, showing how a basic aggregation axiom can
guarantee the preservation of a simple graph property:

Proposition 4. Any unanimous aggregator is CR wrt. reflexivity.

Proof. Immediate: If every individual graph includes all edges of the form (x, x), then
unanimity ensures that the same is true for the collective graph.

Proposition 5. Any grounded aggregator is CR wrt. irreflexivity.

Proof. Immediate: If no individual graph includes the edge (x, x), then groundedness guar-
antees the same for the collective graph.

Symmetry is more demanding a property and unanimity alone does not suffice to preserve
it. However, if we restrict attention to uniform quota rules, we obtain the following result:

Proposition 6. Any uniform quota rule is CR wrt. symmetry.

Proof. Immediate: If each individual respects symmetry, then the number of individual
graphs including edge (x, y) will always equal the number of individual graphs including
(y, x). Hence, either both or neither will meet the uniformly imposed quota.

Note that uniformity is a necessary condition for Proposition 6 to hold. Transitivity is yet
again more demanding a property:
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Proposition 7. The intersection rule is CR wrt. transitivity. It is the only nontrivial
uniform quota rule with that property for |V | > 3.

Proof. First, it is easy to verify that the intersection rule preserves transitivity. Now con-
sider any nontrivial uniform quota rule Fq with a quota q < n. Take a profile in which q− 1
individuals accept (x, y), (y, z) and (x, z); one individual accepts only (x, y); and one indi-
vidual accepts only (y, z). This profile is transitive (as far as the edges under consideration
here are concerned). But when we aggregate using Fq, then we obtain a graph that includes
the edges (x, y) and (y, z), but not (x, z). Hence, transitivity is not preserved.

The constant rules corresponding to the trivial quota rules with q = 0 and q = n+1 vacuously
ensure collective rationality wrt. transitivity. Another demanding property is seriality:

Proposition 8. The union rule is CR wrt. seriality. It is the only nontrivial uniform quota
rule with that property for |V | > n.

Proof. Clearly, the union rule (with q = 1) will preserve seriality. To see that no uniform
quota rule with 1 < q 6 n does, it suffices to consider a scenario where each of the edges
emanating from a particular source x is accepted by (at most) one individual. Note that
this construction requires |V | > n. Otherwise, there always is an outgoing edge accepted by
more than one individual (when each individual respects seriality), and therefore also some
quotas q > 1 will work.

Amongst the trivial uniform quota rules only the one with q = 0 ensures seriality. If we
move away from quota rules (satisfying IIE) and are content with using successor-approval
rules (only satisfying IIS), then we have a wider choice of aggregators available that will
preserve seriality (e.g., the simple successor-approval rule of Example 1).

Above we have seen that certain properties will be preserved by certain quota rules.
However, if we want to preserve several such properties, those possibility results quickly
turn into impossibilities. Let us begin with an immediate corollary of our earlier results:

Corollary 9. If |V | > n, then no nontrivial uniform quota rule is CR wrt. both transitivity
and seriality.

Proof. Immediate from Proposition 7 and Proposition 8 and the fact that union and inter-
section differ for n > 1.

Rather surprisingly, in some cases we obtain an impossibility already when only collective
rationality wrt. a single property is required:

Proposition 10. If |V | > 3, then no nontrivial uniform quota rule is CR wrt. connected-
ness.

Proof. First, the intersection rule (with quota q = n) does not preserve connectedness. To
see this, consider a scenario where all individuals accept (x, y) and (x, z), half of them accept
(y, z), and the other half (z, y). Second, for any uniform quota rule with 0<q<n, construct
a counterexample as follows: Suppose a group of q individuals accept (x, y), a different group
of q individuals accept (x, z), and their intersection accept (y, z), while nobody accepts (z, y).
Then (x, y) and (x, z) are part of the collective graph, but neither (y, z) or (z, y) are. This
violates connectedness, even though the individual graphs satisfy it.

Note that both of the trivial uniform quota rules ensure connectedness (because both the
complete and the empty graph are connected). If we swap connectedness for completeness,
then we obtain the following characterisation:
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Proposition 11. If |V | > 2, then a uniform quota rule Fq is CR wrt. completeness (or
strong completeness) iff q 6 bn+1

2 c.

Proof. By the pigeon hole principle, if all individual graphs are complete, then one of (x, y)
and (y, x) will always have at least bn+1

2 c individuals accepting it. Hence, if (and only if)
the quota is at most bn+1

2 c we can ensure that that edge will be collectively accepted.

While most of our examples so far have been restricted to quota rules, they already give
some insight into the close connections between collective rationality and standard axiomatic
requirements. In the sequel, we shall explore this connection in much more depth.

3.2 Impossibility Theorems

In view of Fact 2 and the remarks following it, we can reformulate Proposition 10 as saying
that there exists no anonymous, neutral, unanimous, grounded, IIE and monotonic aggre-
gator that is CR wrt. connectedness. This closely resembles classical impossibility theorems
in social choice theory. For instance, Arrow’s Theorem in its form for linear orders (i.e., ir-
reflexive, transitive, and complete preference orders) can be stated as saying that there exists
no nondictatorial, unanimous, and IIE aggregator that is CR wrt. irreflexivity, transitivity,
and completeness. We shall soon prove the following variant of Arrow’s Theorem:2

Theorem 12. If |V | > 3, then there exists no NR-nondictatorial, unanimous, grounded
and IIE aggregator that is CR wrt. both transitivity and completeness.

For now, we want to see whether Arrow’s impossibility persists when we move away from
properties typically associated with preferences. The central axiom the impossibility feeds
on is IIE. Observe that an aggregator F satisfies IIE iff for each edge e ∈ V 2 there exists a
set of winning coalitions We ⊆ 2N such that e ∈ F (G) ⇔ NG

e ∈ We. Imposing additional
axioms on F corresponds to restrictions on the associated family of winning coalitions, e.g.:

• If F is unanimous, then N ∈ We for any edge e.
• If F is grounded, then ∅ 6∈ We for any edge e.
• If F is (NR-)neutral, then We =We′ for any two (nonreflexive) edges e and e′.

Recall that neutrality does not feature in Arrow’s Theorem. As we shall see next, the reason
is that the same restriction on winning coalitions is already enforced by collective rationality
wrt. transitivity (at least for nonreflexive edges). This is a surprising and interesting link
between a specific collective rationality requirement and a specific axiom. This link is related
to the so-called Contagion Lemma (Sen, 1986), but we have not seen it noted in the literature
in this form before. The same kind of result can also be obtained for other graph properties
with a similar structure; besides transitivity, we state it here for the Euclidean property.

Lemma 13. If |V | > 3, then any unanimous and IIE aggregator that is CR wrt. transitivity
or the Euclidean property must be NR-neutral.

Proof. Let F be an aggregator that is unanimous and IIE, and let {We}e∈V 2 be the asso-
ciated family of winning coalitions. We need to show that there exists a unique W ⊆ 2N

2Theorem 12 implies both the standard variant of Arrow’s Theorem for linear orders and its standard
variant for weak orders. (1) For linear orders: First, by Proposition 5 we can add irreflexivity to the
CR requirements without changing the logical strength of the theorem. Second, groundedness can be
dropped as it follows from unanimity together with CR wrt. completeness. Third, on irreflexive profiles
NR-nondictatoriality and nondictatoriality coincide. (2) For weak orders: First, by Proposition 4 we can
add reflexivity to the CR requirements. Second, the Pareto condition (i.e., unanimity wrt. the strict part of
the preference relation) implies both unanimity (when used with IIE) and groundedness (when used with
CR wrt. completeness). Third, on reflexive profiles NR-nondictatoriality and nondictatoriality coincide.
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such that W = We for any nonreflexive edge e. Note that the We are not empty (due to
unanimity). Consider any three vertices x, y, z and any coalition C ∈ W(x,y). We will
employ collective rationality to show that C must also be a winning coalition for each of the
other five edges between these three vertices. A simple inductive argument then suffices to
show that C will in fact have to be a winning coalition for all nonreflexive edges.

Now suppose F is CR wrt. transitivity. Let us first see how to prove that C ∈ W(z,x):
Consider a scenario in which (x, y) and (z, x) are accepted by the individuals in C and
only those (i.e., by definition of C, (x, y) is collectively accepted) and in which (y, z) is
accepted by all individuals (i.e., by unanimity, (y, z) is also collectively accepted). Then,
by collective transitivity, (z, x) must be collectively accepted. Hence, C must be a winning
coalition for (z, x), i.e., C ∈ W(z,x). We can use a similar argument for the other edges:
e.g., to show C ∈ W(z,y) consider the case with C accepting all of (z, x), (x, y) and (z, y);
to show C ∈ W(y,x) consider the case with everyone accepting (y, z) and C accepting (z, x)
and (y, x); and so forth.

The proof in case transitivity is replaced by the Euclidean property is similar. We omit
the details in the interest of space.

Note that Lemma 13 does not hold for |V | = 2: the aggregator that accepts (x, y) whenever
agent 1 does and that accepts (y, x) whenever agent 2 does is a counterexample.

Also note that full neutrality does not follow from the conditions of Lemma 13. The
reason is that, while C being a winning coalition for (x, y) entails C also being a winning
coalition for (x, x), the converse is not true. For example, the aggregator that accepts
nonreflexive edges only when all individuals do, but that always accepts all reflexive edges
(thereby violating neutrality), is unanimous, IIE, and CR wrt. transitivity.

We now prove a result similar to Arrow’s Theorem, but replacing completeness by serial-
ity. We do this by proving that the set of winning coalitions corresponding to any aggregator
that meets the conditions stated in the theorem is an ultrafilter (Davey and Priestley, 2002).

Definition 13 (Ultrafilters.). An ultrafilter W on a set N is a collection of subsets of N
that satisfies the following three conditions:

(i) ∅ 6∈ W;
(ii) C1, C2 ∈ W implies C1 ∩ C2 ∈ W (i.e., W is closed under intersections); and

(iii) C or N \C is in W for any C ⊆ N (i.e., W is maximal).

We are now ready to state and prove our result:

Theorem 14. If |V | > 3, then there exists no NR-nondictatorial, unanimous, grounded,
and IIE aggregator that is CR wrt. both transitivity and seriality.

Proof. Let F be a unanimous, grounded and IIE aggregator that is CR wrt. transitivity and
seriality. By Lemma 13, F is NR-neutral, i.e., there is set of winning coalitions W ⊆ 2N

with e ∈ F (G) ⇔ NG
e ∈ W for any nonreflexive edge e. We shall prove that W is an

ultrafilter. Condition (i) holds, because F is grounded. Condition (ii) follows from collective
rationality wrt. transitivity: Suppose C1, C2 ∈ W. Consider a scenario where coalition C1

accepts (x, y) and C2 accepts (y, z). Then, by transitivity, at least coalition C1 ∩ C2 must
accept (x, z). Suppose it is exactly the individuals in C1 ∩ C2 who do. As C1 and C2 are
winning coalitions, (x, y) and (y, z) are part of the collective graph. To achieve collective
rationality wrt. transitivity, we must also have (x, z) be part of the collective graph, and
thus we must have C1 ∩ C2 ∈ W. Condition (iii), finally, follows from collective rationality
wrt. seriality: Take an arbitrary coalition C ∈ W. Consider a scenario where exactly the
individuals in C accept (x, y), exactly those in N \C accept (x, z), and no individual accepts
any of the other edges emanating from x. Due to groundedness, of all the edges emanating
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from x, only (x, y) and (x, z) can possibly be part of the collective graph. Due to collective
rationality wrt. seriality at least one of them has to be, i.e., C ∈ W or N \C ∈ W.

Recall that N is required to be finite. An ultrafilter W on a set N is called principal if
it is of the form W = {C ∈ 2N | i? ∈ C} for some fixed i? ∈ N . In our setting, principality
of W corresponds to F being dictatorial (with dictator i?) on nonreflexive edges. Now, it is
a well-known fact that any ultrafilter on a finite set must be principal (Davey and Priestley,
2002), which shows that F cannot be NR-nondictatorial.

We can obtain a proof of Arrow’s Theorem, in our rendering as Theorem 12, using the
very same approach. Above, we used seriality only to establish condition (iii). We can
use completeness, featuring in Theorem 12, instead: simply consider a scenario in which
all individuals in C accept (x, y) and all those in N \C accept (y, x). Then one of C and
N \C must be a winning coalition to ensure completeness for the collective graph. This
observation completes the proof of Arrow’s Theorem (Theorem 12).

To demonstrate the versatility of our approach, let us state one more impossibility:

Theorem 15. If |V | > 3, then there exists no NR-nondictatorial, unanimous, grounded,
and IIE aggregator that is CR wrt. both the Euclidean property and seriality.

Proof. In our proof of Theorem 14, we used collective rationality wrt. transitivity twice: to
invoke Lemma 13 and to establish ultrafilter condition (ii). Lemma 13 still applies when we
use the Euclidean property instead of transitivity. So we only need to prove condition (ii):
Suppose only agents in C1 accept (x, y), only those in C2 accept (x, z), and only those in
C1 ∩C2 accept (y, z). That is, all individual graphs satisfy the Euclidean property (wrt. x,
y and z). If both C1 and C2 are winning coalitions, then the collective graph will include
(x, y) and (x, z). To satisfy the Euclidean property, it will also have to include (y, z). Hence,
C1 ∩ C2 must also be a winning coalition.

How interesting Theorems 14 and 15 are is open to debate. Certainly, neither of them has
the immediate intuitive appeal of Arrow’s Theorem, which speaks about a class of graphs
that can be interpreted as preference orders. On the other hand, these results indicate
a generic technique for proving impossibility results in the style of Arrow’s Theorem by
explicitly linking (a) specific properties wrt. which we want to impose collective rationality
and (b) specific conditions on ultrafilters. We obtain the following general picture:

(1) The condition of closure-under-intersections of an ultrafilter (C1, C2 ∈ W ⇒ C1∩C2 ∈
W) is derivable from collective rationality wrt. to any one of the following graph prop-
erties: transitivity, the Euclidean property, and the Church-Rosser property.3 What
these properties have in common is that they force the acceptance of one edge (or
two, in the case of Church-Rosser) given the acceptance of two other edges. Any other
graph property with this feature can be applied to the same effect.

(2) The condition of maximality of an ultrafilter (C ∈ W or N \C ∈ W) is derivable from
collective rationality wrt. to any one of the following graph properties: completeness,
strong completeness, connectedness, negative transitivity, and seriality. What they
have in common is that they force the acceptance of at least one out of a set of
several (usually two) edges, possibly given the acceptance of some other edges (for
connectedness and negative transitivity). Any other graph property with this feature
can be applied to the same effect.

(3) Collective rationality wrt. graph properties that either do not create dependencies
between edges (such as reflexivity or irreflexivity) or that do not force the acceptance of

3Church-Rosser requires 4 (rather than just 3) vertices to be applicable.
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at least one edge (such as symmetry, antisymmetry, or functionality) cannot contribute
to establishing the ultrafilter conditions.

The ultrafilter method itself becomes applicable once we assume IIE (needed to make win-
ning coalitions applicable in the first place), neutrality (needed to show that all edges have
the same winning coalitions), and unanimity (needed to show that the collection of winning
coalitions is not empty). Groundedness is needed for the first ultrafilter condition. That is,
we obtain an Arrovian impossibility for graph aggregation as soon as we accept these four
axioms and postulate collective rationality wrt. one property from the first group above and
one property from the second property above. As we have seen in Lemma 13, rather than
accepting neutrality from the outset, we can also derive it as a consequence of collective
rationality wrt. certain graph properties.

4 Conclusions, Related Work and Future Directions

We have argued that graph aggregation is an important problem with several potential
applications and we have introduced a simple formal framework to study this problem. We
have defined quota rules and successor-approval rules as interesting aggregators and we
have stated several natural axiomatic requirements. Finally, we have argued that collective
rationality is of central importance in the study of (not only!) this type of aggregation
problem. Our main technical contribution has been a refinement of the ultrafilter method,
allowing us to approach the proof of Arrovian impossibilities in a highly modular manner,
clearly relating axiomatic properties, rationality properties, and ultrafilter properties.

Our approach is also helpful in interpreting a recent result by Pini et al. (2009), who prove
a variant of Arrow’s Theorem for preorders, i.e., for preferences that need not be complete.
To be able to prove their result, these authors require the collective preference order to have
one element that is weakly preferred (or dispreferred) to all other elements. This may be
interpreted as a (very weak) form of completeness. Indeed, that such a condition would be
needed is exactly what we would expect in view of our analysis above (without it, we cannot
obtain the third ultrafilter condition) and it is not hard to see how to adapt our proof of
Theorem 12 to provide a new simple proof of the result of Pini et al. (2009).

In related work on belief merging, Maynard-Zhang and Lehmann (2003) suggest an
approach to circumvent Arrow’s Theorem by (a) replacing completeness by negative tran-
sitivity (which they call “modularity”) and (b) weakening the independence axiom. In the
discussion of their result, these authors stress the significance of both of these changes. How-
ever, our analysis easily shows that replacing completeness by negative transitivity alone
has no effect on Arrow’s impossibility: the maximality condition of an ultrafilter can easily
be derived using collective rationality wrt. negative transitivity (just consider a scenario
where everyone in C accepts (x, z) and everyone else accepts (z, y)). Hence, the crucial
source for the possibility result of Maynard-Zhang and Lehmann must be their modification
of the independence axiom (and, indeed, this modification is rather substantial as it allows
for independence to be violated whenever not doing so would lead to a “conflict”).

Other related work includes our own work on collective rationality in binary aggregation,
where we link axiomatic properties and structural properties of the integrity constraints used
to define rationality assumptions in a propositional language (Grandi and Endriss, 2010),
and so-called agenda characterisation theorems in judgment aggregation, linking axiomatic
properties and collective rationality wrt. logical consistency (List and Puppe, 2009).

An interesting direction for future work that we have begun to explore is to study
collective rationality wrt. the truth of a formula in modal logic evaluated over a directed
graph. A basic result here shows that an aggregator F is grounded iff F is CR wrt. any
modal formula not involving a 3-operator (or a 2-operator within the scope of a negation).
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Manipulation Under Voting Rule Uncertainty1

Edith Elkind and Gábor Erdélyi

Abstract

An important research topic in the field of computational social choice is the complexity of
various forms of dishonest behavior, such as manipulation, control, and bribery. While much
of the work on this topic assumes that the cheating party has full information about the election,
recently there have been a number of attempts to gauge the complexity of non-truthful behav-
ior under uncertainty about the voters’ preferences. In this paper, we analyze the complexity of
(coalitional) manipulation for the setting where there is uncertainty about the voting rule: the
manipulator(s) know that the election will be conducted using a voting rule from a given list,
and need to select their votes so as to succeed no matter which voting rule will eventually be
chosen. We identify a large class of voting rules such that arbitrary combinations of rules from
this class are easy to manipulate; in particular, we show that this is the case for single-voter ma-
nipulation and essentially all easy-to-manipulate voting rules, and for coalitional manipulation
and k-approval. While a combination of a hard-to-manipulate rule with an easy-to-manipulate
one is usually hard to manipulate—we prove this in the context of coalitional manipulation for
several combinations of prominent voting rules—we also provide counterexamples showing
that this is not always the case.

1 Introduction
Voting is an established framework for making collective decisions, and as such has applications
in settings that range from political elections to faculty hiring decisions, selecting the winners of
singing competitions, and the design of multiagent systems. In some of these settings, the number
of candidates and/or voters can be large, yet the decision needs to be made quickly. Whenever this
is the case, the algorithmic complexity of, on the one hand, winner determination and, on the other
hand, various forms of dishonest behavior in elections, plays an important role in the selection of a
voting rule: we want the former to be as low as possible, while keeping the latter as high as possible.

Traditionally, the complexity of voting rules is studied under the full information assumption:
for instance, in the single-voter manipulation problem, which is perhaps one of the most fundamen-
tal problems in the complexity-theoretic analysis of voting rules, it is assumed that the manipulator
knows the set of candidates, the number and the true preferences of all honest voters, and, crucially,
the voting rule. However, it is widely recognized that this assumption is not always realistic, and
recently a number of papers tried to analyze the complexity of cheating in elections and/or determin-
ing the likely election winners under various forms of uncertainty about the election (see Section 1.1
for an overview).

In this paper, we study the complexity of manipulation (both by a single voter and by a coalition
of voters) in settings where there is uncertainty about the voting rule itself. That is, we assume that
the manipulator(s) know that the voting rule belongs to a certain (finite or infinite) family of rules
F̂ , and they want to select their votes so as to ensure that their preferred candidate wins, no matter
which of the rules in F̂ is chosen.

Admittedly, in political elections the voting rule to be used is typically known before the votes
are cast, and the manipulator would be well advised to fully understand the voting rule before mod-
ifying her vote. However, in other applications of voting this is not always the case. For instance,
it is not unusual for a university department to ask graduate students to provide a ranking of faculty

1This research was supported by National Research Foundation (Singapore) under grant 2009-08. Work done in part
while the second author was affiliated with Nanyang Technological University, Singapore. A previous version of this paper
was presented at AAMAS’12.
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candidates; however, the graduate students are not told how the hiring committee makes its deci-
sion (anecdotally, a wide variety of voting rules can be used for this purpose). Another example is
provided by conference reviewing: at some point in the decision-making process, the program com-
mittee members may be asked to rank the papers whose fate has not been decided yet; the PC chair
will then aggregate the rankings in a way that has not been announced to the PC members (and may,
in fact, be unknown to the PC chair when she initiates the process). In some of these settings, the
voters may believe that the voting rule will be chosen from a specific family of rules: for instance,
the voters may know that the rule to be used is a scoring rule, or, more narrowly, a k-Approval
rule (with the value of k unknown), or a Condorcet-consistent rule (see Section 2 for definitions);
the situation where the voters know the voting correspondence, but not the tie-breaking rule is also
captured by this description. They may then want to select their votes so that their favorite candidate
wins the election no matter which of the voting rules in this family is chosen.

We study the complexity of this problem for several families of voting rules. We limit ourselves
to the setting of voting manipulation (either by a single voter or by a coalition of voters), though
one can ask the same question in the context of election control or bribery (see, e.g., [13] for the
definitions and a survey of recent results for these problems). We mostly focus on families that
consist of a small number (usually, two) prominent voting rules, such as Plurality, k-Approval,
Borda, Copeland, Maximin and STV. Our goal is not to classify all such combinations or rules:
rather, we try to illustrate the general techniques that can be used for the analysis of such settings.

One would expect a combination of easy-to-manipulate rules to be easy to manipulate, and a
combination of several hard-to-manipulate rules or an easy-to-manipulate one with a hard-to-mani-
pulate one to be hard to manipulate. Our results for classic voting rules mostly confirm this intuition,
with the exception of settings where we combine a hard-to-manipulate rule with one that is very
indecisive. However, we show that these results are not universal: we provide an example of two
hard-to-manipulate rules whose combination is easy to manipulate, as well as an example of two
easy-to-manipulate rules whose combination is hard to manipulate. While the rules used in these
constructions are fairly artificial, they nevertheless illustrate interesting aspects of our problem.

1.1 Related Work
Our works fits into the stream of research on winner determination and voting manipulation under
uncertainty. In the context of winner determination, perhaps the most prominent problem in this
category is the possible/necessary winner problem [16], where the voting rule is public information,
but, for each voter, only a partial order over the candidates in known; the goal is to determine if
a candidate wins the election for some way (the possible winner) or for every way (the necessary
winner) of completing the voters’ preferences; a probabilistic variant of this problem has also been
considered [1]. Our problem is more similar in flavor to the necessary winner problem, as the
manipulator has to succeed for all voting rules in the family.

Uncertainty about the voting rule has been recently investigated by Baumeister et al. [5], who
also consider the situation where the voting rule will be chosen from a fixed set. In contrast to our
work, they assume that all voters’ preferences are known, and ask if there is a voting rule that makes
a certain candidate a winner with respect to these preferences; thus, in their work the manipulating
party is the election authority rather than one of the voters.

Our problem is, in a sense, dual to the one considered by Conitzer et al. [7]: in their model
the voting rule is known, but the preferences of some of the honest voters are (partially) unknown;
they ask if the manipulator can cast a vote that improves the outcome (from his perspective) for
every realization of the honest voters’ preferences; thus, just like us, they assume an adversarial
environment.

There has also been some work on settings where the effects of the manipulator’s actions are
uncertain. This is the case, for instance, for the model of safe strategic voting [18], where one voter
announces a manipulative vote, and one or more voters with the same true preferences may follow
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suit; the original manipulator does not know how many followers he will have and needs to choose
the vote so as to improve the outcome for some number of followers, while ensuring that the outcome
does not get worse for any number of followers. Another example is cloning [9], where the cheating
party clones one or more candidates; the voters are assumed to rank the clones of a given candidate
consecutively, but the exact order of the clones in voters’ preferences is unknown. Our work is most
similar to the variant of this problem known as 1-CLONING, where the cheating party has to succeed
no matter how the voters order the clones.

Finally, we remark that the idea of combining two or more voting rules has been considered in
early work on computational social choice [10, 14]; however, in both of these papers, voting rules
are combined in a way that is very different from our work.

2 Preliminaries
Given a finite set S, we denote by L(S) the space of all linear orders over S. An election is a triple
E = (C, V,R), where C = {c1, . . . , cm} is the set of candidates, V is the set of voters, |V | = n,
andR = (R1, . . . , Rn) is the preference profile, i.e., a collection of linear orders over C. The order
Ri is called the preference order, or vote, of voter i; we will also denote Ri by �i. When a �i b
for some a, b ∈ C, we say that voter i prefers a to b. A candidate a is said to be the top-ranked
candidate of voter i, or receive a first-place vote from i, if a �i b for all b ∈ C \ {i}.

A voting correspondence F is a mapping that, given an election E = (C, V,R) outputs a non-
empty subset S ⊆ C; we write S = F(E). The elements of the set S are called the winners of
the election E under F . If |F(E)| = 1 for any election E, the mapping F is called a voting rule;
whenever this is the case, we abuse notation and write F(R) = c instead of F(R) = {c}. We will
sometimes abuse terminology and refer to voting correspondences as voting rules.

A voting correspondence F is said to be neutral if renaming the candidates does not alter the set
of winners: that is, for any election E = (C, V,R) and any permutation π of the set C, the election
E′ obtained by replacing each candidate c in R by π(c) satisfies F(E′) = {π(c) | c ∈ F(E)}.
F is said to be monotone if promoting a winning candidate does not make him lose the election:
if c ∈ F(E), then c ∈ F(E′), where E′ is obtained from E by swapping c with the candidate
ranked just above c in some vote (this notion of monotonicity is sometimes referred to as weak
monotonicity).

Voting rules We will now describe the voting rules (correspondences) considered in this paper. For
all rules that assign scores to candidates (i.e., scoring rules, Copeland, and Maximin), the winners
are the candidates with the highest scores.
Scoring rules Any vector α = (α1, . . . , αm) ∈ Rm such that α1 ≥ · · · ≥ αm defines a scoring
rule Fα over a set of candidates of size m: a candidate receives αj points from each voter who
ranks him in the j-th position, and the score of a candidate is the total number of points he receives
from all voters. The vector α is called a scoring vector. We assume without loss of generality that
the entries of α are nonnegative integers given in binary. As we require voting rules to be defined
for any number of candidates, we will consider families of scoring rules: one for every possible
number of candidates. We denote such families by {Fαm}m=1,..., where αm = (αm1 , . . . , α

m
m) is

the scoring vector of length m. Two well-known examples of such families are Borda, given by
αm = (m−1, . . . , 1, 0) for allm > 1, and k-Approval, given by αmi = 1 if i ≤ k, αmi = 0 if i > k.
The 1-Approval rule is also known as Plurality.
Condorcet We say that a candidate a wins a pairwise election against b if more than half of the
voters prefer a to b; if exactly half of the voters prefer a to b, then a is said to tie his pairwise election
against b. A candidate is said to be a Condorcet winner if he wins pairwise elections against all other
candidates. The Condorcet rule outputs the Condorcet winner if it exists; otherwise, it outputs the
set of all candidates (recall that a voting correspondence should always output a non-empty set of
winners).
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Copeland Given a rational value α ∈ [0, 1], under the Copelandα rule each candidate gets 1 point
for each pairwise election he wins and α points for each pairwise election he ties.
Maximin The Maximin score of a candidate c ∈ C is equal to the number of votes he gets in his
worst pairwise election, i.e., mind∈C\{c} |{i | c �i d}|.
STV Under the STV rule, the election proceeds in rounds. During each round, the candidate with
the lowest Plurality score is eliminated, and the candidates’ Plurality scores are recomputed. The
winner is the candidate that survives till the end. If several candidates have the lowest Plurality score
(we will refer to this situation as an intermediate tie), we assume that the candidate to be eliminated
is chosen according to the lexicographic order over the candidates: if S is the set of candidates that
have the lowest Plurality score in some round, we eliminate the candidate cj such that j ≥ i for all
ci ∈ S. We remark that STV, as defined here, always has a single winner; however, because of the
lexicographic tie-breaking rule it is not neutral.

3 Problem Statement
We assume that we are given a collection F̂ = {Fi}i∈I of voting correspondences. The set F̂ can
be finite of infinite; for instance, F̂ can be the set of all (families of) scoring rules, in which case it
is infinite. When F̂ is infinite, we assume that it admits a succinct description; if F̂ is finite, it is
assumed to be listed explicitly.

We consider the complexity of (coalitional) manipulation in elections when the manipulator
does not know which of the voting rules in F̂ will be selected. We state our definitions in the unique
winner model, i.e., we assume that the manipulator’s goal is to make its preferred candidate the
unique winner with respect to each of the voting correspondences in F̂ ; however, most of our results
remain true in the co-winner model, where the manipulator would like to ensure that its preferred
candidate is one of the winners under each of the voting correspondences in F̂ .

Name: F̂-MANIPULATION BY SINGLE VOTER (SM)

Input: An election (C, V ) with |C| = m, |V | = n− 1, a preference profileR = (R1, . . . , Rn−1),
and a candidate p ∈ C.

Question: Is there a vote L ∈ L(C) such that p is the unique winner in (R, L) with respect to each
of the voting correspondences in F̂?

Voters 1, . . . , n− 1 are referred to as the honest voters, and the last voter (the one who submits
vote L and wants p to win) is referred to as the manipulator.

Name: F̂-COALITIONAL MANIPULATION (CM)

Input: An election (C, V ) with |C| = m, |V | = h, a set M , |M | = s = n−h, a preference profile
R = (R1, . . . , Rh), and a candidate p ∈ C.

Question: Is there a profile L = (L1, . . . , Ls) ∈ Ls(C) such that p is the unique winner in (R,L)
with respect to each of the voting correspondences in F̂?

If F̂ is finite, we say that an algorithm A for F̂-SM or F̂-CM is a polynomial-time algorithm if
its running time is polynomial in n, m, and |F̂ |; if F̂ is infinite, we require the running time of A
to be polynomial in n and m. We remark that F̂-SM (respectively, F̂-CM) is in NP for any finite
collection F̂ of polynomially computable voting rules: it suffices to guess a manipulative vote L
(respectively, a list (L1, . . . , Ls) of manipulative votes) and verify that it makes p the unique winner
under every rule in F̂ . Thus, in what follows, when proving that these problems are NP-complete
for some finite F̂ , we will only provide an NP-hardness proof.

Traditionally, the problems F̂-SM and F̂-CM are studied for the case |F̂ | = 1. In what follows,
whenever F̂ = {F}, we omit the curly braces and write F-SM/CM instead of {F}-SM/CM to
conform with the standard notation. We omit some of the proofs due to space constraints.
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4 Manipulation
We start by considering the SM problem. In their classic paper [3], Bartholdi, Tovey and Trick
show that this problem is polynomial-time solvable for Copelandα (for every rational α ∈ [0, 1]),
Maximin, and all scoring rules (while Bartholdi et al. do not explicitly consider scoring rules other
than Plurality and Borda, it is not hard to see that their algorithm works for any scoring rule).

Remarkably, for all these rules the manipulative vote can be found by essentially the same al-
gorithm. This algorithm starts by ranking p first; it is safe to do so, because all of these rules are
monotone. Note that at this point we can already compute p’s final score; let us denote it by s(p).
The algorithm then fills up positions 2, . . . ,m in the vote one by one. When considering position
i, i ≥ 2, it tries to place each of the still unranked candidates into this position. At this point, the
identities of the candidates in positions 1, . . . , i − 1 are already known, so one can determine the
score of each candidate c if it were to be placed in position i (this is true for Copeland, Maximin
and all scoring rules, but need not be true in general, even for monotone rules); let us denote this
quantity by si(c). If there exists a candidate c such that si(c) < s(p), it is placed in position i; if
there are several such candidates, one of them is selected arbitrarily. If no such candidate can be
found, the algorithm reports that no manipulative vote exists.

Bartholdi et al. prove the correctness of this algorithm for all voting correspondences that (1)
are monotone and (2) have the property that the score of a candidate c can be determined if we know
which candidates are ranked above and below c in each vote, and the winners are the candidates with
the highest score. Copelandα, α ∈ Q ∩ [0, 1], Maximin, and all scoring rules satisfy both of these
conditions, and STV satisfies neither of them; indeed, STV-SM is known to be NP-complete [2].

We will now show that the algorithm of Bartholdi et al. extends to F̂-SM for any finite set F̂
that consists of voting correspondences that satisfy (1) and (2).

Theorem 4.1 Let F̂ be a finite set of voting rules such that every ruleFi ∈ F̂ satisfies conditions (1)
and (2). Then F̂-SM can be solved in polynomial time.

The proof of Theorem 4.1 is very simple. However, the result itself plays a key role in our
understanding of single-voter manipulation under voting rule uncertainty. Indeed, to the best of our
knowledge, for all classic voting rules for which single-voter manipulation is known to be easy, a
manipulative vote can be constructed using the algorithm of [3]. Therefore, we cannot hope to put
together two or more classic easy-to-manipulate rules so that the manipulation problem with respect
to the combination of these rules is computationally hard.

One can nevertheless ask if such a combination of rules exists. We will now show that the
answer to this question is “yes”: we present two easy-to-manipulate rules, which we will call STV1

and STV2, such that STVi-SM is polynomial-time solvable for i = 1, 2 but {STV1,STV2}-SM is
NP-hard. Admittedly, these rules are not particularly natural; but then Theorem 4.1 shows that we
cannot hope to prove a result of this type for natural voting rules.

The main idea of the construction is that each of these rules can be manipulated either by making
p the STV winner or by using an easy-to-compute “trapdoor”; however, the “trapdoors” for STV1

and STV2 are incompatible with each other, so, to manipulate both, one needs to manipulate STV.
Formally, STV1 is defined as follows. For m ≤ 3, all candidates are declared to be the winners.

For m > 3, the rule is not neutral in a very essential way: candidates cm−2, cm−1 and cm play a
special role. Specifically, if some voter ranks cm−3+j in position m − 3 + j for j = 1, 2, 3, then
the candidate ranked first by this voter is declared to be the election winner; if there are several such
voters, the set of winners consists of these voters’ top choices. Otherwise, the winner is the winner
under the STV rule.

STV2 coincides with STV1 for m ≤ 3. For m > 3, if some voter ranks cm−3+j in position
cm+1−j for j = 1, 2, 3, then the candidate ranked first by this voter is declared to be the election
winner (again, the election may have multiple winners if there are several such voters), and otherwise
the winner is the STV winner.
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Theorem 4.2 STV1-SM and STV2-SM are in P. However, {STV1,STV2}-SM is NP-complete.

Proof. Consider an instance of STV1. Suppose that some of the honest voters rank cm−3+j in
position m − 3 + j for j = 1, 2, 3, and let S be the set of these voters’ top choices. If S 6= {p},
no matter what the manipulator does, all candidates in S will be declared the election winners, so
the manipulator cannot make p the unique winner. If S = {p}, or if none of the honest voters
ranks cm−3+j in position m − 3 + j for j = 1, 2, 3, the manipulator can rank p first and place
cm−3+j in position m− 3+ j for j = 1, 2, 3; this would make p the unique winner. In any case, the
manipulator’s problem is in P. A similar argument shown that STV2-SM is in P.

To show that {STV1,STV2}-SM is NP-hard, we will provide an NP-hardness reduction from
STV-SM, which is known to be NP-complete [2].

Given an instance of STV-SM with a set of candidates C = {c1, . . . , cm′}, a set of voters V ,
|V | = n − 1, a preference profile R = (R1, . . . , Rn−1) over C, and a preferred candidate p ∈ C,
we will modify it as follows. We let m = m′ + 3 and set C ′ = C ∪ {cm−2, cm−1, cm}. We ask
each of the voters to rank each of the candidates in C in the same position as before, and rank cm−1
in position m− 2, followed by cm−2 and cm; denote the resulting preference profile byR′.

Observe that the manipulator can make p the unique winner of this election under STV1 either
by ranking cm−3+j in position m − 3 + j for j = 1, 2, 3, or by making p the unique STV winner.
Similarly, the manipulator can make p the unique winner of the new election under STV2 either by
ranking cm−3+j in position m+ 1− j for j = 1, 2, 3, or by making p the unique STV winner.

Now, suppose that the original instance of STV-SM is a “yes”-instance, and let L ∈ L(C) be
the manipulative vote that makes p the STV winner in that election. Consider the vote L′ obtained
from L by ranking cm−1, cm−2, and cm after all candidates in C (in this order). In (R′, L′), no
voter ranks cm−2, cm−1, cm according to either of the “trapdoors”, so both in STV1 and in STV2

the STV rule is applied. Further, in (R′, L′) candidates cm−2, cm−1, cm receive no first-place votes,
so under STV they are eliminated before any candidates in C. STV then proceeds in the same way
as on (R, L), thus making p the winner.

Conversely, suppose that there exists a vote L′ ∈ L(C ′) such that p is the unique winner in
(R′, L′) with respect to both STV1 and STV2. Since L cannot rank cm in positions m − 2 and
m simultaneously, it follows that p is the STV winner in (R′, L′). Now, consider the execution of
STV1 on (R′, L′). If L′ does not rank any of the candidates in C ′ \ C in the top position, after the
first three steps the execution of STV1 on (R′, L′) coincides with the execution of STV on (R, L),
where L is obtained from L′ by removing cm−2, cm−1 and cm. Thus, in this case L is a successful
manipulative vote that witnesses that the original instance of STV-SM is a “yes”-instance.

Now, suppose that L′ ranks a candidate from C ′ \ C first; assume without loss of generality
that the top candidate in L is cm. Then simply removing cm−2, cm−1 and cm from L′ would not
necessarily work: if the top candidate in the resulting vote receives no first-place votes in R, this
candidate would have been eliminated in the very beginning in (R′, L′), but may survive much
longer in the modified election. Thus, we need a slightly different strategy. Let C0 be the set
of candidates that receive no first-place votes in R. We construct L from L′ by removing cm−2,
cm−1 and cm and moving candidates in C0 to the bottom of the vote (without changing the relative
ordering of all other candidates). Then on (R′, L′) STV starts by eliminating cm−1, cm−2 and the
candidates in C0. At this point, each candidate has at least one first-place vote; hence, because of
our intermediate tie-breaking rule, cm is the first candidate to be eliminated, and we are left with an
election E′′ over C \C0. On the other hand, in (R, L) the set of candidates with no first-place votes
coincides with C0, so after the first |C0| elimination rounds we obtain an election over C \ C0 that
coincides with E′′. Hence, p is the unique STV winner in (R, L), and hence our original instance
of STV-SM is a “yes”-instance. q

We remark that Theorem 4.2 holds for coalitional manipulation as well: for the easiness result,
note that the manipulators may use trapdoors to manipulate STV1 or STV2, and the hardness result
generalizes trivially.
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The next question that we would like to explore is whether a combination of an easy-to-
manipulate rule with a hard-to-manipulate one is hard to manipulate. We will now illustrate that
this is the case for two classic voting rules, namely, STV and Borda.

Theorem 4.3 {Borda,STV}-SM is NP-complete.

Proof. We will provide a reduction from STV-SM. Consider an instance of STV-SM given by an
election (C, V ) with C = {c1, . . . , cm}, |V | = n − 1, a preference profile R = (R1, . . . , Rn−1),
and a candidate p ∈ C; assume without loss of generality that n ≥ 3. Suppose that p is not ranked
first by any of the voters in V . Then if the manipulator does not rank p first, p get eliminated before
any candidate that has a positive Plurality score in (C, V ) and therefore does not win the election.
Hence, the manipulator has to rank p first. Observe also that the rest of the manipulator’s vote does
not matter in this case: it can only impact the candidate elimination process after p is eliminated, at
which point p has already lost the election. Thus, if no voter in V ranks p first, the manipulator’s
problem is in P: the manipulator should rank p first and check if this achieves the desired result. We
can therefore assume without loss of generality that in our input instance of STV-SM candidate p
receives at least one first-place vote.

Thus, assume that p is the top candidate of voter 1. Let D = {cim+j | i = 1, . . . , n, j =
1, . . . ,m}, and set C ′ = C ∪D. Modify all votes inR by inserting the candidates in D right below
p in each vote, in an arbitrary order; letR′ be the resulting profile.

Let s(c) denote the Borda score of a candidate c ∈ C in (C, V,R), and let s′(c) denote his
score in (C ′, V,R′). We have s(c) ≤ (n − 1)(m − 1) for all c ∈ C. Moreover, we have s′(p) =
s(p)+mn(n−1), as p getsmn extra points from each vote. On the other hand, every other candidate
in C gets at most mn(n− 2) extra points from voters 2, . . . , n− 1 and no extra points from voter 1.
Thus, for any c ∈ C \ {p} we have

s′(c) ≤ s(c) +mn(n− 2) ≤ mn(n− 1)−m− n+ 1 < s′(p)−m.

Also, the Borda score of any d ∈ D in (C ′, V,R′) is less than s′(p). Thus, if the manipulator ranks
the candidates in C in top m positions, p is the unique Borda winner of the resulting election.

On the other hand, no matter how the manipulator votes, under STV all candidates in D will
be eliminated before all candidates in C that have a non-zero Plurality score: indeed, the Plurality
score of each d ∈ D is at most 1, and the intermediate tie-breaking rule favors candidates in C over
those in D.

We are now ready to show that our reduction is correct. Let L be a successful manipulative vote
for the original instance, and let C0 be the set of all candidates in C with no first-place votes in
(R, L). Note that the candidates in C0 are eliminated in the first |C0| rounds of STV. Now, consider
the vote L′ obtained from L by ranking the candidates in D in positions m + 1, . . . ,m(n + 1). In
the election (R′, L′) candidate p has the highest Borda score. Moreover, under STV we will first
eliminate all candidates in C0∪D. At this point, we obtain the same election as after |C0| rounds of
STV on (R, L)—and hence the same winner. Thus, L′ is a successful manipulative vote in the new
election.

Conversely, suppose that L′ ∈ L(C ∪D) is such that in (R′, L′) candidate p is both the unique
Borda winner and the (unique) STV winner. Let C ′0 be the set of candidates in C that have no
first-place votes in (R′, L′). When we execute STV on (R′, L′), we eliminate all candidates in
D ∪C ′0 prior to eliminating any of the candidates in C \C ′0. Let L be the vote in L(C) obtained by
deleting all candidates in D from L′ and moving all candidates in C ′0 to the bottom |C ′0| positions
(without changing the relative ordering of the candidates in C \ C ′0). Then C ′0 is exactly the set
of candidates in C who have no first-place votes in (R, L). Therefore, when we execute STV on
(R, L), we eliminate all candidates in C ′0 prior to eliminating any candidates in C \ C ′0. Thus,
the profile obtained after running STV for |D| + |C ′0| steps on (R′, L′) coincides with the profile
obtained after running STV for |C ′0| steps on (R, L). Thus, L is a successful manipulative vote for
the original election. q
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Another interesting (and arguably natural) combination of voting rules is {Plurality,STV}.
Here, we were unable to provide a black-box reduction showing that the combination of these rules
is hard to manipulate. However, a careful inspection of Bartholdi and Orlin’s proof [2] establishes
that {Plurality,STV}-SM is indeed NP-hard: by tweaking the instance of STV constructed in that
proof we can ensure that the manipulator’s preferred candidate is the unique Plurality winner.

However, there are also examples where the combination of a hard-to-manipulate rule and an
easy-to-manipulate one is easy to manipulate. Consider, for instance, the following rule: if some
candidate receives strictly more than bn/2c first-place votes, he is the unique election winner; oth-
erwise, all candidates are winners. We will refer to this rule as the Majority rule. Majority is
not particularly decisive, but apart from that it is a reasonable voting rule. Clearly, it is easy to
manipulate: the manipulator simply needs to check if ranking p first does the job. Moreover, the
combination of Majority and STV is easy to manipulate, too.

Theorem 4.4 {Majority,STV}-SM is in P.

Proof. Consider an electionE = (C, V,R). If in this election p is ranked first by at most bn/2c−1
voters, the manipulator cannot make p the Majority winner, so this is a “no”-instance of our problem.
On the other hand, if p is ranked first by at least bn/2c voters, the manipulator can rank p first,
making him both the unique Majority winner and the unique STV winner. q

The reason why the combination of Majority and STV is easy to manipulate is that Majority
is always guaranteed to elect the STV winner: if some candidate has more than bn/2c votes, he
will obviously win under STV, and in all other cases Majority elects all candidates. Using this
observation, we can now generalize Theorem 4.4. We will say that a voting correspondence F1 is
a refinement of a voting correspondence F2 if for any election E we have F1(E) ⊆ F2(E), and
there exists an election for which this containment is strict. Now, it is easy to see that STV is a
refinement of Majority. Also, some of the voting rules defined in Section 2 are refinements of each
other: namely, both Copeland and Maximin are refinements of Condorcet. Yet another example is
provided by the so-called second-order Copeland rule, proved to be NP-hard to manipulate in [3]:
this rule is obtained by combining the Copeland rule with a rather sophisticated tie-breaking rule,
and is therefore a refinement of Copeland. Now, it is easy to see that the proof of Theorem 4.4
implies a more general fact.

Corollary 4.5 If a voting correspondence F1 is a refinement of a voting correspondence F2 and
F2-SM is in P, then so is {F1,F2}-SM.

We remark that Corollary 4.5 crucially relies on the fact that we consider the unique-winner
version of SM, and the requirement that a voting correspondence should produce a non-empty set
of winners for every election. Also, the converse of Corollary 4.5 is not true, as illustrated by
Copeland and second-order Copeland. Another important observation is that Corollary 4.5 applies
equally well to the coalitional manipulation problem; we will make use of this fact in Section 5.

Now, suppose we have two hard-to manipulate rules. Clearly, it can be the case that their combi-
nation is also hard to manipulate: for example we can take two copies of STV (if we insist that these
two rules should be distinct, we can modify one of the copies to produce a different winner on a
single profile; this does not affect the complexity of our problem). To conclude this section, we pro-
vide an example of two voting rules F1 and F2 such that both F1-SM and F2-SM are NP-complete,
but {F1,F2}-SM is in P; thus, counterintuitively, even a combination of hard-to-manipulate rules
can be “easy” to manipulate (it will become clear in a minute why we used quotes in the previous
sentence).

Our first voting rule is STV. Our second rule, which we will denote by STV′, is obtained from
STV by the following modification: if ci is the STV winner in E, then we output ci+1 as the unique
winner (where cm+1 := c1). Now, clearly, manipulating STV′ is just as hard as manipulating STV:
we simply have to solve the STV manipulation problem for a different candidate. However, for any
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election E, STV and STV′ have different winners, so there is no way the manipulator can make
p win under both of them. Thus, the manipulator’s problem is “easy”, in the sense that it simply
cannot achieve its goal, so every instance of {STV,STV′}-SM is a “no”-instance. We summarize
these observations as follows.

Theorem 4.6 STV′-SM is NP-complete. On the other hand, {STV,STV′}-SM is in P.

We remark that Theorem 4.6 extends trivially to coalitional manipulation.

5 Coalitional Manipulation
The coalitional manipulation problem is known to be NP-hard for many prominent voting rules, such
as Borda [6, 8] and some other scoring rules [19], Copelandα for α ∈ (Q ∩ [0, 1]) \ {0.5} [11, 12]
and Maximin [20]; it goes without saying that the hardness result for STV-SM [2] implies that STV-
CM is NP-hard as well. Therefore, we cannot hope for a general easiness result along the lines of
Theorem 4.1. Nevertheless, we can identify some interesting combinations of voting rules for which
CM is in P.

We start by observing that Condorcet-CM is in P. Indeed, the manipulators can simply rank
p first in all of their votes and check if that makes p the Condorcet winner; note that the answer
to this question does not depend on how the manipulators rank the other candidates. Now, by
extending Corollary 4.5 to the coalitional manipulation problem, and using the fact both Maximin
and Copeland are refinements of the Condorcet rule, we obtain the following corollaries.

Corollary 5.1 {Condorcet,Maximin}-CM is in P.

Corollary 5.2 {Condorcet,Copelandα}-CM is in P for any α ∈ Q ∩ [0, 1].

Of course, the coalitional manipulation problem is also easy for the Majority rule, and it can be
easily checked that each of the rules defined in Section 2 is a refinement of the Majority rule. Thus,
we could obtain a similar easiness result for the combination of Majority and any other rule. We
chose to state Corollaries 5.1 and 5.2 for the Condorcet rule, as the latter is more decisive and has
been considered in prior work on computational social choice, albeit in the context of control [4].

We will now move on to another family of voting rules whose combinations can be shown to
be easy to manipulate. A recent paper by Lin [17] shows that the coalitional manipulation problem
is easy for k-Approval for any value of k. We will now prove a stronger statement: coalitional
manipulation is easy even for combinations of k-Approval rules (for different values of k).

Theorem 5.3 For any finite set K = {k1, . . . , k`} ⊆ N, the problem
{k1-Approval, . . . , k`-Approval}-CM is in P.

Proof. Consider an election E with C = {c1, . . . , cm}, |V | = h, |M | = s, and R =
(R1, . . . , Rh). We can assume without loss of generality that p = cm.

Since k-Approval is monotone for any value of k, it is optimal for the manipulators to rank p
first in all s votes. For each k ∈ K, let sk(p) be p’s k-Approval score in the resulting election.
Now, the manipulators’ goal is to rank every other candidate c ∈ C \ {p} so that for each k ∈ K
the k-Approval score of c is strictly less than sk(p). We can assume without loss of generality
that for each k ∈ K and each c ∈ C \ {p} the k-Approval score of c in R is strictly less than
sk(p): otherwise, we clearly have a “no”-instance of our problem. Now, for each r = 2, . . . ,m
and each cj , j = 1, . . .m − 1, let x(r, j) be the maximum number of times that cj can be ranked
in position r or higher in the manipulators’ votes so that its k-Approval score is less than sk(p)
for every k ∈ K. These values are easy to compute from the candidates’ k-Approval scores in R,
k ∈ K; our assumption on the initial scores ensures that they are non-negative.
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Figure 1: Network in the proof of
Theorem 5.3, m = 5

We will now construct a flow network so that the maximum
flow in this network corresponds to a successful set of ma-
nipulative votes, if one exists. Our network has a source
S, a sink T , a node cj for each j = 1, . . . ,m − 1, and a
node pr for r = 2, . . . ,m; intuitively, node pr corresponds
to position r in the manipulators’ votes. There is an edge of
capacity s from S to each cj , j = 1, . . . ,m−1, and an edge
of capacity s from each pr, r = 2, . . . ,m, to T . Essentially,
the edge from S to cj ensures that cj is ranked by each ma-
nipulator, and the edge from pr to T ensures that each of
the manipulators fills position r in his vote. It remains to
explain how to connect the candidates with the positions.

For each cj ∈ C\{p}we build a caterpillar graph that connects cj to pm, . . . , p2. More formally,
for each candidate cj , j = 1, . . . ,m − 1, we introduce nodes zj,m, . . . , zj,2 and edges (cj , zj,m),
(zj,r, zj,r−1) for r = m, . . . , 3, and (zj,r, pr) for r = m, . . . , 2. The capacity of (cj , zj,m) and
(zj,r, pr), r = m, . . . , 2, is +∞, and the capacity of (zj,r, zj,r−1), r = m, . . . , 3, is given by
x(r − 1, j). This completes the description of our network (see Figure 1).

We claim that this network admits a flow of size s(m−1) if and only if there exists an assignment
of candidates to the positions in the manipulators’ votes such that the k-Approval score of each
c ∈ C \ {p} is less than sk(p) for every k ∈ K. Indeed, suppose that such a flow exists. Since
all capacities are integer, we can assume that this flow is integer. It saturates all edges leaving S,
so there are s units of flow leaving each cj , j = 2, . . . ,m. This flow has to reach p2, . . . , pm
traveling through the caterpillar graph associated with cj . Thus, we can associate the flow on the
edge (zj,r, pr) with the number of times that cj is ranked in position pr. The capacity constraints
on edges guarantee that these numbers correspond to a valid set of manipulators’ votes. Moreover,
for each r = m, . . . , 2, the total flow from cj to pr, . . . , p2 is at most x(r, j), which ensures that
cj is ranked in positions pr, . . . , p2 at most x(r, j) times. Hence, for each k ∈ K and each j =
1, . . . ,m− 1, the k-Approval score of cj is less than that of p, and therefore p is the unique winner
under each of the rules in our collection. Conversely, a vote that makes p the unique election winner
with respect to each k-Approval, k ∈ K, can be converted into a valid flow; if x manipulators rank
cj in position r, we send x units of flow on (zj,r, pr). q

Theorem 5.3 has an interesting implication. Let F̂α be the family of all scoring rules. Observe
that F̂α includes the Borda rule, for which coalitional manipulation is hard. Nevertheless, it turns
out that F̂α-CM is solvable in polynomial time.

Theorem 5.4 F̂α-CM is in P.

We will now provide several examples of combinations of rules for which coalitional manip-
ulation is hard. We will focus on classic voting rules, and investigate combinations of the most
prominent easy-to-manipulate rule, namely, Plurality, with Borda and Copeland, which are both
hard for coalitional manipulation.

Theorem 5.5 {Plurality,Borda}-CM is NP-complete.

It is interesting to compare Theorem 5.4 and Theorem 5.5: the former implies that the combi-
nation of Borda with all k-Approval rules is easy to manipulate, whereas the latter shows that the
combination of 1-Approval (i.e., Plurality) and Borda is hard to manipulate; we remark that the proof
of Theorem 5.5 extends easily to the combination of Borda with k-Approval for any constant k.
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A construction similar to the one used in the proof of Theorem 5.5 shows that
{Plurality,Copelandα}-CM is NP-complete for α ∈ (Q ∩ [0, 1]) \ {0.5} (this is the range of val-
ues of α for which Copelandα-CM in known to be NP-complete). The only difference is that for
Copeland we cannot assume that the number of voters is a small constant (we will, however, assume
that there are exactly two manipulators, as this is known to be sufficient for the NP-hardness of this
problem [11, 12]). Therefore, instead of adding one pair (Xi, X

′
i) for each i = 1, . . . ,m−1, we add

h such pairs, where h is the number of honest voters. This modification has no impact on Copeland
scores: if c beats d in the original profile, this remains to be the case when the new votes are added;
the converse is also true. However, the Plurality score of p increases by h(m − 1), whereas the
Plurality score of any other candidate increases by h, and, as a result, does not exceed 2h+ 2 (even
taking the manipulators’ votes into account). Assuming without loss of generality that m ≥ 4 and
h ≥ 3, we obtain that p is the unique Plurality winner of the modified election, irrespective of how
the manipulator votes. The rest of the argument proceeds as in the proof of Theorem 5.5. We obtain
the following corollary.

Corollary 5.6 {Plurality,Copelandα}-CM is NP-complete for α ∈ (Q ∩ [0, 1]) \ {0.5}.
Perhaps unsurprisingly, the combination of Borda and Copeland is hard to manipulate as well.

Theorem 5.7 {Borda,Copelandα}-CM is NP-complete for α ∈ (Q ∩ [0, 1]) \ {0.5}.
We remark that the proofs of Theorems 4.3, 5.7 and 5.5 and Corollary 5.6 are based on the

same idea: we can modify an election so that the (relative) scores of all candidates with respect to
one rule remain essentially unchanged while making a certain candidate a winner with respect to
another voting rule. This suggests that these rules exhibit certain independence; this is somewhat
reminiscent of Klamler’s work on closeness of voting rules (see Klamler [15] and references therein).
Formalizing this notion of independence is an interesting direction for future work.

6 Conclusions and Future Work
We have investigated the problem of (coalitional) manipulation under uncertainty about the voting
rules. Our results are summarized in Table 1.

SM CM
easy + easy = easy all “nice” rules k-Approval
easy + easy = hard {STV1, STV2} {STV1, STV2}
easy + hard = hard {Borda, STV}, {Plurality, STV} {Plurality,Borda}, {Plurality,Copeland}
easy + hard = easy {Majority, STV} {Condorcet,Copeland}, {Condorcet,Maximin}, scoring rules
hard + hard = easy {STV, STV′} {STV, STV′}
hard + hard = hard {STV, STV} {Borda,Copeland}

Table 1: Summary of results

While we have not established the complexity of our problem for all possible combinations of
voting rules, our results identify a number of approaches for dealing with problems of this type and
the features of voting rules that make their combinations easy or hard to manipulate.

An obvious direction for future work is extending our approach to other forms of cheating in
elections, such as control and bribery. Also, an interesting variant of our problem in the context of
single-winner manipulation can be obtained by adopting the paradigm of safe strategic voting [18].
That is, instead of assuming that the manipulator wants to get a certain candidate elected, we take
the more traditional approach, where the manipulator, too, has a preference order and would like to
improve the election outcome with respect to this order; we can then ask whether the manipulator
can vote so that the outcome improves for at least one voting rule in the given family and does not
get worse with respect to the other rules.
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The Complexity of Nearly Single-Peaked Consistency1

Gábor Erdélyi, Martin Lackner, and Andreas Pfandler

Abstract

Manipulation, bribery, and control are well-studied ways of changing the outcome of an elec-
tion. Many voting systems are in the general case computationally resistant to some of these
manipulative actions. However when restricted to single-peaked electorates, these problems
suddenly become easy to solve. Recently, Faliszewski, Hemaspaandra, and Hemaspaan-
dra [FHH11] studied the complexity of dishonest behavior in nearly single-peaked electorates.
These are electorates that are not single-peaked but close to it according to some distance
measure.
In this paper we introduce several new distance measures regarding single-peakedness. We
prove that determining whether a given profile is nearly single-peaked is in many cases NP-
complete. Furthermore, we explore the relations between several notions of nearly single-
peakedness.

1 Introduction
Voting is a very useful method for preference aggregation and collective decision-making. It has
applications in very broad settings ranging from politics to artificial intelligence and further topics
in computer science (see, e.g., [DKNS01, ER97, GMHS99]). In the presence of huge data volumes,
the computational properties of voting rules are worth studying. In particular, we usually want to
determine the winners of an election quickly. On the other hand we want to make various forms of
dishonest behavior computationally as hard as possible.

Bartholdi, Tovey, and Trick [BTT89] were the first to study the computational aspects of ma-
nipulation in elections, where a group of voters cast their votes insincerely in order to reach a de-
sired outcome. Other types of dishonest behavior are control, where an external agent makes struc-
tural changes on the election such as adding/deleting/partitioning either candidates or voters (see,
e.g., [BTT92]) in order to reach a desired outcome, or bribery, where an external agent changes
some voters’ votes in order to change the outcome of the election (see, e.g., [FHH09]). For an
overview and many natural examples on bribery, control, and manipulation we refer to the survey of
Baumeister et al. [BEH+10].

Traditionally, the complexity of such attacks on the outcome is studied under the assumption that
in each election any admissible vote can occur. However, there are many elections where the diver-
sity of the votes is limited in a sense that there are some admissible votes nobody would ever cast.
One of the best known examples is single-peakedness, introduced by Black [Bla48]. It assumes that
the votes are polarized along some linear axis. The study of the computational aspects of elections
with single-peaked preferences was initiated by Walsh [Wal07] (see also [FHHR11, BBHH10]). In
many cases NP-hardness results from the general cases turn out to be easy in single-peaked societies.
A recent line of research initiated by Conitzer [Con09] and by Escoffier, Lang, and Öztürk [ELÖ08]
suggests that many elections are not perfectly single-peaked but are close to it with respect to some
metric. Faliszewski, Hemaspaandra, and Hemaspaandra [FHH11] introduced various notions of
nearly single-peaked elections and showed that the complexity of manipulative-actions jumps back
to NP-hardness in many cases.

In this paper we consider the notion of k-maverick single-peakedness and k-local swaps intro-
duced by Faliszewski, Hemaspaandra, and Hemaspaandra [FHH11]. In addition we follow the sug-

1This work was done in part while the second and the third authors were visiting Universität Siegen and while the first
author was visiting Vienna University of Technology. The work of the second and third author was supported by the Austrian
Science Fund (FWF): P20704-N18.
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gestions of Escoffier, Lang, and Öztürk [ELÖ08] and formally define the two nearly single-peaked
notions k-candidate deletion and k-additional axes. Furthermore, we introduce three new notions
of nearly single-peakedness, k-local candidate deletion, k-global swaps, and k-candidate partition.
We show connections between the existing and new notions, and we study the complexity of de-
termining whether a given profile is nearly single-peaked with respect to some axis. This problem
was introduced by Escoffier, Lang, and Öztürk [ELÖ08] as single-peaked consistency. We show
that single-peaked consistency is computationally hard for four notions of nearly single-peakedness
given in this paper. The complexity of the remaining three notions is still open.

Related Work Our paper fits in the line of research on single-peaked and nearly single-peaked
preferences. Faliszewski et al. [FHHR11] and Brandt et al. [BBHH10] investigate the complexity
of dishonest behavior (e.g., the complexity of manipulation and control) in electorates with single-
peaked preferences as well as the winner problem. They do not consider nearly single-peaked pref-
erences, but mention them as future work.

In the context of nearly single-peaked preferences the most relevant paper is by Faliszewski,
Hemaspaandra, and Hemaspaandra [FHH11]. They introduce several notions of nearly single-
peakedness and analyze the complexity of bribery, control, and manipulation under those conditions.
In contrast, we are not analyzing dishonest behavior in elections, but we are studying the complexity
of nearly single-peaked consistency.

The question whether a given profile is single-peaked has been recently investigated by Escoffier,
Lang, and Öztürk [ELÖ08]. The difference in their work is that they have not considered nearly
single-peakedness but they only pointed it out as a possible future research direction.

The idea of measuring the distance of votes with the number of required swaps required to
make them identical already appears in Dodgon’s voting rule (see, e.g., [MN08] for a discussion).
This idea has been widely used since then. Elkind, Faliszewski, and Slinko used swaps of adjacent
candidates in votes in the context of bribery [EFS09]. They assumed that a briber can perform a
number of swaps in the votes in order to make his favourite candidate win the election. In our paper,
we use swaps as a distance measure for nearly single-peakedness. We do not want to change the
outcome of an election, we just want to measure the swap distance of a given profile to the nearest
single-peaked profile.

Finally, we remark that single-peaked preferences have been considered in the context of pref-
erence elicitation [Con09] and in the context of possible and necessary winners under uncertainty
regarding the votes [Wal07].

Organization This paper is organized as follows. In Section 2, we recall some notions from
voting theory and define single-peaked preferences. In Section 3, we introduce the problems we
are investigating in our paper. Our results on the relations between the different notions of single-
peakedness and on the complexity of single-peaked consistency are presented in Section 4. Finally,
Section 5 provides some conclusions and future directions.

2 Preliminaries
Let C be a finite set of candidates, V be a finite set of voters, and let � be a preference relation (i.e.,
a tie-free and total order) over C. We call a candidate c the peak of a preference relation � if c� ci
for all ci ∈C \{c}. Let P = (�1, . . . ,�n) be a preference profile (i.e., a collection of linear orders)
over the candidate set C. We say that the preference order �i is the vote of voter i. For simplicity,
we will write for each voter i ∈ V c1c2 . . .cn instead of c1 �i c2 �i . . . �i cn. We call the peak of
voter i his highest ranked or top-ranked candidate. An election is defined as a triple E = (C,V,P),
where C is the set of candidates, V the set of voters and P a preference profile over C.
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In order to define single-peaked profiles we will make use of the definition given by Escoffier et
al. [ELÖ08].

Definition 2.1 ([ELÖ08]). Let an axis A be a total order over C denoted by>. Given two candidates
ci,c j ∈C, a vote k ∈ V specified by the corresponding preference relation �k, and an axis A. Let c
be the top-ranked candidate of voter k. We say that candidates ci and c j are on the same side of the
peak of �k if one of the following two conditions holds:

(1) ci > c and c j > c, or (2) c> ci and c> c j

A vote k is said to be single-peaked with respect to an axis A if for all ci,c j ∈C that are on the same
side of the peak c of �k it holds that ci �k c j if either c > ci > c j or c j > ci > c holds (i.e., ci is
closer to the peak than c j).

A preference profile P is said to be single-peaked with respect to an axis A if and only if each
vote is single-peaked with respect to A. A preference profile P is said to be single-peaked consistent
if there is an axis A such that P is single-peaked with respect to A.

Let C′ ⊆C. By P[C′] we denote the profile P restricted to the candidates in C′. Analogously
if A is an axis over C, we denote by A[C′] the axis A restricted to candidates in C′.

Escoffier, Lang, and Öztürk present an algorithm that decides whether a given preference profile
is single-peaked consistent in time |V | · |C| [ELÖ08]. Their algorithm improves upon the runtime of
an algorithm presented in [BT86]. The corresponding decision problem is defined as follows.

SINGLE-PEAKED CONSISTENCY

Given: An election E = (C,V,P).
Question: Is P single-peaked consistent?

3 Problem Statement
In this paper we consider different notions of nearly single-peakedness. All these notions define a
distance measure to single-peaked profiles. We will now describe them and provide first (trivial)
upper bounds on these distances.

k-Maverick

The first formal definition of nearly single-peaked societies was given by Faliszewski, Hemaspaan-
dra, and Hemaspaandra [FHH11]. Consider a preference profile P for which most voters are single-
peaked with respect to some axis A. All voters that are not single-peaked with respect to A are called
mavericks. The number of mavericks defines a natural distance measure to single-peakedness. If an
axis can be found for a large subset of the voters, this is still a fundamental observation about the
structure of the votes.

Definition 3.1 ([FHH11]). Let E = (C,V,P) be an election and k a positive integer. We say that
the profile P is k-maverick single-peaked consistent if by removing at most k preference relations
(votes) from P one can obtain a preference profile P ′ that is single-peaked consistent.

Let M(P) denote the smallest k such that P is k-maverick single-peaked consistent. Note that
M(P)≤ |V |−1 always holds.

The above notion is a well-motivated distance regarding single-peakedness, but we will define
other distances which could be more useful in other cases.
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k-Candidate Deletion

As suggested in [ELÖ08], we introduce outlier candidates. These are candidates that do not have
“a correct place” on any axis and consequently have to be deleted in order to obtain a single-peaked
consistent profile. Examples could be a candidate that is not well-known (e.g., a new political party)
or a candidate that prioritizes other topics than most candidates and thereby is judged by the voters
according to different criteria. The votes restricted to the remaining candidates might still have a
clear and significant structure, i.e., might be single-peaked consistent.

Definition 3.2. Let E = (C,V,P) be an election and k a positive integer. We say that the profile P
is k-candidate deletion single-peaked consistent if we can obtain a set C′ ⊆C by removing at most k
candidates from C such that the preference profile P[C′] is single-peaked consistent.

Let CD(P) denote the smallest k such that P is k-candidate deletion single-peaked consistent.
Note that CD(P)≤ |C|−2 always holds.

k-Local Candidate Deletion

Personal friendships or hatreds between voters and candidates could move candidates up or down in
a vote. These personal relationships cannot be reflected in a global axis. To eliminate the influence
of personal relationships to some candidates we define a local version of the previous notion. This
notion can also deal with the possibility that the least favourite candidates might be ranked without
special consideration or even randomly.

We first have to define partial domains and partial profiles.

Definition 3.3. Let C be a set of candidates and A an axis over C. A preference relation � over a
candidate set C′ ⊂C is called a partial vote. It is said to be single-peaked with respect to A if it is
single-peaked with respect to A[C′]. A partial preference profile consists of partial votes. It is called
single-peaked consistent if there exists an axis A such that its partial votes are single-peaked with
respect to A.

Definition 3.4. Let E = (C,V,P) be an election and k a positive integer. We say that the profile P
is k-local candidate deletion single-peaked consistent if by removing at most k candidates from each
vote in V we obtain a partial preference profile P ′ that is single-peaked consistent.

Let LCD(P) denote the smallest k such that P is k-local candidate deletion single-peaked
consistent. Note that LCD(P)≤ |C|−2 always holds.

k-Additional Axes

Another suggestion in [ELÖ08] is to consider the minimum number of axes such that each prefer-
ence relation of the profile is single-peaked with respect to at least one of these axes. This notion is
particularly useful if each candidate represents opinions on several issues (as it is the case in political
elections). A voter’s ranking of the candidates would then depend on which issue is considered most
important by the voter and consequently each issue might give rise to its own corresponding axis.

Definition 3.5. Let E = (C,V,P) be an election and k a positive integer. We say that the profile
P is k-additional axes single-peaked consistent if there is a partition V1, . . . ,Vk+1 of V such that the
corresponding preference profiles P1, . . . ,Pk+1 are single-peaked consistent.

Let AA(P) denote the smallest k such that P is k-additional axes single-peaked consistent.
Note that AA(P) < min

(
|V |, |C|!2

)
always holds. This is because the number of distinct votes is

trivially bounded by |V |. Furthermore, AA(P) is bounded by |C|!2 since at most |C|! distinct votes
exist and each vote and its reverse are single-peaked with respect to the same axes.
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k-Global Swaps

There is a second method of dealing with candidates that are “not placed correctly” according to an
axis A. Instead of deleting them from either the candidate set C or from a vote, we could try to move
them to the right position. We do this by performing a sequence of swaps of consecutive candidates.
For example, to get from vote abcd to vote adbc, we first have to swap candidates c and d, and then
we have to swap b and d. Since this changes the votes in a more subtle way, this can be considered
a less obtrusive notion than k-(Local) Candidate Deletion.

Definition 3.6. Let E = (C,V,P) be an election and k a positive integer. We say that the profile P
is k-global swaps single-peaked consistent if P can be made single-peaked by performing at most
k swaps in the profile. (Note that these swaps can be performed wherever we want – we can have k
swaps in only one vote, or one swap each in k votes.)

Let GS(P) denote the smallest k such that P is k-global swaps single-peaked consistent. Note
that GS(P) ≤

(|C|
2

)
· |V | always holds since rearranging a total order in order to obtain any other

total order requires at most
(|C|

2

)
swaps.

k-Local Swaps

We can also consider a “local budget” for swaps, i.e., we allow up to k swaps per vote. This distance
measure has been introduced in [FHH11] as Dodgsonk.

Definition 3.7. Let E = (C,V,P) be an election and k a positive integer. We say that the profile P
is k-local swaps single-peaked consistent if P can be made single-peaked consistent by performing
no more than k swaps per vote.

Let LS(P) denote the smallest k such that P is k-local swaps single-peaked consistent. Note
that LS(P)≤

(|C|
2

)
always holds.

k-Candidate Partition

Our last nearly single-peaked formalism is the candidate analogon of k-additional axes. In this
case we partition the set of candidates into subsets such that all of the restricted profiles are single-
peaked consistent. This notion is useful in the following situation. Each candidate has an opinion on
a controversial Yes/No-issue. Depending on their own preference voters will always rank all Yes-
candidates before or after all No-candidates. It might be that when considering only the Yes- respec-
tively No-candidates, the election is single-peaked. Therefore, if we acknowledge the importance
of this Yes/No-issue and partition the candidates accordingly, we may obtain two single-peaked
elections.

Definition 3.8. Let E = (C,V,P) be an election and k a positive integer. We say that the profile P
is k-candidate partition single-peaked consistent if the set of candidates C can be partitioned into
at most k disjoint sets C1, . . . ,Ck with C1∪ . . .∪Ck =C such that the profiles P[C1], . . . ,P[Ck] are
single-peaked consistent.

Let CP(P) denote the smallest k such that P is k-candidate partition single-peaked consistent.
Note that CP(P)≤

⌈
|C|
2

⌉
always holds.

Decision Problems

We now introduce the seven problems we will study. We define the following problem for X ∈
{Maverick, Candidate Deletion, Local Candidate Deletion, Additional Axes, Global Swaps, Local
Swaps, Candidate Partition}.
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X SINGLE-PEAKED CONSISTENCY

Given: An election E = (C,V,P) and a positive integer k.
Question: Is P k-X single-peaked consistent?

4 Results

4.1 Basic Results about Single-Peaked Profiles
We start with a simple observation which we will use in the proof of Theorem 4.6.

Lemma 4.1. Let P be a preference profile containing the preference relation �1: c1 . . .cn and its
reverse �2: cn . . .c1. Then P is either single-peaked with respect to the axis c1 < · · · < cn (and its
reverse) or it is not single-peaked at all.

Proof. Since the vote �1 ranks cn last while the vote �2 ranks c1 last, these candidates have to
be at the left-most and right-most position on any compatible axis. Note that c1 is the peak in �1.
Hence this already determines the position of all other candidates. Consequently only two axes are
possible: c1 < · · ·< cn and cn < · · ·< c1. Since any preference profile is single-peaked with respect
to c1 < · · ·< cn if and only if it is single-peaked with respect to cn < .. . < c1, we can focus without
loss of generality on the former. q

Lemma 4.2 provides an alternative characterization of single-peaked consistency.

Lemma 4.2. Given an election (C,V,P), the profile P is not single-peaked consistent if and only
if for all axes A there is some voter v ∈ V and three candidates ci,c j,ck ∈C such that ci > c j > ck
on axis A, and ci �v c j holds as well as ck �v c j.

The following observation says that any subelection, i.e., an election with the same voters over
a subset of the candidate set, of a single-peaked election is also single-peaked.

Lemma 4.3. Let (C,V,P) be a given election and C′ ⊆C. If P is single-peaked consistent then
also P[C′] is single-peaked consistent.

In the constructions in our main results we will have to cascade two or more preference profiles.
The following definition captures this notion.

Definition 4.4. Let (C1,V,P1) and (C2,V,P2) be two elections with C1∩C2 = /0. Furthermore, let
P1 = (�′1, . . . ,�′n) and P2 = (�′′1 , . . . ,�′′n). We define P1 �P2 = (�1, . . . ,�n), where for any
1≤ i≤ n the linear order �i is defined by

c�i c′ iff (c,c′ ∈C1 and c�′i c′) or (c,c′ ∈C2 and c�′′i c′) or (c ∈C1 and c′ ∈C2).

Note that P1 �P2 is always a preference profile over C1∪C2.

Lemma 4.5. Let (C1,V,P1) and (C2,V,P2) be two elections with C1∩C2 = /0. Assume that

• P1 and P2 are single-peaked consistent with respect to the axes A1 and A2, respectively.

• The preference relations in P2 have at most 2 peaks.

• These (two) peaks are adjacent on the axis A2.

Then P1 �P2 is single-peaked.

Proof. We are going to construct an axis A in a way that P1 �P2 is single-peaked with respect
to A. First we split A2 in two parts A′2 and A′′2 . If P2 contains two peaks (which have to be adjacent),
we split A2 in between these two peaks. If P2 contains only one peaks, we split A2 left of the
peak (this is arbitrary). The new axis A is A′2 followed by A1 and then A′′2 , i.e., A′2 > A1 > A′′2 . The
correctness proof of this construction is straight-forward. q
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4.2 Relations between Notions of Nearly Single-Peakedness
Theorem 4.6 shows several inequalities that hold for the distance measures under consideration. We
hereby show how these measures relate to each other. Notice that these inequalities do not have an
immediate impact for a classical complexity analysis such as in Section 4.3.

Theorem 4.6. Let P be a preference profile. Then the following inequalities hold:

(1) LS(P)≤ GS(P). (4) LCD(P)≤ LS(P). (7) CP(P)≤CD(P)+1.
(2) LCD(P)≤CD(P). (5) M(P)≤ GS(P). (8) CP(P)≤ LS(P)+1.
(3) CD(P)≤ GS(P). (6) AA(P)≤M(P).

This list is complete in the following sense: Inequalities that are not listed here and that do not follow
from transitivity do not hold in general. The resulting partial order with respect to ≤ is displayed in
Figure 1 as a Hasse diagram.

Proof. Inequalities 1 and 2 are immediate consequences from the definitions since k-LS allows
more swaps than k-GS and k-LCD allows more candidate deletions than k-CD. Inequalities 3 and 4
are due to the fact that swapping two candidates in a vote is at most as effective as removing one
of these candidates. Similarly, for Inequality 5 observe that removing the corresponding voter is
at least as effective as swapping two candidates in the vote. Concerning Inequality 6 observe that
instead of deleting a voter we can always add an additional axis for this voter. Inequality 7 follows
from the fact that putting each deleted candidate in its own partition leads to single-peakedness if
deleting these candidates does.

In order to show Inequality 8 let P be k-local swaps single-peaked consistent. This means that
there exists an axis A such that after performing at most k swaps per voter, P becomes single-peaked
with respect to A. Without loss of generality assume that the axis A is c1 < c2 < .. . < cn. We now
partition the candidates in k+1 sets S0, . . . ,Sk. This is done by putting the i-th smallest element of
A into the (i modulo k+1)-th set. Since we assume that A is c1 < c2 < .. . < cn, we can equivalently
say that ci is put into the (i modulo k + 1)-th set, i.e., the c1 in S1, the c2 in S2, the ck in Sk and
ck+1 in S0. Let S ∈ {S0, . . . ,Sk}. Towards a contradiction assume that P[S] is not single-peaked
with respect to A[S]. By Lemma 4.2 there exists some voter v ∈V and three candidates ci,c j,ck ∈C
such that ci < c j < ck on axis A[S] (or equivalently i < j < k), ci �v c j and ck �v c j. On axis A
the distance between ci and c j respectively c j and ck is at least k + 1, i.e., at least k elements lie
in between them. We know that at most k swaps in �v can make this profile single-peaked with
respect to A. Let �′v denote this swapped vote. Necessarily these swaps have to either cause that
c j �′v c j−1 �′v . . .�′v ci+1 �′v ci holds or that c j �′v c j+1 �′v . . .�′v ck−1 �′v ck holds in�′v (depending
whether the peak of �′v is right or left of c j). Let us focus on the case that the swaps ensure that
c j �′v c j−1 �′v . . . �′v ci+1 �′v ci – the other case is analogous. For �v, contrary to �′v, it holds that
ci�v c j. Hence these swaps have to cause that c j �′v ci holds. In addition, at least k elements, namely
ci+1, . . . ,c j−1, have to be in between them. This requires at least k+1 swaps which contradicts the
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Global Swaps
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Candidate Deletion
Local Swaps
Additional Axes
Candidate Partition
Local Candidate Deletion

Figure 1: Hasse diagram of the partial order described in Theorem 4.6.
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fact that at most k swaps suffice. Therefore for all partition sets S, P[S] is single-peaked consistent
and CP(P)≤ LS(P)+1.

It remains to show that these are indeed all inequalities. This can be done by providing coun-
terexamples for each remaining case. q

4.3 Complexity of Nearly Single-Peaked Consistency
Let us first introduce a lemma which we will use in the proofs of the theorems below.

Lemma 4.7. We are given a set of candidates C = {a,b,c,d} and three preference relations �v, �e
and �ne, where the candidates are ranked as follows:

• a�v c�v b�v d,

• c�e b�e d �e a and

• d �ne c�ne b�ne a.

Then the preference profile (�v,�e) is single-peaked with respect to the axis a > c > b > d and
(�e,�ne) is single-peaked with respect to the axis d > c > b > a. The profile (�v,�ne) is not
single-peaked consistent.

We start with maverick single-peaked consistency where we show NP-hardness via a reduction
from the clique problem, one of the standard NP-complete problems (see, e.g., [GJ79]).

Theorem 4.8. MAVERICK SINGLE-PEAKED CONSISTENCY is NP-complete.

Proof. To show hardness we reduce from CLIQUE. Let G = (VG,EG) be the graph in which we
look for a clique of size s. Furthermore, let VG = {v1, . . . ,vn} be the set of vertices and EG the
set of edges. Each vertex vi has four corresponding candidates c1

i , . . . ,c
4
i . We consequently have

C = {c1
1, . . . ,c

4
1,c

1
2, . . . ,c

4
2, . . . ,c

1
n, . . . ,c

4
n}. The voters directly correspond to vertices. Therefore we

define, by slight abuse of notation, V = {v1, . . . ,vn}.
In order to define the preference relations we introduce three functions creating partial votes. In

the following definition let a,b,c,d ∈C.

fv(a,b,c,d) = a� c� b� d

fe(a,b,c,d) = c� b� d � a

fne(a,b,c,d) = d � c� b� a

If we consider fv, fe and fne as preference relations then observe that by Lemma 4.7 ( fv, fe) and
( fe, fne) are single-peaked consistent but ( fv, fne) is not.

Next we define a mapping p(i, j) to a total order over the candidates {c1
j , . . . ,c

4
j}.

p(i, j) =





fv(c1
j ,c

2
j ,c

3
j ,c

4
j) if i = j

fe(c1
j ,c

2
j ,c

3
j ,c

4
j) if {i, j} ∈ EG

fne(c1
j ,c

2
j ,c

3
j ,c

4
j) if {i, j} /∈ EG

The intuition behind function p(i, j) is to encode a row of the adjacency matrix of G as a vote
in the preference profile P . To this end, we put in “cell” (i, j) the result of fe if there is an edge
between i and j. In case there is no edge between i and j we put the result of fne in cell (i, j). In the
special case i = j (we are in the diagonal of the matrix) we put the result of fv in the cell.
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Let the partial profiles representing the columns of the adjacency matrix be defined as P j =
(p(1, j), . . . , p(n, j)), for 1 ≤ j ≤ n. We are now going to define the preference profile P = (�1
, . . . ,�n) by

P = P1 �P2 � . . . �Pn.

To conclude the construction let E = (C,V,P) and k = n− s, i.e., we are allowed to delete k
mavericks from E in order to obtain a single-peaked profile. The intention behind the construction
is that the voters in a single-peaked profile will correspond to a clique. We claim that G has a clique
of cardinality s if and only if it is possible to remove k voters from P in order to make the resulting
preference profile single-peaked consistent.

“⇒” Assume that there is a clique I = {vi1 , . . . ,vis} with |I| = s. Let P ′ = (�i1 , . . . ,�is). By
that we keep only those voters whose corresponding vertices are contained in the clique I. Observe
that the election E ′ = (C, I,P ′) can be obtained by deleting k = n− s mavericks from the election
E, |V \ I| = k. It remains to show that E ′ is indeed single-peaked consistent. Remember that we
denoted the preference relations in the j-th “column” of the profile by P j. By P ′

j we denote the
j-th “column” of a profile considering only the voters from P ′. Since I is a clique, for each x,y ∈ I,
x 6= y, there is an edge {x,y} ∈ EG. Thus the profile cannot contain an instantiation of fv and of fne
in the same column. By Lemma 4.7, all profiles P j with 1≤ j ≤ n are single-peaked consistent. In
order to be able to apply Lemma 4.5, all conditions have to be checked. First, notice that the profiles
P ′

j and P ′
j′ , for 1 ≤ j < j′ ≤ n, do not share any candidates and are single-peaked consistent.

Furthermore, each of the profiles has at most two peaks. Each column contains either instantiations
of fv and fe or instantiations of fe and fne. Otherwise it would not be single-peaked consistent. But
then there are only two top-ranked candidates, i.e., either the candidates top-ranked by fv and fe, or
the candidates top-ranked by fe and fne. Finally, the two top-ranked candidates of P ′

j have to be
adjacent on the axis which gives single-peaked consistency. Consider again Lemma 4.7. For ( fv, fe)
the top-ranked candidates a and c are adjacent on the axis a> c> b> d. The same holds for ( fe, fne)
with axis d > c> b> a and c, d as top-ranked candidates. Since all conditions are fulfilled, we can
iteratively apply Lemma 4.5. Therefore, P ′

1 �P ′
2,(P

′
1 �P ′

2) �P ′
3, . . . ,(P

′
1 � . . .) �P ′

n and
hence also P ′ are single-peaked consistent.

“⇐” Assume that E ′ = (C,V ′,P ′) is an election that has been obtained from E by deleting k
voters such that P ′ is single-peaked. Consequently |V ′|= s. Let V ′ = {vi1 , . . . ,vis} and P ′ = (�i1
, . . . ,�is).

We claim that V ′ is a clique in G. By Lemma 4.3 we know that each of the n columns
(P ′

1, . . . ,P
′
n) of P ′ is single-peaked consistent. Then, by Lemma 4.7, each column must not con-

tain an instance of fv together with an instance of fne. (Otherwise the respective column would not
be single-peaked consistent!) Observe that by construction each vote (in P ′) contains an instance
of fv in some column. But then each vertex must be adjacent to all other vertices – in other words
V ′ is a clique. q

We now turn to additional axes single-peaked consistency. Here we make use of a similar con-
struction as presented in Theorem 4.8 with the difference that we now show NP-hardness via a
reduction from the partition into cliques problem, which is also one of the standard NP-complete
problems (see, e.g., [GJ79]).

Theorem 4.9. ADDITIONAL AXES SINGLE-PEAKED CONSISTENCY is NP-complete.

Proof. Hardness is shown by a reduction from PARTITION INTO CLIQUES. For the reduction we
use the same transformation as presented in the proof of Theorem 4.8 to obtain an election. Then
we set k = s−1, i.e., we are searching for a partition of the voters into s disjoint sets such that each
of the partitions is single-peaked consistent. Due to the one-to-one correspondence between voters
and vertices we can use the partition of the vertices to obtain a partition of the voters and vice versa.
With arguments similar to the proof of Theorem 4.8 one can show that a set of vertices is a clique if
and only if the corresponding profile is single-peaked consistent. q
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In the proofs of our last two results, we will provide reductions from the NP-complete problem
MINIMUM RADIUS, which was shown to be NP-complete in [FL97] and is defined as follows:

MINIMUM RADIUS

Given: A set of strings S⊆ {0,1}n and a positive integer s.
Question: Has S a radius of at most s, i.e., is there a string α ∈ {0,1}n such that each string in S has

a Hamming distance of at most s to α?

Theorem 4.10. LOCAL CANDIDATE DELETION SINGLE-PEAKED CONSISTENCY is NP-
complete.

Proof. A MINIMUM RADIUS instance is given by S ⊆ {0,1}n, the set of binary strings, and
a positive integer s. Given a string β , let β (k) denote the bit value at the k-th position in
β . We are going to construct an LCD SINGLE-PEAKED CONSISTENCY instance. Each string
in S = {β1, . . . ,βm} will correspond to a voter. Each bit of the strings corresponds to two
candidates. In addition, we have 2 · m · s + 2 extra candidates. Consequently, we have C =
{c1

1,c
2
1,c

1
2,c

2
2, . . . ,c

1
n,c

2
n,c
′
1, . . . ,c

′
ms+1,c

′′
1 , . . . ,c

′′
ms+1}.

We define the preference profile with the help of two functions creating total orders.

f0(a,b) = a� b f1(a,b) = b� a

The vote �k, for each k ∈ {1, . . . ,m}, is of the form

c′1 . . . c′ms+1 fβk(1)(c
1
1,c

2
1) fβk(2)(c

1
2,c

2
2) . . . fβk(n)(c

1
n,c

2
n) c′′1 . . . c′′ms+1.

Furthermore, let �r
k, 1 ≤ k ≤ m, denote the reverse order of �k. The preference profile P is now

defined as (�1, . . . ,�n,�r
1, . . . ,�r

n). We claim that (V,C,P) is s-LCD single-peaked consistent if
and only if S has a radius of at most s.

“⇐” Suppose that S has a radius of at most s, i.e., there is a string α ∈ {0,1}n with Hamming
distance at most s to each β ∈ S. We consider the following axis A:

c′1 > .. . > c′ms+1 > fα(1)(c
1
1,c

2
1)> fα(2)(c

1
2,c

2
2)> .. . fα(n)(c

1
n,c

2
n)> c′′1 > .. . > c′′ms+1.

We claim that P is single-peaked with respect to A after deleting at most s candidates in each vote.
The deletions for vote �k, k ∈ {1, . . . ,m}, are the following: We delete candidate c1

i in �k if and
only if α(i) 6= βk(i). The deletions in�r

k are exactly the same as in�k. These are at most s deletions
since the Hamming distance between α and every β ∈ S is at most s. After these deletions all votes
are either subsequences of A or its reverse. Hence we obtain a single-peaked consistent profile.

“⇒” Let P ′ be the partial, single-peaked consistent profile that was obtained by deleting at
most s candidates in each vote. First, note that some c′ ∈ {c′1, . . . ,c′ms+1} has not been deleted in
any vote since in total at most m · s many different candidates can be deleted. In the same way let
c′′ ∈ {c′′1 , . . . ,c′′ms+1} be a candidate that has not been deleted in any vote. Now let us consider the
profile P ′[{c′,c′′,c1

i ,c
2
i }] for any i ∈ {1, . . . ,n}. We claim that α , defined in the following way, has

a Hamming distance of at most s to all bitstrings in S.

α(k) =





0 if P ′ contains the vote c′ � c1
i � c2

i � c′′,
1 if P ′ contains the vote c′ � c2

i � c1
i � c′′,

1 otherwise.

First, observe that case 1 and 2 cannot occur at the same time since then P ′ would not be single-
peaked consistent. This is because P ′[{c′,c′′,c1

i ,c
2
i }] also contains the vote c′′ � . . . � c′, where

the dots indicate that c1
i and c2

i might also appear in this vote (between c′′ and c′). Furthermore, Let

188



β j ∈ S from some j ∈ {1, . . . ,n}. Note that if at any position i, β j(i) 6= α(i) then either c1
i or c2

i had
to be deleted in the vote � j. Hence the set {k ∈ {1, . . . ,m} | α(i) 6= β j(i)} cannot contain more than
s elements because this would require more than s candidate deletions in the corresponding vote� j.
Hereby we have shown that the Hamming distance of α and β j is at most s. q

Theorem 4.11. LOCAL SWAPS SINGLE-PEAKED CONSISTENCY is NP-complete.

Proof. We use the same construction as in the proof of Theorem 4.10. It holds that (V,C,P) is
s-LS single-peaked consistent if and only if S has a radius of at most s. This can be shown similarly
to the proof of Theorem 4.10 except that we swap elements instead of deleting them. q

5 Conclusions and Open Questions
We have investigated the problem of nearly single-peaked consistency. To this end, we have formally
defined two notions of nearly single-peakedness suggested by Escoffier, Lang, and Öztürk [ELÖ08].
Furthermore, we have introduced three new notions of nearly single-peakedness. We have drawn a
complete picture of the relations between all the notions of nearly single-peakedness discussed in
this paper. For four notions we have shown that deciding single-peaked consistency is NP-complete.
An obvious direction for future work is to pinpoint the complexity of the remaining three problems.
It is noteworthy in this regard that a distance measure has been studied very recently which admits a
polynomial time algorithm for nearly single-peaked consistency [EFS12].

NP-completeness, however, does not rule out the possibility of algorithms that perform well
in practice. One approach is to search for fixed-parameter algorithms. For example, it might be
that k-maverick single-peaked consistency can be decided by a fixed-parameter algorithm, i.e., an
algorithm with runtime f (k) · poly(n) for some computable function f . A second approach is the
development of approximation algorithms since nearly single-peaked consistency can also be seen
as an optimization problem.

Another interesting direction for future work is extending our models to manipulative behavior,
such as manipulation, control, and bribery. That is, assuming we have a nearly single-peaked elec-
torate according to one of our notions, how hard is a manipulative action under a certain voting rule
computationally? This line of work has already been started in [FHH11] for some distance measures.
Finally, there might be further useful and natural distance measures regarding single-peakedness to
be found.

Acknowledgments: We thank the anonymous reviewers for their helpful comments.
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Models of Manipulation on Aggregation of

Binary Evaluations

Elad Dokow and Dvir Falik

Abstract

We study a general aggregation problem in which a society has to determine its po-
sition on each of several issues, based on the positions of the members of the society
on those issues. There is a prescribed set of feasible evaluations, i.e., permissible
combinations of positions on the issues. Among other things, this framework ad-
mits the modeling of preference aggregation, judgment aggregation, classification,
clustering and facility location. An important notion in aggregation of evaluations
is strategy-proofness. In the general framework we discuss here, several definitions
of strategy-proofness may be considered. We present here 3 natural general defini-
tions of strategy-proofness and analyze the possibility of designing an anonymous,
strategy-proof aggregation rule under these definitions.

1 Introduction

There is, by now, a significant body of literature on the problem of aggregating binary
evaluations. A society has to determine its position (yes/no) on each of several issues,
based on the positions of the members of the society on those issues. There is prescribed
set X of feasible evaluations, i.e., permissible combinations of positions on the issues (X
may be viewed as a subset of {0, 1}m, where m is the number of issues). The members
of the society report their opinion to an aggregation mechanism, called the aggregator,
which outputs society’s aggregated opinion. Many examples include preference aggregation
(where the issues are pairwise comparisons and feasibility reflects rationality), and judgment
aggregation (where the issues are logical propositions and feasibility reflects consistency) can
be presented by this framework. We shall refer to this framework as Judgment Aggregation
throughout the paper, as this model is actually as general as the entire framework.

This paper deals with introducing a general definition of manipulations and strategy-
proofness to this model. Generally speaking, we assume that each member of the society
has some preference over the possible outcomes, which is derived from her true opinion on
the issues. Under this assumption, it may not always be the rational course of action for a
member of the society to report her true opinion to the aggregator. Such an occurrence is
called a manipulation of the aggregator. An aggregator which is immune to manipulations
is called strategy-proof. There is no canonical way to define the concept of manipulation in
judgment aggregation, and at least one choice of definition has been studied. In this paper
we wish to initiate a systematic study of the range of general definitions of manipulations for
Judgment aggregation and analyze the possibility of designing strategy-proof aggregators
for given evaluation spaces under a given definition of manipulation.

We present a few applications-examples taken from several distinct areas, that can all
be modeled via the judgment aggregation framework:

Preference Aggregation: In this setting, the society wishes to rank k alternatives, in
order of preference, where each voter has its own private order of preference. This problem
has been studied since the days of the French revolution, by the Marquis de Condorcet.
We will only address in this paper the case where the ranking has to be full - i.e. there is
always a strict preference between 2 alternatives1. The set of issues is the set of pairwise

1There are works that deal with the more general framework, where the preferences are not strict, see,
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preferences between every 2 alternatives, so m =
(
k
2

)
. Each pair of alternatives may have 2

possible preferences, so the full opinion has a binary encoding. The permissible evaluations
are the preferences that encode a full transitive order.

For example, when k = 3, the set of alternatives is {a, b, c}, the set of issues is {a ≻
b, b ≻ c, c ≻ a}, and the permissible evaluations are all possible evaluations except 000 and
111, which encode a non-transitive order.

Condorcet noticed that a specific natural aggregator, that chooses in each issue the ma-
jority opinion of the society in that issue, does not always produce permissible evaluations.
This is known as ”Condorcet’s Paradox”. Condorcet’s Paradox motivated the study of social
choice theory, beginning in Arrow’s theorem [Arr63].2

Judgment Aggregation: In the last decade, there is a growing body of work in the field
of judgment Aggregation, where judges need to come to a decision on a set J of connected
issues. The connection between the issues is expressed by a set of permissible evaluations
X ⊆ {0, 1}J . The canonical example in this context is the doctrinal paradox (also called
the discursive dilemma ), in which a court has to decide whether a defendant is guilty. In
order to declare him guilty, they must hold the opinion that he has committed the crime
and that he was sane at the time. The set of permissible evaluation, therefore, is

X = {(p, q, r)|r = p ∧ q}

The so called ”paradox” arises when a majority of the judges think that the defendant has
committed the crime, and a majority of the judges believe he was sane at the time, but only
a minority of the judges believe both to hold.

a ≻ b b ≻ c c ≻ a
Voter 1 1 1 0
Voter 2 0 1 1
Voter 3 1 0 1
Aggr. 1 1 1

Table 1: Condorcet’s paradox

Murdered Sane Guilty
Judge 1 0 1 0
Judge 2 1 0 0
Judge 3 1 1 1
Majority 1 1 0

Table 2: Doctrinal Paradox

Many works done in recent years discussed this general framework (See the survey
[LP10]). In particular, the conditions on X for which Arrow’s theorem holds has been
extensibly studied.

Classification A set of m points has to be classified, and there is a prescribed set of
classifiers. For instance, consider the case where the points lie in Rk, and the classifiers are
all the linear half-spaces. The society is composed of n agents, each has its own classification
of the points, and the aggregator must select a classifier based on the opinions of the agents.

This problem fits into our framework when the classifiers are encoded as the vector of
their classification of all the points.

For example, consider the points to be {(0, 0), (0, 1), (1, 0), (1, 1)}. The possible linear
classifiers in this case are all classifiers except for 0110 and 1001: X = {0, 1}4 \ {0110, 1001}

Facility Location:

e.g. [Arr63].
2Arrow’s theorem states that it is impossible to design a social aggregator that satisfies some natural

conditions. It is natural to assume that for every social aggregator, the aggregated order is always a transitive
order (consistent), that it agrees with a unanimous vote (Pareto optimal), and that it is influenced by the
opinions of more than one voter (non-dictatorial). Condorcet’s proposed aggregator satisfied the property
that its decision on the social preferences between alternatives a and b depends only on the individual
preferences between a and b. This property is known as Independence of Irrelevant alternatives, or IIA.
Arrow showed that a social aggregator on 3 or more alternatives that satisfies IIA, cannot be consistent,
Pareto-optimal and non-dictatorial.
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In this problem[DFMN12], an aggregator is given k points in some metric space, and is
required to choose a location for a facility that services all these points. The location of each
point is reported to the aggregator by a single agent, which may or may not be truthful.
The aggregator should optimize the distance of the chosen location from the locations of
the points.

We can encode this problem under our framework in the case that the metric space that
is used is isomorphic to an induced subgraph of the Boolean hypercube equipped with the
Hamming metric. The set X of permissible evaluations will be the set of vertices in the
Boolean hypercube corresponding to the given metric space. For instance, a simple cycle
on 2m vertices can be encoded as X =

{
1i0m−i|i ∈ {0..m}

}
∪

{
0m−i1i|i ∈ {1..m − 1}

}

1.1 Strategy-proofness and manipulations

A variant of preference aggregation is social choice, where the social aggregator is required
to choose society’s preferred alternative, based on the voters’ preferences. Gibbard and
Satterthwaite [Gib73, Sat75] showed an impossibility theorem for social choice aggregators.
Their theorem deals with the game-theoretic notion of manipulations. A manipulation is a
situation where a voter can mis-report her preference and obtain a preferable alternative,
accoridng to her true preference. An aggregator is called strategy-proof if it allows no
manipulations. The theorem states that there is no non-dictatorial social aggregator that
is strategy-proof (for at least 3 alternatives).

This work aims at generalizing the concept of manipulation to the general setting of
judgment aggregation. However, in this context, the preference of a voter over all possible
results is not clear from her opinion, and each problem can have a different interpretation
of this notion. 3

In order to reach a general definition of manipulation, we assume that each voter desires
the aggregated evaluation to agree with her personal evaluation in all or some of the issues.
Since there may be situations where some of the issues change for the better and some for
the worse (in the manipulator’s view), there is still a degree of freedom in the choice of a
definition of a manipulation. This work discusses 3 natural definitions of the concept of
manipulation on judgment aggregation. One of the definitions was defined and discussed
in [NP10, DL07], and it leads to impossibility results similar to those that were mentioned
here. The other two definitions allow non-dictatorial aggregators, and we will discuss the
construction of such aggregators in the general case.

Consider an aggregator for preference aggregation on 3 alternatives, that uses the plu-
rality method. It selects the ranking that was voted for the highest number of times. In
case of a tie, it uses a lexicographical order to choose the ranking. Consider the following
profile:

a ≻ b b ≻ c c ≻ a
Voter 1 1 1 0
Voter 2 0 1 1
Voter 3 1 0 1
Aggr. 1 1 0

a ≻ b b ≻ c c ≻ a
Voter 1 1 1 0
Voter 2 1 0 1
Voter 3 1 0 1
Aggr. 1 0 1

In the profile to the left, the second voter has the society agreeing with her on the
second issue - b ≻ c, and disagreeing with her in the other issues. She can change this when
reporting a different opinion. In the profile to the right, society agrees with her original
opinion in the third issue - c ≻ a, and disagrees with her on the other issues.

3Note that there are works that extend the setting of GS to multi-issue voting, e.g. [?]. This is not the
setting we analyze.
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If her main interest was in getting society to agree with her in the third issue, then she
has successfully manipulated the aggregator.

If her main interest was to get the society to agree with her in as many issues as possible,
then she has not manipulated the aggregator, as in both cases the aggregated opinion agreed
with her in only 1 issue.

The following table shows a different scenario:

a ≻ b b ≻ c c ≻ a
Voter 1 1 0 1
Voter 2 0 1 1
Voter 3 0 1 0
Aggr. 1 0 1

a ≻ b b ≻ c c ≻ a
Voter 1 1 0 1
Voter 2 0 1 0
Voter 3 0 1 0
Aggr. 0 1 0

In the profile to the left, the second voter has the society agreeing with her on the third
issue - c ≻ a, and disagreeing with her in the other issues. When she reports a different
opinion, as shown in the profile to the right, society agrees with her original opinion on the
first 2 issues. She has gained in the number of issues the society agrees with her. However,
she has lost the agreement with the society on the third issue.

The following table is third and final scenario:

a ≻ b b ≻ c c ≻ a
Voter 1 1 0 1
Voter 2 0 1 1
Voter 3 0 0 1
Aggr. 1 0 1

a ≻ b b ≻ c c ≻ a
Voter 1 1 0 1
Voter 2 0 0 1
Voter 3 0 0 1
Aggr. 0 0 1

In the profile to the left, the second voter has the society agreeing with her on the third
issue - c ≻ a, and disagreeing with her in the other issues. When she reports a different
opinion, as shown in the profile to the right, society agrees with her original opinion on the
first and last issues. She has gained agreement in the first issue and did not lose agreement
on any of the other issues.

When designing an aggregator, we need to know what type of manipulations we wish
to be immune against. A maximal requirement is to be immune from manipulations that
gain in any of the issues (we will call these partial manipulations). A minimal requirement
is immunity from manipulations that don’t lose agreement in any of the issues (we will
call these full manipulations). There could be other types of manipulations in between, for
instance, manipulations that gain in the number of issues agreed with the society (we will
call these Hamming manipulations).

1.2 Structure of the paper and results

In section 2 we present the formal model used throughout the paper. We then dedicate a
chapter for each of the 3 types of manipulations mentioned above. Section 3 discusses the
partial manipulation, section 4 discusses the full manipulation, and section 5 discusses the
Hamming manipulation.

Partial manipulation: Partial manipulation was already discussed in previous works.
We state known results here for completion. These results characterize evaluation spaces X
for which the only partial manipulation free aggregators are dictatorial. These results are
based on the connection between partial manipulations and IIA.

Full manipulation We show that there is a family of non-dictatorial full manipulation
free aggregators for every evaluation space X. In addition, for every evaluation space X
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some members of this family are also Hamming manipulation free. We next turn to the
question of anonymous full manipulation free aggregators. For every evaluation space X,
we construct a family of aggregators that are anonymous and full manipulation free. These
aggregators are also ”close” to being partial manipulation free in some sense. We also show
that when the welfare of a voter is defined as the Hamming distance between its opinion
and society’s decision, the social welfare maximizer is a full manipulation free aggregator.

Hamming manipulation Again, we discuss the possibility of constructing a anonymous
Hamming manipulation free aggregator. Since every Hamming manipulation free aggregator
is also a full manipulation free aggregator, we try and characterize the evaluation spaces
X for which the full manipulation free anonymous aggregators mentioned above are also
Hamming manipulation free. We do not have a full characterization of these aggregators. We
describe some conditions that affect the Hamming strategy proofness of these aggregators,
based on the geometry of the evaluation space. We apply these techniques to demonstrate
that in the case of preference aggregation on 3 alternatives these aggregators are Hamming
manipulation free, and for 4 alternatives we show that a subfamily of these aggregators are
not Hamming manipulation free.

2 The setting

We consider a finite, non-empty set of issues J . For convenience, if there are m issues in
J , we identify J with the set {1, ...m} of coordinates of vectors of length m. A vector
x = (x1, ..., xm) ∈ {0, 1}m is an evaluation. We assume that some non-empty subset X of
{0, 1}m is given. The evaluations in X are called feasible, the others are infeasible. We shall
also use this terminology for partial evaluations: for a subset of issues K, a K-evaluation is
feasible if it lies in the projection of X on the coordinates in K, and is infeasible otherwise.
A society is a finite, non-empty set N . For convenience, if there are n individuals in N , we
identify N with the set {1,...,n}. If we specify a feasible evaluation xi = (xi

1, ..., x
i
m) ∈ X

for each individual i ∈ N , we obtain a profile of feasible evaluations x = (xi
j) ∈ Xn. We

may view a profile as an n × m matrix all of whose rows lie in X. We use superscripts to
indicate individuals (rows) and subscripts to indicate issues (columns). An aggregator for N
over X is a mapping f : Xn → X. It assigns to every possible profile of individual feasible
evaluations, a social evaluation which is also feasible. Any aggregator f may be written in
the form f = (f1, ..., fm) where fj is the j-th component of f. That is, fj : Xn → {0, 1}
assigns to every profile the social position on the j-th issue. We write x = (xi, x−i) to
distinguish between the opinion of the i-th individual and the opinions of the rest of the
society.

Definition 2.1: Independence of Irrelevant Alternatives (IIA) An aggregator is
called IIA if the society’s position on any given issue depends only on the individual positions
on that same issue. ∀x,y ∈ Xn, j ∈ J, (xj = yj) ⇒ (fj(x) = fj(y))

Definition 2.2: Anonymity An aggregator is called anonymous if it does not depend on
the order of the evaluations in the profile, i.e. for every permutation p of the evaluators,
f(xp(1), ...xp(n)) = f(x1, ...xn).

Definition 2.3: Monotonicity An aggregator is called monotone if for every issue j ∈ J ,
changing an individual’s position on j never results in a change of society’s position on j in
the opposite direction.

Definition 2.4: Dictatorship An aggregator is called dictatorial if it obeys the opinion
of only one of the evaluators: There exists an evaluator i ∈ N such that f(x) = xi.
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2.1 Strategic Voting and Strategy-Proofness

We now assume that each voter desires the social evaluation to agree with her personal
evaluation in all or some of the issues. Under this assumption, it may not always be the
rational choice for the voter to declare her true evaluation to the aggregator. Given that
the other voters voted in a specific way, lying about her evaluation may change society’s
position on certain issues to match hers, making society’s position ”closer” to hers, under
some definition of closeness. An evaluator i is said to have a manipulation of an aggregator
f in a profile x ∈ Xn if she can report a false evaluation y in a way that w = f(y, x−i) is
preferred by her over z = f(xi, x−i). y is called a manipulation of i over x.

What is left to decide is, when w is preferred over z, according to xi. For an issue j ∈ J ,
if wj = xi

j ̸= zj , we shall call w j-preferable over z according to xi. If wj = zj , then we say

that w and z are j-indifferent to each other according to xi. It is natural to assume that
under any definition of manipulation, if y is a manipulation of i over x, then there must be
at least one issue j ∈ J such that w is j preferable over z according to xi. It is also natural
to assume that under any definition of manipulation, if for every j ∈ J , z is j-indifferent to
w or j-preferable over w according to xi, then y is not a manipulation of i over x.

We will base our definitions of manipulation on these assumptions.

Definition 2.5: Partial Manipulation: If there exists an issue j ∈ J such that w is j
preferable over z according to xi, then y is a partial manipulation of i over x.

Definition 2.6: Full Manipulation: If there exists an issue j ∈ J such that w is j
preferable over z according to xi, and for every issue j′ ∈ J , w is j′-preferred over z or
j′-indifferent to z according to xi, then y is a full manipulation of i over x.

All possible definitions of manipulations that fit our assumptions lie between these two
definitions. A natural and interesting choice of a definition of manipulation is based on
the (Weighted) Hamming metric. For two vectors x, y ∈ {0, 1}m, we define their weighted
Hamming distance with weight ω ∈ Rm

+ where
∑m

j=1 ωj = 1 as

dw(x, y) =

m∑

j=1

ωj |xj − wj |

.
We will deal with the case when all the voters share the same weight function ω of the

issues, and use the following definition:

Definition 2.7 : Hamming Manipulation: If dω(xi, w) < dω(xi, z), then y is a ω-
Hamming manipulation of i over x .

If ω is uniform over the issues, we omit it from the notation4.
In subsection 1.1, the first example was a partial manipulation which was not a Hamming

nor full manipulation, and the second example was a partial manipulation and a Hamming
manipulation, but not a full manipulation. The third example is of a full manipulation. A
manipulation of any type is also a partial manipulation, and a full manipulation is also a
manipulation of any other type.

The general definition of Partial manipulation has been studied in [NP10, DL07]. The
Hamming manipulation has been studied for a specific instance of classification in [MPR09].
A geometric definition similar to the Hamming manipulation has been studied in the context
of facility location ([AFPT10]).

4In this version of the paper we will only refer to the uniform weight function. In any case, any weight
function can be simulated via duplicate issues and uniform weights.
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3 Partial Manipulation

3.1 Motivation

When there are no assumptions on the preferences of voters, we fear that any possible
type of manipulation may be considered profitable by any of the voters. In that case, a
strategy-proof aggregator must be partial-manipulation-free (PMF), as every manipulation
is a partial manipulation. This definition of manipulation and the results in this section were
introduced and discussed in previous works. Nehring and Puppe (2002, in ([NP10]), in a
different context, arrived at a similar definition and the corresponding results. Dietrich and
List [DL07] were the first to introduce this definition and theorems to the current context
of judgment aggregation.

Since this is the broadest definition of manipulation, being immune to it is difficult, and
the main results are impossibility theorems regarding the construction of PMF aggregators.

3.2 Impossibility Theorem

The property of being PMF gives rise to impossibility theorems under certain conditions on
X, due to its connection to the property of being IIA, as stated in the following theorem:

Theorem 3.1: [NP10, DL07] For all nonempty evaluation spaces X ⊆ {0, 1}m, an aggre-
gator f : Xn → X is PMF if and only if it is IIA and monotone5 .

The notion of IIA aggregators is well studied, and there is a full characterization of the
evaluation spaces X for which there is an impossibility theorem. The main property in this
context is called Totally Blocked, which we will not define here6.

The impossibility theorem for PMF aggregators is:

Theorem 3.2: ([NP10]) Every monotone and IIA aggregator f : Xn → X is dictatorial, if
and only if an evaluation space X ⊆ {0, 1}m is Totally Blocked.

This theorem, combined with theorem 3.1 yields the following characterization of the
cases for which there exists a a non-dictaroial PMF-aggregator:

Corollary 3.3: ([NP10, DL07]) Every PMF aggregator f : Xn → X is dictatorial, if and
only if an evaluation space X ⊆ {0, 1}m is Totally Blocked.

4 Full manipulation

As was shown, designing an aggregator that is immune to partial manipulations is not
always possible. In that case, we may still like to prevent weaker types of manipulation,
with the weakest being full manipulation. More over, a manipulation-free aggregator under
any type of definition is also full-manipulation free. Therefore, understanding the space
of full-manipulation-free (FMF) aggregators is helpful in the design of manipulation-free
aggregators under other definitions.

In this section we describe a set of aggregators which are FMF and also minimalize the
cases in which there is a partial manipulation.

The natural question that comes up is what are the conditions on X such that there
exists a FMF aggregator that is not dictatorial. It turns outs that for any set set X there

5The same theorem and proof hold for the general case where the range of f is a larger subset of {0, 1}m,
i.e. f : Xn → Y and X ⊆ Y ⊆ {0, 1}m

6Due to size restrictions, we cannot give a full survey of the literature. The definition of Totally Blocked
and the proof of theorem 3.2 can be found also in [DH10], which uses similar notation to this paper.
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are such functions. We shall show an easy construction of aggregators that are FMF and
not strictly dictatorial, but are still very far from being anonymous.

However, such aggregators are not as interesting, as the number of influential voters
in such a scheme is independent on n. We shall focus more on the construction of an
anonymous FMF aggregator, and show that it is also possible for every evaluation space X.

4.1 Partitions of Issues

We design a family of non dictatorial FMF aggregators based on a partition of the set of
issues J to the set of voters, called partition aggregators. Consider the folowing partition
of m issues into n subsets, K = K1∪K2 ∪ ... ∪ Kn where Ki ∩ Kj = ∅, (it is possible
that some of the voters won’t have any influence, i.e Ki = ∅). W.l.o.g. we will assume
that K1 = {1, 2...t1}, K2 = {t1 + 1, ..., t2}, ...Kn = {tn−1 + 1...tn}. We go over the issues
sequentially. The decision on issue i ∈ Kj will follow the opinion of voter j unless the
resulting partial evaluation on the issues 1, ..., i − 1, i is infeasible. Formally, we define the
social aggregator f : Xn → X inductively over i going from 1 to m to be:

(f(x)i)i∈K1 = x1
i

and (f(x)i)i∈Kj =

{
xj

i the partial evaluation (f(x)1, ...f(x)i−1, x
j
i ) is feasible

1 − xj
i otherwise

The aggregator is consistent as a result of the inductive construction. The aggregator is
a FMF aggregator since an agent j can change the result on issue i only by changing the
result in at least one other issue in which his opinion was accepted. Therefore we get the
following proposition

Proposition 4.1: For every X ⊆ {0, 1}k, any partition aggregator is a FMF aggregator.

A particularly interesting example is the almost dictatorial aggregator, obtained by
taking K1 = {1, ...,m − 1},K2 = {m}

f(x) =

{
(x1

1, ..., x
1
m−1, x

2
m) (x1

1, ..., x
1
m−1, x

2
m) ∈ X

x1 otherwise

Note that the almost dictatorial aggregator is non manipulable, not only for this weak
definition, but also for the weighted Hamming definition, for every X, when the issue deter-
mined by the second voter is the issue with the minimal weight. This means that there can
be no impossibility theorem in the flavour of GS for the weighted Hamming manipulation.

Of course, it is not necessarily PMF for every X. there can be cases where it is beneficial
for the voter deciding on the first m − 1 issues to lie in order to gain on the m’th issue, by
denying the second voter his influence.

4.2 Anonymous FMF Aggregators

An important approach for designing FMF aggregators is based on PMF aggregators. A
basic property for a society would have to be to avoid partial manipulations whenever it is
possible. From 3.1 we get that an aggregator is PMF if and only if is IIA and monotone. This
fact is true not only for a consistent aggregator f : Xn → X but also for an aggregator from
Xn → {0, 1}m. As we saw in the impossibility theorem an IIA and monotone aggregator
does not always produce outputs consistent with the evaluation space X. Therfore, we
would like to correct these functions in the places where they are not consistent. We would
like to study the set of aggregators which are consistent and yet ”close” to an IIA and
monotone aggregator.
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Formally, for an inconsistent function g : Xn → {0, 1}m, a consistent function f : Xn →
X is called a correction of g if f(x) = g(x) whenever g(x) is consistent. Denote by M
the set of all IIA and monotone functions f : Xn → {0, 1}m. When f is a correction of a
function m ∈M, at least all pairs of inputs for which m falls into X do not form a partial
manipulation. We shall denote by F the set of consistent functions which are a correction
of a function in M. The functions in F will be called close to partial manipulation free
aggregators (C-PMF).

Our aim in this chapter is to build a FMF-aggregator f with the property of being a
C-PMF aggregator. We shall define the subset G of F to be the set of functions who are
a composition of a function g : {0, 1}m → X with a function m ∈ M such that for every
feasible evaluation x ∈ X, g(x) = x. Being a member of G means that the ’correction’ part
of the social aggregator in the cases where m, the IIA and Monotone stage, is not consistent,
depends only on the outcome of m and not on the entire on the whole profile.

A special subsetH ofG is a composition of a Hamming nearest neighbour function h with
a function m ∈ M. A Hamming nearest neighbour function h : {0, 1}m → X is a function
that, given x ∈ {0, 1}m, returns a closest point in X, under a given Hamming metric, i.e
each issue has a nonzero weight7. Of course, such a function is not properly defined without
a tie-breaking rule. We need to set proper tie-breaking rules in order to avoid manipulations.
The main property we wish to maintain is that, given a nearest neighbour function h, if
two different points a, b /∈ X both have the points α, β ∈ X in their set of potential nearest
neighbours according to h, then it can not be that h(a) = α and h(b) = β.

One way of implementing that property is by choosing according to some lexicographical
order in case of a tie. We shall denote the set of functions using the lexicographical tie-
breaker as H1 and the set of functions satisfying the aforementioned property as H2, so:

H
1 ⊆ H2 ⊆ H ⊆ G ⊆ F

. We shall use the following notation in order to present the geometric relations of binary
vectors a, b, c. We say that c is between a, b if for every coordinate i ai ≤ ci ≤ bi or
bi ≤ ci ≤ ai. The notation [a, b] will describe the set of all the vectors between a and
b [a, b] = {v|if ai = bi than vi = ai}. Likewise, (a, b) describes the set [a, b]\{a, b} and
[a, b) = [a, b]\{b}, etc. We say that a ∈ X is a neighbour of b /∈ X if (a, b) ∩ X = ∅

Theorem 4.2: For every X ⊆ {0, 1}k, any social aggregator f = h ◦ m ∈ H2 (m ∈M), f
is a FMF aggregator. Furthermore, if m is anonymous, then f is anonymous.

Theorem 4.2 does not hold for any function in F. Even if we use a function in G and
the correction is done by choosing a neighbour which is not necessarily a nearest neighbour,
then the aggregator is not necessarily FMF.

4.2.1 Social welfare maximizer

An important concept in mechanism design in the social welfare maximizer. Each individual
in the society has a function returning his welfare given his opinion and the aggregated
opinion. A social welfare maximizer is an aggregator that always returns the evaluation
that maximizes the total welfare of all individuals in the society.

We consider the case where the welfare of every individual i is −dω(xi, f(x)), the Ham-
ming distance between his opinion and society’s opinion, according to some weight function

7By definition any metric must maintain the following properties: non-negativity, idendity of indis-
cernibles, symmetry and the triangle inequalility. It is easy to check that a weighted Hamming distance is
a metric if and only if each issue has a nonzero weight.
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with positive weights on all the issues. The corresponding social welfare maximizer is the
function

f(x) = argminx∈X

∑

i∈N

dω(x, xi)

We call this aggregator f a Hamming social welfare maximizer. In case of a tie, we shall
use a tie-breaking rule which will ensure that f ∈ H2. Notice that f ∈ F since it is the
correction of the IIA and monotone aggregator f̃ : Xn → {0, 1}k where

f̃(x) = argminx∈{0,1}k

∑

i∈N

dω(x, xi)

However, f /∈ G, because the correction depends on the entire profile. It is easy to construct
two profiles x,y such that f̃(x) = f̃(y) and f(x) ̸= f(y) 8.

We shall show that this aggregtor has the same property of being FMF.

Theorem 4.3: For every evaluation space X ⊆ {0, 1}k, a Hamming social welfare maxi-
mizer is FMF and anonymous.

The Hamming social welfare maximizer has been used before. In preference aggregation,
it is known as Kemeny’s rule ([LY78]). There are many works that discuss various aspects
of Kemeny’s rule9, but not in connection with strategy-proofness, as far as we know. facility
location [AFPT10], classfication [MPR09] and more [Pig06]. A general connection between
social welfare maximization and strategy-proofness was not previously known.

5 Hamming Manipulations

5.1 Main Results

In this section we present some results regarding the Hamming manipulation. We say that
voter i with opinion x prefers the result v ∈ X more than u ∈ X if the distance, according
to a weighted Hamming metric ω, dω(x, v) of v from x is less than the distance of u from x.

As was mentioned in the previous chapter, the almost dictator aggregator is HMF for any
weighted hamming definition. Therefore, we will focus on the interesting case of building an
anonymous HMF aggregator. Following the results of the previous chapter, we focus on the
set of aggregators H. We show two conditions for determining whether an aggregator f ∈ H
is not only FMF, but also HMF. We shall discuss the cases in which such an aggregator
is non-HMF. More over, we use these two lemmas to analyze some special cases and show
whether there is an HMF aggregator in H.

We show that in any case where there is a manipulation of an aggregator h ◦ m ∈ H on
the profile x, the 2 intermediate results w = m(xi, x−i) and z = m(y, x−i) must both be
outside of X, not too ”far” from each other (lemma 5.4) and not too ”close” to each other
(lemma 5.5). For that we will use a combinatorial representation of the evaluation space X.

Definition 5.1: For a non-empty evaluation space X ⊆ {0, 1}m, A minimally infeasible
partial evaluation (abbreviated MIPE) is a K-evaluation x = (xj)j∈K for some K ⊆ J which
is infeasible, but such that every restriction of x to a proper subset of K is feasible.

8For example let X = {110000, 001000, 000111} ⊆ {0, 1}6 and n = 9. x will be the profile where 3
agents hold the first opinion 110000, 2 agents hold the second opinion 001000 and 4 agents hold the last
opinion 000111. y will be the profile where 3 agents hold the first opinion,3 agents hold the second one and
3 agents hold the last one. By taking the uniform weights we get that f(x) = 000111, f(y) = 001000 and
f̃(x) = f̃(y) = 000000

9see, for example [ACN08]
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X can be defined by its set of MIPEs. A MIPE represents a maximal Boolean subcube that
is outside of X10.

Definition 5.2: For every MIPE a = (aj)j∈K we denote by Ta, the MIPE-set of a, as the
following subset of {0, 1}m: Ta = {x|x|K = a}.

Definition 5.3: For every evaluation x ∈ Xc, we denote by MT (x), its MIPE-type as the
following set of MIPES of X: MT (x) = {a|x ∈ Ta}
We are now prepared to bring the partial characterizations for the general case:

Lemma 5.4: For every X ⊆ {0, 1}k, and any social aggregator f ∈ H, f = hω ◦ m, if y
is a ω-Hamming manipulation of i over (xi, x−i), then [(m(xi, x−i)), (m(y, x−i))] ∩ X = ∅.
(In other words there exists an MIPE a such that (m(xi, x−i)), (m(y, x−i)) ∈ Ta.)

Lemma 5.5: For every X ⊆ {0, 1}k, and any social aggregator f ∈ H f = hω ◦ m, if y is
a ω-Hamming manipulation of i over (xi, x−i), then MT (m(xi, x−i)) ̸= MT (m(y, x−i)).

5.2 examples

These two theorems do not give a full characterization for the sets X for which there
exists a manipulation free aggregator. However, they show that for aggregators in H, a
Hamming manipulation occurs only in special circumstances. For many particular cases,
including the preference aggregation model, we can conclude whether or not there exists an
HMF aggregator in H. In this subsection We shall present for two particular cases11 the
preference model and the ”k choose m” model, to be defined later on.

We shall show that for the preference aggregation model, when there are three alterna-
tives any combination of a monotone aggregator and the standard nearest neighbor aggre-
gator is an HMF aggregator but not for more than three alternatives. A general natural
question that arises (and is still open) is what is the minimal number of alternatives for
which there is no anonymous HMF and C-PMF aggregator.

For the ”k choose m” decision example we shall present some anonymous HMF C-PMF
aggregators for any number k and m. Those examples will give us some intuition regarding
the existence of HMF aggregators and the usage of the Theorems.

5.2.1 Preference Aggregation

We shall denote the set of alternatives by A = {a, b, c, ...}, |A| = k. The set of issues K is
the set of pairwise preferences between every 2 alternatives , so m =

(
k
2

)
. For k > 2 it is well

known from Arrow’s theorem that there is no IIA and Monotone aggregator and therefore
there isn’t a PMF aggregator. In the next claim we shall show that there is an anonymous,
HMF and C-PMF aggregator for three alternatives.

Claim 5.6: If m = 3, then all aggregators hω ◦ m in H are ω-HMF.

For more than three alternatives we will not bring a full answer to the question of whether
there exists an anonymous HMF and C-PMF aggregators and we will show that it can’t be
of the form hω ◦ m. 12

Claim 5.7: In preference aggregation over at least k ≥ 4 alternatives, and at least 3 voters,
aggregators h ◦ maj ∈ H are not HMF.

10An IIA and monotone aggregator over X is anonymous, neutral, PMF and consistent iff all its MIPES
are of size 2 [NP10]

11The cases of facility location on a line and a cycle are shown in a subsequent work.
12In another work in which we use random functions it can be shown that there exists an HMF aggregator

hω ◦ m for four alternatives, where h is random and m is monotone.
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Bounded single-peaked width and proportional
representation1

Denis Cornaz, Lucie Galand and Olivier Spanjaard

Abstract

This paper is devoted to the proportional representation (PR) problem when the preferences
are clustered single-peaked. PR is a “multi-winner” election problem, that we study in Cham-
berlin and Courant’s scheme [6]. We define clustered single-peakedness as a form of single-
peakedness with respect to clusters of candidates, i.e. subsets of candidates that are consecu-
tive (in arbitrary order) in the preferences of all voters. We show that the PR problem becomes
polynomial when the size of the largest cluster of candidates (width) is bounded. Furthermore,
we establish the polynomiality of determining the single-peaked width of a preference profile
(minimum width for a partition of candidates into clusters compatible with clustered single-
peakedness) when the preferences are narcissistic (i.e., every candidate is the most preferred
one for some voter).

1 Introduction
Social choice theory deals with making collective choices on the basis of the individual preference
relations of a set of agents (or voters) over a set of alternatives (or candidates). In this field, an
active stream of research deals with “multi-winner” elections, where one aims at electing a subset
of candidates rather than a single candidate. This occurs for instance when electing an assembly. In
such situation, a combinatorial difficulty arises: while there are only m possible outputs of a single-
winner election with m candidates, there are

(
m
κ

)
possible assemblies of κ representatives. This

difficulty is often overcome by organizing κ single-winner elections over κ subelectorates. With
this way of partitioning the election, it may nevertheless happen that the elected assembly fails to
represent minorities [4]: assume that the representatives of a party are in second position for the
κ single-winner elections, then the party will have no representative in the assembly. Proportional
representation aims at tackling this issue by performing a single multi-winner election ensuring that
collectively the voters are satisfied enough by at least one elected candidate. This can be achieved
for instance by using Chamberlin and Courant’s scheme [6], where one elects a subset of κ candi-
dates minimizing a misrepresentation score. The effective computation of such winning subsets of
candidates has been studied by several authors.

Procaccia et al. have shown that the problem is NP-hard in the general case, but polynomial for
a fixed κ [12]. Lu and Boutilier provided a polynomial approximation algorithm with performance
guarantee (for maximizing a representation score), and show, on different experimental datasets,
that it almost always returns an optimal solution [10]. Their setting is nevertheless different from
proportional representation in political science: they aim at designing a system able to recommend
a set of options to a group, based on the individual preferences of its members. Such a system could
be used for instance by a conference organizer wishing to select a subset of sushis for the gala din-
ner, based on the individual preferences of the participants over the varieties of sushis. Clearly, this
context authorizes suboptimality. Coming back to voting procedures, it is nevertheless important to
note that the scores only provide an ordinal information: if an assembly A has a misrepresentation
score 1 while an assembly B has a misrepresentation score 1 + ε, one can only conclude that A
is better than B, and not that B is close to be as good as A. Furthermore, in a political setting, it
is simply not possible to elect an assembly without guaranteeing that it is the true winner. To our

1This paper appeared in the proceedings of ECAI 2012.
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knowledge, the only general exact approaches proposed for proportional representation in Chamber-
lin and Courant’s scheme are based on integer programming as the ones by Potthoff and Brams [11]
and by Balinski [1] (in this latter reference, the formulation was actually proposed for the κ-median
location problem, which is equivalent to the proportional representation problem [12]). The solution
of these IP formulations might of course take exponential time in the worst case.

Very recently, Betzler et al. proposed an extensive investigation of parameterized complexity
results for the problem [4]. Besides, they established that the problem becomes polynomial when
the preferences are single-peaked [5]. Single-peakedness is the most popular domain restriction in
social choice theory. In single-winner elections, it makes it possible to overcome Arrow’s impos-
sibility theorem (that states that no voting rule can simultaneously fulfill a set of basic axioms). In
particular, there always exists a Condorcet winner (i.e., a candidate who is preferred to any other
candidate by a majority of voters) if preferences are single-peaked. Such preferences are typically
encountered in political science. Intuitively, preferences are single-peaked when 1) all voters agree
on a left-right axis on the candidates reflecting their political convictions, and 2) the preferences
of all voters decrease along the axis when moving away from their preferred candidate to the right
or left. Nevertheless, this condition on preferences can be a bit restrictive when several candidates
share similar opinions (e.g. they belong to the same party) since it is unlikely that the preferences of
all voters are single-peaked on this subset of candidates.

We therefore study a new domain restriction, clustered single-peakedness, where single-
peakedness holds on subsets of candidates (parties or more generally clusters), and not within clus-
ters. The candidates belonging to the same cluster are ranked consecutively in the preferences of
all voters, though not necessarily in the same order. Given a partition of the candidates into clus-
ters such that the preferences are clustered single-peaked, the width of the partition is the size of
the largest cluster minus one. Note that, for a given set of individual preference relations, several
partitions into clusters can be compatible with clustered single-peakedness: we call single-peaked
width the minimum width among all possible partitions of candidates into clusters. We show that
the single-peaked width is computable in polynomial time if preferences are narcissistic, and that
a bounded single-peaked width makes it possible to design a polynomial time solution algorithm
for the proportional representation problem. Note that the same structures have been studied by
Elkind et al. [7], under another terminology (in particular, clusters are called clone sets). Their main
concern is not to study how clustered single-peakedness can be used to determine the winner of an
election, but they show interesting connections with PQ-trees, and use them to design an algorithm
to compute a partition of the candidates into (as many as possible) clusters. The links between their
work and ours will be detailed in Section 4.

The paper is organized as follows. We first formally introduce the proportional representa-
tion problem and clustered single-peakedness (Sect. 2). Then we present a dynamic programming
procedure for solving the proportional representation problem when the preferences are clustered
single-peaked (Sect. 3). A key parameter for the efficiency of the procedure is the width of the
partition into clusters. We therefore study the complexity of determining the single-peaked width
of a set of individual preference relations (Sect. 4), and show the polynomiality of the problem for
narcissistic preferences.

2 Preliminaries

2.1 Proportional representation
Let V be a set of n voters and C a set of m candidates. Let P be an m × n preference profile
matrix over C, that is, each candidate appears exactly once in each column. So the set of columns
of P is the set V and each column v is the preference relation of voter v. We denote by r(v, c)
the rank of candidate c in the preferences of voter v, and by x ≺v y the preference for y over
x. A non-decreasing misrepresentation function µ : {1, . . . ,m} → N is defined such that
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µ(r(v, c)) is the misrepresentation value of c for v. The proportional representation problem aims
at determining a subset S ⊆ C of κ candidates such that the total misrepresentation score is min-
imized. In Chamberlin and Courant’s scheme, the scoring function s : 2C → N is defined as follows:

s(S) =
∑

v∈V
min
c∈S

µ(r(v, c))

The proportional representation problem can then be simply written: min|S|=κ s(S). The following
example illustrates the value of using Chamberlin and Courant’s scheme.

Example 1. Consider a proportional representation problem with 6 voters 1, 2, 3, 4, 5, 6 (indices of
the columns) and 4 candidates a, b, c, d, and the following preference profile matrix:

P =




a c a c d c
b b b a c d
c a c b b a
d d d d a b




Assume that the misrepresentation function is µ(r) = r− 1. If κ = 2, then the possible subsets and
scores are (for simplicity ab stands for {a, b}):

ab ac ad bc bd cd
6 1 4 3 6 4

The optimal solution is subset ac with score 1. With such a solution, only one voter is not represented
by her preferred candidate (but by her second choice). Assume now this multi-winner election is
divided into two single-winner elections, namely an election L between b and c for voters 1, 2, 3,
and an electionR between a and d for voters 4, 5, 6. The winner of electionL (resp. R) is b (resp. d).
Consequently, the winning solution is bd, which is the worst one according to the misrepresentation
scores!

2.2 Clustered single-peakedness
Definition 1. Let C = (C1, . . . , Cq) be an ordered partition of C into q non-empty subsets (called
clusters). Preference profile matrix P is clustered single-peaked with respect to C if for all v ∈ V
there exists an index p in {1, . . . , q} such that:

i < j < p ⇒ x ≺v y ≺v z
p < j < i ⇒ x ≺v y ≺v z

for all x ∈ Ci, y ∈ Cj and z ∈ Cp.

For a voter v, we call Cp the peak of v, which means that any candidate in Cp is preferred to any
candidate in C \Cp. This definition coincides with usual single-peakedness when |Ci| = 1 for all i.
The only candidate in Cp is then the most preferred one.

Example 2. Coming back to Example 1, it can be easily seen that the preferences are not single-
peaked w.r.t. axis (a, b, c, d), by considering Figure 1 where each curve represents a preference
ranking of a voter, namely voters 1, 2, 6. For each curve and each candidate on the X-axis, the value
on the Y-axis is the rank in the corresponding preference ranking (the better the rank the higher the
point). Preferences are single-peaked w.r.t. an X-axis iff all curves have a single peak. This is not
the case in the left graph since the curve of voter 6 (in bold) spikes down for b and then spikes up
for a. More generally, it can be shown that the preferences in Example 1 are not single-peaked,
whatever permutation of candidates on the X-axis is considered. However, the preferences are clus-
tered single-peaked with respect to ({a, b}, {c}, {d}), denoted by (ab, c, d) for simplicity. Note that
a and b are adjacent in all preference rankings, which is a necessary condition to be clustered (but
not sufficient for clustered single-peakedness!). A preference profile is clustered single-peaked with
respect to an ordered partition (C1, . . . , Cq) iff it is single-peaked when considering each subset Ci
as a single candidate. In the example, introducing cluster {a, b} amounts to considering a and b
as a “single candidate” ab. The preference profile matrix becomes then the one indicated on the
right-hand side of Figure 1. In the graph on the right, one can observe that the preferences become
then single-peaked, i.e. they are clustered single-peaked with respect to (ab, c, d).
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Figure 1: Clustered single-peakedness.

3 Dynamic Programming
We now present a dynamic programming algorithm that generalizes the one proposed by Betzler et
al. for single-peaked preferences [4]. Let P (i, C ′, k) denote the subproblem where all candidates
in C ′ ⊆ C are made mandatory and one selects k − |C ′| candidates in C1 ∪ . . . ∪ Ci. For the
convenience of the reader, we briefly recall the recursion scheme of the procedure proposed by
Betzler et al., with an alternative proof. Assume that the preferences are single-peaked with respect
to axis (x1, . . . , xm) (i.e. clustered single-peaked with respect to (C1, . . . , Cm), where Ci = {xi}
∀i). Let z(i, k) denote the optimal score for problem P (i − 1, {xi}, k), where one selects xi and
k− 1 candidates among {x1, . . . , xi−1} (the i− 1 leftmost candidates on the axis). The authors use
the following recursion:

z(i, k) = min
j∈[k−1··i−1]

{
z(j, k − 1)−

∑

v∈V
max{0, µ(r(v, xj))− µ(r(v, xi))}

}

The optimal score for a subset of κ candidates is then mini∈{κ··m} z(i, κ). The validity of the
recursion can be established by showing that selecting a subset of k candidates, including xj and xi
(mandatory candidates), in {x1, . . . , xj , xi} (problem P (j − 1, {xj , xi}, k)) amounts to selecting
k− 1 candidates, including xj , in {x1, . . . , xj} (problem P (j − 1, {xj}, k− 1)). Indeed, it reduces
to computations on the same minor of the preference profile.

Definition 2. Any preference profile matrix that depicts the individual preferences of a subset V ′ ⊆
V of voters over a subset C ′ ⊆ C of candidates is called a minor and denoted by P(V ′, C ′).

The voters can be partitioned into two sets: the set V[1,j−1] of voters whose peak xp is in
{x1, . . . , xj−1}, and the set V[j,m] of voters whose peak xp is in {xj , . . . , xm}. Both problems
P (j − 1, {xj , xi}, k) and P (j − 1, {xj}, k − 1) amount to computations in the same minor:

• Problem P (j−1, {xj , xi}, k): all voters in V[j,m] can be deleted from the preference profile matrix
since their preferred candidate among {x1, . . . , xj , xi} is either xi or xj , that are mandatory, and
therefore the preferences of these voters play no role in the determination of the optimal solution to
P (j−1, {xj , xi}, k). Furthermore, all voters in V[1,j−1] prefer xj to xi since their peak is to the left
of xj , and therefore candidate xi plays no role since xj is mandatory. Consequently, the problem
reduces to selecting k − 1 candidates, including xj , according to minor P(V[1,j−1], {x1, . . . , xj}).

206



• Problem P (j − 1, {xj}, k − 1): for all voters in V[j,m], candidate xj is necessarily the most pre-
ferred one in {x1, . . . , xj}. Since candidate xj is mandatory, all voters in V[j,m] can be deleted from
the preference profile matrix. The problem reduces then to selecting k− 1 candidates, including xj ,
according to minor P(V[1,j−1], {x1, . . . , xj}).
The two problems P (j − 1, {xj , xi}, k) and P (j − 1, {xj}, k − 1) are thus equivalent, which es-
tablishes the validity of the recursion. We now show how this recursion scheme can be extended
to handle clustered single-peaked preferences. Assume that the preferences are clustered single-
peaked with respect to an ordered partition (C1, . . . , Cq). Let z(i, C ′i, k) denote the optimal score
when candidates in C ′i ⊆ Ci are mandatory, candidates in Ci \ C ′i are forbidden, and one selects
k − |C ′i| candidates in C1 ∪ . . . ∪ Ci−1. In our setting, the recursion can be written as follows:

z(i, C ′i, k) = min
j∈[1··i−1]

min
C′j⊆Cj C′j 6=∅

{
z(j, C ′j , k − |C ′i|)

−
∑

v∈V
max{0, min

y∈C′j
µ(r(v, y))− min

x∈C′i
µ(r(v, x))}

}
(1)

where z(i, C ′i, k) = +∞ if |C ′i| > k or |C1 ∪ . . . ∪ Ci−1| < k − |C ′i|.
The optimal score for a subset of κ candidates is then:

min
i∈[1··q]

min
C′i⊆Ci C′i 6=∅

z(i, C ′i, κ)

The proof of the recursion is similar to the one in the single-peaked case. It amounts to establishing
the equivalence of problems P (j − 1, C ′j ∪ C ′i, k) and P (j − 1, C ′j , k − |C ′i|), by considering a
partition of V into the set V[1,j−1] of voters whose peak is in {C1, . . . , Cj−1} and the set V[j,q]
whose peak is in {Cj , . . . , Cq}:
• Problem P (j−1, C ′j ∪C ′i, k): all voters in V[j,q] can be deleted from the preference profile matrix
since their preferred candidate among C1 ∪ . . . ∪ Cj−1 ∪ C ′j ∪ C ′i is either in C ′i or in C ′j . All
voters V[1,j−1] prefer a candidate in C ′j to a candidate in C ′i since their peak is to the left of Cj .
Consequently, the problem reduces to selecting k − |C ′i| candidates, including candidates in C ′j ,
according to minor P(V[1,j−1], C1 ∪ . . . ∪ Cj−1 ∪ C ′j).
• Problem P (j − 1, C ′j , k− |C ′i|): for all voters in V[j,q], the most preferred candidate in C1 ∪ . . .∪
Cj−1∪C ′j necessarily belongs toC ′j . The voters can therefore be deleted from the preference profile.
The problem reduces then to selecting k− |C ′i| candidates, including candidates in C ′j , according to
minor P(V[1,j−1], C1 ∪ . . . ∪ Cj−1 ∪ C ′j).
Both problems are thus equivalent, which establishes the validity of the recursion. Algorithm 1
describes the ensuing dynamic programming procedure.

Algorithm 1: Dynamic programming

for i = 1, . . . , q do
for C ′i ⊆ Ci with |C ′i| ≤ κ, C ′i 6= ∅ do

z(i, C ′i, |C ′i|) =
∑
v∈V minx∈C′i µ(r(v, x))

for i = 2, . . . , q do
for C ′i ⊆ Ci with |C ′i| ≤ κ, C ′i 6= ∅ do

for k = |C ′i|+ 1, . . . ,min{κ, |C ′i|+
∑i−1
j=1 |Cj |} do

compute z(i, C ′i, k) by Equation 1
return min

i∈[1··q]
min

C′i⊆Ci, C′i 6=∅
z(i, C ′i, κ)

Example 3. For simplicity, a set {a, b} is denoted by ab in this example, and {a, b} ∪ {c, d} by
abcd. Consider a proportional representation problem with 6 candidates a, b, c, d, e, f having clus-
tered single-peaked preferences with respect to (ab, cd, e, f). Let us study how many triples of
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candidates are examined by the procedure when computing z(4, f, 3). Given r subsets S1, . . . , Sr of
candidates, let us denote by opt{S1, . . . , Sr} a subset in argmini s(Si). The following computation
is performed by the procedure:

z(4, f, 3) = s

(
opt
{
fab, fopt{ca, cb}, fopt{da, db},
fcd, fopt{ea, eb, ec, ed}

})

Therefore 5 subsets are examined (three of the four “opt” operations have been performed during
the previous iterations) while there are 10 subsets of cardinality 3 including f .

For a small single-peaked width, the computational savings become of course more and more
significant when the size of the instance increases. Actually, the following complexity analysis
shows that the dynamic programming procedure is polynomial for a bounded singe peaked width.
Equation 1 requires indeed a computational time withinO(nqt2t) where t = maxi |Ci|−1. Further-
more, the number of computed terms z(i, C ′i, k) is upper bounded by q2tκ. Therefore the running
time of the procedure is within O(nq2t22tκ), which amounts to O(nm3) for a bounded single-
peaked width t (we recall that q ≤ m and κ ≤ m).

Theorem 1. The proportional representation problem over bounded single-peaked width prefer-
ences is polynomial.

The complexity analysis shows that maxi |Ci| is a key parameter for the efficiency of the al-
gorithm. Note that there always exists an ordered partition for which the preferences are clustered
single-peaked: in the worst case, it is sufficient to consider the partition (C). It is nevertheless in-
teresting from an algorithmic viewpoint to have an ordered partition where each subset includes few
candidates. Two cases can occur: either the partition is known in advance (for instance, when the
candidates indicate their affiliation to a political party and the preferences of the voters are consistent
with the displayed affiliations) or it is unknown. In both cases, it is desirable to be able to compute
an ordered partition compatible with clustered single-peakedness and such that maxi |Ci| is mini-
mized. In the next section, we show the polynomiality of this problem for narcissistic preferences
[3, 13].

4 Single peaked width
We call width of an ordered partition (C1, . . . , Cq) the value maxi |Ci|− 1. Given a preference pro-
file matrix, we call single-peaked width the minimum width among all ordered partitions compatible
with clustered single-peakedness. This can be seen as a distance measuring near-single-peakedness
(the single-peaked width is indeed equal to 0 for single-peaked preferences). Note that this should
not be confused with other distance measures that have been proposed in the literature, such as the
number of voters to remove to make a profile single-peaked [9].

Example 4. Consider the preference profile matrixP represented in Figure 2, where the preferences
are not single-peaked. It is easy to check that they are nevertheless clustered single-peaked with
respect to ordered partition (ac, efg, bd, h) (see the left part of the figure, where the subsets of
the partition are encircled), whose width is |{e, f, g}| − 1 = 2. However the preferences are
also clustered single-peaked with respect to (ac, f, eg, b, d, h) (right part of the figure). The single-
peaked width of this preference matrix is thus 1.

Ballester and Haeringer [2] recently showed that single-peakedness can be lost just because of
the existence of two voters and four candidates, or three voters and three candidates. Conversely,
they showed that if a profile is not single-peaked there must exist a set of two voters (resp. three)
whose preferences over four candidates (resp. three) are not single-peaked. More precisely, the
authors characterize single-peakedness with the following two conditions:

208



P =




�
�
�
��
�
�
�
�
�
�
���������

����
����

����
����

f b c
g d a
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Figure 2: Single-peaked width.

•Worst-restriction: Given a triple V ′ ⊆ V of voters and a tripleC ′ ⊆ C of candidates, let L(V ′, C ′)
be the set of all candidates ranked last in C ′ by at least one voter in V ′. The worst-restriction
condition holds if |L(V ′, C ′)| < 3 for all triples V ′ and C ′.

• α-restriction: the α-restriction condition holds if there do not exist two voters v and v′ and four
candidates w, x, y, and z such that their preferences over w, x and z are opposite (w �v x �v z and
z �v′ x �v′ w) and the voters agree about the preference for y over x (y �v x and y �v′ x).

Interestingly, these conditions amount to forbidding five minors in the profile P (Lemma 1). In this
formalism, we propose here a shorter proof of the characterization result of Ballester and Haeringer.
Our proof is based on the polynomial algorithm proposed by Escoffier et al. [8] to determine if a
profile is single-peaked with respect to some axis. This algorithm runs in time O(mn) improving
on the O(mn2) algorithm proposed by Bartholdi and Trick [3]. Before stating Lemma 1, let us
present the algorithm of Escoffier et al. It works recursively and takes as arguments the left part
(x1, . . . , xi) and the right part (xj , . . . , xm) of the axis under construction. A third argument is the
subset C ′ of candidates which remains to be positioned on the axis. This algorithm returns an axis
compatible with P or proves that the preferences are not single-peaked (by raising a contradiction
between voters). The recursion is made possible by the fact that single-peakedness over P implies
single-peakedness over any of its minors. It heavily uses the property that candidates ranked last
in the preferences are necessarily at the extremities of the axis. At each step of the algorithm,
one candidate x or two candidates x and y are ranked last in P(V,C ′) and will be positioned in
xi+1 or xj−1 on the axis. There is a contradiction if a candidate has to be placed in two different
positions (according to the preferences of two voters). These positions depend on the way x and y
are positioned with respect to xi and xj in the preferences of all the voters. The whole procedure is
detailed in Algorithm 2. The initial call is Make-axis(C, (), ()).

Before presenting Lemma 1 (on which our algorithm to compute single-peaked width strongly
relies), we need to introduce the notion of isomorphic minors. A minor P ′ is isomorphic to P if
there exists a bijection φ such that P and P ′ are identical up to column permutation if one renames
every candidate x in P as φ(x). For instance, preference profile matrix P ′ below is isomorphic to
P (take φ(a) = b, φ(b) = c, φ(c) = a and permute the columns).

P =




a c
b a
c b


 , P ′ =




a b
b c
c a




Definition 3. A minor is called forbidden if it is isomorphic to one of the following profiles:

T1 =




a b c
b c a
c a b


 ,T2 =




a c a
b b c
c a b


 ,

F1 =




a c
d d
b b
c a


 , F2 =




a d
d c
b b
c a


 , or F3 =




d d
a c
b b
c a


 .
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Algorithm 2: Make-axis(C ′,(x1, . . . , xi),(xj , . . . , xm))

if C ′ = ∅ then return (x1, . . . , xi, xj , . . . , xm)1

if C ′ = {x} then return (x1, . . . , xi, x, xj , . . . , xm)2

L← candidates ranked last in P(C ′, V ) by at least one voter3

if L = {x} then y ← a candidate in C ′ \ {x} /? x ≺v y, ∀v ?/4

if |L| ≥ 3 then return not single-peaked5

for v = 1, . . . , n do6

if L = {x, y} then let x ≺v y (w.l.o.g)7

if xi ≺v x ≺v xj ≺v y or xi ≺v x ≺v y ≺v xj then8

if no contradiction then xi+1 ← x ; xj−1 ← y9

else return not single-peaked10

if xj ≺v x ≺v xi ≺v y or xj ≺v x ≺v y ≺v xi then11

if no contradiction then xi+1 ← y ; xj−1 ← x12

else return not single-peaked13

if L = {x} then14

if x = xi+1 then Make-axis(C ′ \ {x},(x1, . . . , xi, xi+1),(xj , . . . , xm))15

else Make-axis(C ′ \ {x},(x1, . . . , xi),(xj−1, xj , . . . , xm))16

Make-axis(C ′ \ {x, y},(x1, . . . , xi, xi+1),(xj−1, xj , . . . , xm))17

Lemma 1. P is single-peaked iff it has no forbidden minor.

Proof (sketch) Necessity: it suffices to check that none of the five forbidden minors is single-
peaked, since the single-peakedness property is closed under taking minors.
Sufficiency: run Algorithm 2 and suppose that it returns not single-peaked. If it stops at Line 5, then
P has a minor T1 or T2. Otherwise it stops at Line 10 or 13 and P has a minor F1, F2 or F3.

The rest of the section is devoted to the problem of determining an ordered partition of minimum
width among the ones that are compatible with clustered single-peakedness. Note that Elkind et al.
[7] studied a closely related problem, namely finding an ordered partition (C1, . . . , Cq) maximizing
q. Both problems are not equivalent, as shown by the following example.

Example 5. Consider the preference profile matrix P:

P =




d d
x a
y v
c b
b c
a x
v y




Both partitions (abcv, d, x, y) and (v, a, d, bcxy) maximize q and are compatible with clustered
single-peakedness, but (abv, d, cxy) is the only partition that minimizes the single-peaked width.

However, for narcissistic preferences [3, 13], one can show that the algorithm proposed by
Elkind et al. for their problem returns an ordered partition of minimum width. Nevertheless, our
approach proves that there is a unique (up to reversal) ordered partition maximizing q. Preferences
are said to be narcissistic when each candidate is most preferred by some voter. In politics, as soon
as the candidates are voting, this assumption seems reasonable. In the remainder, we prove the
following result:

Theorem 2. Finding the single-peaked width is polynomial if P is narcissistic.

For each voter v ∈ V and candidates a, b ∈ C we denote Iv(a, b) := {c ∈ C : c = a or c = b or
a �v c �v b or b �v c �v a} the set of candidates between a and b in the preferences of voter v.
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By convention, Iv(a, a) = {a}. A subset I of C is called an interval of P if for each v ∈ V , one
can choose two candidates a, b ∈ I such that I = Iv(a, b). This definition coincides with the notion
of clone set studied by Elkind et al. [7]. Notice that the set of intervals I of P is not closed under
taking subsets. Nevertheless, it is closed under intersection [7]. Given a, b ∈ C, the minimal interval
w.r.t. inclusion that contains a and b is thus uniquely defined: we denote it by I(a, b). The following
lemma will prove useful in order to design an algorithm able to compute a partition compatible with
clustered single-peakedness. For simplicity, if P ′ is isomorphic to P for φ, we write I(x, y) for
I(φ(x), φ(y)).

Lemma 2. The following properties hold:
• If T1 is a minor of P , then I(a, b) = I(a, c) = I(b, c);
• If T2 is a minor of P , then I(a, b) and I(a, c) include I(b, c);
• If F1 is a minor of P , then I(a, b), I(a, c), I(a, d), I(b, c) and I(c, d) include I(b, d);
• If F2 is a minor of P , then I(a, b), I(a, c), I(a, d), I(b, d) and I(c, d) include I(b, c);
• If F3 is a minor of P , then

- I(a, c), I(a, d), I(b, d) and I(c, d) include I(a, b),
- I(a, c), I(a, d), I(b, d) and I(c, d) include I(b, c).

Proof (sketch) Let v be the voter of the first column of T1. Since b ∈ Iv(a, c), it follows
that b ∈ I(a, c). Thus I(a, b) and I(b, c) ⊆ I(a, c). The second column gives I(b, c) and
I(a, c) ⊆ I(a, b), and the third column gives I(a, c) and I(a, b) ⊆ I(b, c). Finally I(a, b) = I(a, c)
= I(b, c). The proofs for the four other forbidden minors go along the same lines.

We propose a greedy algorithm to compute the clusters of an ordered partition compatible
with clustered single-peakedness. This algorithm proceeds by contracting candidates so that no
forbidden minor remains in the preference profile matrix. Contracting two candidates a, b ∈ C
consists in contracting I(a, b). Contracting an interval I consists in collapsing all candidates in I
into a single “cluster” candidate. This amounts to choosing a representative in I and removing from
P all the other candidates in I . For instance, contracting b and d in P yields cluster {b, d, e} (since
I(b, d) = {b, d, e}) and profile P ′:

P =




a c
d d
e b
b e
c a




P ′ =




a c
b b
c a




Notice that the preference profile matrix P ′ obtained by contracting an interval of P is a minor
of P . Note also that if I, J ∈ I are two intervals of P , then the two minors obtained from P either
by contracting I then J , or by contracting J then I coincide (even if I and J overlap). Besides, if
P ′ is a minor of P and F ′ is a minor of P ′, then F ′ is also a minor of P . The greedy procedure is
detailed in Algorithm 3. The termination follows from the fact that contracting candidates cannot
create new forbidden minors.

Example 6. Consider the preference profile matrix P in Figure 2 and apply Algorithm 3, assume
that it detects:

the minor




g g c
c a a
a c g


 and then the minor




f h
g g
e e
h f
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Algorithm 3: Greedy algorithm
let P ′ be a minor of P isomorphic for φ to:
T1. Contract φ(a) and φ(b)
T2. Contract φ(b) and φ(c)
F1. Contract φ(b) and φ(d)
F2. Contract φ(b) and φ(c)
F3. Contract φ(a) and φ(b), or φ(b) and φ(c)
apply these contractions (non-deterministically) until no forbidden minor remains.

The first minor is isomorphic to T2 for φ(a) = g, φ(b) = a and φ(c) = c. Therefore candidates
a and c are contracted. The second minor is isomorphic to F1 for φ(a) = f , φ(b) = e, φ(c) = h
and φ(d) = g. Therefore candidates e and g are contracted. Taking candidate a (resp. e) as the
representative of cluster {a, c} (resp. {e, g}), the preference profile becomes:

P ′ =




f b a
e d f
a h e
b e b
d f d
h a h




There is no more forbidden minor in the preference profile, and thus the greedy procedure stops. The
clusters are {a, c} and {e, g}.

This algorithm is polynomial since the forbidden minors can be enumerated in O(m3n3) for T1,
T2, and O(m4n2) for F1, F2, F3. The clusters identified by the algorithm belong to an ordered
partition compatible with clustered single-peakedness. The ordered partition itself can be computed
by applying Algorithm 2 on the final preference profile. Coming back to Example 6, Algorithm 2
returns axis (h, d, b, e, f, a) on P ′, which corresponds to the ordered partition (h, d, b, eg, f, ac)
since e (resp. a) is the representative of {e, g} (resp. {a, c}). This is an ordered partition of minimum
width for this profile. However, in the general case, the width of the returned ordered partition is
not guaranteed to be minimal. We now show how to refine the greedy procedure to get an ordered
partition of minimum width when preferences are narcissistic. To this end, we introduce a notion
of similarity between candidates that enables us to identify necessary and sufficient contractions for
clustered single-peakedness.

Definition 4. Two candidates a and b are said to be similar if they belong to the same cluster in all
ordered partitions w.r.t. which P is clustered single-peaked.

It results from Lemma 2 that the following properties hold:
• If T1 (T2) is a minor of P , then a and b (b and c) are similar;

• If F1 (F2) is a minor of P , then b and d (b and c) are similar;

• If F3 is a minor of P , then

– if I(b, c) ⊆ I(a, b), then b and c are similar;
– if I(a, b) ⊆ I(b, c), then a and b are similar.

These properties imply that all contractions but one (F3) in the greedy algorithm cover candi-
dates which belong to the same cluster in any ordered partition of minimum width. The only case
of a forbidden minor that cannot be removed from P by contracting similar candidates is thus F3

when I(a, b) and I(b, c) intersect properly, i.e. I(a, b) 6⊆ I(b, c) and I(b, c) 6⊆ I(a, b). We call such
forbidden minors ambiguous. If one finds an ambiguous minor M, at least two candidates in M
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must be in the same cluster. Nevertheless the single-peaked width of an ordered partition depends
on the choice of the candidates to contract. Furthermore this choice does not only depend on the
maximum number of candidates involved in the possible interval contractions. For instance, con-
sider the preference profile matrix P of Example 5 which has the following minor:




d d
c v
b b
v c




The smallest contraction implied by the given minor would be to contract b and c (2 candidates in
the interval). But (abv, d, cxy), where b and c are not in the same cluster, is the only minimum width
ordered partition compatible with clustered single-peakedness.

For this reason, the greedy algorithm may fail to provide clusters belonging to an ordered parti-
tion of minimum width. However when preferences are narcissistic, no ambiguous minor can exist
in the preference profile matrix. Assume indeed that there exists a minorM isomorphic to F3 for
φ. Since P is narcissistic, candidate φ(b) is the most preferred one for some voter v, and conse-
quently: φ(b) �v φ(a) �v φ(c) or φ(b) �v φ(c) �v φ(a). Therefore we have I(a, b) ⊆ I(b, c)
or I(b, c) ⊆ I(a, b). The minor is thus unambiguous. To obtain an optimal greedy algorithm for
narcissistic preferences, contraction related to F3 must then be modified as follows:

let v be a voter whose most preferred candidate is φ(b)
if φ(b) �v φ(a) �v φ(c) then contract φ(a) and φ(b) else contract φ(b) and φ(c).

Furthermore, the greedy algorithm uses necessary and sufficient contractions to make the profile
clustered single-peaked, and thus partition (C1, . . . , Cq) of minimum width is clearly unique under
maximizing the number q of clusters.

5 Conclusion
An interesting open question is whether there exists a general polynomial algorithm to compute
the single-peaked width (not necessarily in the narcissistic case). Adapting the PQ-trees based
algorithm of Elkind et al. [7] to our problem could work. Besides, the concept of minors could be a
tool for finding a short validity proof.
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The Common Structure of Paradoxes in

Aggregation Theory

Umberto Grandi

Abstract

In this paper we analyse some of the classical paradoxes in Social Choice Theory
(namely, the Condorcet paradox, the discursive dilemma, the Ostrogorski paradox
and the multiple election paradox) using a general framework for the study of aggre-
gation problems called binary aggregation with integrity constraints. We provide a
definition of paradox that is general enough to account for the four cases mentioned,
and identify a common structure in the syntactic properties of the rationality assump-
tions that lie behind such paradoxes. We generalise this observation by providing a
full characterisation of the set of rationality assumptions on which the majority rule
does not generate a paradox.

1 Introduction

Most work in Social Choice Theory (SCT) started with the observation of paradoxical situ-
ations. From the Marquis de Condorcet (1785) to more recent American court cases (Korn-
hauser and Sager, 1986), a wide collection of paradoxes have been analysed and studied in
the literature on Social Choice Theory (see, e.g., Nurmi, 1999). More recently, researchers
in Artificial Intelligence (AI) have become interested in the study of collective choice prob-
lems in which the set of alternatives has a combinatorial structure (Lang, 2007; Xia et al.,
2011). Novel paradoxical situations emerged from the study of these situations, and the
combinatorial structure of the domains gave rise to interesting computational challenges.

This paper concentrates on the use of the majority rule on binary combinatorial domains,
and investigates the question of what constitutes a paradox in such a setting. We identify
a common structure behind the most classical paradoxes in SCT, putting forward a general
definition of paradox in aggregation theory. By characterising paradoxical situations by
means of computationally recognisable properties, we aim at providing more domain-specific
research with new tools for the development of safe procedures for collective decision making.

We base the analysis on our previous work on binary aggregation with integrity con-
straints (Grandi and Endriss, 2011), which constitutes a general framework for the study
of aggregation problems. In this setting, a set of individuals needs to take a decision over
a set of binary issues, and these choices are then aggregated into a collective one. Given a
rationality assumption that binds the choices of the individuals, we define a paradox as a
situation in which all individuals are rational but the collective outcome is not. We present
some of the most well-known paradoxes that arise from the use of the majority rule in differ-
ent contexts, and we show how they can be expressed in binary aggregation as instances of
this general definition. Our analysis focuses on the Condorcet paradox (1785), the discursive
dilemma in judgment aggregation (List and Pettit, 2002), the Ostrogorski paradox (1902)
and the more recent work of Brams et al. (1998) on multiple election paradoxes.

Such a uniform representation of the most important paradoxes in SCT enables us to
make a crucial observation concerning the syntactic structure of the rationality assumptions
that lie behind these paradoxes. We represent rationality assumptions by means of proposi-
tional formulas, and we observe that all formulas formalising a number of classical paradoxes
feature a disjunction of literals of size at least 3. This observation can be generalised to a full
characterisation of the rationality assumptions on which the majority rule does not generate
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a paradox, and in Theorem 4 we identify them as those formulas that are equivalent to a
conjunction of clauses of size at most 2.

The paper is organised as follows. In Section 2 we give the basic definitions of the frame-
work of binary aggregation with integrity constraints, and we provide a general definition of
paradox. In Section 3 we show how a number of paradoxical situations in SCT can be seen
as instances of our general definition of paradox, and we identify a syntactic property that
is common to all paradoxical rationality assumptions. Section 4 provides a characterisation
of the paradoxical situations for the majority rule and Section 5 concludes the paper.

2 Binary Aggregation with Integrity Constraints
In this section we provide the basic definitions of the framework of binary aggregation
with integrity constraints (Grandi and Endriss, 2011), based on work by Wilson (1975) and
Dokow and Holzman (2010). In this setting, a number individuals each need to make a
yes/no choice regarding a number of issues and these choices then need to be aggregated
into a collective choice. Paradoxical situations may occur when a set of individual choices
that is considered rational leads to a collective outcome which fails to satisfy the same
rationality assumption of the individuals.

2.1 Terminology and Notation

Let I = {1, . . . , m} be a finite set of issues, and let D = D1 × · · · × Dm be a boolean
combinatorial domain, i.e., |Di| = 2 for all i ∈ I. Without loss of generality we assume
that Dj = {0, 1} for all j. Thus, given a set of issues I, the domain associated with it is
D = {0, 1}I. A ballot B is an element of D.

In many applications it is necessary to specify which elements of the domain are rational
and which should not be taken into consideration. Propositional logic provides a suitable
formal language to express possible restrictions of rationality on binary combinatorial do-
mains. If I is a set of m issues, let PS = {p1, . . . , pm} be a set of propositional symbols, one
for each issue, and let LPS be the propositional language constructed by closing PS under
propositional connectives. For any formula ϕ ∈ LPS, let Mod(ϕ) be the set of assignments
that satisfy ϕ. For example, Mod(p1 ∧ ¬p2) = {(1, 0, 0), (1, 0, 1)} when PS = {p1, p2, p3}.
An integrity constraint is any formula IC ∈ LPS.

Integrity constraints can be used to define what tuples in D we consider rational choices.
Any ballot B ∈ D is an assignment to the variables p1, . . . , pm, and we call B a rational ballot
if it satisfies the integrity constraint IC, i.e., if B is an element of Mod(IC). In the sequel we
shall use the terms “integrity constraints” and “rationality assumptions” interchangeably.

Let N = {1, . . . , n} be a finite set of individuals. We make the assumption that there
are at least 2 individuals. Each individual submits a ballot Bi ∈ D to form a profile
B = (B1, . . . , Bn). We write bj for the jth element of a ballot B, and bi,j for the jth
element of ballot Bi within a profile B = (B1, . . . , Bn). Given a finite set of issues I and a
finite set of individuals N , an aggregation procedure is a function F : DN → D, mapping each
profile of binary ballots to an element of D. Let F (B)j denote the result of the aggregation
of profile B on issue j.

2.2 A General Definition of Paradox

Consider the following example: Let IC = p1 ∧ p2 → p3 and suppose there are three
individuals, choosing ballots (0, 1, 0), (1, 0, 0) and (1, 1, 1). Their choices are rational (they
all satisfy IC). However, if we employ the majority rule, i.e., we accept an issue j if and only
if a majority of individuals do, we obtain the ballot (1, 1, 0) as collective outcome, which
fails to be rational. This kind of observation is often referred to as a paradox.

We now give a general definition of paradoxical behaviour of an aggregation procedure
in terms of the violation of certain rationality assumptions.
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Definition 1. A paradox is a triple (F,B, IC), where F is an aggregation procedure, B is
a profile in DN , IC is an integrity constraint in LPS, and Bi ∈ Mod(IC) for all i ∈ N but
F (B) 6∈ Mod(IC).

A closely related notion is that of collective rationality:

Definition 2. Given an integrity constraint IC ∈ LPS, an aggregation procedure F is called
collectively rational (CR) with respect to IC, if for all rational profiles B ∈ Mod(IC)N we
have that F (B) ∈ Mod(IC).

Thus, F is CR with respect to IC if it lifts the rationality assumption given by IC from
the individual to the collective level, i.e., if F (B) ∈ Mod(IC) whenever Bi ∈ Mod(IC) for
all i ∈ N . An aggregation procedure that is CR with respect to IC cannot generate a
paradoxical situation with IC as integrity constraint. Given an aggregation procedure F ,
let LF [F ] = {ϕ ∈ LPS | F is CR with respect to ϕ} be the set of integrity constraints that
are lifted by F .

3 Unifying Paradoxes in Binary Aggregation
In this section we present a number of classical paradoxes from SCT, and we show how they
can be seen as instances of our Definition 1. In Section 3.1 we introduce the Condorcet
paradox, and we show how settings of preference aggregation can be seen as instances of
binary aggregation by devising a suitable integrity constraint. Section 3.2 repeats this
construction for the framework of judgment aggregation and for the discursive dilemma. In
Section 3.3 we then deal with the Ostrogorski paradox, in which a paradoxical feature of
representative majoritarian systems is analysed, and in Section 3.4 we focus on the paradox
of multiple elections. In Section 3.5 we conclude by identifying a common structure in the
integrity constraints that lie behind those paradoxes.

3.1 The Condorcet Paradox and Preference Aggregation

One of the earliest observation of paradoxical behaviour of the majority rule was made
by the Marquis de Condorcet in 1785. A simple version of the paradox he discovered is
explained in the following paragraphs:

Condorcet Paradox. Three individuals need to decide on the ranking of three
alternatives {△, #,�}. Each individual expresses her own ranking and the col-
lective outcome is aggregated by pairwise majority: an alternative is preferred to
a second one if and only if a majority of the individuals prefer the first alternative
to the second. Consider the following situation:

△ <1 # <1 �
� <2 △ <2 #
# <3 � <3 △

△ < # < � < △

When computing the outcome of the pairwise majority rule, we notice that there
is a majority of individuals preferring the circle to the triangle (△ < #); that
there is a majority of individuals preferring the square to the circle (# < �);
and, finally, that there is a majority of individuals preferring the triangle to the
square (� < △). The resulting outcome fails to be a linear order, giving rise to
a circular collective preference between the alternatives.
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3.1.1 Preference Aggregation

Condorcet’s paradox was rediscovered in the second half of the XXth century while a whole
theory of preference aggregation was being developed (see, e.g., Gaertner, 2006). This frame-
work considers a finite set of individuals N expressing preferences over a finite set of al-
ternatives X . A preference relation is represented by a binary relation over X . Preference
relations are traditionally assumed to be weak orders, i.e., reflexive, transitive and com-
plete binary relations. Another common assumption is representing preferences as linear
orders, i.e., irreflexive, transitive and complete binary relations. In the sequel we shall as-
sume that preferences are represented as linear orders, writing aPb for “alternative a is
strictly preferred to b”. Each individual in N submits a linear order Pi, forming a profile
P = (P1, . . . , P|N |). Let L(X ) denote the set of all linear orders on X . Given a finite set
of individuals N and a finite set of alternatives X , a social welfare function is a function
F : L(X )N → L(X).

3.1.2 Translation

Given a preference aggregation problem defined by a set of individuals N and a set of
alternatives X , let us consider the following setting for binary aggregation. Define a set of
issues IX as the set of all pairs (a, b) in X . The domain DX of aggregation is {0, 1}|X |2. In
this setting, a binary ballot B corresponds to a binary relation P over X : B(a,b) = 1 if and
only if a is in relation to b (aPb). Given this representation, we can associate with every
SWF for X and N an aggregation procedure that is defined on a subdomain of DN

X . We
now characterise this domain as the set of models of a suitable integrity constraint.

Using the propositional language LPS constructed over the set IX , we can express prop-
erties of binary ballots in DX . In this case LPS consists of |X |2 propositional symbols, which
we call pab for every issue (a, b). The properties of linear orders can be enforced on binary
ballots using the following set of integrity constraints, which we shall call IC<:1

Irreflexivity: ¬paa for all a ∈ X
Completeness: pab ∨ pba for all a 6= b ∈ X
Transitivity: pab ∧ pbc→pac for a, b, c ∈ X pairwise distinct

Note that the size of this set of integrity constraints is polynomial in the number of alter-
natives in X . In case preferences are expressed using weak orders rather than linear orders,
it is sufficient to replace the integrity constraints of irreflexivity in IC< with their negation
to obtain a similar correspondence between SWFs and aggregation procedures.

3.1.3 The Condorcet Paradox in Binary Aggregation

The translation presented in the previous section enables us to express the Condorcet para-
dox in terms of Definition 1. Let X = {△, #,�} and let N contain three individuals.
Consider the profile B for IX in the following table, where we have omitted the values of
the reflexive issues (△, △) (always 0 by IC<), and specified the value of only one of (△, #)
and (#, △) (the other can be obtained by taking the opposite of the value of the first), and
accordingly for the other alternatives.

△# #� △�
Agent 1 1 1 1
Agent 2 1 0 0
Agent 3 0 1 0

Maj 1 1 0

1We will use the notation IC both for a single integrity constraint and for a set of formulas—in the latter
case considering as the actual constraint the conjunction of all the formulas in IC.
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Every individual ballot satisfies IC<, but the outcome obtained using the majority rule Maj
(which corresponds to pairwise majority in preference aggregation) does not satisfy IC<:
the formula p△# ∧ p#� → p△� is falsified by the outcome. Therefore, (Maj ,B, IC<) is a
paradox by Definition 1.

3.2 The Discursive Dilemma and Judgment Aggregation

The discursive dilemma emerged from the formal study of court cases that was carried
out in recent years in the literature on law and economics, generalising the observation of
a paradoxical situation known as the “doctrinal paradox” (Kornhauser and Sager, 1986).
Such a setting was first given mathematical treatment by List and Pettit (2002), giving rise
to an entirely new research area in SCT known as judgment aggregation.

Discursive Dilemma. A court of three judges has to decide on the liability
of a defendant under the charge of breach of contract. An individual is consid-
ered liable if there was a valid contract and her behaviour was such as to be
considered a breach of the contract. The court takes three majority decisions
on the following issues: there was a valid contract (α), the individual broke the
contract (β), the defendant is liable (α ∧ β). Consider the following situation:

α β α ∧ β

Judge 1 yes yes yes
Judge 2 no yes no
Judge 3 yes no no

Majority yes yes no

All judges express consistent judgments: they accept the third proposition if
and only if the first two are accepted. However, even if there is a majority of
judges who believe that there was a valid contract, and even if there is a majority
of judges who believe that the individual broke the contract, the individual is
considered not liable by a majority of the individuals.

3.2.1 Judgment Aggregation

Judgement aggregation (JA) considers problems in which a finite set of individuals N has
to generate a collective judgment over a set of interconnected propositional formulas (see,
e.g., List and Puppe, 2009). Formally, given a propositional language L, an agenda is a
finite nonempty subset Φ ⊆ L that does not contain doubly-negated formulas and is closed
under complementation (i.e, α ∈ Φ whenever ¬α ∈ Φ, and ¬α ∈ Φ for non-negated α ∈ Φ).

Each individual in N expresses a judgment set J ⊆ Φ, as the set of those formulas in
the agenda that she judges to be true. Every individual judgment set J is assumed to be
complete (i.e., for each α ∈ Φ either α or its complement are in J) and consistent (i.e.,
there exists an assignment that makes all formulas in J true). Denote by J (Φ) the set
of all complete and consistent subsets of Φ. Given a finite agenda Φ and a finite set of
individuals N , a JA procedure for Φ and N is a function F : J (Φ)N → 2Φ.

3.2.2 Translation

Given a JA framework defined by an agenda Φ and a set of individuals N , let us now
construct a setting for binary aggregation with integrity constraints that interprets it. Let
the set of issues IΦ be equal to the set of formulas in Φ. The domain DΦ of aggregation is
therefore {0, 1}|Φ|. In this setting, a binary ballot B corresponds to a judgment set: Bα = 1
if and only if α ∈ J . Given this representation, we can associate with every JA procedure
for Φ and N a binary aggregation procedure on a subdomain of DN

Φ .
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As we did for the case of preference aggregation, we now define a set of integrity con-
straints for DΦ to enforce the properties of consistency and completeness of individual
judgment sets. Recall that the propositional language is constructed in this case on |Φ|
propositional symbols pα, one for every α ∈ Φ. Call an inconsistent set of formulas each
proper subset of which is consistent minimally inconsistent set (mi-set). Let ICΦ be the
following set of integrity constraints:

Completeness: pα∨p¬α for all α ∈ Φ
Consistency: ¬(

∧
α∈S pα) for every mi-set S ⊆ Φ

While the interpretation of the first formula is straightforward, we provide some further
explanation for the second one. If a judgment set J is inconsistent, then it contains a
minimally inconsistent set, obtained by sequentially deleting one formula at the time from
J until it becomes consistent. This implies that the constraint previously introduced is
falsified by the binary ballot that represents J , as all issues associated with formulas in a
mi-set are accepted. Vice versa, if all formulas in a mi-set are accepted by a given binary
ballot, then clearly the judgment set associated with it is inconsistent.

Note that the size of ICΦ might be exponential in the size of the agenda. This is in agree-
ment with considerations of computational complexity: Since checking the consistency of a
judgment set is NP-hard, while model checking on binary ballots is polynomial, the trans-
lation from JA to binary aggregation must contain a superpolynomial step (unless P=NP).

3.2.3 The Discursive Dilemma in Binary Aggregation

The same procedure that we have used to show that the Condorcet paradox is an instance of
our general definition of paradox applies here for the case of the discursive dilemma. Let Φ
be the agenda {α, β, α∧β}, in which we have omitted negated formulas, as for any J ∈ J (Φ)
their acceptance can be inferred from the acceptance of their positive counterparts. Consider
the profile B for IΦ described in the following profile:

α β α ∧ β

Judge 1 1 1 1
Judge 2 0 1 0
Judge 3 1 0 0

Maj 1 1 0

Every individual ballot satisfies ICΦ, while the outcome obtained by using the majority
rule contradicts one of the constraints of consistency, namely ¬(pα ∧ pβ ∧ p¬(α∧β)). Hence,
(Maj ,B, ICΦ) constitutes a paradox by Definition 1.

3.3 The Ostrogorski Paradox

A less well-known paradox concerning the use of the majority rule on multiple issues is the
Ostrogorski paradox (Ostrogorski, 1902).

Ostrogorski Paradox. Consider the following situation: there is a two party
contest between the Mountain Party (MP) and the Plain Party (PP); three
individuals (or, equivalently, three equally big groups in an electorate) will vote
for one of the two parties if their view agrees with that party on a majority of
the three following issues: economic policy (E), social policy (S), and foreign
affairs policy (F ). Consider the situation described in Table 1. The result of the
two party contest, assuming that the party that has the support of a majority
of the voters wins, declares the Plain Party the winner. However, a majority of
individuals support the Mountain Party both on the economic policy E and on
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E S F Party supported

Voter 1 MP PP PP PP
Voter 2 PP PP MP PP
Voter 3 MP PP MP MP

Maj MP PP MP PP

Table 1: The Ostrogorski paradox.

the foreign policy F. Thus, the elected party (the PP) is in disagreement with a
majority of the individuals on a majority of the issues.

3.3.1 The Ostrogorski Paradox in Binary Aggregation

In this section, we provide a binary aggregation setting that represents the Ostrogorski
paradox as a failure of collective rationality with respect to a suitable integrity constraint.

Let {E, S, F} be the set of issues at stake, and let the set of issues IO = {E, S, F, A}
consist of the same issues plus an extra issue A to encode the support for the first party
(MP). A binary ballot over these issues represents the individual view on the three issues
E, S and F : if, for instance, bE = 1, then the individual supports the first party MP on the
first issue E. Moreover, it also represents the overall support for party MP (in case issue A is
accepted) or PP (in case A is rejected). In the Ostrogorski paradox, an individual votes for
a party if and only if she agrees with that party on a majority of the issues. This rule can be
represented as a rationality assumption by means of the following integrity constraint ICO:

pA ↔ [(pE ∧ pS) ∨ (pE ∧ pF ) ∨ (pS ∧ pF )]

An instance of the Ostrogorski paradox can therefore be represented in the following profile:

E S F A

Voter 1 1 0 0 0
Voter 2 0 0 1 0
Voter 3 1 0 1 1

Maj 1 0 1 0

Each individual accepts issue A if and only if she accepts a majority of the other issues.
However, the outcome of the majority rule is a rejection of issue A, even if a majority of
the issues gets accepted by the same rule. Therefore, the triple (Maj ,B, ICO) constitutes
a paradox by Definition 1.

3.4 The Paradox of Multiple Elections

Whilst the Ostrogorski paradox was devised to stage an attack against representative sys-
tems of collective choice based on parties, the paradox of multiple elections (MEP) is based
on the observation that when voting directly on multiple issues, a combination that was not
supported nor liked by any of the voters can be the winner of the election (Brams et al.,
1998; Lacy and Niou, 2000). While the original model takes into account the full prefer-
ences of individuals over combinations of issues, if we focus on only those ballots that are
submitted by the individuals, then an instance of the MEP can be represented as a paradox
of collective rationality. Let us consider the following simple example:

Multiple election paradox. Suppose three voters need to take a decision over
three binary issues A, B and C. Their ballots are described as follows.
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A B C

Voter 1 1 0 1
Voter 2 0 1 1
Voter 3 1 1 0

Maj 1 1 1

The outcome of the majority rule is the acceptance of all three issues, even if
this combination was not voted for by any of the individuals.

While there seems to be no integrity constraint directly causing this paradox, we may
represent the profile in the example above as a situation in which the three individual
ballots are bound by a constraint, e.g., ¬(pA ∧ pB ∧ pC). Even if each individual accepts at
most two issues, the result of the aggregation is the unfeasible acceptance of all three issues.

As can be deduced from our previous discussion, every instance of the MEP gives rise to
several instances of a binary aggregation paradox for Definition 1. To see this, it is sufficient
to find an integrity constraint that is satisfied by all individuals and not by the outcome of
the aggregation.2 On the other hand, every instance of Definition 1 in binary aggregation
may represent an instance of the MEP, as the irrational outcome cannot have been voted
for by any of the individuals.

3.5 The Common Structure of Paradoxical Integrity Constraints

We can now make a crucial observation concerning the syntactic structure of the integrity
constraints that formalise the paradoxes we have presented so far.

First, for the case of the Condorcet paradox, we observe that the formula encoding the
transitivity of a preference relation is the implication pab ∧ pbc → pac. This formula is
equivalent to ¬pab ∨ ¬pbc ∨ pac, which is a clause of size 3, i.e., it is a disjunction of three
different literals. Second, the formula which appears in the translation of the discursive
dilemma is also equivalent to a clause of size 3, namely ¬pα ∨ ¬pβ ∨ ¬p¬(α∧β). Third, the
formula which formalises the majoritarian constraint underlying the Ostrogorski paradox,
is equivalent to the following conjunction of clauses of size 3:

(pA ∨ ¬pE ∨ ¬pF ) ∧ (pA ∨ ¬pE ∨ ¬pS) ∧ (pA ∨ ¬pS ∨ ¬pF ) ∧
∧(¬pA ∨ pE ∨ pF ) ∧ (¬pA ∨ pE ∨ pS) ∧ (¬pA ∨ pS ∨ pF )

Finally, the formula which exemplifies the MEP is equivalent to a negative clause of size 3.
Thus, we observe that the integrity constraints formalising the most classical

paradoxes in aggregation theory all feature a clause of size at least 3.3

4 The Majority Rule: Characterisation of Paradoxes
In this section we generalise the observation made in the previous section, and we provide a
full characterisation of the class of integrity constraints that are lifted by the majority rule
as those formulas that can be expressed as a conjunction of clauses of maximal size 2.

Under the majority rule, an issue is accepted if and only if a majority of the individuals
accept it. Let NB

j be the set of individuals that accept issue j in profile B. In case the
number of individuals is odd, the majority rule (Maj ) has a unique definition by accepting
issue j if and only if |NB

j | > n+1
2 . The case of an even number of individuals is more

problematic, to account for profiles in which exactly half of the individuals accept an issue

2Such a formula always exists: consider the disjunction of the formulas specifying the individual ballots.
3This observation is strongly related to a result proven by Nehring and Puppe (2007) in the framework

of judgment aggregation, which characterises the set of paradoxical agendas for the majority rule as those
agendas containing a minimal inconsistent subset of size at least 3.
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and exactly half reject it. We give two different definitions. The weak majority rule (W-
Maj ) accepts an issue if and only if |NB

j | > n
2 , favouring acceptance. The strict majority

rule (S-Maj ) accepts an issue if and only if |NB
j | > n+2

2 , favouring rejection.

4.1 Odd Number of Individuals: The Majority Rule

We begin with a base-line result that proves collective rationality of the majority rule in
case the integrity constraint is equivalent to a conjunction of 2-clauses. Let 2-clauses denote
the set of propositional formulas in LPS that are equivalent to a conjunction of clauses of
maximal size 2.4

Proposition 1. The majority rule is collectively rational with respect to 2-clauses.

Proof. Let us first consider the case of a single 2-clause IC = ℓj ∨ℓk, where ℓj and ℓk are two
literals, i.e., atoms or negated atoms. A paradoxical profile for the majority rule with respect
to this integrity constraint features a first majority of individuals not satisfying literal ℓj ,
and a second majority of individuals not satisfying literal ℓk. By the pigeonhole principle
these two majorities must have a non-empty intersection, i.e., there exists one individual
that does not satisfy both literals ℓj and ℓk, but this is incompatible with the requirement
that all individual ballots satisfy IC. To conclude the proof, it is sufficient to observe that
if IC is equivalent to a conjunction of two clauses, then all individuals satisfy each of these
clauses, and by the previous discussion all these clauses will also be satisfied by the outcome
of the majority rule.

An easy corollary of this proposition covers the case of just 2 issues:

Corollary 2. If |I| 6 2, then the majority rule is collectively rational with respect to all
integrity constraints IC ∈ LPS.

Proof. This follows immediately from Proposition 1 and from the observation that every
formula built with two propositional symbols is equivalent to a conjunction of clauses of size
at most 2 (e.g., its conjunctive normal form).

As we have remarked in Section 3.5, all classical paradoxes involving the majority rule can
be formalised in our framework by means of an integrity constraint that consists of (or
is equivalent to) one or more clauses with size bigger than two. We now generalise this
observation to a theorem that completes the characterisation of the integrity constraints
lifted by the majority rule. We need some preliminary definitions and a lemma.

Call a minimally falsifying partial assignment (mifap-assignment) for an integrity con-
straint IC an assignment to some of the propositional variables that cannot be extended
to a satisfying assignment, although each of its proper subsets can. We first prove a a cru-
cial lemma about mifap-assignments. Given a propositional formula ϕ, associate with each
mifap-assignment ρ for ϕ a conjunction Cρ = ℓ1 ∧ · · · ∧ ℓk, where ℓi = pi if ρ(pi) = 1 and
ℓi = ¬pi if ρ(pi) = 0 for all propositional symbols pi on which ρ is defined. The conjunction
Cρ represents the mifap-assignment ρ and it is clearly inconsistent with ϕ.

Lemma 3. Every non-tautological formula ϕ is equivalent to (
∧

ρ ¬Cρ) with ρ ranging over

all mifap-assignments of ϕ.5

Proof. Let A be a total assignment for ϕ. Suppose A 6|= ϕ, i.e., A is a falsifying assignment
for ϕ. Since ϕ is not a tautology there exists at least one such A. By sequentially deleting
propositional symbols from the domain of A we eventually find a mifap-assignment ρA for

4The set of 2-clauses can be equivalently defined by closing the set of 2-CNF under logical equivalence.
5Formulas ¬Cρ associated to mifap-assignments ρ for IC are also known as the prime implicates of IC.

Lemma 3 is a reformulation of the fact that a formula is equivalent to the conjunction of its prime implicates.
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ϕ included in A. Hence, A falsifies the conjunct associated with ρA, and thus the whole
formula (

∧
ρ ¬Cρ). Assume now A |= ϕ but A 6|= (

∧
ρ ¬Cρ). Then there exists a ρ such that

A |= Cρ. This implies that ρ ⊆ A, as Cρ is a conjunction. Since ρ is a mifap-assignment for
ϕ, i.e., it is a falsifying assignment for ϕ, this contradicts the assumption that A |= ϕ.

We are now able to provide a full characterisation of the set of integrity constraints that are
lifted by the majority rule in case the set of individuals is odd. Recall from Section 2 that
LF [F ] is the set of integrity constraints that are lifted by F .

Theorem 4. LF [Maj] = 2-clauses.6

Proof. One direction is entailed by Proposition 1: the majority rule is CR with respect to
formulas in 2-clauses. For the opposite direction assume that IC 6∈ 2-clauses, i.e., IC is
not equivalent to a conjunction of 2-clauses. We now build a paradoxical profile for the
majority rule. By Lemma 3 we know that IC is equivalent to the conjunction

∧
ρ ¬Cρ of all

mifap-assignments ρ for IC. We can therefore infer that at least one mifap-assignment ρ∗

has size > 2, for otherwise IC would be equivalent to a conjunction of 2-clauses.
Consider the following profile. Let y1, y2, y3 be three propositional variables that are

fixed by ρ∗. Let the first individual i1 accept the issue associated with y1 if ρ(y1) = 0,
and reject it otherwise, i.e., let b1,1 = 1 − ρ∗(y1). Furthermore, let i1 agree with ρ∗ on
the remaining propositional variables. By minimality of ρ∗, this partial assignment can be
extended to a satisfying assignment for IC, and let Bi1 be such an assignment. Repeat the
same construction for individual i2, this time changing the value of ρ∗ on y2 and extending
it to a satisfying assignment to obtain Bi2 . The same construction for i3, changing the value
of ρ∗ on issue y3 and extending it to a satisfying assignment Bi3 . Recall that there are at
least 3 individuals in N . If there are other individuals, let individuals i3s+1 have the same
ballot Bi1 , individuals i3s+2 ballot Bi2 and individuals i3s+3 ballot Bi3 . The basic profile
for 3 issues and 3 individuals is shown in the following table:

y1 y2 y3

i1 1-ρ∗(y1) ρ∗(y2) ρ∗(y3)
i2 ρ∗(y1) 1-ρ∗(y2) ρ∗(y3)
i3 ρ∗(y1) ρ∗(y2) 1-ρ∗(y3)

Maj ρ∗(y1) ρ∗(y2) ρ∗(y3)

As can be seen in the previous table, and easily generalised to the case of more than 3
individuals, there is a majority supporting ρ∗ on every variable on which ρ∗ is defined. Since
ρ∗ is a mifap-assignment and therefore cannot be extended to an assignment satisfying IC,
the majority rule in this profile is not collectively rational with respect to IC.

4.2 Even Number of Individuals: Weak and Strict Majority

While a result analogous to Theorem 4 for the case of an even number of individuals cannot
be proven, we provide the following result (proof is omitted for lack of space).

Proposition 5. W-Maj and S-Maj are CR with respect to 2-clauses in which one literal is
negative and one is positive. W-Maj is CR with respect to positive 2-clauses, in which all
literals occur positively. S-Maj is CR with respect to negative 2-clauses, in which all literals
occur negatively.

6This result may be considered a “syntactic counterpart” of a result by Nehring and Puppe (2007) in the
framework of judgment aggregation, characterising profiles on which the majority rule outputs a consistent
outcome. In the interest of space, we refer to our previous work (Grandi and Endriss, 2011) for a more
detailed discussion of the relation between the two results.
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5 Conclusions
The first conclusion that can be drawn from this paper dedicated to paradoxes of aggre-
gation is that the majority rule is to be avoided when dealing with collective choices over
multiple issues. This fact stands out as a counterpart to May’s Theorem (1952), which
proves that the majority rule is the only aggregation rule for a single binary issue that
satisfies a set of highly desirable conditions. The sequence of paradoxes we have analysed
in this paper shows that this is not the case when multiple issues are involved. While this
fact may not add anything substantially new to the existing literature, the wide variety of
paradoxical situations encountered in this paper stresses even further the negative features
of the majority rule on multi-issue domains.

A second conclusion is that most paradoxes of SCT share a common structure, and that
this structure is formalised by our Definition 1, which stands out as a truly general definition
of paradox in aggregation theory. Moreover, by analysing the integrity constraints that
underlie some of the most classical paradoxes, we were able to identify a common syntactic
feature of paradoxical constraints. Starting from this observation, we have provided a full
characterisation of the integrity constraints that are lifted by the majority rule, as those
formulas that are equivalent to a conjunction of clauses of size at most 2.

The paradoxical situations presented in this paper constitute a fragment of the problems
that can be encountered in the formalisation of collective choice problems. For instance,
paradoxical situations concerning voting procedures (Nurmi, 1999), which take as input a
set of preferences and output a set of winning candidates, are not included in our analysis.

Recent work on paradoxes of aggregation also pointed at similarities within different
frameworks, e.g., comparing the Ostrogorski paradox with the discursive dilemma (Pigozzi,
2005), or proposing a geometric approach for the study of paradoxical situations (Eckert
and Klamler, 2009). The MEP gives rise to a different problem than that of collective
rationality, not being directly linked to an integrity constraint established in advance. The
problem formalised by the MEP is rather the compatibility of the outcome of aggregation
with the individual ballots. Individuals in such a situation may be forced to adhere to
a collective choice which, despite it being rational, they do not perceive as representing
their views (Grandi and Pigozzi, 2012). Some answers to the problem raised by the multiple
election paradox have already been proposed in the literature on AI, by for instance devising
a suitable sequence of local elections (Xia et al., 2011), or by approximating the collective
outcome (Conitzer and Xia, 2012).

Elections over multi-issue domains cannot be escaped: not only do they represent a
model for the aggregation of more complex objects like preferences and judgments, but they
also stand out as one of the biggest challenges to the design of more complex automated
systems for collective decision making. A crucial problem in the modelling of real-world
situations of collective choice is that of identifying the set of issues that best represent a
given domain of aggregation, and devising an integrity constraint that models correctly the
correlations between those issues. This problem obviously represents a serious obstacle to
a mechanism designer, and is moreover open to manipulation. However, a promising direc-
tion for future work consists in structuring collective decision problems with more detailed
models before the aggregation takes place, e.g., by discovering a shared order of preferen-
tial dependencies between issues (Lang and Xia, 2009; Airiau et al., 2011), facilitating the
definition of collective choice procedures on complex domains without having to elicit the
full preferences of individuals. Such models can be employed in the design and the imple-
mentation of automated decision systems, in which a safe aggregation, i.e., one that avoids
paradoxical situations, is of the utmost necessity.
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The Complexity of Online Manipulation of Sequential
Elections

Edith Hemaspaandra, Lane A. Hemaspaandra, and Jörg Rothe

Abstract

Most work on manipulation assumes that all preferences are known to the manipulators. How-
ever, in many settings elections are open and sequential, and manipulators may know the al-
ready cast votes but may not know the future votes. We introduce a framework, in which
manipulators can see the past votes but not the future ones, to model online coalitional manip-
ulation of sequential elections, and we show that in this setting manipulation can be extremely
complex even for election systems with simple winner problems. Yet we also show that for
some of the most important election systems such manipulation is simple in certain settings.
This suggests that when using sequential voting, one shouldpay great attention to the details
of the setting in choosing one’s voting rule.
Among the highlights of our classifications are: We show that, depending on the size of the
manipulative coalition, the online manipulation problem can be complete for each level of the
polynomial hierarchy or even for PSPACE. And we obtain the most dramatic contrast to date
between the nonunique-winner and unique-winner models: Online weighted manipulation for
plurality is in P in the nonunique-winner model, yet is coNP-hard (constructive case) and NP-
hard (destructive case) in the unique-winner model.

1 Introduction

Voting is a widely used method for preference aggregation and decision-making. In particular,
strategicvoting (ormanipulation) has been studied intensely in social choice theory (starting with
the celebrated work of Gibbard [Gib73] and Satterthwaite [Sat75]) and, in the rapidly emerging area
of computationalsocial choice, also with respect to its algorithmic properties and computational
complexity (starting with the seminal work of Bartholdi, Tovey, and Trick [BTT89]; see the recent
surveys by Faliszewski et al. [FP10, FHH10, FHHR09]). This computational aspect is particularly
important in light of the many applications of voting in computer science, ranging from meta-search
heuristics for the internet [DKNS01], to recommender systems [GMHS99] and multiagent systems
in artificial intelligence (see the survey by Conitzer [Con10]).

Most of the previous work on manipulation, however, is concerned with voting where the ma-
nipulators know the nonmanipulative votes. Far less attention has been paid (see the related work
below) to manipulation in the midst of elections that are modeled as dynamic processes.

We introduce a novel framework for online manipulation, where voters vote in sequence and the
current manipulator, who knows the previous votes and whichvoters are still to come but does not
know their votes, must decide—right at that moment—what the“best” vote to cast is. So, while other
approaches to sequential voting are game-theoretic, stochastic, or axiomatic in nature (again, see the
related work), our approach to manipulation of sequential voting is shaped by the area of “online
algorithms” [BE98], in the technical sense of a setting in which one (for us, each manipulative voter)
is being asked to make a manipulation decision just on the basis of the information one has in one’s
hands at the moment even though additional information/system evolution may well be happening
down the line. In this area, there are different frameworks for evaluation. But the most attractive one,
which pervades the area as a general theme, is the idea that one may want to “maxi-min” things—
one may want to take the action that maximizes the goodness ofthe set of outcomes that one can
expect regardless of what happens down the line from one time-wise. For example, if the current
manipulator’s preferences are Alice> Ted> Carol> Bob and if she can cast a (perhaps insincere)
vote that ensures that Alice or Ted will be a winner no matter what later voters do, and there is no
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vote she can cast that ensures that Alice will always be a winner, this maxi-min approach would say
that that vote is a “best” vote to cast.

It will perhaps be a bit surprising to those familiar with online algorithms and competitive anal-
ysis that in our model of online manipulation we will not use a(competitive)ratio. The reason is
that voting commonly uses anordinal preference model, in which preferences are total orders of the
candidates. It would be a severely improper step to jump fromthat to assumptions about intensity
of preferences and utility, e.g., to assuming that everyonelikes hernth-to-least favorite candidate
exactlyn times more than she likes her least favorite candidate.

Related Work. Conitzer and Xia [XC10a] (see also the related paper by Desmedt and Elkind
[DE10]) define and study the Stackelberg voting game (also quite naturally called, in an earlier paper
that mostly looked at two candidates, the roll-call voting game [Slo93]). This basically is an elec-
tion in which the voters vote in order,and the preferences are common knowledge—everyone knows
everyone else’s preferences, everyone knows that everyoneknows everyone else’s preferences, and
so on out to infinity. Their analysis of this game is fundamentally game-theoretic; with such com-
plete knowledge in a sequential setting, there is preciselyone (subgame perfect Nash) equilibrium,
which can be computed from the back end forward. Under their work’s setting and assumptions,
for bounded numbers of manipulators manipulation is in P, but we will show that in our model even
with bounded numbers of manipulators manipulation sometimes (unless P= NP) falls beyond P.

The interesting “dynamic voting” work of Tennenholtz [Ten04] investigates sequential voting,
but focuses on axioms and voting rules rather than on coalitions and manipulation. Much heavily
Markovian work studies sequential decision-making and/ordynamically varying preferences (see
[PP11] and the references therein); our work in contrast is nonprobabilistic and focused on the com-
plexity of coalitional manipulation. Also somewhat related to, but quite different from, our work
is the work on possible and necessary winners. The seminal paper on that is due to Konczak and
Lang [KL05], and more recent work includes [XC08, BHN09, BBF10, Bet10, BD10, CLM+12,
BR12]; the biggest difference is that those are, loosely, one-quantifier settings, but the more dy-
namic setting of online manipulation involves numbers of quantifiers that can grow with the input
size. Another related research line studies multi-issue elections [XC10b, XCL10, XCL11, XLC11];
although there the separate issues may run in sequence, eachissue typically is voted on simultane-
ously and with preferences being common knowledge.

2 Preliminaries

Elections. A (standard, i.e., simultaneous) election(C,V) is specified by a setC of candidates and
a listV, where we assume that each element inV is a pair(v, p) such thatv is a voter name andp is
v’s vote. How the votes inV are represented depends on the election system used—we assume, as is
required by most systems, votes to be total preference orders overC. For example, ifC = {a,b,c},
a vote of the formc > a > b means that this voter (strictly) prefersc to a anda to b.

We introduce election snapshots to capture sequential election scenarios as follows. LetC be a
set of candidates and letu be (the name of) a voter. Anelection snapshot for C and uis specified
by a tripleV = (V<u,u,Vu<) consisting of all voters in the order they vote, along with, for each
voter beforeu (i.e., those inV<u), the vote she cast, and for each voter afteru (i.e., those inVu<),
a bit specifying if she is part of the manipulative coalition(to which u always belongs). That is,
V<u = ((v1, p1),(v2, p2), . . . ,(vi−1, pi−1)), where the voters namedv1,v2, . . . ,vi−1 (including perhaps
manipulators and nonmanipulators) have already cast theirvotes (preference orderp j being cast
by v j ), andVu< = ((vi+1,xi+1),(vi+2,xi+2), . . . ,(vn,xn)) lists the names of the voters still to cast
their votes, in that order, and wherex j = 1 if v j belongs to the manipulative coalition andx j = 0
otherwise.
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Scoring Rules. A scoring rulefor m candidates is given by a scoring vectorα = (α1,α2, . . . ,αm)
of nonnegative integers such thatα1 ≥ α2 ≥ ·· · ≥ αm. For an election(C,V), each candidatec ∈ C
scoresαi points for each vote that ranksc in the ith position. Letscore(c) be the total score of
c ∈ C. All candidates scoring the most points are winners of(C,V). Some of the most popular
voting systems arek-approval(especiallyplurality, aka 1-approval) andk-veto(especiallyveto, aka
1-veto). Theirm-candidate,m≥ k, versions are defined by the scoring vectors(1, . . . ,1︸ ︷︷ ︸

k

,0, . . . ,0︸ ︷︷ ︸
m−k

) and

(1, . . . ,1︸ ︷︷ ︸
m−k

,0, . . . ,0︸ ︷︷ ︸
k

). Whenm is not fixed, we omit the phrase “m-candidate.”

Manipulation. The(standard) weighted coalitional manipulation problem[CSL07],E -Weighted-
Coalitional-Manipulation (abbreviated byE -WCM), for any election systemE is defined as follows:
Given a candidate setC, a listSof nonmanipulative voters each having a nonnegative integer weight,
a list T of the nonnegative integer weights of the manipulative voters (whose preferences overC are
unspecified), withS∩T = /0, and a distinguished candidatec ∈ C, can the manipulative votesT be
set such thatc is a (or the)E winner of(C,S∪T)?

Asking whetherc can be made “a winner” is called the nonunique-winner model and is the
model of all notions in this paper unless mentioned otherwise. If one asks whetherc can be made a
“one and only winner,” that is called the unique-winner model. We also use theunweightedvariant,
where each vote has unit weight, and writeE -UCM as a shorthand. Note thatE -UCM with asingle
manipulator (i.e.,‖T‖ = 1 in the problem instance) is the manipulation problem originally studied
in [BTT89, BO91]. Conitzer, Sandholm, and Lang [CSL07] alsointroduced thedestructivevariants
of these manipulation problems, where the goal is not to makec win but to ensure thatc is not a
winner, and we denote the corresponding problems byE -DWCM andE -DUCM. Finally, we write
E -WC6= /0M, E -UC6= /0M, E -DWC6= /0M, andE -DUC6= /0M to indicate that the problem instances are
required to have a nonempty coalition of manipulators.

Complexity-Theoretic Background. We assume the reader is familiar with basic complexity-
theoretic notions such as the complexity classes P and NP, the class FP of polynomial-time com-
putable functions, polynomial-time many-one reducibility (≤p

m), and hardness and completeness
with respect to≤p

m for a complexity class.
Meyer and Stockmeyer [MS72] and Stockmeyer [Sto76] introduced and studied the polynomial

hierarchy, PH=
⋃

k≥0 Σp
k , whose levels are inductively defined byΣp

0 = P andΣp
k+1 = NPΣp

k , and
their co-classes,Πp

k = coΣp
k for k ≥ 0. They also characterized these levels by polynomially length-

bounded alternating existential and universal quantifiers. PNP is the class of problems solvable
in deterministic polynomial time with access to an NP oracle, and PNP[1] is the restriction of PNP

where only one oracle query is allowed. Note that P⊆ NP∩coNP⊆ NP∪coNP⊆ PNP[1] ⊆ PNP ⊆
Σp

2 ∩Πp
2 ⊆ Σp

2 ∪Πp
2 ⊆ PH⊆ PSPACE, where PSPACE is the class of problems solvable in polynomial

space. Thequantified boolean formula problem, QBF, is a standard PSPACE-complete problem.
Define QBFk (Q̃BFk) to be the restriction of QBF with at mostk quantifiers that start with∃ (∀) and
then alternate between∃ and∀, and we assume that each∃ and∀ quantifies over a set of boolean
variables. For eachk ≥ 1, QBFk is Σp

k -complete and̃QBFk is Πp
k-complete.

Proofs omitted due to space limitations can be found in the technical report version [HHR12a].

3 Our Model of Online Manipulation

The core of our model of online manipulation in sequential voting is what we call themagnifying-
glass moment, namely, the moment at which a manipulatoru is the one who is going to vote, is
aware of what has happened so far in the election (and which voters are still to come, but in general
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not knowing what they want, except in the case of voters, if any, who are coalitionally linked tou).
In this moment,u seeks to “figure out” what the “best” vote to cast is. We will call the information
available in such a moment anonline manipulation setting(OMS, for short) and define it formally
as a tuple(C,u,V,σ ,d), whereC is a set of candidates;u is a distinguished voter;V = (V<u,u,Vu<)
is an election snapshot forC andu; σ is the preference order of the manipulative coalition to which
u belongs; andd ∈ C is a distinguished candidate. Given an election systemE , define the prob-
lem online-E -Unweighted-Coalitional-Manipulation (abbreviated by online-E -UCM), as follows:
Given an OMS(C,u,V,σ ,d) as described above, does there exist some vote thatu can cast (assum-
ing support from the manipulators coming afteru) such that no matter what votes are cast by the
nonmanipulators coming afteru, there exists somec ∈ C such thatc ≥σ d andc is anE winner of
the election? By “support from the manipulators coming after u” we mean thatu’s coalition partners
coming afteru, when they get to vote, will use their then-in-hand knowledge of all votes up to then
to helpu reach her goal: By a joint effortu’s coalition can ensure that theE winner set will always
include a candidate liked by the coalition as much as or more thand, even when the nonmanipu-
lators take their strongest action so as to prevent this. Note that this candidate,c in the problem
description, may be different based on the nonmanipulators’ actions. (Nonsequential manipulation
problems usually focus on whether a single candidate can be made to win, but in our setting, this
“that person or better” focus is more natural.) For the case of weighted manipulation, each voter
also comes with a nonnegative integer weight. We denote thisproblem by online-E -WCM.

We write online-E -UCM[k] in the unweighted case and online-E -WCM[k] in the weighted case
to denote the problem when the number of manipulators fromu onward is restricted to be at mostk.

Our corresponding destructive problems are denoted by online-E -DUCM, online-E -DWCM,
online-E -DUCM[k], and online-E -DWCM[k]. In online-E -DUCM we ask whether the given current
manipulatoru (assuming support from the manipulators after her) can casta vote such that no matter
what votes are cast by the nonmanipulators afteru, no c ∈ C with d ≥σ c is anE winner of the
election, i.e.,u’s coalition can ensure that theE winner set never includesd or any even more hated
candidate. The other three problems are defined analogously.

Note that online-E -UCM generalizes the original unweighted manipulation problem with a sin-
gle manipulator as introduced by Bartholdi, Tovey, and Trick [BTT89]. Indeed, their manipulation
problem in effect is the special case of online-E -UCM when restricted to instances where there
is just one manipulator, she is the last voter to cast a vote, and d is the coalition’s most preferred
candidate. Similarly, online-E -WCM generalizes the (standard) coalitional weighted manipulation
problem (for nonempty coalitions of manipulators). Indeed, that traditional manipulation problem
is the special case of online-E -WCM, restricted to instances where only manipulators comeafteru
andd is the coalition’s most preferred candidate. If we take an analogous approach except withd
restricted now to being the most hated candidate of the coalition, we generalize the corresponding
notions for the destructive cases. We summarize these observations as follows.

Proposition 1 For each election systemE , it holds that (1) E -UC6= /0M ≤p
m online-E -UCM,

(2) E -WC6= /0M ≤p
m online-E -WCM, (3) E -DUC6= /0M ≤p

m online-E -DUCM, and
(4) E -DWC6= /0M ≤p

m online-E -DWCM.

Corollary 2 below follows immediately from the above proposition.

Corollary 2 (1) For each election systemE such that the (unweighted) winner problem is solv-
able in polynomial time, it holds thatE -UCM ≤p

m online-E -UCM. (2) For each election sys-
tem E such that the weighted winner problem is solvable in polynomial time, it holds that
E -WCM ≤p

m online-E -WCM. (3) For each election systemE such that the winner problem is
solvable in polynomial time, it holds thatE -DUCM ≤p

m online-E -DUCM. (4) For each election
systemE such that the weighted winner problem is solvable in polynomial time, it holds that
E -DWCM ≤p

m online-E -DWCM.
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We said above that, by default, we will use thenonunique-winner modeland all the above prob-
lems are defined in this model. However, we will also have someresults in theunique-winner
model, which will, here, sharply contrast with the correspondingresults in the nonunique-winner
model. To indicate that a problem, such as online-E -UCM, is in the unique-winner model, we write
online-E -UCMUW and ask whether the current manipulatoru (assuming support from the manipu-
lators coming after her) can ensure that there exists somec ∈ C such thatc≥σ d andc is the unique
E winnerof the election.

4 General Results

Theorem 3 (1) For each election systemE whose weighted winner problem can be solved in poly-
nomial time,1 the problemonline-E -WCM is in PSPACE. (2) For each election systemE whose
winner problem can be solved in polynomial time, the problemonline-E -UCM is in PSPACE.
(3) There exists an election systemE with a polynomial-time winner problem such that the problem
online-E -UCM is PSPACE-complete. (4) There exists an election systemE with a polynomial-time
weighted winner problem such that the problemonline-E -WCM is PSPACE-complete.

PROOF. The proof of the first statement (which is analogous to the proof of the first statement in
Theorem 4) follows from the easy fact that online-E -WCM can be solved by an alternating Turing
machine in polynomial time, and thus, due to the characterization of Chandra, Kozen, and Stock-
meyer [CKS81], by a deterministic Turing machine in polynomial space. The proof of the second
case is analogous.

We construct an election systemE establishing the third statement. Let(C,u,V,σ ,d) be a given
input.E will look at the lexicographically least candidate name inC. Letc represent that name string
in some fixed, natural encoding.E will check if c represents atiered boolean formula, by which
we mean one whose variable names are all of the formxi, j (which really means a direct encoding
of a string, such as “x4,9”); the i, j fields must all be positive integers. Ifc does not represent such
a tiered formula, everyone loses on that input. Otherwise (i.e., if c represents a tiered formula),
let width be the maximumj occurring as the second subscript in any variable name (xi, j ) in c, and
let blocksbe the maximumi occurring as the first subscript in any variable name inc. If there
are fewer thanblocksvoters inV, everyone loses. Otherwise, if there are fewer than 1+ 2 · width
candidates inC, everyone loses (this is so that each vote will involve enough candidates that it can
be used to set all the variables in one block). Otherwise, if there exists somei, 1 ≤ i ≤ blocks,
such that for noj does the variablexi, j occur inc, then everyone loses. Otherwise, order the voters
from the lexicographically least to the lexicographicallygreatest voter name. If distinct voters are
allowed to have the same name string (e.g., John Smith), we break ties by sorting according to the
associated preference orders within each group of tied voters (second-order ties are no problem,
as those votes are identical, so any order will have the same effect). Now, the first voter in this
order will assign truth values to all variablesx1,∗, the second voter in this order will assign truth
values to all variablesx2,∗, and so on up to theblocksth voter, who will assign truth values to all
variablesxblocks,∗.

How do we get those assignments from these votes? Consider a vote whose total order overC is
σ ′ (and recall that‖C‖ ≥ 1+2·width). Removec from σ ′, yieldingσ ′′. Let c1 <σ ′′ c2 <σ ′′ · · · <σ ′′

c2·width be the 2·width least preferred candidates inσ ′′. We build a vector in{0,1}width as follows:
Theℓth bit of the vector is 0 if the string that namesc1+2(ℓ−1) is lexicographically less than the string
that namesc2ℓ, and this bit is 1 otherwise.

Let bi denote the vector thus built from theith vote (in the above ordering), 1≤ i ≤ blocks. Now,
for each variablexi, j occurring inc, assign to it the value of thejth bit of bi , where 0 representsfalse

1We mention in passing here, and henceforward we will not explicitly mention it in the analogous cases, that the claim
clearly remains true even when “polynomial time” is replaced by the larger class “polynomial space.”

231



and 1 representstrue. We have now assigned all variables ofc, soc evaluates to eithertrueor false.
If c evaluates totrue, everyone wins, otherwise everyone loses. This completes the specification of
the election systemE . E has a polynomial-time winner problem, as any boolean formula, given an
assignment to all its variables, can easily be evaluated in polynomial time.

To show PSPACE-hardness, we≤p
m-reduce the PSPACE-complete problem QBF to the problem

online-E -UCM. Let y be an instance of QBF. We transformy into an instance of the form

(∃x1,1,x1,2, . . . ,x1,k1)(∀x2,1,x2,2, . . . ,x2,k2) · · · (Qℓ xℓ,1,xℓ,2, . . . ,xℓ,kℓ
)

[Φ(x1,1,x1,2, . . . ,x1,k1,x2,1,x2,2, . . . ,x2,k2, . . . ,xℓ,1,xℓ,2, . . . ,xℓ,kℓ
)]

in polynomial time, whereQℓ = ∃ if ℓ is odd andQℓ = ∀ if ℓ is even, thexi, j are boolean variables,Φ
is a boolean formula, and for eachi, 1≤ i ≤ ℓ, Φ contains at least one variable of the formxi,∗. This
quantified boolean formula is≤p

m-reduced to an instance(C,u,V,σ ,c) of online-E -UCM as follows:

1. C contains a candidate whose name,c, encodesΦ, and in additionC contains 2·
max(k1, . . . ,kℓ) other candidates, all with names lexicographically greater thanc—for speci-
ficity, let us say their names are the 2· max(k1, . . . ,kℓ) strings that immediately followc in
lexicographic order.

2. V containsℓ voters, 1,2, . . . , ℓ, who vote in that order, whereu = 1 is the distinguished voter
and all odd voters belong tou’s manipulative coalition and all even voters do not. The voter
names will be lexicographically ordered by their number, 1 is least andℓ is greatest.

3. The manipulators’ preference orderσ is to like candidates in the opposite of their lexico-
graphic order. In particular,c is the coalition’s most preferred candidate.

This is a polynomial-time reduction. It follows immediately from this construction and the definition
of E thaty is in QBF if and only if(C,u,V,σ ,c) is in online-E -UCM.

To prove the last statement, simply letE be the election system that ignores the weights of the
voters and then works exactly as the previous election system. ❑

The following theorem shows that for bounded numbers of manipulators the complexity crawls
up the polynomial hierarchy. The theorem’s proof is based onthe proof given above, except we
need to use the alternating quantifier characterization dueto Meyer and Stockmeyer [MS72] and
Stockmeyer [Sto76] for the upper bound and to reduce from theΣp

2k-complete problem QBF2k rather
than from QBF for the lower bound.

Theorem 4 Fix any k≥ 1. (1) For each election systemE whose weighted winner problem can be
solved in polynomial time, the problemonline-E -WCM[k] is in Σp

2k. (2) For each election systemE
whose winner problem can be solved in polynomial time, the problemonline-E -UCM[k] is in Σp

2k.
(3) There exists an election systemE with a polynomial-time winner problem such that the problem
online-E -UCM[k] is Σp

2k-complete. (4) There exists an election systemE with a polynomial-time
weighted winner problem such that the problemonline-E -WCM[k] is Σp

2k-complete.

Note that the (constructive) online manipulation problemsconsidered in Theorems 3 and 4 are
about ensuring that the winner set always contains some candidate in theσ segment stretching
from d up to the top-choice. Now consider “pinpoint” variants of these problems, where we ask
whether the distinguished candidated herself can be guaranteed to be a winner (for nonsequential
manipulation, that version indeed is the one commonly studied). Denote thepinpoint variant of,
e.g., online-E -UCM[k] by pinpoint-online-E -UCM[k]. Since our hardness proofs in Theorems 3
and 4 make all or no one a winner (and as the upper bounds in these theorems also can be seen to
hold for the pinpoint variants), they establish the corresponding completeness results also for the
pinpoint cases. We thus have completeness results for PSPACE andΣp

2k for eachk ≥ 1. What about
the classesΣp

2k−1 andΠp
k , for eachk ≥ 1? We can get completeness results for all these classes
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by defining appropriate variants of online manipulation problems. Let OMP be any of the online
manipulation problems considered earlier, including the pinpoint variants mentioned above. Define
freeform-OMP to be just as OMP, except we no longer require the distinguished voteru to be part
of the manipulative coalition—u can be in or can be out, and the input must specify, foru and
all voters afteru, which ones are the members of the coalition. The question offreeform-OMP is
whether it is true that for all actions of the nonmanipulators at or afteru (for specificity as to this
problem: ifu is a nonmanipulator, it will in the input come with a preference order) there will be
actions (each taken with full information on cast-before-them votes) of the manipulative coalition
members such that their goal of making some candidatec with c ≥σ d (or exactlyd, in the pinpoint
versions) a winner is achieved. Then, whenever Theorem 4 establishes aΣp

2k or Σp
2k-completeness

result for OMP, we obtain aΠp
2k+1 or Πp

2k+1-completeness result for freeform-OMP and fork = 0
manipulators we obtainΠp

1 = coNP or coNP-completeness results. Similarly, the PSPACE and
PSPACE-completeness results for OMP we established in Theorem 3 also can be shown true for
freeform-OMP.

On the other hand, if we define a variant of OMP by requiring thefinal voter to always be a
manipulator, the PSPACE and PSPACE-completeness results for OMP from Theorem 3 remain true
for this variant; theΣp

2k andΣp
2k-completeness results for OMP from Theorem 4 change toΣp

2k−1 and
Σp

2k−1-completeness results for this variant; and the aboveΠp
2k+1 andΠp

2k+1-completeness results
for freeform-OMP change toΠp

2k andΠp
2k-completeness results for this variant,k ≥ 1.

Finally, as an open direction (and related conjecture), we define for each of the previously con-
sidered variants of online manipulation problems afull profile version. For example, for a given
election systemE , fullprofile-online-E -UCM[k] is the function problem that, given an OMSwith-
out any distinguished candidate,(C,u,V,σ), returns a length‖C‖ bit-vector that for each candidate
d ∈ C says if the answer to “(C,u,V,σ ,d) ∈ online-E -UCM[k]?” is “yes” (1) or “no” (0). The
function problem fullprofile-pinpoint-online-E -UCM[k] is defined analogously, except regarding
pinpoint-online-E -UCM[k].

It is not hard to prove, as a corollary to Theorem 4, that:

Theorem 5 For each election systemE whose winner problem can be solved in polynomial time,
(1) fullprofile-online-E -UCM[k] is in FPΣp

2k[O(logn)], the class of functions computable in polynomial
time given Turing access to aΣp

2k oracle withO(logn) queries allowed on inputs of size n, and

(2) fullprofile-pinpoint-online-E -UCM[k] is in FP
Σp

2k
tt , the class of functions computable in polyno-

mial time given truth-table access to aΣp
2k oracle.

We conjecture that both problems are complete for the corresponding class under metric reduc-
tions [Kre88], for suitably defined election systems with polynomial-time winner problems.

If the full profile version of an online manipulation problemcan be computed efficiently, we
clearly can also easily solve each of the decision problems involved by looking at the corresponding
bit of the length‖C‖ bit-vector. Conversely, if there is an efficient algorithm for an online manip-
ulation decision problem, we can easily solve its full profile version by running this algorithm for
each candidate in turn. Thus, we will state our later resultsonly for online manipulation decision
problem.

Proposition 6 Let OMP be any of the online manipulation decision problems defined above. Then
fullprofile-OMP is in FP if and only ifOMP is in P.

5 Results for Specific Natural Voting Systems

The results of the previous section show that, simply put, even for election systems with polynomial-
time winner problems, online manipulation can be tremendously difficult. But what aboutnatural
election systems? We will now take a closer look at importantnatural systems. We will show that
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online manipulation can be easy for them, depending on whichparticular problem is considered, and
we will also see that the constructive and destructive casescan differ sharply from each other and
that it really matters whether we are in the nonunique-winner model or the unique-winner model.

Theorem 7 (1) online-plurality-WCM (and thus also online-plurality-UCM) is in P.
(2) online-plurality-DWCM (and thus alsoonline-plurality-DUCM) is in P.

Theorem 7 refers to problems in the nonunique-winner model.By contrast, we now show that
online manipulation for weighted plurality voting in theunique-winnermodel is coNP-hard in the
constructivecase and is NP-hard in thedestructivecase. This is perhaps the most dramatic, broad
contrast yet between the nonunique-winner model and the unique-winner model, and is the first such
contrast involving plurality. The key other NP-hardness versus P result for the nonunique-winner
model versus the unique-winner model is due to Faliszewski,Hemaspaandra, and Schnoor [FHS08],
but holds only for (standard) weighted manipulation for Copelandα elections (0< α < 1) with
exactly three candidates; for fewer than three both cases there are in P and for more than three
both are NP-complete. In contrast, the P results of Theorem 7hold for all numbers of candidates,
and the NP-hardness and coNP-hardness results of Theorem 8 hold whenever there are at least two
candidates.

Theorem 8 (1) The problemonline-plurality-DWCMUW is NP-hard, even when restricted to only
two candidates (and this also holds when restricted to three, four, ... candidates). (2) The problem
online-plurality-WCMUW is coNP-hard, even when restricted to only two candidates (and thisalso
holds when restricted to three, four, ... candidates).

PROOF. For the first statement, we prove NP-hardness of online-plurality-DWCMUW by a reduction
from the NP-complete problem Partition: Given a nonempty sequence(w1,w2, . . . ,wz) of positive
integers such that∑z

i=1wi = 2W for some positive integerW, does there exist a setI ⊆ {1,2, . . . ,z}
such that∑i∈I wi = W? Let m ≥ 2. Given an instance(w1,w2, . . . ,wz) of Partition, construct an
instance({c1, . . . ,cm},u1,V,c1 > c2 > · · · > cm,c1) of online-plurality-DWCMUW such thatV con-
tainsm+ z− 2 votersv1, . . . ,vm−2,u1, . . . ,uz who vote in that order. For 1≤ i ≤ m− 2, vi votes
for ci and has weight(m− 1)W − i, and for 1≤ i ≤ z, ui is a manipulator of weight(m− 1)wi . If
(w1,w2, . . . ,wz) is a yes-instance of Partition, the manipulators can give(m− 1)W points to both
cm−1 andcm, and zero points to the other candidates. Socm−1 andcm are tied for the most points
and there is no unique winner. On the other hand, the only way to avoid having a unique winner in
our online-plurality-DWCMUW instance is if there is a tie for the most points. The only candidates
that can tie arecm−1 andcm, since all other pairs of candidates have different scores modulom−1. It
is easy to see thatcm−1 andcm tie for the most points only if they both get exactly(m−1)W points.
It follows that(w1,w2, . . . ,wz) is a yes-instance of Partition.

For the second part, we adapt the above construction to yielda reduction from Partition to the
complement of online-plurality-WCMUW. Given an instance(w1,w2, . . . ,wz) of Partition, construct
an instance({c1, . . . ,cm}, û,V,c1 > c2 > · · · > cm,cm) of online-plurality-WCMUW such thatV con-
tainsm+ z−1 votersv1, . . . ,vm−2, û,u1, . . . ,uz who vote in that order. For 1≤ i ≤ m−2, vi has the
same vote and the same weight as above,û is a manipulator of weight 0, and for 1≤ i ≤ z, ui has the
same weight as above, but in contrast to the case above,ui is now a nonmanipulator. By the same
argument as above, it follows that(w1,w2, . . . ,wz) is a yes-instance of Partition if and only if the
nonmanipulators can ensure that there is no unique winner, which in turn is true if and only if the
manipulator can not ensure that there is a unique winner. ❑

Theorem 9 For each scoring ruleα = (α1, . . . ,αm), online-α-WCM is in P if α2 = αm and is
NP-hard otherwise.

Theorem 10 For each k,online-k-approval-UCM andonline-k-veto-UCM are inP.
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PROOF. Consider 1-veto. Given an online-1-veto-UCM instance(C,u,V,σ ,d), the best strat-
egy for the manipulators fromu onward (letn1 denote how many of these there are) is to mini-
mize maxc<σ d score(c). Let n0 denote how many nonmanipulators come afteru. We claim that
(C,u,V,σ ,d) is a yes-instance if and only ifd is ranked last inσ or there exists a threshold
t such that (1)∑c<σ d(maxscore(c) ⊖ t) ≤ n1 (so those manipulators can ensure that all can-
didates ranked<σ d score at mostt points), where “⊖” denotes proper subtraction (x ⊖ y =
max(x− y,0)) andmaxscore(c) is c’s score when none of the voters fromu onward vetoc, and
(2) ∑c≥σ d(maxscore(c)⊖ (t −1)) > n0 (so those nonmanipulators cannot prevent that some candi-
date ranked≥σ d scores at leastt points).

For 1-veto under the above approach, in each situation wherethe remaining manipulators can
force success against all actions of the remaining nonmanipulators,u (right then as she moves) can
set herand all future manipulators’ actionsso as to force success regardless of the actions of the
remaining nonmanipulators. Fork-approval andk-veto,k ≥ 2, that approach provably cannot work
(as will be explained right after this proof); rather, we sometimes need later manipulators’ actions
to be shaped by intervening nonmanipulators’ actions. Still, the following P-time algorithm, which
works for all k, tells whether success can be forced. As a thought experiment, for each voterv
from u onwards in sequence do this: Order the candidates in{c|c ≥σ d} from most to least current
approvals, breaking ties arbitrarily, and postpend the remaining candidates ordered from least to
most current approvals. Letℓ bek for k-approval and‖C‖−k for k-veto. Cast the voter’sℓ approvals
for the firstℓ candidates in this order ifv is a manipulator, and otherwise for the lastℓ candidates
in this order. Success can be forced against perfect play if and only if this P-time process leads to
success. ❑

In the above proof we said that the approach for 1-veto (in which the current manipulator can
set her and all future manipulators’ actions so as to force success independent of the actions of
intervening future nonmanipulators) provably cannot workfor k-approval andk-veto,k ≥ 2. Why
not? Consider an OMS(C,u,V,σ ,d) with candidate setC = {c1,c2, . . . ,c2k}, σ being given by
c1 >σ c2 >σ · · · >σ c2k, andd = c1. So,u’s coalition wants to enforce thatc1 is a winner. Sup-
pose thatv1 has already cast her vote, now it’sv2 = u’s turn, and the order of the future voters is
v3,v4, . . . ,v2 j , where allv2i, 2≤ i ≤ j, belong tou’s coalition, and allv2i−1 do not. Suppose thatv1

was approving of thek candidates inC1 ⊆ {c2,c3, . . . ,c2k}, ‖C1‖ = k. Thenu must approve of the
k candidates inC1, to ensure thatc1 draws level with the candidates inC1 and none of these can-
didates can gain another point. Next, suppose that nonmanipulatorv3 approves of thek candidates
in C3 ⊆ {c2,c3, . . . ,c2k}, ‖C3‖ = k. Thenv4, the next manipulator, must approve of all candidates
in C3, to ensure thatc1 draws level with the candidates inC3 and none of these candidates can gain
another point. This process is repeated until the last nonmanipulator,v2 j−1, approves of the candi-
dates inC2 j−1 ⊆ {c2,c3, . . . ,c2k}, ‖C2 j−1‖ = k, andv2 j , the final manipulator, is forced to counter
this by approving of all candidates inC2 j−1, to ensure thatc1 is a winner. This shows that there can
be arbitrarily long chains such that the action of each manipulator afteru depends on the action of
the preceding intervening nonmanipulator.

We now turn to online weighted manipulation for veto when restricted to three candidates. We
denote this restriction of online-veto-WCM by online-veto|3-WCM.

Theorem 11 online-veto|3-WCM is PNP[1]-complete.

Dropping the restriction to three candidates, we obtain thefollowing result, which places
this problem far below the general PSPACE bound from earlierin this paper. Immediately
from Theorems 10 and 12, we have that the full profile variantsof online-k-veto-UCM and
online-k-approval-UCM are in FP and that fullprofile-online-veto-WCM is in FPNP.

Theorem 12 online-veto-WCM is in PNP.
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6 Uncertainty About the Order of Future Voters

So far, we have been dealing with cases where the order of future voters was fixed and known.
But what happens if the order of future voters itself is unknown? Even here, we can make claims.
To model this most naturally, our “magnifying-glass moment” will focus not on one manipulator
u, but will focus at a moment in time when some voters are still to come (as before, we know
who they are and which are manipulators; as before, we have a preference orderσ , and know
what votes have been cast so far, and have a distinguished candidated). And the question our
problem is asking is: Is it the case that our manipulative coalition can ensure that the winner set
will always included or someone liked more thand with respect toσ (i.e., the winner set will have
nonempty intersection with{c ∈ C| c ≥σ d}), regardless of what order the remaining voters vote
in. We will call this problem theschedule-robust online manipulation problem, and will denote it
by SR-online-E -UCM. (We will add a “[1,1]” suffix for the restriction of thisproblem to instances
when at most one manipulator and at most one nonmanipulator have not yet voted.) One might
think that this problem captures both aΣp

2 and aΠp
2 issue, and so would be hard for both classes.

However, the requirement of schedule robustness tames the problem (basically what underpins that
is simply that exists-forall-predicate implies forall-exists-predicate), bringing it intoΣp

2. Further,
we can prove, by explicit construction of such a system, thatfor some simple election systems this
problem is complete forΣp

2.

Theorem 13 (1) For each election systemE whose winner problem is inP, SR-online-E -UCM
is in Σp

2. (2) There exists an election systemE , whose winner problem is inP, such that
SR-online-E -UCM (indeed, evenSR-online-E -UCM[1,1]) is Σp

2-complete.

7 Conclusions and Open Questions

We introduced a novel framework for online manipulation in sequential voting, and showed that
manipulation there can be tremendously complex even for systems with simple winner problems.
We also showed that among the most important election systems, some have efficient online manip-
ulation algorithms but others (unless P= NP) do not. It will be important to, complementing our
work, conduct typical-case complexity studies. Also, we have extended the scope of our investiga-
tion by studying online control [HHR12c, HHR12b] and will doso by studying online bribery in
appropriate models.
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Implementation by Agenda Voting

Sean Horan

Abstract

Agenda voting occurs in a wide variety of contexts. This paper characterizes the class
of social choice functions that can be implemented by sophisticated voting on an agenda
under the assumption of complete information. The main result establishes that a sim-
ple pairwise condition is necessary and sufficient for implementation by agenda voting.
Keywords: Sophisticated voting, implementation, voting agendas.

1 Introduction

Voting by agenda occurs in a wide variety of political and social choice contexts. The economic
analysis of agendas has a rich tradition in the literature dating back to the early work of Black
[1958] and Farquharson [1969]. This paper contributes to that literature by characterizing the
social choice functions that can be implemented by sophisticated voting in an environment with
complete information. The main result establishes that a simple pairwise condition defined on
pairs of states is necessary and sufficient for implementation. The paper builds on earlier work by
Srivastava and Trick [1996], who conjectured that a weaker condition defined on pairs of adjacent
states (i.e. states that differ on the ranking of two outcomes) was necessary and sufficient.1

Formally, a voting agenda describes a binary tree where, at any decision node, the agents
vote between two collections of competing proposals. Ultimately, the winning proposal is the
outcome that survives the sequence of binary votes given by the agenda. If the agents are
forward-looking, their behavior is sophisticated and the winning proposal can be determined by
backward induction. Provided that the provisional winners are determined by simple majority,
the winning proposal must be drawn from the Condorcet set — the subset of outcomes that
indirectly dominates every outcome (see Miller [1977], McKelvey-Niemi [1978], Moulin [1986]).
Because the pairwise condition is relatively weak, agenda voting is capable of implementing a
wide variety of selections from the Condorcet set.

A variety of approaches can be used to implement outcomes from the Condorcet set. Most
closely related to implementation by agenda voting are the extensive-form mechanisms based
on backward induction (Gol’berg-Gourvitch [1986] and Herrero-Srivastava [1992]) and subgame
perfection (Abreu-Sen [1990], Moore-Repullo [1988], and Vartiainen [2007a]). Also related to
implementation by agenda voting are the normal-form solution concepts based on dominance
solvable voting (Moulin [1979]) and undominated Nash equilibrium (Palfrey-Srivastava [1989]).

While each of these four mechanisms is capable of implementing a wider variety of outcomes
than agenda voting (see e.g. Dutta-Sen [1993]), there are some compelling advantages to the
approach taken here. Perhaps most importantly, agenda voting is a straightforward way to de-
centralize choice. In contrast with many other approaches to implementation, agenda voting
expressly rules out artificial features like randomization (see e.g. Vartiainen [2007b]), nuisance
strategies (e.g. integer games and bad outcomes), and unnaturally complex strategy sets.2 Ar-
guably, the simplicity of agenda voting is a large part of the reason that this mechanism is so
widely used in real-world settings.

No less attractive is the fact that the necessary and sufficient condition for implementation

1Their conjecture replaces an earlier conjecture due to Herrero and Srivastava [1992].
2However, the agenda required to implement the desired outcomes may be large (see Trick [2006, 2009]).
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by agenda voting is simple. By comparison, both of the extensive-form mechanisms discussed
above impose necessary conditions that can be quite difficult to verify in practice. In view
of this shortcoming, Moore [1992] has stressed the importance of finding a “full and workable
characterization of social choice functions that can be implemented in trees.” The main result
goes some way towards achieving this goal. As discussed, it provides a workable characterization
for a fairly broad class of social choice functions that can be implemented in trees. Moreover, it
also provides a simple sufficient condition for implementation in trees more generally. This follows
from the fact that agenda voting is a special case of implementation via backward induction.

Before moving on, it is worth noting that the approach taken in this paper is somewhat
unconventional from a technical standpoint. In the implementation literature, sufficiency of the
characterization is generally established by constructing a mechanism that implements any so-
cial choice function with the prescribed features. Unusually, the sufficiency proof given here is
obtained by algebraic methods that do not rely on the explicit construction of a mechanism.
The basic idea of the proof is that extensive-form games can be “added” together at the root
to form a new game. The strength of this approach is that the equilibrium of the new game
is easily determined from the equilibria of the original games. Since the intuition is straight-
forward, it is perhaps surprising that very little work in implementation theory leverages the
algebraic structure of extensive-form games. The only notable exception is the characterization
of implementation via backward induction given by Gol’berg-Gourvitch [1986].

2 Implementation by Agenda Voting

Before stating the main result, this section provides some preliminary definitions and gives some
examples of voting agendas that are widely discussed in the literature of social choice and political
economy. A discussion of the result is given in Section 3.

2.1 Definitions

Let X denote some finite set of outcomes. The population of agents is given by A = {1, ..., a}
where a = |A| is odd. Let L denote the collection of linear orders on X. An element P=(�1

, ...,�a) of La represents a profile of individual preference orders on X. For any profile P ∈ La,
the majority relation R is defined by xRy iff |{i ∈ A : x �i y}| > |{i ∈ A : y �i x}|. Since |A|
is odd, any majority relation R is a complete, asymmetric relation (or pairwise ranking) on X.
Let R denote the collection of majority relations on X.

A social choice function (SCF) is a mapping F : La → X that selects an outcome for every
profile P ∈ La. A Condorcet social choice function is an SCF that selects the same outcome
when the majority relations on P and P ′ coincide (i.e. R = R′). In other words, it can be
described as a mapping f : R → X that selects an outcome for every majority relation R ∈ R.
In what follows, I frequently abbreviate by referring to a majority relation R as a state.

Generically, a voting agenda can be described as a labelled binary tree. A binary tree B is a
pair (V,<) consisting of a finite set V of vertices and a strict (but incomplete) transitive order
< on V . The order < has a particular structure so that: every vertex has either zero or two
successors and all vertices except one have a unique predecessor. The <-maximal vertices in V ,
denoted by V0, are the leaves of the tree and the unique <-minimal vertex v∗ is the root. In
order to label the leaves V0 of a binary tree B with the alternatives in X (where |X| ≤ |V0|), let
ι : V0 → X define a surjection, or seeding, from the leaves to the elements of X. Together, the
binary tree B and the seeding ι define a voting agenda T = (B, ι) over the alternatives in X.

For any voting agenda T and majority relation R on X, the overall winner cT (R) = v∗(T,R)
is determined by backward induction. The winner v(T,R) at any leaf v ∈ V0 is the alternative
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ι(v) that labels v and the winner at any non-leaf v /∈ V0 is given by majority voting between the
winners at the left successor v

l
of v and right successor v

r
. Formally:

v(T,R) ≡





vl(T ;R) if (vl(T ;R), vr(T ;R)) ∈ R

vr(T ;R) otherwise

Definition 1 (Implementation by Agenda Voting) A Condorcet SCF f is imple-
mentable if there exists an agenda T on X such that cT (R) = f(R) for every state R ∈ R.

Before moving on, I pause to make two comments about this definition. First, observe that
it requires implementation for all possible states (i.e. every majority relation on X). In the
literature, this is known as the universal domain assumption. Second, it requires that the agenda
implementing f contain every alternative in X. Given the assumption of universal domain, this
is without loss of generality. The reason is that agenda voting must select the Condorcet winner
– i.e. the item x ∈ X s.t. xRy for all y ∈ X \{x} – whenever it exists. Because every alternative
in X is the Condorcet winner for some state(s), every alternative is chosen in some state — and,
hence, must be part of the agenda.

When there is no Condorcet winner, agenda voting must select from the Condorcet set:

Definition 2 (Condorcet Set) The Condorcet set C(Y,R) of the pairwise ranking R on Y
is the smallest subset of Y where yRy′ for all y ∈ C(Y,R) and y′ ∈ A\C(Y,R). When R is
understood, I abbreviate to C(Y ).

In other words, C(Y ) is a (possibly degenerate) cycle in Y whose members pairwise-dominate
every outcome in Y \C(Y ) (see e.g. Moulin [1986] and Laslier [1997]). Intuitively, the Condorcet
set generalizes the usual notion of maximization to address the situation where no single outcome
R-dominates every other outcome in Y .

2.2 Main Result

The main result establishes that f is implementable if it is implementable for all pairs of majority
relations. Formally, outcomes x and x′ are pairwise implementable in states R and R′ if there
exists a voting agenda T such that cT (R) = x and cT (R′) = x′. To state the main result:

Main Result A Condorcet SCF f is implementable iff is implementable for every pair of states.

Based on the work of Srivastava and Trick [1996], it can be shown that any outcomes x and
x′ in the Condorcet sets of R and R′ are pairwise implementable if the two states are sufficiently
distinct on a global level. If the states are globally similar however, one can only implement
outcomes from the same locale. Some definitions are required to formalize these notions.

Given a pairwise-ranking R on Y , a subset Y ′ ⊆ Y is a component of R if every element in
Y ′ bears the same relation to elements in Y \Y ′. Given an item y ∈ Y \Y ′ and any items y′,
y′′ ∈ Y ′, then y′′Ry if and only if y′Ry.3 A decomposition of a pairwise-ranking R on Y ⊆ X is
a partition of Y into components. The largest decomposition is the degenerate partition {Y }.

If R is cyclic on Y (so that C(Y ) = Y ), the maximal non-degenerate decomposition D(Y,R)
is unique (see Theorem 1.3.11 of Laslier [1997]). Moreover, the quotient ranking R/D(Y,R)
induces a pairwise-ranking on the components of D(Y,R). Formally, the global structure of a
state is determined by the maximal decomposition of the Condorcet set.

3To get a better intuition for this definition, note that the Condorcet set is a component of R. In particular,
C(R, Y ) is the smallest component of R such that Y \C(R, Y ) is also a component of R where cRy for some
c ∈ C(R, Y ) and y ∈ Y \C(R, Y ).
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Definition 3 (Global Structure) For a pairwise-ranking R on Y ⊆ X, the global structure
〈G(Y ), RG〉 is a pair consisting of the maximal decomposition G(Y ) = D(C(Y ), R) of R on
the Condorcet set and the quotient ranking RG = R/D(C(Y ), R). Moreover, any component
g ∈ G(Y ) defines a locale.

States R and R′ are globally distinct if 〈G(X), RG〉 6= 〈G′(X), R′G〉 and globally similar if
〈G(X), RG〉 = 〈G′(X), R′G〉. In other words, two rankings are similar if they have the same
Condorcet set C and the global structure of the rankings on C is similar. Conversely, two
rankings are distinct when their Condorcet sets differ or the global structure of the rankings on
C is distinct.

The condition for implementation on pairs of states can be stated in terms of the global
structure. In particular, x and x′ are said to be pairwise implementable on Y ⊆ X (in states R
and R′) if there exists a voting agenda T on Y such that cT (R) = x and cT (R′) = x′. Given the
main result, the following proposition fully characterizes implementation by agenda voting:

Proposition 1 (Pairwise Condition) (I) For globally distinct states R and R′, the outcomes
x and x′ are pairwise implementable iff x ∈ C(X,R) and x′ ∈ C(X,R′). (II) For globally
similar states R and R′, the outcomes x and x′ are pairwise implementable iff they are in the
same locale g ∈ G(X) and are pairwise implementable for some subset g∗ ⊆ g.

It is worth clarifying that the main result does not depend on the fact that voting is by
majority. More generally, the pairwise-ranking on any profile P ∈ P may be derived from any
strong proper simple (SPS) game (A,W ). For a simple game (A,W ), the set W ⊆ 2a defines a
monotonic collection of winning coalitions such that w ∈ W and w ⊆ w′ imply w′ ∈ W . The
simple game (A,W ) is said to be strong and proper if a coalition w wins whenever its complement
A\w loses (so that w ∈W iff A\w /∈W ).

Formally, any SPS game induces a pairwise ranking PW such that xPW y iff {a ∈ A : x �a
y} ∈W . When PW ⊆ R is the collection of pairwise rankings induced by the SPS game (A,W ),
then f : PW → X defines a (partial) Condorcet social choice function. Generalizing the notion of
implementation defined above, a social choice function F : La → X is said to be implementable
if there exists an SPS game (A,W ) and a voting agenda T such that cT (PW ) = F (P ) for any
profile P ∈ P. Thus, F can be implemented by the SPS game (A,W ) if and only if fW is
implementable and F (P ) = fW (PW ) for any profile P ∈ P. As such, the following generalization
of the main result is immediate:

Theorem 1 An SCF F is implementable if there exists an SPS game (A,W ) and a (partial)
Condorcet social choice function f s.t. (i) f is implementable for every pair of states and, (ii)
F (P ) = f(PW ) for any P ∈ P.

One benefit of using an SPS game different from majority voting is that distinct outcomes
may be implemented on profiles whose majority relations coincide. However, it should be kept
in mind that departures from majority voting come at the cost of anonymity.

3 Discussion

In earlier work, Srivastava and Trick [1996] showed a necessary and sufficient condition for
pairwise implementation on adjacent states R and R′ that differ only on the pairwise-ranking of
two outcomes y and y′. To state their condition, let BR,R′ define the smallest component of R
such that {y, y′} ⊆ BR,R′ . Srivastava and Trick established that distinct outcomes are pairwise
implementable on R and R′ iff they are in the Condorcet sets of X and BR,R′ for each state.
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Proposition 2 (Adjacent Pairwise Implementation) x and x′ are pairwise implementable
on adjacent states R and R′ iff: (i) x ∈ C(R,X) and x′ ∈ C(R′, X); and, (ii) x = x′ or,
x ∈ C(R,BR,R′) and x′ ∈ C(R′, BR,R′).

When two states are adjacent, the pairwise condition in Proposition 1 reduces to that given
in Proposition 2. While the pairwise condition is more complex than the condition given in
Proposition 2, it is somewhat easier to interpret.

For globally distinct states, pairwise implementation is virtually unrestricted. It is sufficient
that the outcomes are drawn from the Condorcet sets.4 Since agenda voting always draws from
the Condorcet set, this requirement is more generally necessary for implementation (see e.g.
Moulin [1986], Lemma 9).

For globally similar states, there are stronger restrictions on what can be implemented. As is
more generally necessary for implementation in this environment, the outcomes must be drawn
from the same locale g (see e.g. Moulin [1986], Lemma 10). Within any given locale however,
the restrictions are relatively weak. Any pair of outcomes that can be implemented on a subset
g∗ of g can also be implemented on X.

The proof of the main result follows directly from Proposition 1. The result is obtained by
algebraic methods and does not rely on the explicit construction of a mechanism (i.e. an agenda).
Since the approach is somewhat unconventional, it will be helpful to provide a brief overview.

To get the basic intuition, first consider any collection Rd of globally distinct states. Now,
fix a pair of states Rj , Rk ∈ Rd and a pair of outcomes xj ∈ C(X,Rj) and xk ∈ C(X,Rk). From
Proposition 1(I), there exists an agenda T (j, k) such that cT (j,k)(Rj) = xj and cT (j,k)(Rk) = xk.

Let T d define any collection of agendas T (j, k) ranging over all pairs of outcomes xj ∈ C(X,Rj),

xk ∈ C(X,Rk) and all pairs of states Rj , Rk ∈ Rd. Let C(T d) define the collection of choice
functions cT that correspond to some T ∈ T d. Any agendas T1 and T2 in T d may be joined at
the root to obtain a new agenda T1 + T2 and a new agenda choice function cT1+T2

such that

cT1+T2
(R) = max

R
{cT1

(R), cT2
(R)}

Applying a theorem in universal algebra due to Maroti [2002], it can be shown that the closure

of C(T d) under agenda concatenation coincides with the collection of agenda choice functions
that select from the Condorcet set in every state R ∈ Rd. Formally:

Proposition 3 (Globally Distinct States) For any collection of globally distinct states Rd,
the (partial) Condorcet social choice function fd : Rd → X is implementable iff fd(R) ∈ C(X,R)
for all R ∈ Rd.

In other words, Proposition 3 shows that the condition in Proposition 1(I) is necessary and
sufficient for globally distinct states. The next result shows the necessity and sufficiency of the
condition in Proposition 1(II) for globally similar states.

Proposition 4 (Globally Similar States) For any complete collection of globally similar
states Rs, the (partial) Condorcet social choice function fs : Rs → X is implementable iff
it is pairwise implementable for every pair of states R,R′ ∈ Rs.

Like Proposition 3, the proof of this result leverages the algebraic structure of agendas. To
get the basic intuition, consider any collection Rs of globally similar states with Condorcet set
C. Given an outcome x ∈ C, it is not difficult to construct an agenda T (x) that implements x

4Srivastava and Trick [1996] show the sufficiency of this condition when the Condorcet sets of R and R′ are
distinct (see Theorem 2 of their paper). It is easy to see that this is a corollary of Proposition 2.
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for every R ∈ Rs. To see this, suppose that G(X) = {gi}ki=1 is the maximal decomposition C
so that giRGgi+1 for i < k and gkRGg1. To implement x ∈ g1, construct an elimination agenda
T (x) using the list

L = (x, g2, ..., gk, g1\{x}, X\C)

At every node, append an agenda that contains every outcome in gi (resp. g1\{x} and X\C).
The fact that cT (x)(R) = x for every state R ∈ Rs is a simple extension of a result due to
Miller [1977]. Define T s = {T (x) : x ∈ C} so that C(T s) describes a collection of agenda choice
functions cT that pick the same outcome for every R ∈ Rs. Clearly, the collection T s satisfies
the pairwise condition. Proposition 4 then follows by establishing that the closure of C(T s)
under agenda concatenation generates all of the social choice functions that satisfy the pairwise
condition. Given Propositions 3 and 4, the main result then follows by induction on the number
of globally distinct sub-collections in R. The details are presented in Section 4.

4 Proofs

4.1 Proof of Proposition 1

Proposition 1(I) follows from Theorem 1 of Srivastava and Trick [1996]. The following definition
is required to state this result: a subset PS ⊆ X is prime if there is no non-trivial partition
PS = {PSi}ki=1 of PS such that: (i) PS is a decomposition of R and R′ on PS; and, (ii) the
quotient relations induced by PS agree so that R/PS = R′/PS.

Theorem 1 of Srivastava and Trick The outcomes x and x′ are pairwise implementable on
states R and R′ for some subset of X iff there exists a prime set PS such that {x, x′} ⊆ PS ⊆ X,
x ∈ C(PS,R), and x′ ∈ C(PS,R′).

Proposition 1(I) is a consequence of the following lemma.

Lemma 1 If 〈G(X), RG〉 6= 〈G′(X), R′G〉, C(X,R) ∪C(X,R′) is a prime set.

Proof. Omitted due to lack of space.

Proof of Proposition 1(I). (⇐) By Lemma 1, C ∪ C′ is a prime set. By Theorem 1 of
Srivastava and Trick, any x ∈ C = C(C ∪ C′, R) and x′ ∈ C′ = C(C ∪ C′, R′) are pairwise
implementable for C ∪ C′ ⊆ X. To complete the proof, fix a pair x ∈ C and x′ ∈ C′ and
an agenda T that implements (x, x′) for C ∪C′. Next, construct an agenda whose left branch
at the root corresponds with T and whose right branch is any agenda on X\(C ∪C′). (When
X\(C∪C′) = ∅, the right branch can be omitted.) By construction, the desired outcome emerges
from the left branch in each state and defeats whatever emerges from the right. (⇒) If x and x′

are pairwise implementable, x ∈ C and x′ ∈ C′ (by Lemma 9 of Moulin [1986]).

Proposition 1(II) is a consequence of the following lemma:

Lemma 2 Given a collection of globally similar states Rs, the (partial) Condorcet social choice
function fs : Rs → X is implementable iff fs is implementable for some g∗ ⊆ g ∈ G(X).

Proof. For parsimony, let C = C(X,R) and G(X) = {gi}ki=1. First, fix an element x ∈ gi
and suppose that giRGgi+1 for i < k and gkRGg1 (otherwise, the components can be relabeled).
Construct an elimination agenda T (x) using L = (x, ..., gk, g1\g{x}, X\C). As in the proof of
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Proposition 1(I), the bottom branch may be omitted when X\C =∅. To the branch labelled
x, append the item x. To the branches labelled by gi (respectively g1\{x} or X\C), append
an agenda Ti containing every outcome in gi (resp. g1\{x} or X\C). By construction, T (x)
implements x on Rs (see e.g. Lemma 8.3.3 of Laslier [1997]). Moreover, it can be associated
with the trivial agenda t(x) = x that implements x on {x} ⊆ g1.

Let T1= {T (x) : x ∈ C} define the collection of agendas T (x) on C. Similarly, let
T1(g∗)= {t(x) : x ∈ g∗} define the collection of agendas t(x) on g∗ ⊆ g ∈ G(X). By con-
struction, any agenda-implementable fs on X can be obtained by concatenating agendas in
T1. Since fs(R) ∈ C for all R ∈ Rs (by Lemma 9 of Moulin [1986]), one can ignore agendas
T (x) where x /∈ C. Likewise, any agenda-implementable fs on g∗ ⊆ g can be obtained by
concatenating agendas in T1(g∗) = {x : x ∈ g∗}.

Define Tn= {Tn−1 + Tk : Tn−1 ∈ Tn−1 and Tk ∈ Tk for k < n} and let Cn = {fs:fs = c(Tn)
for some Tn ∈ Tn} (where c(Tn) is the Condorcet social choice function implemented by Tn).
Likewise, let Tn(g∗)= {tn−1(g∗) + tk(g∗) : tn−1(g∗) ∈ Tn−1(g∗) and tk(g∗) ∈ Tk(g∗) for k < n}
and let Cn(g∗) = {fs:fs = c(tn) for tn ∈ Tn(g∗)}.

Using strong induction, I establish: fs = c(Tn) ∈ Cn iff fs = c(tn(g∗)) ∈ Cn(g∗) for some
g∗ ⊆ g ∈ G(X). The claim is trivial for the base case n = 1. So, suppose it holds for n ≤ N .

(⇒) Now, consider any fs = c(TN+Tk) ∈ CN+1(T ). By the induction step, c(TN ) = c(tN (g∗1))
for some tN (g∗1) on g∗1 ⊆ g1 and c(Tk) = c(tk(g∗2)) for some tk(g∗2) on g∗2 ⊆ g2. There are two
cases: (i) g1 6= g2; and, (ii) g1 = g2. (i) Suppose, without loss of generality, that g1(RG)g2. Then:

fs = c(TN + Tk) = c(TN ) + c(Tk) = c(TN ) = c(tN (g∗1))

where tN (g∗1) implements fs on g∗1 ⊆ g1 ∈ G(X) (by the induction step). (ii) In this case:

fs = c(TN + Tk) = c(TN ) + c(Tk) = c(tN (g∗1)) + c(tk(g∗2)) = c(tN (g∗1) + tk(g∗2))

where tN (g∗1) + tk(g∗2) implements fs on g∗1 ∪ g∗2 ⊆ g1 ∈ G(X).
(⇐) Suppose fs = c(tN (g∗1) + tk(g∗2)) ∈ CN+1(g∗) for tN (g∗1) on g∗1 ⊆ g∗ ⊆ g and tk(g∗2) on

g∗2 ⊆ g∗ ⊆ g. By the induction step, c(tN (g∗1)) = c(TN ) and c(tk(g∗2)) = c(Tk) for c(TN ) ∈ CN
and c(Tk) ∈ Ck. Following the same reasoning as case (ii) above, fs = ... = c(TN + Tk) where
TN + Tk implements fs.

Proof of Proposition 1(II). Given Lemma 2, let Rs = {R,R′}.

4.2 Proofs of Proposition 3, Proposition 4, and the Main Result

The proofs of these results rely on algebraic methods. Some preliminary definitions are required.

4.2.1 Preliminaries

Given a pairwise-ranking R on X, let the tournament algebra X be defined by a pair (X,+)
consisting of X and a binary operation + such that x + y = x iff xRy or x = y.5 In turn,
tournament algebras can be extended to products. Given a collection {Xi}mi=1 of tournament
algebras, the product algebra Πm

i=1Xi is defined by (Πm
i=1Xi,+) where + applies the operations

+i component-wise so that x + y ≡ (xi +i yi)
m
i=1. The projection of x ≡ (xi)

m
i=1 ∈ Πm

i=1Xi

onto any collection J ⊆ {1, ...,m} of components is πJ(x) = Πi∈Jxi. A subdirect product of
(Πm

i=1Xi,+) is a sub-algebra Y ≡ (Y,+) of Πm
i=1Xi (i.e. Y ⊆ Πm

i=1Xi and Y is closed under the

5More generally, an algebra X is a set X that is algebraically closed under a collection of n-ary operations.
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binary operation +) such that Yi ≡ {π{i}(y) : y ∈ Y } = Xi for any component Yi. The subdirect
product Y is weakly indecomposable if there exists no bi-partition (J,K) of the m components
such that Y = πJ(Y )× πK(Y ) (up to re-ordering of the components).

A tournament algebra (X,+) is cyclic if C(X,R) = X where R is the relation induced by the
binary operation + (so that xRy iff x+ y = x and x 6= y). A congruence β on Y ≡ (Y,+) is an
equivalence relation on Y such that (x+ y)β(x′ + y′) iff xβx′ and yβy′. The largest congruence
on Y is the complete relation 1Y = Y ×Y while the smallest is the trivial relation IdY = {(y, y) :
y ∈ Y }. Given a congruence β on Y, the quotient algebra Y/β is (Y/β,+β) where Y/β is the
partition of Y induced by β and +β is the binary operation y/β+βy

′/β ≡ {Z ∈ Y/β : y+y′ ∈ Z}.
Finally, Y is irreducible when its only congruences are 1Y and IdY .

4.2.2 Proofs

The proofs of these results rely on a theorem in universal algebra established by Maroti [2002]
(combining Lemmas 5.10 and 5.14 of his Ph.D. dissertation). To state Maroti’s theorem:

Theorem (Maroti) Let Y be a weakly indecomposable subdirect product of m cyclic tournament
algebras. Then, Y has a unique largest congruence β 6= Y × Y and Y/β is an irreducible
tournament algebra.

They also rely on the following:

Claim 1 (I) Natural numbers h and h + 1 are co-prime. (II) If a and b are co-prime, then
every pair of congruence relations of the form x = k(mod a) and x = l(mod b) has a solution.

Proof. Omitted due to lack of space.

To simplify the presentation below, consider the following definitions. Let R(X) = {Ri}i∈I
denote the collection of states on X. For parsimony, I abbreviate C(X,Ri) to Ci. If there are
n outcomes, denote the domain by Xn so that R(n) defines the collection of states on Xn. Let
RdJ(X) = {Rj}j∈J denote a collection of J ⊆ I globally distinct states in R(X) so that Rd(n)
denotes any maximal collection of globally distinct states inR(n). LetRsj(n) denote the maximal

collection (or class) of states that are globally similar to Rj ∈ Rd(n) and let K(j) ⊆ I denote
the set of indices associated with Rsj(n). Finally, let R(n) = {Rsj(n)}j∈J denote the partition
dividing R(n) into classes of globally similar states.

It is possible to identify any Condorcet social choice function c : R(X) → X with a vector
~x ≡ (xi)i∈I ∈ Πi∈IX. Using this approach, let C(n) = {~x ∈ Πi∈ICi : ~x is implementable} denote
the collection of agenda-implementable Condorcet social choice functions on Xn. Let CdJ(X) =
{πJ(~x) ∈ Πj∈JCj : ~x ∈ C(X)} denote the collection of agenda-implementable Condorcet social
choice functions on RdJ(X). And, let Csj (n) = {πK(j)(~x) ∈ Πk∈K(j)Ck : ~x ∈ C(n)} denote the
collection of agenda-implementable Condorcet social choice functions on Rsj(n) = {Rk}k∈K(j).

Proof of Proposition 3. (⇒) If fd : Rd → X is implementable, it is also pairwise imple-
mentable for every pair of states in Rd. From Proposition 1(I), fd(R) ∈ C for all R ∈ Rd.

(⇐) Let RdI = {Ri}i∈I and suppose that |Ci| > 1. To establish the result, I show CdI (X) =
ΠI
i=1Ci. The proof is by induction on the number of globally distinct states I. Proposition 1(I)

proves the base case I = 2. Assume that the result holds for |I| = n. To complete the induction,
I show the result |I| = n + 1. To simplify the notation, let X̄ ≡ Πn+1

i=1 Ci and Y ≡ Cn+1(T d) so
that X̄J = πJ(X̄) and YJ = πJ(Y ) define the projections onto the sub-collection of states in J .
To establish Y = X̄, suppose otherwise.
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First, note that Y is a subdirect product of X̄. By the induction hypothesis, CdJ(n)(X) =

Πi∈J(n)Ci for any collection J(n) of n states. Accordingly, πi(CdJ(n)(X)) = Ci. Second, each
component of Y is cyclic because Yi = Ci. Finally, Y is weakly indecomposable. To see this,
suppose Y = πJ(Y )× πK(Y ). By the induction step, πJ(Y ) = Πj∈JCj and πK(Y ) = Πk∈KCk

so that Y = Πj∈JCj × Πk∈KCk = X̄. But this contradicts the assumption that Y 6= X̄ and
establishes Y is weakly indecomposable. As such, Maroti’s theorem applies. Let β define the
largest congruence of Y such that β 6= Y ×Y . There are two cases to consider: (i) |X̄j | = |X̄k| =
h+ 1 > 1 for all j, k ≤ n+ 1; and (ii) there are distinct states j and k such that |X̄j | 6= |X̄k|.

(i) Pick any two states j and k and consider any distinct a, b ∈ Y . Label the elements
of X̄j so that the sequence {xlj}h+1

l=0 defines a complete cycle x0jRj ...Rjx
l
jRj ...Rjx

h+1
j = x0j in

X̄j . And, label the elements of X̄k so that {xmk }h+1
m=0 defines a complete reverse cycle x0k =

xh+1
k Rk...Rkx

m
k Rk...Rkx

0
k in X̄k. By the base case, there is a x

(l,m)
−jk ∈ Πi∈I\{j,k}Xi s.t. x(l,m) ≡

(xlj × xmk × x
(l,m)
−jk ) ∈ Y . Without loss of generality, let a ≡ x(0,0). By construction, x(l,m) and

x(l+1,m+1) are unranked by ΠN+1
i=1 Ri. Since Y/β is a tournament, (x(l,m), x(l+1,m+1)) ∈ β for

l ≤ h and m ≤ h so that (a, x(l+1,m+1)) ∈ β.
By Theorem 7 of Harary and Moser [1966], there exists an h-length cycle Cj ⊆ Xj con-

taining bj . Let l∗ be the lowest index l such that xlj ∈ Cj and let x∗ = x(l
∗,l∗). So, it

is possible to label the elements of Cj so that the sequence {xlj}hl=0 defines a complete cycle

xl
∗
j = x0jRj ...Rjx

l
jRj ...Rjx

h
j = x0j in Cj . Because h and h+ 1 are co-prime, (x(l,m), x(l

′,m′)) ∈ β
for any l, l′ ≤ h and m, m′ ≤ h + 1 (by Claim 1). In particular, (x∗, b) ∈ β. Since (a, x∗) ∈ β
(by the first argument), it then follows that (a, b) ∈ β so that β = Y × Y .

(ii) Fix components j and k such that |X̄j | = h′ > h = |X̄k| and consider any distinct a,
b ∈ Y . By the same approach as in the previous case, define a complete cycle on X̄j and a
complete reverse cycle on X̄k such that a corresponds to the first element in each sequence. By
Theorem 7 of Harary and Moser [1966], there exists an (h+1)-length cycle Cj ⊆ Xj that contains
bj . Let l∗ be the lowest index l such that xlj ∈ Cj and let x∗ = x(l

∗,l∗). By the same argument
given in the previous case, (a, x∗) ∈ β and (x∗, b) ∈ β so that (a, b) ∈ β so that β = Y × Y .

In both cases, β = Y × Y follows from Y 6= X̄. But this contradicts β 6= Y × Y . Thus,
Y = X̄. Given any collection of distinct states Rd, it then follows that fd is implementable if
fd(Rj) ∈ Cj for all Rj ∈ Rd. The proof covers Rd consisting of non-trivial states such that
|Cj | > 1. This is sufficient to establish the result for any collection of distinct states Rd.

The following lemma is needed in the proof of Proposition 4:

Lemma 3 Given a complete collection of globally similar states Rs, the (partial) Condorcet
social choice function fs : Rs → X is implementable for every pair of states in Rs iff fs is
implementable for every pair of states on a subset g∗ of some g ∈ G(X).

Proof. Let PW(n) = {~x ∈ Πi∈ICi : ~x satisfies the pairwise condition on R(n)} represent the
collection of Condorcet social choice functions that are pairwise implementable on Xn. Now,
consider the similarity class Rs(n) = {Rk}k∈K with global structure G(Xn) = {gl}l∈L. Let
PWs(n) = {πK(~x) ∈ Πk∈KCk : ~x ∈ PW(n)} represent the choice functions that are pairwise
implementable on Rs(n). First note that:

PWs(n) =
⋃

l∈L
PWs

l (n)

where PWs
l (n) = {πK(~x) ∈ Πk∈KCk : ~x ∈ PWs(n) ∩ Πk∈Kgl} is the sub-collection of PWs(n)

selecting from gl ∈ G(Xn). To see this, fix adjacent states R and R′ in Rs(n) such that
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fs(R) = x ∈ gl and fs(R′) = x′. By assumption, fs is pairwise implementable for R and R′.
From Proposition 1(II), x ∈ gl implies x′ ∈ gl. By the same argument, fs(R′′) ∈ gl for all
R′′ ∈ Rs(n).

Let PWs
l (n)|g∗ define the sub-collection of PWs

l (n) that is pairwise implementable on g∗ ⊆
gl. And, let PWs

l (n)[g∗] define the sub-collection of PWs
l (n) with range g∗ ⊆ gl (so that

∪k∈K{fs(Rk)} = g∗ for any fs ∈ PWs
l (n)[g∗]). By construction, PWs

l (n) =
⋃
g∗⊆gl PW

s
l (n)[g∗].

To establish the desired result, it suffices to prove PWs
l (n)|g∗ = PWs

l (n)[g∗] for any g∗ ⊆ gl.
Using this identity, it follows that

PWs(n) =
⋃

l∈L

⋃

g∗⊆gl
PWs

l (n)|g∗

as required. To show PWs
l (n)|g∗ = PWs

l (n)[g∗] for any g∗ ⊆ gl, first consider the following:

Claim A If fs ∈ PWs
l (n), {R,R′} ⊆ Rs(n), and C(gl, R) = {fs(R′)}, then fs(R) = fs(R′).

Proof. Omitted due to lack of space. �
The result follows by establishing that PWs

l (n)[g∗] ⊆ PWs
l (n)|g∗ . The inverse inclusion

PWs
l (n)|g∗ ⊆ PWs

l (n)[g∗] follows from the fact that fs(R) = x for any R ∈ Rs(n) such that
xRx′ for all x′ ∈ g∗\{x} (by Lemma 9 of Moulin [1986]). To establish PWs

l (n)[g∗] ⊆ PWs
l (n)|g∗ ,

there are two cases to consider: (i) g∗ = gl; and, (ii) g∗ ( gl.
(i) For globally distinct states such that G(gl, R) 6= G(gl, R

′), it is sufficient to show that
fs(R) ∈ C(gl, R) for all R ∈ Rs(n). To see this, consider fs ∈ PWs

l (n)[gl] and fix some state R
such that |C(gl, R)| > 1 and any x′ ∈ C(gl, R). (The fact that fs(R) ∈ C(gl, R) for any R such
that |C(gl, R)| = 1 follows from Claim A and the assumption that fs ∈ PWs

l (n)[gl].) Consider
the state R′ such that R′|X\gl = R|X\gl , R′|gl\{x′} = R|gl\{x′}, and x′R′x for any x ∈ gl\{x′}.
Since fs ∈ PWs

l (n)[gl], x
′ is chosen for some state R′′ ∈ Rs(n). By Claim A, it follows that

fs(R′) = x′. By construction, {x′} ⊆ PS⊆ C(gl, R) for any non-trivial prime set PS on R
and R′. By Theorem 1 of Srivastava and Trick, it then follows that fs(R) ∈ C(gl, R). This
establishes fs(R) ∈ C(gl, R) for all R ∈ Rs(n).

Next, consider globally similar states such that G(gl, R) = G(gl, R
′) = {gil}i∈I . Without loss

of generality, suppose fs(R) ∈ gil . It is sufficient to show that fs(R) and fs(R′) are pairwise
implementable for some g ⊆ gil . From Theorem 1 of Srivastava and Trick, fs(R) and fs(R′) are
pairwise implementable for some prime set PS such that fs(R) ∈ PS. By definition, it must be
that PS ⊆ gil for any prime set such that fs(R) ∈ PS. This establishes the desired result.

(ii) Pick fs ∈ PWs
l (n)[g∗] for some g∗ ( gl. Fix a state R and consider the state R↓g

∗
defined

by R↓g
∗ |X\g∗ = R|X\g∗ , R↓g

∗ |g∗ = R|g∗ , and x′R↓g
∗
x for any x′ ∈ X\g∗ and any x ∈ g∗. By

construction, any non-trivial prime set PS on R and R↓g
∗

must contain some x′ ∈ X\g∗. Since
fs(R) and fs(R↓g

∗
) are pairwise implementable, fs(R) = fs(R↓g

∗
). Otherwise, C(PS,R↓g

∗
) ⊆

X\g∗ so that fs(R↓g
∗
) ∈ X\g∗ which contradicts the assumption that fs ∈ PWs

l (n)[g∗]. This
establishes that fs(R) = fs(R′) for any states R and R′ in Rs(n) such that R|g∗ = R′|g∗ .

To see that fs(R) ∈ C(g∗, R|g∗) for any R ∈ Rsj(n), fix a state R̄ such that xR̄x′ for any x ∈ g∗
and x′ ∈ gl\g∗. By the same reasoning as in (i) above, fs(R̄) ∈ C(g∗, R̄). Since fs(R) = fs(R̄)
for any R and R̄ in Rs(n) such that R|g∗ = R̄|g∗ , then fs(R) ∈ C(g∗, R) for all R ∈ Rs(n).

To complete the proof, fix any state R and consider the state R↑g
∗

defined by R↑g
∗ |X\g∗ =

R|X\g∗ , R↑g
∗ |g∗ = R|g∗ , and xR↑g

∗
x′ for any x ∈ g∗ and x′ ∈ X\g∗. Now consider any R′

globally similar to R on g∗. By construction, R↑g
∗ |g∗ = R|g∗ and R′↑g

∗ |g∗ = R′|g∗ so that
fs(R) = fs(R↑g

∗
) and fs(R′) = fs(R′↑g

∗
). Moreover, R↑g

∗
and R′↑g

∗
are globally similar on

g∗. Without loss of generality, suppose that G(g∗, R) = G(g∗, R′) = {g∗i }i∈I and fs(R) ∈ g∗i .
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Following the same reasoning as in (i) above, fs(R↑g
∗
) and fs(R′↑g

∗
) are pairwise implementable

for some prime set PS ⊆ g∗i , which establishes the desired result.

Proof of Proposition 4 and Main Result. (⇒) If f : R → X (respectively fs : Rs → X)
is implementable, it is implementable for every pair of states in R (respectively Rs).

(⇐) As in Lemma 3, let PW(n) represent the choice functions that satisfy the pairwise
condition on R(n) and let PWs

j(n) represent the choice functions that satisfy the pairwise con-
dition on the similarity class Rsj(n) = {Rk}k∈K(j). Finally, let J(n) = |R(n)| represent the
number of similarity classes in R(n). For Proposition 4, I show (I) Csj (n) = PWs

j(n) for any
j ∈ J(n). For the main result, I show (II) C(n) = Πj∈JCsj (n) for any n. Results (I) and (II)
establish C(n) = Πj∈JPWs

j(n). Since PW(n) = Πj∈JPWs
j(n) by Proposition 1, it follows that

C(n) = PW(n). The proof is by strong induction on the size of the domain n and the number
of similarity classes J(n).

For n ∈ {1, 2, 3}, it is easy to see that (I) and (II) hold. (For n = 2, there are 2 globally
distinct states each consisting of a linear order. For n = 3, there are 8 states and 5 similarity
classes (3 classes that consist of two linear orders each and 2 classes consisting of one cycle).

For all m < n, assume C(m) = Πj∈J(m)Csj (m) and Csj (m) = PWs
j(m) for all j ∈ J(m). In

order to complete the induction, it is enough to show that (I) and (II) hold for n.
(I) Consider any non-trivial class similarity Rsj(n) ∈ R(n) (so that |Rsj(n)| > 1 or, equiva-

lently, |Gj(Xn)| > 1). Wlog, suppose Gj(X) = {gjl }l∈L(j) so that |gjl | < n. By Lemma 2:

Csj (n) =
⋃

l∈L(j)

⋃

g∗⊆gjl

Csjl(n)|g∗

where Csjl(n)|g∗ is the collection of Condorcet social choice functions that are implementable on

g∗ ⊆ gjl . Lemma 3 above establishes that:

PWs
j(n) =

⋃

l∈L(j)

⋃

g∗⊆gjl

PWs
jl(n)|g∗

By induction assumptions (I) and (II), Csjl(n)|g∗ = PWs
jl(n)|g∗ for any g∗ ⊆ gjl . Consequently,

Csj (n) = PWs
j(n) which establishes the desired result.

(II) First, let J∗(n) = {j ∈ J(n) : |Cj | > 1}. Given Csj (n) = PWs
j(n) for every j ∈ J∗(n),

the result follows by induction on J . For ease of notation, let πJ(C(n)) = πJ . To establish the
base case J = {1, 2}, suppose π{1,2} 6= π1×π2. Note that π{1,2} is a subdirect product of π1×π2.
For any state Rj ∈ Rsj(n), there exists an agenda T (x) that implements every outcome in x ∈ Cj .
(The construction is similar to that given in Lemma 2.) This observation also establishes that
the sub-algebra on each state is cyclic. Finally, the assumption that π{1,2} 6= π1 × π2 implies
that π{1,2} is weakly indecomposable. To see this, suppose that there are two disjoint collections
RU = {Ru : u ∈ U} and RV = {Rv : v ∈ V } such that RU ∪ RV = Rs1(n) ∪ Rs2(n) and
π{1,2} = πU (C(n)) × πV (C(n)). Now, consider any R1, R

′
1 ∈ Rs1(n) and suppose that R1 ∈ RU

and R′1 ∈ RV . It follows that it is possible to pairwise implement x ∈ g and x′ ∈ g′ for g 6= g′.
This contradicts Proposition 1 and establishes Rs1(n) ⊆ RU or Rs1(n) ⊆ RV . A similar argument
shows Rs2(n) ⊆ RU or Rs2(n) ⊆ RV . Since the collections RU and RV are non-trivial, then
Rs1(n) = RU and Rs1(n) = RV without loss of generality. But, this contradicts the assumption
that π{1,2} 6= π1 × π2 and establishes that π{1,2} is weakly indecomposable.

Accordingly, the theorem of Maroti applies. Let β define the largest congruence of Y such
that β 6= π{1,2} × π{1,2}. By Proposition 1, it is possible to pairwise implement (x1, x2) and
(x′1, x

′
2) on R1 ∈ Rs1(n) and R2 ∈ Rs2(n) so that x1R1x

′
1 and x′2R2x2. Using the same approach
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as in Proposition 3, it follows that β = π{1,2}×π{1,2}. But, this contradicts the assumption that
β 6= π{1,2} × π{1,2} and establishes that π{1,2} = π1 × π2 in the base case J = {1, 2}.

Now, assume that the result holds for |J | = j. In order to complete the induction, it suffices
to show that the result holds for |J | = j + 1. Following the same line of argument as in the
base case (and Proposition 3), the result πJ = Πj∈Jπj can be established by contradiction. This
proves πJ∗(n)(C(n)) = Πj∈J∗(n)Csj (n). It then follows that C(n) = Πj∈J(n)Csj (n).
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Strategic Behavior in a Decentralized Protocol

for Allocating Indivisible Goods

Thomas Kalinowski, Nina Narodytska, Toby Walsh and Lirong Xia

Abstract

We study in detail a simple sequential procedure for allocating a set of indivisible
goods to multiple agents. Agents take turns to pick items according to a policy.
For example, in the alternating policy, agents simply alternate who picks the next
item. A similar procedure has been used by Harvard Business School to allocate
courses to students. We study here the impact of strategic behavior on the complete-
information extensive-form game of such sequential allocation procedures. We show
that computing the subgame-perfect Nash equilibrium is PSPACE-hard in general,
but takes only linear time with two agents. Finally we compute the optimal policies
for two agents in different settings, including when agents behave strategically and
when agents can give away items.

1 Introduction

Suppose you are coaching a soccer team. To divide the players into two teams, you select
the two best players as captains and then let them alternate at picking the remaining team
members. Is this the best way to get an evenly matched game? Perhaps it would be better
to reverse the order of their picks every round (so that the captain who picks first in the
first round picks second in the second round)? This is an example of a problem in allocating
indivisible goods. A number of real world problems involve allocating indivisible goods
“fairly” between competing agents subject to possibly different preferences for these goods.
For example, assigning courses to students at a business school is a problem of allocating
indivisible goods. Students are competing for places on the popular courses, but have
different preferences as to which courses to study. As a second example, the allocation of
landing and take-off slots at an airport is a problem of allocating indivisible goods. Airlines
are competing for popular landing and take-off times, but have different preferences as to
precisely which slots they want. As a third and final example, sharing time slots on an
expensive telescope is a problem of allocating indivisible goods. Astronomers are competing
for observation time but have different preferences as to precisely which time slots are useful
for their experiments.

Different properties might be demanded of a procedure for allocating indivisible goods.
For example, we might look for allocations which are envy-free in the sense that every agent
likes their allocation at least as much as the allocation to any other agent. However, envy-
freeness by itself is not sufficient to ensure a “good” allocation. Not allocating any items
is envy-free, and there are also many situations where no envy-free allocation exists. We
might consider other criteria including efficiency of the allocation (e.g. Pareto optimality)
and truthfulness of the mechanism (e.g. can agents profit by acting strategically?). There
is, however, a tension between these properties. Svensson showed that the only strategy-
proof, non-bossy1 and neutral mechanism is a serial dictatorship in which agents take turns
according to some order to pick their complete allocation of goods [5]. Unfortunately, a
serial dictatorship can have a low efficiency in the utilitarian or egalitarian sense. In this

1A mechanism is non-bossy if when an agent submits different preferences and their allocation does not
change then the overall allocation does not change.
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paper, we focus on efficiency, and consider the impact on efficiency of such issues like the
strategic behavior of the agents.

2 Existing methods

Several sequential procedures for allocating indivisible goods have been proposed in the
literature. For example, the Harvard Business School has been using a mechanism called
Draft to allocate courses to students [3]. The Draft mechanism generates a priority order
over all students uniformly at random. Courses are then allocated to students in rounds. In
odd rounds, each student is assigned to their favourite course that still has availability using
the priority order. In even rounds, the mechanism uses the reverse priority order. The
Draft mechanism is not strategy-proof. Indeed, students at Harvard have been observed
to behave strategically [3]. Such strategic behavior can be harmful to the ex post social
welfare. However, the expected (ex ante) social welfare is higher than that of a strategy-proof
mechanism like serial dictatorship. To obviate the need for certain types of manipulation,
Kominers, Ruberry and Ullman [4] proposed a mechanism in which proxies play strategically.
They prove that with lexicographic preferences, this proxy mechanism is Pareto efficient.

As a second example, Bouveret and Lang [1] consider a simple decentralized procedure
from [2] which resembles the Draft mechanism (but ignores the initial randomisation of
the order of the students). The procedure is parameterised by a policy, the sequence in
which agents take turns to pick items. This policy is fixed and assumed to be known to
the agents in advance. For example, as in the Draft mechanism, with two agents and four
items, the policy 1221 gives first and last pick to the first agent, and second and third
pick to the second agent. This procedure has the advantage that the preferences of the
agents do not need to be explicitly elicited. Bouveret and Lang assume agents have additive
utilities given by a common scoring function (e.g. Borda, lexicographic or quasi-indifferent
scores). They consider two extreme cases: full correlation in which preference orderings of
the agents are identical, and full independence in which all preference orderings are equally
probable. With full correlation, all policies give the same expected sum of utilities, and the
sequential allocation procedure is strategy proof. With lexicographic scores, they show that
the optimal strategy for an agent given a particular policy can be computed in polynomial
time supposing other agents pick truthfully. The contribution of our paper is to study this
sequential allocation procedure in more detail.

3 Preliminaries

Let I = {c1, . . . , cm} denote a set of m indivisible goods, and A = {A1, . . . , An} denote a
set of n agents. For any j ≤ n, let uj : I→R denote the utility function of agent Aj over I.
We assume m ≥ n, and all agents have strict preferences. That is, for any j ≤ n and any
pair of items {c, c′}, uj(c) 6= uj(c

′). We suppose that an agent’s utility function is additive.
For any j ≤ n and any set of items G ⊆ I, uj(G) =

∑
c∈G uj(c). For any j ≤ n, let Oj

denote the ordinal preferences of agent j. That is, Oj is a total strict order over I and for
any pair of items {c, c′}, c � c′ in Oj if and only if uj(c) > uj(c

′). An agent has Borda
utility, if for any i ≤ m, the utility of the item ranked in i-th position in Oj is m − i. An
agent has lexicographic utility, if for any i ≤ m, the utility of the item ranked in i-th position
in Oj is 2m−i. An allocation is a function f : I→A. For any agent A ∈ A, f−1(A) denotes
the set of items allocated to A. A sequential allocation is a mechanism parameterised by
a policy P . This can be represented by an ordering over m elements taken from A (e.g.
P = [A1 � A2 � A1]). Agents take turns to pick items according to this ordering.
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4 Optimal Policies

Bouveret and Lang considered which policies maximise the social welfare of the agents
supposing the preference of agents are independent and every preference ordering is equally
likely [1]. They considered a utilitarian principle in which social welfare is measured by the
expected sum of the utilities of the agents (ExpSumUtil). They demonstrated that the
simple alternating policy 121212 . . . optimises the social welfare when utilities are Borda
score (i.e. where the ith ranked of m items has a utility of m − i) and up to 12 items.
Interestingly, there exist situations where the policy that maximises the sum of the utilities
is not alternating. In fact, it need not even be balanced (that is, it might not assign an
equal number of items to both agents).

Example 1. Consider 8 items, a to h, 2 agents and utilities which are Borda scores.
Suppose agent 1 has the preference order a > . . . > h whilst agent 2 has the order a > h >
b > c > d > e > f > g. Then, supposing the agents pick items truthfully, the alternating
policy 12121212 gives a social welfare of 22+16=38 but the optimal policy is 22111111 which
gives a social welfare of 27+15=42. Note that the optimal policy does not Pareto dominate
the alternating policy since, whilst the optimal policy increases the utility for agent 1, the
utility for agent 2 decreases slightly.

Of course, an alternating policy can still be the best policy in expectation even if there
are individual situations like the above where it is not the best. Bouveret and Lang also
considered an egalitarian principle in which social welfare is measured by the minimum of
the expected utilities of the different agents (MinExpUtil). We consider two more other
measures of egalitarian social welfare: the expected minimum utility of the different agents
(ExpMinUtil) and the minimum utility of the different agents over all possible worlds
(MinUtil). In the economics literature, MinExpUtil is called the ex-ante egalitarian
utility, whilst ExpMinUtil is called the ex-post egalitarian utility.

To illustrate the difference between the three measures, consider the following two pro-
tocols. In the first, we toss a coin. If it lands on heads, we assign all m items to agent 1,
otherwise we assign all items to agent 2. In the second protocol, we assign m/2 items at
random to agent 1 and the rest to agent 2. The second protocol is more egalitarian than
the first since one agent is sure to get no items in the first protocol whilst each agent is
allocated m/2 items in the second protocol. This is reflected in the expected minimum of
the two utilities (which is zero for the first protocol and half the total utility for the second
protocol), and in the minimum utility (which is zero for the first protocol, and the sum of
utilities of the least valuable m/2 items for the second protocol). However, the minimum of
the expected utilities hides this difference as both protocols have a minimum expected util-
ity that is half the total. We have the following proposition, whose proof is straightforward
and is omitted.

Proposition 1. For any policy and any distribution over utility functions:
MinUtil≤ExpMinUtil≤MinExpUtil

Note that, whilst the minimum utility (MinUtil) occurs in the full correlation case
where agents utilities are identical [1], it can also occur when the utilities of the agents are
different. For instance, suppose we are dividing just two items between two agents. Consider
the protocol where the two agents declare which of the two items that they like most. If the
two agents most prefer the same item, then we toss a coin to decide which agent gets this
item, and assign the remaining, less preferred item to the other agent. On the other hand, if
the two agents most prefers different items, we toss a coin and assign both items to an agent
chosen at random. The minimum utility is now zero and occurs when the two agents most
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prefer different items. The full correlation case increases MinUtil to the smallest utility
assigned to either object.

For the case of two agents, we computed the policies that maximise the three different
egalitarian measures of social welfare using brute force search. Table 1 demonstrates that
the optimal policies for maximising ExpMinUtil and MinExpUtil differ. We conjecture that
the optimal ExpMinUtil policy has the form: (12)k2 for m = 2k+ 1, (12)k(21)k for m = 4k
and (12)k(21)k−1 for m = 4k − 2. In addition, we conjecture that the optimal ExpMinUtil
policy for an even number of items is also an optimal MinUtil policy.

m MinExpUtil ExpMinUtil MinUtil
1 1 1 1
2 12 12 12
3 122 122 122
4 1221 1221 1221
5 11222 12122 12122, 12212, 12211
6 121221 121221 121221, 121221, 121222, 122121, 122112
7 1122122 1212122 1212212, 1212212, 1221122, 1221211
8 12212112 12122121 11222122, 11222211, . . . , 12212112, 12221111

Table 1: Optimal policies that maximise the minimum of the two expected utilities
(MinExpUtil), the expected minimum of the two utilities (ExpMinUtil) and the minimum
utility (MinUtil). In each case, we allocate m items, assign utilities using Borda scoring,
and assume full independence between the two agents. Emphasis is added to highlight when
policies start to differ.

To return to our soccer example, suppose there are ten players to divide into two teams,
utilities are Borda scores, and we adopt an egalitarian position to help ensure a balanced
match. We might then select the two best players as team captains and, based on the
optimality of the policy 12122121, have the first team captain pick first, third, sixth and
eight, and the second team captain pick otherwise.

ExpMinUtil MinUtil ExpSumUtil
m egalitarian egalitarian utilitarian
1 1 1 1
2 12 12 12
3 122 122 121
4 1221 1222 1212
5 12122 12222 12121
6 122121 122222 121212
7 1221211 1222222 1212121
8 12212112 12222222 12121212

Table 2: Optimal policies that maximise the expected minimum of the utilities (ExpMinU-
til), maximise the minimum utility (MinUtil) and maximise the expected sum of utilities
(ExpSumUtil). In each case, we allocate m objects, assign utilities using lexicographic
scoring, and assume full independence between the two agents.

As in [1], we also considered two other scoring models: lexicographic scoring (where an
item at position k is scored 2−k) and quasi-indifferent (where an item at position k is scored
a− k for a� m). We consider both an egalitarian model (the ExpMinUtil and MinUtil
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ExpMinUtil MinUtil ExpSumUtil
m egalitarian egalitarian utilitarian
1 1 1 1
2 12 12 12
3 122 122 121
4 1221 1221 1212
5 11222 11222 12121
6 121221 121221, 122112, 122121 121212
7 1112222 1112222 1212121
8 12122121 11222211, 12122121, 12211221, 1221211 12121212

Table 3: Optimal policies that maximise the expected minimum of the utilities (ExpMinU-
til), maximise the minimum utility (MinUtil) and maximise the expected sum of utilities
(ExpSumUtil). In each case, we allocate m objects, assign utilities using quasi-indifferent
scoring, and assume full independence between the two agents.

policies in which we maximise the expected or actual minimum utilities) and a utilitarian
model (the ExpSumUtil policy in which we maximise the expected sum of the utilities).
In Tables 2 and 3, we report the optimal policies for lexicographic and quasi-indifferent
scoring.

We make some observations about these results. First, in both scoring models, a simple
alternating policy is optimal under the utilitarian assumption. It seems likely that the ex-
pected sum of utilities is maximised for a wide variety of scoring functions by this policy.
Second, for the quasi-indifferent scoring function, the same policy is optimal for ExpMinU-
til and MinUtil. This was not the case for the lexicographic scoring model. For Borda
scoring, the same policy was optimal for ExpMinUtil and MinUtil only for even n.

5 Strategic Behavior

Another desirable property of an allocation procedure is strategy-proofness. A sequential
allocation procedure is strategy-proof if for any utility functions, the agents are best off
choosing their top ranked item still available at every step. Unfortunately, the sequential
allocation procedure is not strategy-proof in general. For instance, the first agent to pick
an item might not pick their most preferred item if this is the item least preferred by
the other agent. The first agent might strategically pick some other item as the second
agent will not pick this first item unless there is no other choice. Bouveret and Lang [1]
argue that the sequential allocation procedure is strategy-proof when agents have the same
preference rankings. They also gave a polynomial time method for a single agent to compute
a manipulation supposing all other agents act truthfully and utilities are lexicographic.
Supposing all agents but the manipulator act truthfully is a strong assumption. If one
agent is acting strategically, why not the others?

The sequential allocation procedure naturally lends itself to a game theoretic analysis in
which all agents can act strategically. Assuming that the agents know the utility functions
of other agents, we can model the sequential allocation procedure as a complete information
extensive-form game. The subgame-perfect Nash equilibrium (SPNE) gives the (perhaps
untruthful) strategy in which agents cannot improve their allocation by deviating unilat-
erally. The SPNE can be computed by backward-induction as follows. We start with the
last agent A in the order P . For any allocation of items in the previous rounds, only one
item remains, and A will get it. Then, we move to the second to the last agent A′ in P .
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For any allocation of items in previous round, A′ can predict the final allocation for any
item she picks. Therefore, she can pick an item that maximises her total utility in the final
allocation. We then move on to the third to the last agent in P , etc. Since an agent can
obtain the same total utility for picking different items, there might be multiple SPNE.

Example 2. Suppose there are two agents and four items. Agent 1’s ordinal preferences
are O1 = c1 � c2 � c3 � c4 and agent 2’s ordinal preferences are O2 = c2 � c3 � c4 � c1.
Let P = A1 � A2 � A2 � A1. If all agents behave truthfully, then A1 chooses c1 in the first
round, A2 chooses c2 and c3 in the second and third rounds, respectively, and A1 chooses
c4 in the last round. If the agents behave strategically, then A1 can choose c2 in the first
round, and still get c1 in the last round. The unique SPNE allocation in this game has A1

getting {c1, c2} and A2 getting {c3, c4}.

In the above example, even though there are multiple SPNE, the final allocation is
unique regardless of the utility functions. We will see later that this is not a coincidence.
When there are two agents, the final SPNE allocation is always unique (and indeed can be
computed in linear time). The next example shows that with three or more agents, there
can be multiple SPNE allocations.

Example 3. Suppose there are four items and three agents with Borda utilities. The ordinal
preferences of the agents are as follows. A1 : c1 � c2 � c3 � c4, A2 : c3 � c4 � . . ., and
A3 : c1 � c2 � . . .. Let P = A1 � A2 � A3 � A1. There are two SPNE allocations: (1) if
A1 picks c1 in the first round, then in the SPNE A1 gets {c1, c4}, A2 gets c3, and A3 gets
c2; (2) if A1 picks c3 in the first round, then in the SPNE A1 gets {c2, c3}, A2 gets c4, and
A3 gets c1.

5.1 Computing SPNE for Two Agents

With two agents and m items, computing the subgame-perfect Nash equilibrium by back-
ward induction takes Ω(m!) time. This will be prohibitive when we have many items. The
SPNE can, however, be computed in just O(m) time by means of the following result. Let
u1, u2 be the utility functions of the two agents, O1, O2 be their ordinal preferences, and
P be the policy. We let Seq(O1, O2, P ) denote the truthful sequential allocation. We use
SPNE(u1, u2, P ) to denote the subgame-perfect Nash equilibrium allocation. For any total
strict order O, let rev(O) denote the reversed order. Then, we can show that the SPNE
allocation is unique, and can be computed from the truthful sequential allocation for the
reversed preference orderings and policy.

Theorem 1. When there are two agents, the SPNE allocation is unique. Moreover,
SPNE(u1, u2, P ) = Seq(rev(O2), rev(O1), rev(P ))

Proof: (Sketch) W.l.o.g. suppose agent 1 has the last pick in policy P (and thus the first
pick in policy rev(P )). Then, agent 1 knows that the item that is ranked last in O2 is “safe”,
as agent 2 has no incentive to pick it in earlier rounds. Therefore, agent 1 can safely pick
this item in her last round, and leave opportunities in previous rounds in P to pick more
popular items. The formal proof is much more involved and is proved by induction on the
number of items m. ♣

Example 4. Suppose there are two agents and four items. The agents’ prefer-
ences and the policy are the same as in Example 2. We have rev(P ) = P . In
Seq(rev(O2), rev(O1), rev(P )), A1 picks c1 in the first round, A2 picks c3 and c4 in the
second round and third round respectively, and A1 picks c2 in the last round. This outcome
is the same as the SPNE allocation in Example 2.
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5.2 Computing SPNE for more than Two Agents

When the number of agents n is comparable to the number of items m (more precisely,
when n = O(m)), we prove that computing the SPNE is intractable. Consider the decision
problem SubgamePerfect, where we are given the utility functions of n agents over m
items, a particular agent A, a policy P , and a threshold T , and we are asked whether the
utility of A is larger than T in any SPNE. Computing the SPNE for a finite multi-player
extensive game with perfect information is naturally in PSPACE [6]. Our contribution here
is to show that this particular game is complete for this complexity class.

Theorem 2. SubgamePerfect is PSPACE-complete for Borda scoring of utilities.

Proof: Backward induction shows that it is in PSPACE. To show hardness, we give a
reduction from qsat, which is a standard PSPACE-complete problem. In a qsat instance,
We are given a quantified formula ∃x1∀x2∃x3 · · · ∀xq . ϕ where q is even and we are ask
whether the formula is true. Let ϕ = C1 ∧ · · · ∧ Ct, where Cj is a 3-clause, l1j ∨ l2j ∨ l3j . We
construct a SubgamePerfect instance where there is a unique SPNE with a utility to the
first player larger than a threshold if and only if the formula is true.

In the SubgamePerfect instance, there are q agents who represent the binary variables.
Each of these agents choosing one out of two items represents a valuation of the variable. The
agents that correspond to ∃ quantifiers (that is, agents 1, 3,. . ., q−1) obtain higher utility if
ϕ is true under the current valuation, and the agents that correspond to ∀ quantifiers (that
is, agents 2, 4,. . ., q) obtain higher utility if ϕ is false under the current valuation. There
are also some other agents that are used to encode the qsat instance, which we will specify
later.

Let a be an item, and k, p be natural numbers. We define an ordering Okp(a) that will be

used as part of the policy P as follows. It introduces 2k + 1 new agents A1
p, . . . , A

2k+1
p and

5k+1 new items {ap, b1p, . . . , bkp, c1p, . . . , ckp, d1p, . . . , dkp, e1p, . . . , ekp, f1p , . . . , fkp }. The preferences
of the new agents are as follows:

Agent Preferences
A1
p b1p � c1p � d1p � e1p � Others

...
...

Akp bkp � ckp � dkp � ekp � Others

Ak+1
p c1p � f1p � Others
...

...
A2k
p ckp � fkp � Others

A2k+1
p a � bkp � · · · � b1p � ap � Others

Let the order over agents be A1
p � · · · � A2k+1

p � A1
p � · · · � A2

p. In Okq (a), a is the item
that we want to “duplicate”, k is the number of duplicates, and q is merely an index. We
can prove by induction that if a has not been chosen (in previous rounds), then after agents
have chosen items according to Okq (a), {f1p , . . . , fkp } will be chosen and {d1p, . . . , dkp} will not

be chosen; if a has been chosen, then {d1p, . . . , dkp} will be chosen rather than {f1p , . . . , fkp }.
We now specify the sequential allocation instance by using the orderings Okp(a). All

agents introduced in Okp(a) will not appear in other places in the policy P . For each i ≤ q,
there are two items 0i and 1i that represent the two values of xi, an agent Ai corresponding
to the valuation and another agent Bi that is used to make sure that Ai chooses 0i or 1i in
the (q + 2i− 1)th round. For each i ≤ q, Di is an agent whose preferences are di � Others,
where di is a new item that creates a “gap” between items available to agent Ai. The first
(2t+ 4)q agents in P are the following: D1 � · · · � Dq � A1 � · · · � Aq � Ot1(01) � · · · �
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Otq(0q) � B1 � · · · � Bq. The preferences of Bi are 0i � 1i � Others. The preferences
of Ai will be defined after we have defined all items and have specified P . For notational
convenience, for each i ≤ q and each j ≤ t we rename dji to be 0ji , and rename f ji to be 1ji .

For each clause Ci, we have an agent denoted by Ci. Suppose vj1 , vj2 , and vj3 correspond
to the 3 valuations that satisfy Ci, then we let the preferences of Ci be vij1 � vij2 � vij3 �
g � g′i � Others, where g and g′i are new items. g is used to detect whether a clause is
not satisfied. For example, suppose Ci = x1 ∨ ¬x2 ∨ x3, then the preferences of Ci are
1i1 � 0i2 � 1i3 � g � g′i � Others. The remaining agents in the P are: C1 � · · · � Ct �
Oqq+1(g) � A1 � · · · � Aq.

The agents and new items introduced in Oqq+1(g) impose “feedback” on A1 through Aq,
such that if g is allocated before Oqq+1(g) (which means that the formula is not satisfied
under the valuation encoded in the first q rounds), then some items that are more valuable
to the agents that correspond to the ∀ quantifiers are made available; if g is not allocated
before Oqq+1(g), then some items that are more valuable to the agents that correspond to the
∃ quantifiers are made available. Finally, for each i ≤ q, we define the ordinal preferences
of Ai as follows. If i is odd, then Ai’s preferences are 0i � 1i � diq+1 � di � f iq+1 � . . .. If i

is even, then Ai’s preferences are 0i � 1i � f iq+1 � di � diq+1 � . . ..
To summarise, in the sequential allocation instance, there are 3q+ t+ (2t+ 1)q+ 2q+ 1

agents and m = 3q + (5t + 1)q + 1 + t + 5q + 1 items, which are polynomial in the size of
the formula (Ω(t+ q)). Table 4 summaries the items introduced in the reduction. Final, the

for items Introduced in
i ≤ q di Di

i ≤ q 0i, 1i Ai

i ≤ q, j ≤ t

ai
bji
cji

dji (a.k.a. 0ji )

eji
f ji (a.k.a. 1ji )

Oji (0i)

g C1

j ≤ t g′t Cj
j ≤ q aq+1, bjq+1, cjq+1, Oqq+1(g)

djq+1, ejq+1, f jq+1

Table 4: Items introduced in the reduction.

policy P ordering over agents is the following.

D1 � · · · � Dq � A1 � · · · � Aq � Ot1(01) � · · · � Otq(0q)
� B1 � · · · � Bq � C1 � · · · � Ct � Oqq+1(g)

� A1 � · · · � Aq
If we must allocate all items then we can add some dummy agents to the end of the ordering.

We note that if an agent only appears once in the ordering, then it is her strictly dominant
strategy to pick her most preferred available item. In any SPNE, in the first q rounds
d1, . . . , dq will be chosen. In the next q rounds, agent i must choose either 0i or 1i, otherwise
0i will be chosen by agent A2t+1

i introduced in Oti(0i) and 1i will be chosen by Bi. Hence,
the choices of agents Ai correspond to valuations of the variables, and these valuations are
duplicated by Oti(0i) that will be used to satisfy clauses. (We note that if Ai chooses 0i,
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then after Oti(0i), {01i , . . . , 0ti} are still available, but {11i , . . . , 1ti} are not available; and vice
versa.) Then, a clause Ci is satisfied if and only if at least one of the top 3 items of agent Ci
is available (otherwise Ci chooses g). Hence, after agent Ct, g is available if and only if all
clauses are satisfied. Finally, if g is available after agent Ct, then the agents that correspond
to the ∃ quantifiers can choose dq+1’s to increase their total utility by m− 3, but the agents
that correspond to the ∀ quantifiers can only choose dq+1’s to increase their utility by m−5;
and vice versa. Hence, the agents that correspond to ∃ quantifiers will choose valuations
to make F true, while the agents that correspond to ∀ quantifiers will choose valuations to
make F false. It can be verified that there is a unique SPNE allocation, where agent A1’s
utility is at least 2m−5 (that is, she gets one of {01, 11} and d1q+1) if and only if the formula
F is true. ♣

6 Optimal Policies for Strategic Behavior

Suppose agents act strategically instead of truthfully. For example, suppose they pick
items according to the subgame-perfect Nash equilibrium. The policies which maximise
social welfare can now change. For a reversal symmetric scoring function like Borda, and a
reversal symmetric policy like the simple alternating policy, the situations where strategic
behavior decreases social welfare are exactly balanced by the symmetric situations where
it increases social welfare. As a result, we did not observe any difference in the policies
that optimises social welfare for Borda scoring when agents behave strategically instead of
truthfully. For example, brute force calculation with up to 8 items show that the expected
sum of the utilities of the agents supposing Borda scoring is maximised by the same simple
alternating policy whether agents pick either truthfully or strategically.

Strategic behavior can sometimes increase the social welfare of the agents. In other
cases, it can decrease the social welfare of the agents or leave it unchanged. In fact, given
the reversal symmetry of the optimal policy, and of the subgame perfect equilibrium, Borda
scoring and the utilitarian criterion, we can prove that the cases when the utilitarian social
welfare increases are exactly matched by cases where it decreases. With an egalitarian cri-
terion, strategic behavior can improve social welfare slightly more often than it can decrease
it. Averaged over all possible preference profiles, brute force calculations suggest that the
expected sum of the utilities barely changes, whilst the expected minimum increases by less
than 1%.

For scoring functions that are not symmetric, the optimal policy can change. For exam-
ple, with lexicographic scores, the optimal policy for strategic behavior is different from that
for truthful behavior. Table 5 summarises results based on brute force calculation. When
maximising the expected minimum utility, the optimal policies for agents playing strategi-
cally are optimal policies for agents playing truthfully for 6 or fewer items. However, the
optimal policy for strategic play with 7 items is 1221122 but for truthful play is 1221211.
Similarly, for 8 items, the optimal policy for strategic play is 12212211 but for truthful play
is 12212112. When maximising the minimum utility, the optimal policies for strategic play
are optimal policies for truthful play. When maximising the expected sum of utilities and
4 or more items, the optimal policies for strategic play are not optimal alternating policies
for truthful play.

We conjecture that the optimal ExpMinUtil policy supposing strategic behavior has the
alternating form: (1221)k21 for m = 4k + 2, (1221)k122 for m = 4k + 3 and (1221)k2211
for m = 4k+ 4. We also conjecture that the optimal ExpSumUtil policy supposing strategic
behavior has the alternating form: (12)k122 for m = 2k + 3, 1(2211)k2 for m = 4k + 2,
and 1(2211)k221 for m = 4k + 4. Strategic play also carries a small cost. Averaged over all
possible preference profiles, the utility decreases by 5% or less for both the expected sum
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ExpMinUtil MinUtil ExpSumUtil

n egalitarian egalitarian utilitarian
1 1 1 1
2 12 12 12
3 122 122 121
4 1221 1222 1212, 1221
5 12122 12222 12122
6 122121 122222 122112
7 1221122 1222222 1212122
8 12212211 12222222 12211221

Table 5: Optimal policies when we assign utilities using lexicographic scoring, and assume
agents play strategically by computing the subgame-perfect Nash equilibrium. Emphasis is
added to highlight when policies differ from the optimal truthful policies.

and minimum of utilities.
As in [1], we also considered quasi-indifferent scoring. With quasi-indifferent scoring, an

item at position k in an agent’s ordering is given score a− k where a� m. In Table 6, we
give the optimal policies for agents playing strategically when agents are quasi-indifferent
between items. The optimal policy for agents playing strategically is also the optimal policy
for agents playing truthfully except m = 6 and the egalitarian criterion of maximising the
expected minimum utility. When agents play strategically, the optimal policy in this case
is 122121. However, when agents play truthfully, the optimal policy in this case is 121221.

ExpMinUtil MinUtil ExpSumUtil

m egalitarian egalitarian utilitarian
1 1 1 1
2 12 12 12
3 122 122 121
4 1221 1221 1212
5 11222 11222 12121
6 122121 121221, 122112, 122121 121212
7 1112222 1112222 1212121
8 12122121 12211221, 12212112, 12122121, 11222211 12121212

Table 6: Optimal policies when we assign utilities using a quasi-indifferent scoring function,
and assume agents play strategically by computing the subgame perfect equilibrium.

7 Disposal of Items

One inefficiency of the policies considered so far is that one agent may use one of their early
choices to select an item that the other agent would happily give away. There is an inherent
asymmetry in agents declaring items that they like most but not the items that they like
least. To address this issue, we suppose agents can select the item that they least like to
give to the other agent. For instance, the policy 11̄21 describes a protocol in which the first
agent starts by picking their most preferred item, then picks their least preferred item to
give to the second agent, the second agent then picks the most preferred of the two items
that remain, and the first agent then gets the last remaining item. 1̄ means that agent

260



1 gives the item remaining that she likes least to agent 2. Such disposal of items can be
extended to more than 2 agents but requires a protocol for which agent takes the disposed
item.

ExpMinUtil ExpSumUtil

m egalitarian utilitarian
1 1 1
2 12 12
3 122 121, 1̄21
4 1221, 11̄21, 12̄22, 1̄211 11̄21
5 12122, 1̄1̄2̄12 122̄12, 1̄22̄12
6 12̄1̄1̄21, 1̄21121 11̄2121, 11̄2̄1̄21
7 121̄1̄2̄12 12122̄12, 12̄1̄22̄12, 1̄2122̄12, 1̄2̄1̄22̄12
8 12̄1̄1̄2̄1̄21, 1̄2112121 11̄212121, 11̄212̄1̄21, 11̄2̄1̄2121, 11̄2̄1̄2̄1̄21

Table 7: Optimal policy for dividing m items with utility measured using Borda scoring
assuming egalitarianism or utilitarianism and full independence between the two agents.
Note that when computing the optimal policy, we consider all possible policies including
those in which agents only pick items, and those in which agents only give items away.

In Table 7, we give the optimal policies assuming strategic behavior, and Borda scoring
of utilities when agents can dispose of items as well as pick them. We again put policies
into a canonical form in which agent 1 makes the first move. There is a symmetric policy
in which we swap agent 1 with agent 2 throughout. We also ignore policies which result in
the same division of items. For instance, a policy containing the moves 1̄1 is equivalent one
containing 11̄. Our canonical form has agents picking items before giving give them away.
For example, a policy that ends with the moves 2̄1 gives the last two items to the first agent
so is equivalent to one that ends with the moves 11. Our canonical form describes a policy
by the lexicographically least equivalent policy supposing that 1 and 2 are ordered before 1̄
and 2̄.

We make some observations about the results. First, we can often increase social welfare
by having agents declare items that they dislike. There are a few optimal policies in which
agents only pick items that they like (e.g. for m = 5, one of the optimal egalitarian policies
is 12122). However, in most cases, the optimal policy has agents declaring both items that
they like and dislike. Second, when dividing 4 items between two agents, there is a policy,
11̄21 that is optimal for both the egalitarian and utilitarian measures of social welfare.
Third, unlike protocols in which agents pick just items that they like, there are often several
different protocols which maximise social welfare.

8 Conclusions

We have studied a simple sequential allocation procedure where agents get to choose items
according to a policy, and agents have simple additive utilities over items given by Borda,
lexicographic or quasi-indifferent scores. We have computed optimal policies assuming both
truthful and strategic behavior of the agents for both egalitarian and utilitarian measure of
social welfare. We have also proved that with two agents, the subgame perfect Nash equilib-
rium is polynomial to compute by simply reversing the agents’ preferences and the policy.
On the other hand, with more than two agents, we proved that computing the subgame
perfect Nash equilibrium is PSPACE-hard. There are many directions for future work. One
direction would be to prove the conjectures about the optimal policies for maximising social
welfare assuming truthful or strategic behavior and Borda or lexicographic scoring. Another
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direction would be to determine if we can compute the subgame-perfect Nash equilibrium
in polynomial time for a fixed number agents k where k > 2. More generally, when we want
to allocate multiple indivisible goods, how can we design simple decentralized mechanisms
that balance efficiency and strategy-proofness?
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Aggregating Conditionally Lexicographic Preferences
on Multi-Issue Domains

Jérôme Lang, Jérôme Mengin, and Lirong Xia

Abstract

One approach to voting on several interrelated issues consists in using a language for com-
pact preference representation, from which the voters’ preferences are elicited and aggregated.
A language usually comes with a domain restriction. We consider a well-known restriction,
namely, conditionally lexicographic preferences, where both the relative importance between
issues and the preference between values of an issue may depend on the values taken by more
important issues. The naturally associated language consists in describing conditional impor-
tance and conditional preference by trees together with conditional preference tables. In this
paper, we study the aggregation of conditionally lexicographic preferences, for several voting
rules and several restriction of the framework. We characterizes computational complexity for
some popular cases, and show that in many of them, computing the winner reduces in a very
natural way to a MAXSAT problem.

1 Introduction
There are many situations where a group of agents have to make a common decision about a set of
possibly interrelated issues, variables, or attributes. For example, this is the situation in the following
three domains:
• Multiple referenda: there is a set of binary issues (such as building a sport centre, building a

cultural centre etc.); on each of them, the group has to make a yes/no decision.
•Committee elections: there is a set of positions to be filled (such as a president, a vice-president,

a secretary).
• Group product configuration: the group has to agree on a complex object consisting of several

components.
Voting on several interrelated issues has been proven to be a challenging problem from both a

social choice viewpoint and a computational viewpoint. If the agents vote separately on each issue,
then paradoxes generally arise [6, 13]; this rules out this ‘decompositional’ way of proceeding,
except in the restricted case when voters have separable preferences. A second way consists in using
a sequential voting protocol: variables are considered one after another, in a predefined order, and the
voters know the assignment to the earlier variables before expressing their preferences on later ones
(see, e.g., [14, 15, 2]). This method, however, works (reasonably) well only if we can guarantee
that there exists a common order over issues such that every agent can express her preferences
unambiguously on the values of each issue at the time he is asked to report them. A third class of
methods consists in using a language for compact preference representation, in which the voters’
preferences are stored and from which they are aggregated. If the language is expressive enough to
allow for expressing any possible preference relation, then the paradoxes are avoided, but at a very
high cost, both in elicitation and computation. Therefore, when organizing preference aggregation
in multiple interrelated issue, there will always be a choice to be made between (a) being prone to
severe paradoxes, (b) imposing a domain restriction or (c) requiring a heavy communication and
computation burden.

In this paper, we explore a way along the third class of methods. When eliciting, learning, and
reasoning with preferences on combinatorial domains, a domain restriction often considered consists
in assuming that preferences are lexicographic. Schmitt et al. [17] address the learning of lexico-
graphic preferences, after recalling that the psychology literature shows evidence that lexicographic
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preferences are often an accurate model for human decisions [10]. Learning such preferences is
considered further in [8, 18], and then in [3] who learn more generally conditionally lexicographic
preferences, where the importance order on issues as well as the local preferences over values of
issues can be conditional on the values of more important issues. The aggregation of lexicographic
preferences over combinatorial domains has received very little attention (the only exception we
know of is [1]). Yet it appears to be – at least in some contexts – a reasonable way of coping with
multiple elections. It does imply a domain restriction, and arguably an important one; but, as ex-
plained above, domain restrictions seem to be the only way of escaping both strong paradoxes and a
huge communication cost, and conditionally lexicographic preference models are not so restrictive,
especially compared to the most common domain restriction, namely separability.

The generic problem of aggregating conditionally lexicographic preferences can be stated as fol-
lows. The set of alternatives is a combinatorial domain X composed of a finite set of binary issues.1

We have a set of voters, each providing a conditionally lexicographic preference over X under the
compact and natural form of a lexicographic preference tree (LP-tree for short) [3], which we will
define soon; therefore, a (compactly represented) profile P consists of a collection of LP-trees. Since
each LP-tree L is the compact representation of one linear order �L over X , there is a one-to-one
correspondence between P and the (extensively represented) profile P ∗ consisting of a collection
of linear orders over X . Finally, for a given voting rule r, we ask whether there is a simple way
to compute the winner, namely r(P ∗), where ‘simple’ means that the winner should be computed
directly (and efficiently) from P and in any case we must avoid to produce P ∗ in extenso, which
would require exponential space. For many cases where winner determination is computationally
hard, we show that these problems can be efficiently converted to MAXSAT problems and thus be
solved by sat solvers.

The rest of the paper is organized as follows. Conditionally lexicographic preferences and their
compact representation by LP-trees are defined and discussed in Section 2. In Section 3 we state the
problem considered in this paper, namely the aggregation of conditionally lexicographic preferences
by voting rules. As we will see, some voting rules are better than others in this respect. In the paper
we focus on three families of rules. First, in Section 4, k-approval rules: we show that for many
values of k, we can give a quite satisfactory answer to our question above, even for our most general
models. Note that by ‘satisfactory’ we do not necessarily mean “computable in polynomial time”:
for instance, when deciding whether a given alternative is a winner is NP-complete but can be easily
translated into a compact maximum (weighted) satisfiability problem, for which efficient algorithms
exist, we still consider the answer as (more or less) positive. In Section 5 we then focus on the
Borda rule, and show that the answer to our question is satisfactory for some of the simplest LP-tree
models, but less so for some general models. We also provide a natural family of scoring rules for
which the answer is positive in all cases. Then in Section 6 we consider the existence of a Condorcet
winner, and show that for Condorcet-consistent rules, and in particular Copeland and maximin, the
answer tends to be negative. Finally, Section 7 is devoted to the specific case of LP-trees with fixed
local preferences. Due to the space constraint, most proofs are omitted.

2 Conditionally Lexicographic Preferences and LP-Trees
Let I = {X1, . . . , Xp} (p ≥ 2) be a set of issues, where each issue Xi takes a value in a binary
local domain Di = {0i, 1i}. The set of alternatives is X = D1 × · · · ×Dp, that is, an alternative is
uniquely identified by its values on all issues. Alternatives are denoted by ~d, ~e etc. For any Y ⊆ I
we denote DY =

∏
Xi∈Y Di. Let L(X ) denote the set of all linear orders over X .

Lexicographic comparisons order pairs of outcomes (~d,~e) by looking at the attributes in se-
quence, according to their importance, until we reach an attribute X such that the value of X in

1The assumption that variables are binary is made for the sake of simplicity due to the space constraint. Most of our
results would easily extend to the non-binary case.
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~d is different from the value of X in ~e; ~d and ~e are then ordered according to the local preference
relation over the values of X . For such lexicographic preference relations we need both an impor-
tance relation, between attributes, and local preference relations over the domains of the attributes.
Both the importance between attributes and the local preferences may be conditioned by the values
of more important attributes. Such lexicographic preference relations can be compactly represented
by Lexicographic Preference trees (LP-trees) [3], described in the next section.

2.1 Lexicographic Preference Trees
An LP-tree L is composed of two parts: (1) a tree T where each node t is labeled by an issue,
denoted by Iss(t), such that each issue appears once and only once on each branch; each non-leaf
node either has two outgoing edges, labeled by 0 and 1 respectively, or one outgoing edge, labeled
by {0, 1}. (2) A conditional preference table CPT(t) for each node t, which is defined as follows.
Let Anc(t) denote the set of issues labeling the ancestors of t. Let Inst(t) (respectively, NonInst(t))
denote the set of issues in Anc(t) that have two (respectively, one) outgoing edge(s). There is a set
Par(t) ⊆ NonInst(t) such that CPT(t) is composed of the agent’s local preferences over DIss(t) for
all valuations of Par(t). That is, suppose Iss(t) = Xi, then for every valuation ~u of Par(t), there is
an entry in the CPT which is either ~u : 0i � 1i or ~u : 1i � 0i. For any alternative ~d ∈ X , we let
the importance order of ~d in L, denoted by IO(L, ~d), to be the order over I that gives ~d in T . We
use B to denote an importance order to distinguish it from agents’ preferences � (over X ). If in T ,
each vertex has no more than one child, then all alternatives have the same importance order B, and
we say that B is the importance order of L.

An LP-tree L represents a linear order �L over X as follows. Let ~d and ~e be two different
alternatives. We start at the root node troot and trace down the tree according to the values of ~d, until
we find the first node t∗ such that ~d and ~e differ on Iss(t∗). That is, w.l.o.g. letting Iss(troot) = X1,
if d1 6= e1, then we let t∗ = troot; otherwise, we follow the edge d1 to examine the next node, etc.
Once t∗ is found, we let U = Par(t∗) and let dU denote the sub-vector of ~d whose components
correspond to the nodes in U . In CPT(t∗), if dU : dt∗ � et∗ , then ~d �L ~e. We use L and �L
interchangeably.

Example 1 Suppose there are three issues. An LP-tree L is illustrated in Figure 1. Let t be the
node at the end of the bottom branch. We have Iss(t) = X2, Anc(t) = {X1, X3}, Inst(t) = {X1},
NonInst(t) = {X3}, and Par(t) = {X3}. The linear order represented by the LP-tree is [001 �
000 � 011 � 010 � 111 � 101 � 100 � 110], where 000 is the abbreviation for 010203, etc.
IO(L, 000) = [X1 B X2 B X3] and IO(L, 111) = [X1 B X3 B X2].

X1

X2 X3

X3 X2

01

11

{02,12}

{03,13}

01 ≻ 11

02 ≻ 12 13 ≻ 03

13 ≻ 03

03 : 02 ≻ 12

13 : 12 ≻ 02

t

Figure 1: An LP-tree L.

2.2 Classes of Lexicographic Preference Trees
The definition for LP-trees above is for the most general case. [3] also defined some interesting
sub-classes of LP-trees by imposing a restriction on the local preference relations and/or on the
conditional importance relation.
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The local preference relations can be conditional (general case, as defined above), but can also
be unconditional (the preference relation on the value of any issue is independent from the value of
all other issues). The most restrictive case is fixed, which means that not only are the preferences
unconditional, but that they are common to all voters. Formally, UP is the class of LP-trees with
unconditional local preferences: for every issue Xi there exists a preference relation �i (1i �i 0i
or 0i �i 1i) and for every node t with Xi = Iss(t), Par(t) = ∅, and CPT(t) = {�i}. And FP is the
class of LP-trees with fixed local preferences (FP): without loss of generality, for every node t (with
Iss(t) = Xi), CPT(t) = {1i � 0i}.

Likewise, the importance relation over issues can be conditional (general case), or unconditional,
of fixed when it is common to all voters: (UI) is the set of all linear LP-trees, i.e., every node has no
more than one child. And (FI) is the set of all linear LP-trees with the (unconditional) importance
order over issues [X1 B . . . B Xp].

We can now combine a restriction on local preferences and a restriction on the importance rela-
tion. We thus obtain nine classes of LP-trees, namely, FI-FP, UI-FP, CI-FP, FI-UP, UI-UP, CI-UP,
FI-CP, UI-CP, and CI-CP. For instance, UI-CP is defined as the class of all LP-trees with uncon-
ditional importance relation and conditional preferences. Note that the FI-FP class is trivial, as it
contains a unique LP-tree.

Recall that a LP-tree is composed of a tree and a collection of conditional preference tables.
The latter is reminiscent of CP-nets [4]. In fact, it can be viewed as some kind of generalized
CP-net whose dependency relations between variables (induced from the importance relation) may
be conditional on the values of their parent variables. However, in the case of an unconditional
importance relation (UI), then the collection of CP-tables is a CP-net, and the LP-tree is a TCP-net
[5]. In the general case however, a conditionally lexicographic preferences cannot be represented by
a TCP-net.

3 Aggregating LP-trees by Voting Rules
We now consider n voters. A (voting) profile P over a set of alternatives X is a collection of n linear
orders on X . A voting rule r maps every profile P to a nonempty subset of X : r(P ) is the set of
co-winners for r and P .

A scoring function S is a mappingL(X )n×X → R. Often, a voting rule r is defined so that r(P )
is the set of alternatives maximizing some scoring function Sr. In particular, positional scoring rules
are defined via a scoring vector ~v = (v(1), . . . , v(m)), where m is the number of alternatives (here,
m = 2p): for any vote V ∈ L(X ) and any c ∈ X , let S~v(V, c) = v(rankV (c)), where rankV (c)
is the rank of c in V ; then for any profile P = (V1, . . . , Vn), let S~v(P, c) =

∑n
j=1 S~v(Vj , c).

The winner is the alternative maximizing S~v(P, ·). In particular, the k-approval rule Appk (with
k ≤ m), is defined by the scoring vector v(1) = · · · = v(k) = 1 and v(k + 1) = · · · = v(m) = 0,
the scoring function being denoted by SkApp; and the Borda rule is defined by the scoring vector
(m− 1,m− 2, . . . , 0), the scoring function being denoted by SBorda.

An alternative α is the Condorcet winner for a profile P if for any β 6= α, a (strict) major-
ity of votes in P prefers α to β. A voting rule is Condorcet-consistent if it elects the Condorcet
winner whenever one exists. Two prominent Condorcet-consistent rules are Copeland and max-
imin. The Copeland winners are the alternatives α that maximize the Copeland score C(α), de-
fined as the number of alternatives β such that a majority of votes in P prefers α to β. The
maximin winners are the alternatives α that maximize the maximin score SMM(α), defined as
SMM(P, α) = max{NP (β, α) : β ∈ X , β 6= α}, where NP (β, α) denotes the number of votes
in P that rank α ahead of β.
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3.1 Voting Restricted to Conditionally Lexicographic Preferences
The key problem addressed in this paper is the following. We know that applying voting rules
to profiles consisting of arbitrary preferences on multi-issue domains is computationally difficult.
Does it become significantly easier when we restrict to conditionally lexicographic preferences?
The question, of course, may depend on the voting rule used.

A conditionally lexicographic profile is a collection of n conditionally lexicographic preferences
over X . As conditionally lexicographic preferences are compactly represented by LP-trees, we
define a LP-profile P as a collection of n LP-trees. Given a class C of LP-trees, let us call C-profile
a finite collection of LP-trees in C.

Given a LP-profile P and a voting rule r, a naive way of finding the co-winners would consists
in determining the n linear orders induced by the LP-trees and then apply r to these linear orders.
However, this would be very inefficient, both in space and time. We would like to know how feasible
it is to compute the winners directly from the LP-trees. More specifically, we ask the following
questions: (a) given a voting rule, how difficult is it to compute the co-winners (or, else, one of
the co-winners) for the different classes of LP-trees? (b) for score-based rules, how difficult is it to
compute the score of the co-winners? (c) is it possible to have, for some voting rules and classes of
LP-trees, a compact representation of the set of co-winners?

Formally, we consider the following decision and function problems.

Definition 1 Given a class C of LP-trees and a voting rule r that is the maximizer of scoring function
S, in the S-SCORE and EVALUATION problems, we are given a C-profile P and an alternative ~d.
In the S-SCORE problems, we are asked to compute whether S(P, ~d) > T for some given T ∈ N.
In the EVALUATION problem, we are asked to compute whether there exists an alternative ~d with
S(P, ~d) > T for some given T ∈ N. In the WINNER problem, we are asked to compute r(P ).

When we say that WINNER for some voting rule w.r.t. some class C is in P, the set of winners can
be compactly represented, and can be computed in polynomial time.

Note that if EVALUATION is NP-hard and the score of an alternative can be computed in poly-
nomial time, then WINNER cannot be in P unless P = NP: if WINNER were in P, then EVALUATION
could be solved in polynomial time by computing a winner and its score.

For the voting rules studied in this paper, if not mentioned specifically, EVALUATION is w.r.t. the
score functions we present when defining these rules. In this paper, we only show hardness proofs,
membership in NP or #P is straightforward.

3.2 Two Specific Cases: Fixed Importance and Fixed Preference
It is worth focusing on the specific case of the class of profiles composed of LP-trees which have
a fixed, linear structure: there is an order of importance among issues, which is common to all
voters: X1 is more important than X2, which is itself more important than X3, and so on. . . . Voters
of course may have differing local preferences for the value for each issue, and their preferences
on each issue may depend on the values of more important issues. A simple, easy to compute, and
cheap in terms of communication, rule works as follows [14]: choose a value forX1 according to the
majority rule (possibly with a tie-breaking mechanism if we have an even number of voters); then,
choose a value for X2 using again the majority rule; and so on. The winner is called the sequential
majority winner. When there is an odd number of voters, the sequential majority winner is the
Condorcet winner (cf. Proposition 3 in [14], generalized in [7] to CI-profiles in which all voters
have the same importance tree.). This, together with the fact that the sequential majority winner can
be computed in polynomial time, shows that the winner of any Condorcet-consistent rule applied to
FI profiles can be computed in polynomial time.

The case of fixed preferences is very specific for a simple reason: in this case, the top-ranked
alternative is the same for all voters! This makes the winner determination trivial for all reasonable
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voting rules. However, nontrivial problems arise if we have constraints that limit the set of feasible
alternatives. We devote Section 7 to aggregating FP trees.

4 k-Approval
We start by the following lemma. Most proofs are omitted due to the space constraint.

Lemma 1 Given a positive integer k′ such that 1 ≤ k′ ≤ 2p written in binary, and an LP-tree L,
the k′-th preferred alternative of �L can be computed in time O(p) by Algorithm 1.

Algorithm 1: FindAlternative(L, k′)
1 Let k∗ = (k∗p−1...k

∗
0)2 = 2p − k′ and L∗ = L;

2 for i = p− 1 down to i = 0 do
3 Let Xj be the root issue of L∗ with local preferences xj � xj ;
4 if k∗i = 1 then
5 Let L∗ ← L∗(xj) (the subtree of L∗ tracing the path Xj = xj) and let aj = xj ;
6 end
7 else Let L∗ ← L∗(xj) and let aj = xj ;
8 end
9 return ~a.

Similarly, the position of a given alternative ~d can be computed in time O(p). It follows that the
k-approval score of any alternative in a CI-CP profile can be computed in time O(np). However,
this does not mean that the winner can be computed easily, because the number of alternatives is
exponential in p. For some specific values of k, though, computing the k-approval winner is in P.

Proposition 1 Let k be a constant independent of p. When the profile is composed of n LP-trees,
computing the k-approval co-winners for P can be done in time O(knp).

Proof: We compute the top k alternatives of each LP-tree in P ; we store them in a table together
with their k-approval score. As we have at most kn such alternatives, constructing the table takes
O(knp). �

A similar result also holds for computing the (2p − k)-approval co-winners for any constant k.2

Theorem 1 (CI-CP) For CI-CP profiles, WINNER for 2p−1-approval can be computed in time
O(np).

Proof: We note that an alternative ~d is among the first half of alternatives in Lj iff the root
issue of Lj is assigned to the preferred value. We build a table with the following 2p entries
{11, 01, . . . , 1p, 0p}: for every Lj we add 1 to the score of 1i (resp. 0i) if Xi is the root issue
of Lj and the preferred value is 1i (resp. 0i). When this is done, for each Xi, we instantiate Xi to 1i
(resp. 0i) if the score of 1i is larger than the score of 0i (resp. vice versa); if the scores are identical,
we do not instantiate Xi. We end up with a partial instantiation, whose set of models (satisfying
valuations) is exactly the set of co-winners. �

Applying 2p−1-approval here is both intuitive and cheap in communication (each voter only
communicates her most important issue and its preferred value), and the output is computed very
easily. On the other hand, it uses a very small part of the LP-trees. We may want to do better and
take, say, the most important two issues into account, which comes down to using 2k−2-approval
or (2k−1 + 2k−2)-approval. However, this comes with a complexity cost. Let M be a constant
independent of p and n and define N(M,p) to be the set of all multiples of 2p−M that are ≤ 2p,
except 2p−1. For instance, ifM = 3 thenN(3, p) = {2p−3, 2p−2, 2p−2+2p−3, 2p−1+2p−3, 2p−1+
2p−2, 2p−1 + 2p−2 + 2p−3}.

2However, there is little practical interest in using 2p − k approval for a fixed (small) value of k, since in practice, we
will have kn � 2p, and almost every alternative will be a co-winner.
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Theorem 2 (UI-UP) For any k ∈ N(M,p), for UI-UP profiles, EVALUATION for k-approval is
NP-hard.

Proof sketch: When k = 2p−i for some i ≥ 2, the hardness of EVALUATION is proved by a
reduction from the NP-complete problem MIN2SAT [12], where we are given a set Φ of clauses,
each of which is the disjunction of two literals, and an integer T ′. We are asked whether there
exists a valuation that satisfy smaller than T ′ clauses in Φ. We next show the case k = 2p−2 as
an example. We note that ~d is among the first quarter of alternatives in Lj iff the root issue of Lj
is assigned to the preferred value, and the second most important issue in IO(Lj , ~d) is assigned to
the preferred value as well. Now, we give a polynomial reduction from MIN2SAT to our problem:
given a set Φ of 2-clauses, the negation ¬Ci of each clause Ci ∈ Φ is mapped into a UI-UP LP-tree
whose top quarter of alternatives satisfies ¬Ci (for instance, ¬X3 ∧ X4 is mapped into a LP-tree
whose two most important issues are X3 and X4, and their preferred values are 03 and 14). The
set of co-winners is exactly the set of valuations satisfying a maximal number of clauses ¬Ci, or
equivalently, satisfying a minimal number of clauses in Φ.

The hardness for any other k in N(M,p) is proved by a reduction from special cases of the
MAXSAT problem, which are omitted due to the space constraint. �

The hardness proofs carry over to more general models, namely {UI,CI}×{UP,CP}. We next
present an algorithm that converts winner determination for k-approval to a compact GENERALISED
MAXSAT problem (“generalised” here means that the input is a set of formulas, and not necessarily
clauses). The idea is, for each LP-tree Lj , we construct a formula ϕj such that an alternative (val-
uation) is ranked within top k positions iff it satisfies ϕj . ϕj is further composed of the disjunction
of multiple sub-formulas, each of which encodes a path from the root to a leaf in the tree structure,
and the valuations that are ranked among top k positions.

Formally, for each path u, we define a formula Cu that is the conjunction of literals, where there
is an literalXi (resp., ¬Xi) if and only if along the path u, there is an edge marked 1i (resp., 0i). For
any path with importance order O (w.l.o.g. O = X1 B X2 B · · · B Xp) and k = (kp−1 . . . k0)2 in
binary, we define a formula DO,k. Due to the space constraint, we only present the construction for
the CI-UP case, but it can be easily extended to the CI-CP case. For each i ≤ p − 1, let li = Xi if
1i � 0i, and li = ¬Xi if 0i � 1i. Let DO,k be the disjunction of the following formulas: for every
i∗ ≤ p − 1 such that ki∗ = 1, there is a formula (

∧
i>i∗:ki=0 li) ∧ li∗ . To summarize, for each LP-

tree Lj in the profile we have a formula ϕj , and we can use a (generalised) MAXSAT solver to find
a valuation that maximizes the number of satisfied formulas {ϕj}. Note that there are efficient such
solvers; see, e.g., [16] and the Minimally Unsatisfiable Subset Track of the 2011 Sat Competition, at
http://www.satcompetition.org/2011/#tracks.

Example 2 Let L denote the LP-tree in Example 1, except that the preferences for t is un-
conditionally 02 � 12. Let k = 5 = (101)2. For the upper path we have the follow-
ing clause (¬X1) ∧ (¬X1 ∨ (¬X2 ∧ X3)). For the lower path we have the following formula
(X1) ∧ (¬X1 ∨ (X3 ∧ ¬X2)).

Theorem 3 For any k ≤ 2p − 1 represented in binary and any profile P of LP-trees, there is a
polynomial-size set of formulas Φ such that the set of k-approval co-winners for P is exactly the set
of the models of MAXSAT(Φ).

Therefore, though WINNER for k-approval is hard to compute for some cases, it can be done
efficiently in practice by using a generalized MAXSAT solver.

Note that all polynomiality results for k-approval carry on to the Bucklin voting rule (that we do
not recall): it suffices to apply k-approval dichotomously until we get the value of k for which the
score of the winner is more than n

2 .
Now, we focus on the specific case of fixed importance orders (FI).

Theorem 4 (FI-CP) Let k ∈ N(M,p). For FI-CP profiles, WINNER for k-approval can be com-
puted in time O(2M · n).
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Proof sketch: For simplicity, we only present the algorithm for the case k = 2p−2. The other
cases are similar. Let X1 > X2 > . . . be the importance order, common to all voters. There are
four types of votes: those for which the 2p−2 top alternatives are those satisfying γ1 = X1 ∧ X2

(type 1), those satisfying γ2 = X1 ∧ ¬X2 (type 2), etc. Let αi be the number of votes in P of
type i (i = 1, 2, 3, 4). The 2p−2-approval co-winners are the alternatives that satisfy γi such that
αi = max{αi, i = 1, . . . , 4}. �

5 Borda
We start with a lemma that provides a convenient localized way to compute the Borda score for a
given alternative in an LP-tree L. For any ~d = (d1, . . . , dp) ∈ X and any i ≤ p, we define the
following notation, which is an indicator whether the i-th component of ~d is preferred to its negation
in L, given the rest of values in ~d, denoted by ~d−i.

∆i(L, ~d) =

{
1 if in L, di � di given ~d−i
0 Otherwise

∆i(L, ~d) can be computed in polynomial-time by querying the CPT of Xi along IO(L, ~d). We
let rank(Xi,L, ~d) denote the rank of issue Xi in IO(L, ~d).

Lemma 2 For any LP-tree L and any alternative ~d, we have the following calculation:

SBorda(L, ~d) =

p∑

i=1

2p−rank(Xi,L,~d) ·∆i(L, ~d)

Example 3 Let L denote the LP-tree defined in Example 1. We have SBorda(L, 011) = 22 · 1 + 21 ·
0 + 20 · 1 = 5 and SBorda(L, 101) = 22 · 0 + 20 · 0 + 21 · 1 = 2.

Hence, the Borda score of ~d for profile P = (L1, . . . ,Ln) is SBorda(P, ~d) =∑n
j=1

∑p
i=1 2p−rank(Xi,Lj ,~d) ·∆i(Lj , ~d).

Theorem 5 (CI-UP) For CI-UP profiles, EVALUATION is NP-hard for Borda.

Proof sketch: We prove the NP-hardness by a reduction from 3SAT. Given a 3SAT instance, we
construct an EVALUATION instance, where there are q + 2 issues I = {c, d} ∪ {X1, . . . , Xq}. The
clauses are encoded in the following LP-trees: for each j ≤ t, we define an LP-tree Lj with the
following structure. Suppose Cj contains variables Xi1 , Xi2 , Xi3 (i1 < i2 < i3), and di1 , di2 , di3
are the valuations of the three variables that satisfy Cj . In the importance order of Lj , the first three
issues are Xi1 , Xi2 , Xi3 . The fourth issue is c and the fifth issue is d if and only if Xi1 = di1 ,
Xi2 = di2 , or Xi2 = di2 ; otherwise the fourth issue is d and the fifth issue is c. The rest of issues
are ranked in the alphabetical order (issues in C are ranked higher than issues in S). Then, we set
the threshold appropriately (details omitted due to the space constraint) such that the Borda score of
an alternative is higher than the threshold if and only if its d-component is 1, and the its values for
X1, . . . , Xp satisfy all clauses. �

Finally, we show that WINNER for Borda can be converted to a weighted generalized MAXSAT
problem. We note that ∆i(Lj , ~d) can be represented compactly by a formula ϕij such that a valuation
~d satisfies ϕij iff ∆i(Lj , ~d) = 1. The idea is similar to the logical formula for k-approval, where
each path u corresponds to a clauseCu, and there is another clause depicting whether ∆i(Lj , ~d) = 1

in u. For example, let L denote the LP-tree in Example 1, then ∆2(L, ~d) can be presented by the
disjunction of the clauses for the two paths: ¬X1 ∧ ¬X2 for the upper path, and X1 ∧ ((¬X3 ∧
¬X2) ∨ (X3 ∧X2)) for the lower path.
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Theorem 6 For any profile P of LP-trees, there is a set of clauses Φ with weights such that the set
of Borda co-winners for P is exactly the set of the models of WEIGHTED MAXSAT(Φ).

Now, we focus on the specific case of unconditional importance orders (UI). When, for each
Lj the importance order is unconditional, rank(Xi,Lj , ~d) does not depend on ~d: let us denote it
rank(Xi,Lj). It can be computed in polynomial time by a simple exploration of the tree Lj .

If the preferences are unconditional, then the Borda winner is the alternative ~d that maximises∑p
i=1

∑n
j=1 2p−rank(Xi,Lj)∆i(Lj , ~d). We can choose in polynomial time the winning value for each

issue independently: it is the di that maximizes

n∑

j=1

2p−rank(Xi,Lj)∆i(Lj , di) where ∆i(Lj , di) =

{
1 if in Lj , di � di
0 otherwise.

Note that this method still works if the voters have differing importance order – provided they
still have unconditional importance.

Theorem 7 (UI-UP) For UI-UP profiles, WINNER for Borda can be computed in polynomial time.

However, if we allow conditional preferences, computing the Borda winner becomes intractable:

Theorem 8 (FI-CP) For FI-CP profiles, EVALUATION is NP-hard for Borda.

6 Condorcet-Consistent Rules
We start by studying the several classes of conditionally lexicographic preferences according to the
existence of a Condorcet winner. We recall the following result from [7]:

Lemma 3 [7] For FI-CP profiles, there always exists a Condorcet winner, and it can be computed
in polynomial time.

Proposition 2 The existence of a Condorcet winner for our classes of conditionally lexicographic
preferences is depicted on the table below, where yes (resp. no) means that the existence of a
Condorcet winner is guaranteed (resp. is not guaranteed) for an odd number of voters.

FP UP CP
FI yes yes yes
UI yes no no
CI yes no no

Proof: We know from [7] that for FI-CP profiles, there always exists a Condorcet winner, and it can
be computed in polynomial time. For CI-FP profiles, since all voters have the same top alternative,
the existence of a Condorcet winner is trivial. Finally, here is a UI-UP profile with two variables and
three voters, that has no Condorcet winner:
– Voter 1: [X B Y ], x � x̄, y � ȳ, and the linear order is [xy � xȳ � x̄y � x̄ȳ].
– Voter 2: [Y B X], x̄ � x, y � ȳ, and the linear order is [x̄y � xy � x̄ȳ � xȳ].
– Voter 3: [Y B X], x̄ � x, ȳ � y, and the linear order is [x̄ȳ � xȳ � x̄y � xy]. �

Theorem 9 (UI-UP) For UI-UP profiles, deciding whether a given alternative is the Condorcet
winner is coNP-hard.

Corollary 1 For UI-UP profiles, EVALUATION for maximin is coNP-hard.
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7 Fixed Preferences
When the agents’ local preferences are fixed (w.l.o.g. 1 � 0), issues can be seen as objects, and
every agent has a preference for having an object rather than not, everything else being equal. Ob-
viously, the best outcome for every agent is ~1, and applying any reasonable voting rule (that is, any
voting rule that satisfies unanimity) will select this alternative, making winner determination trivial.
However, winner determination ceases to be trivial if we have constraints that limit the set of feasible
alternatives. For instance, we may have a maximum number of objects that we can take.

Let us start with the only tractability result in this section, with the Borda rule. Recall that,
when, for each Lj the importance order is unconditional, rank(Xi,Lj) does not depend on ~d. If,
the preferences are fixed, ∆i(Lj , ~d) = di, and SBorda(P, ~d) =

∑p
i=1 di

∑n
j=1 2p−rank(Xi,Lj). We

have the following theorem, which states that for the UI-FP case, computing the Borda winner
is equivalent to computing the winner for a profile composed of importance orders, by applying
some positional scoring rule. For any order B over I, let ext(B) denote the UI-FP LP-tree whose
importance order is B.

Theorem 10 (UI-FP) Let fp denote the positional scoring rule over I with the scoring vector
(2p−1, 2p−2, . . . , 0). For any profile PI over I, we have ext(fp(PI)) = Borda(ext(PI)).

However, when the importance order is conditional, the Borda rule becomes intractable. We
prove that using the following problem:

Definition 2 Let voting rule r be the maximizer of scoring function S. In theK-EVALUATION prob-
lem, we are given a profile P that is composed of lexicographic preferences whose local preferences
for all issues are 1 � 0, a natural number K, and an integer T . We are asked to compute whether
there exists an alternative ~d that takes 1 on no more than K issues and S(P, ~d) > T .

Theorem 11 (CI-FP) For CI-FP profiles, K-EVALUATION is NP-hard for Borda.

Theorem 12 (UI-FP) Let k ∈ N(M,p). For UI-FP profiles, K-EVALUATION for k-approval is
NP-hard.

Theorem 13 (UI-FP) For UI-FP profiles, Copeland-SCORE is #P-hard.

The proof is by polynomial-time counting reduction from #INDEPENDENT SET. Maximin, when
the preferences are fixed (to be 1 � 0 for all issues), the maximin score of ~1 is 0 and the maximin
score of any other alternative is 2p − 1. This trivialize the computational problem of winner de-
termination even when with the restriction on the number of issues that take 1 (if K 6= p then all
available alternatives are tied). Following Lemma 3, for FI profiles, the winner can be computed in
polynomial-time.

8 Summary and Future Work
Our main results are summarized in Table 1. In addition, we can also show that for k-approval
(except k = 2p−1), Copeland and maximin, there is no observation similar to Theorem 10, and the
maximin score of a given alternative is APX-hard to approximate.

Our conclusions are partly positive, partly negative. On the one hand, there are voting rules for
which the domain restriction to conditionally lexicographic preferences brings significant benefits:
this is the case, at least, for k-approval for some values of k. The Borda rule can be applied easily
provided that neither the importance relation and the local preference are unconditional, which is
a very strong restriction. The hardness of checking whether an alternative is a Condorcet winner
suggest that Condorcet-consistent rules appears to be hard to apply as well. However, as we have

272



FP UP CP

FI Trivial
P

(Thm. 4)
UI NPC

(Thm. 12)
NPC

(Thm. 2)CI

FP UP CP
FI Trivial P

(Thm. 7) NPC
(Thm. 8)UI P

CI
NPC

(Thm. 11)
NPC

(Thm. 5)
(a) k-approval, k ∈ N(M,p). (b) Borda.

FP UP CP

FI Trivial
Polynomial
(Lemma 3)

UI #P-complete
(Thm. 13)CI

FP UP CP

FI
Trivial

P
(Lemma 3)

UI coNPC
(Thm. 9, Coro. 1)CI

(c) Copeland score. (d) Maximin and Condorcet winner.

Table 1: Summary of computational complexity results.

shown that some of these problems can be reduced to a compact MAXSAT problem. From a practical
point of view, it is important to test the performance of MAXSAT solvers on these problems. We be-
lieve that continuing studying preference representation and aggregation on combinatorial domains,
taking advantages of developments in efficient CSP techniques, is a promising future work direction.
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Online (Budgeted) Social Choice

Brendan Lucier, Joel Oren

Abstract

We consider classic social choice problems in an online setting. In the problems
we consider, a decision-maker must select a subset of candidates in accordance to
reported preferences, e.g. to maximize the value of a scoring rule. However, agent
preferences cannot be accessed directly; rather, agents arrive one at a time to report
their preferences, and each agent cares only about those candidates that have been
selected by the time she arrives. On each step, the decision maker must choose
whether to irrevocably add candidates to the final selection set given the preferences
observed so far, with the goal of maximizing the average score over all agents.
We show that when preferences are arbitrary but agents arrive in uniformly random
order, an online selection algorithm can approximate the optimal value of an arbi-
trary positional scoring function to within a factor of (1−1/e)−o(1) as the number of
agents grows large, nearly matching the performance of the best offline polynomial-
time algorithm. When agent preferences are drawn from a Mallow’s model distribu-
tion, a different selection algorithm achieves approximation factor that limits to 1 as
the number of agents grows large. Our methods are straightforward to implement,
and draw upon connections to online computation and secretary problems.

1 Introduction

Suppose that a manufacturer wishes to focus on a selected set of possible products to offer to
incoming consumers. On each day a new client arrives, selecting her favorite product among
those being offered. However, the client may also express preferences over potential products,
including those that are not currently being offered. The manufacturer must then decide
whether or not to add new production lines to make available to that consumer (as well as to
future consumers). While adding a new product would potentially increase customer welfare,
it carries with it some opportunity cost: it would be impractical to offer every possible
product, so choices are effectively limited and irrevocable (since new production lines incur
substantial overhead). Adding new products may be worthwhile if many future customers
would prefer the chosen product as well, though this is not known to the manufacturer in
advance. The problem is thus one of online decision-making, where uncertainty of future
preferences must be balanced with the necessity of making decisions to realize current gains.

Such a setting gives rise to obvious complications. On one hand, adding an item that is
highly ranked by the current user to the list of available items will satisfy the current client.
On the other hand, in such settings there is usually an underlying constraint that prohibits
the addition of arbitrarily many items. In our study of this problem, we will address settings
in which the underlying restriction is a cardinality constraint, which limits the number of
chosen alternatives. The main problem that we are facing is therefore an online social choice
problem: we are required to choose the most “favourable” set of candidates, while having
only a partial view of the objective function. For any given offline social choice problem,
such as selecting a candidate to maximize the value of a certain scoring function of the user
preferences, one might consider an online variant in which each agent receives value only
for those candidates that have been selected at or before the time that he arrives. In this
case, the objective function is the average of the agent scores, determined by a prescribed
positional scoring function or hidden utility function.

We consider various different models for the manner in which the agents preferences are
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set. In the distributional model, the player preferences are drawn independently from a
distribution over permutations. For example, one might assume that the preferences are
sampled from a parametrized Mallows model, which defines a unimodal distribution over
permutations. An alternative approach that is common to online algorithm analysis is to
suppose that the set of agent preferences is set arbitrarily (i.e. adversarially), but that the
order of agent arrival is random1. Utilizing previous results in the area of online matching,
we show that our methods for this adversarial setting carry over to the case in which the
preferences are drawn independently from an unknown distribution.

As previously mentioned, our ultimate goal is to maximize the average score of the
agents when each agent is matched with his most preferred item available at the time of
arrival. Generally speaking, our finding is that if the number of agents is sufficiently large
compared to the number of candidates, it is possible to design online algorithms that perform
asymptotically as well as the best possible offline algorithms, with high probability. Our
approach is reminiscient of those used for well-studied secretary-type problems, in which
the candidates arrive online rather than the agents. Our results also suggest a number of
potential extensions for future research, which we discuss in our concluding remarks.

Results We first consider adversarial settings, where agent preferences are arbitrary
but arrive in uniformly random order. We show that one can approximate the optimal
choice of a single candidate, with respect to an arbitrary positional scoring function, with
approximation ratio (1−o(1)) where the asymptotic notation is with respect to the number
of agents. In other words, the regret exhibited by the online selection method vanishes as
n grows large. If more than one alternative can be chosen, say k > 1 in total, we show
that for any positional scoring function, combining our sample approach with a standard

greedy algorithm for submodular set-function maximization provides a (1−
(
k−1
k

)k − o(1))
approximation to the optimal choice. Thus, as n grows large, our online algorithm achieves
approximation factor 1− 1/e, matching a lower bound for offline algorithms [12].

Moving away from positional scoring functions to arbitrary utility functions, we apply
a recent result due to Boutilier et al. [3] who demonstrated that a social choice function
can approximate the choice of a candidate to maximize agent utilities to within a factor
of Õ(

√
m) (where m is the number of candidates), even if only preference lists are made

available. Using our results for arbitrary positional scoring functions, we obtain similar
bounds for the problem of maximizing average agent utility in an online fashion, with
vanishing additional errors due to sampling.

Finally, in the distributional setting where preferences are drawn from a parameterized
Mallows model, we show that for the selection of k ≥ 1 alternatives under an arbitrary
positional scoring rule, one can obtain an approximation ratio of (1− o(1)), suffering regret
that vanishes as n grows. In the particular case of Borda ranking, we show that sampling a
logarithmic number of agents is sufficient for approximating the optimal k-set.

2 Related Work

The problem of selecting a single candidate given a sequence of agent preference lists is the
traditional social choice problem. The budgeted form of this offline problem was introduced
by Chamberlin and Courant [5], and subsequently studied by Boutilier and Lu [12], in which
several natural constraints on the allocated set were considered. In particular, it is shown
that for the case where producing copies of the alternatives bears no cost, the problem of
selecting which candidates to make available is a straightforward case of non-decreasing and

1For the problems we consider, as with many others, no algorithm can guarantee reasonable performance
if the adversary is also allowed to set the order of the arrival of agents.
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submodular set-function maximization, subject to a cardinality constraint, which admits a
simple greedy algorithm with approximation ratio 1 − 1/e. Our work differs in that the
agent preferences arrive online, complicating the choice of which alternatives to select, as
the complete set of agents preference is not fully known in advance.

In our online setting, we refer to the Mallows model ([14]), a well-studied model for
distributions over permutations (e.g. [8, 6]) which has been studied and extended in various
ways. In recent work, Braverman and Mossel have shown that the sample complexity
required to estimate the maximum-likelihood ordering of a given Mallows model distribution
is roughly linear [4]. We make use of some of their results in our analysis.

Adversarial and stochastic analysis in online computation have received considerable
attention (e.g. [7]). In our analysis, we make critical use of the assumption that agent
arrivals are randomly permuted. This is a common assumption in online algorithms (e.g.
[10, 11, 13]). Correspondingly, in our analysis of the adversarial model, we use techniques
that resemble methods used in secretary and multi-armed bandits problems (see [2] for a
survey), of partially observing some initial data, and bounding the total error.

A recent paper by Boutilier et al. [3] considered the social choice problem from a utilitar-
ian perspective, where agents have underlying utility functions that induce their reported
preferences. The authors introduce a measure of distortion to compare the performance of
their social choice functions to the social welfare of the optimal alternative. We make use
of their constructions in our results for the utilitarian model.

The online arrival of preferences has been previously studied by Tennenholtz [16]. This
work postulates a set of voting rule axioms that are compatible with online settings.

3 Preliminaries

Given is a ground set of alternatives (candidates) A = {a1, . . . , am}. An agent i ∈ N =
{1, . . . , n}, has a preference �i over the alternatives, represented by a permutation πi. For
a permutation π and an alternative a ∈ A, we will let π(a) denote the rank of a in π. A
positional scoring function (PSF) assigns a score vi to the alternative ranked ith, given a
prescribed vector v ∈ Rm≥0. Given an (implicit) set of agent preferences, we will denote the

average score of a single element a ∈ A by F (a) = 1
n

∑n
i=1 Fi(a), where Fi(a) = v(πi(a)).

Moreover, we will consider the score of a set S ⊆ A of candidates w.r.t. to a set of agents
as the average positional scores of each of the agents, assuming that each of them selected
their highest ranked candidate in the set: F (S) = 1

n

∑
i∈N maxa∈S Fi(a).

The online budgeted social choice problem. We consider the problem of choosing
a set of k ≥ 1 candidates from the set of potential alternatives. An algorithm for this
problem starts with an empty “slate” S0 = ∅ of alternatives, of prescribed capacity k ≤ m.
In each step t ∈ [n], an agent arrives and reveals her preference ranking. Given this, the
algorithm can either add new candidates I ⊆ A\St−1 to the slate (i.e. set St ← St−1∪I), if
|St−1|+ |I| ≤ k, or leave it unchanged. Agent i in turn takes a copy of one of the alternatives
currently on the slate, i.e. St. Any addition of alternatives to the slate is irrevocable: once
an alternative is added, it cannot be removed or replaced by another alternative. The offline
version of this problem is called the limited choice model in [12].

Some of our results will make use of algorithms for maximizing non-decreasing submodu-
lar set functions subject to a cardinality constraint. A submodular set function f : 2U → R≥
upholds f(S ∪ {x})− f(S) ≥ f(T ∪ {x})− f(T ) for all S ⊆ T ⊆ U and x ∈ U \ T .
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4 The Adversarial Model

We begin by supposing that the set of agent preference profiles is arbitrary, as might be
chosen by an adversary. After the collection of all preference profiles has been fixed, we
assume that they are presented to an online algorithm in a uniformly random order. The
algorithm can irrevocably choose up to k candidates during any step of this process; each
arriving candidate will then receive value corresponding to his most-prefered candidate that
has already been chosen. The goal is to maximize the value obtained by the algorithm, with
respect to an arbitrary positional scoring function2.

In general, we cannot hope to achieve an arbitrarily close approximation factor to the
optimal (in hindsight) choice of k candidates, as it is NP-hard to obtain better than a
(1 − 1

e ) approximation to this problem even when all profiles are known in advance3. Our
goal, then, is to provide an algorithm for which the approximation factor approaches 1− 1

e as
n grows, matching the performance of the best-possible algorithm for the offline problem4.

Let F (·) be an arbitrary PSF; without loss of generality we can scale F so that F (1) = 1.
Note that this implies that F (a) ∈ [0, 1] for each outcome a. If agent i has preference
permutation πi, then we write Fi(·) = F (πi(·)) for the scoring function F applied to agent i’s
permutation of the choices. Also, we will write σ for the permutation of players representing
the order in which they are presented to an online algorithm. Thus, for example, Fσ(1)(a)
denotes the value that the first observed player has for object a.

Given a set S of objects and PSF F , we write F (S) = maxa∈S F (a) for the value of the
highest-ranked object in S. Given a set T of players, FT (S) =

∑
j∈T Fj(S) is the total score

held by the players in T for the objects in S. We also write FT (S) = FT (S)
|T | for the average

score assigned to set S. Let OPT = maxS⊆A,|S|≤k FN (S) be the optimal outcome value.
Let us first describe a greedy social choice rule for the offline problem that achieves

approximation factor (1−1/e), due to [12]. This algorithm proceeds by repeatedly selecting
the candidate that maximizes the marginal gain in the objective value, until a total of k
candidates have been chosen. As any PSF F (·) can be shown to be a (non-decreasing)
submodular set-function over the sets of candidates (see for example, [12]), such an algo-
rithm obtains approximation 1 − (k−1k )k, which is at most 1 − 1/e for all k. We will write
Greedy(N, k) for this algorithm applied to set of players N with cardinality bound k.

We now consider the online algorithm A, listed as Algorithm 1 below.

Algorithm 1: Online Candidate Selection Algorithm

Input: Candidate set A, parameters k and n, online sequence of preference profiles

1 Let t← n2/3(log n+ k logm);
2 Observe the first t agents, T = {σ(1), . . . , σ(t)};
3 S ← Greedy(T, k);
4 Choose all candidates in S and let the process run to completion;

We write V (A) for the value obtained by this algorithm. We claim that the expected
value obtained by A will approximate the optimal offline solution.

2A stronger adversary would not only be able to set the preferences of the voters, but also their order,
or even set preferences adaptively. However, it is not hard to see that in such cases no non-trivial bounds
can be obtained, as the adversary can strategically cause the algorithm to exhaust its budget and then set
the preferences to be the worst possible from that point onward.

3One can reduce Max-k-Coverage to the budgeted social choice problem for the special case of l-approval:
the PSF in which the first l positions receive score 1, and others receive score 0.

4For the special case of the Borda scoring rule, it can be shown that the algorithm that simply select a
random k-set obtains a 1−O(1/m)-approximation to the offline problem. Furthermore, this algorithm can be
derandomized using the method of conditional expectations. We omit the proof due to space considerations.
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Theorem 1. If m < n1/3−ε for any ε > 0, then E[V (A)] ≥ (1− (k−1k )k − o(1))OPT .

The first step in the proof of Theorem 1 is the following technical lemma, which states
that the preferences of the first t players provide a good approximation to the (total) value
of every set of candidates, with high probability.

Lemma 2. Pr[∃S, |S| ≤ k : |FT (S) − F (S)| > n−1/3] < 2
n , where the probability is taken

over the order in which the agents arrive.

Proof. Choose any set S with |S| ≤ k. For each j ∈ [t], let Xj be a random variable denoting
the value Fσ(j)(S). Note that E[Xj ] = F (S) for all j, and that FT (S) = 1

t

∑
Xj . By the

Hoeffding inequality (without replacement), for any ε > 0, Pr[|FT (S)−F (S)| > ε] < 2e−ε
2t.

By the union bound over all S with |S| ≤ k,

Pr[∃S, |S| ≤ k : |FT (S)− F (S)| > ε] < 2
k∑

`=1

(
m

`

)
e−ε

2t ≤ 2mke−ε
2t.

Setting t = n2/3(log n+ k logm) and ε = n−1/3 then yields the desired result.

With Lemma 2 in hand, we can complete the proof of Theorem 1 as follows. Since FT (S)
approximates F (S) well for every S, our approach will be to sample T , choose the (offline)
optimal output set according to the preferences of T , then apply this choice to the remaining
bidders. This generates two sources of error: the sampling error bounded in Lemma 2, and
the loss due to not serving the agents in T . By setting the value of t judiciously, and noting
that OPT cannot be very small (it must be at least n

m ), one can show that the relative error
vanishes as n grows large. The details appear in the full version of the paper.

One special case of note occurs when k = 1; that is, there is only a single candidate to
be chosen. In this case, the regret experienced by our online algorithm vanishes as n grows.

Corollary 3. If k = 1 and m < n1/3−ε for any ε > 0, then E[V (A)] ≥ (1− o(1))OPT .

4.1 A Correspondence with the Unknown Distribution Model

We now note a correspondence between the random order model analyzed above and a
model in which rankings are drawn from an underlying distribution over preferences. This
observation was first made by Karande et al. ([9]) in the context of online bipartite matching.
Suppose there is an underlying distribution D over the set of rankings over the alternatives
A. For each player i ∈ N , suppose the ranking πi for player i is sampled independently
from D.

The following result due to Karande et al. states that our algorithm for the adversarial
model with random arrival order applies to this unknown-distribution setting as well.

Claim 4 ([9]). Let A be an algorithm for the online social problem under the random order
model that obtains a expected competitive ratio of α. Then A obtains an expected approxi-
mation ratio of at least α for the online social choice problem in the unknown distribution
model. Furthermore, hardness results in the unknown distribution model hold in the random
order model as well.

This result implies that algorithm A achieves approximation factor (1− (k−1k )k − o(1))
to the social choice problem when preferences are drawn from an unknown underlying dis-
tribution, and that it is NP-hard to achieve an approximation factor better than (1− 1/e).
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5 A Utilitarian Approach

In the previous section we considered the problem of maximizing the social value of a
positional scoring function in an online setting. However, it may be more natural in some
circumstances to assume that each agent assigns a non-negative utility to each candidate,
even though these utilities are hidden and only the preference lists are revealed to a potential
social choice function. In such settings, one would wish to choose candidates that maximize
overall social welfare (i.e. sum of utilities), again in an online fashion. However, this goal is
hindered by the fact that the utilities themselves are never made available to the algorithm.
In this section we adapt a general technique due to Boutillier et al. [3] to show that our
result for online PSF maximization extends to approximate online utility maximization.

We assume that each agent i ∈ N has a latent utility function ui : A → R≥0. A utility
function ui induces a preference profile π(ui) = πi such that πi(a) > πi(a′) precisely5 when
ui(a) ≥ ui(a′). We let π(u) denote the induced preference profile given a utility profile u.

As in [3], we will assume that utilities can be normalized so that
∑
a∈A ui(a) = 1 for each

i. This assumption essentially states that each agent has the same total weight assigned
to her candidate utilities. Note that without this assumption it would be impossible to
approximate the optimal social welfare, since a single agent could have a single utility score
that dominates all others, but an algorithm with access only to the preference profiles would
have no awareness of this fact.

Intuitively, we would like to choose an alternative a ∈ A that maximizes the (unknown)
social welfare sw(a,u) =

∑n
i=1 ui(a), based solely on the reported vote profile −→π = −→π (u) =

(π1, . . . , πn) induced by the utility profile. Of course, the preference profile −→π does not
completely capture all of the information in the utility profile, and hence we should expect
some loss.

Our hope will be to find a social choice rule f such that, if it were applied to the
preference profile −→π , it would return a candidate that approximately maximizes sw(a,u).
The distortion of f is the worst-case approximation factor incured when f is applied −→π (u).
This notion of distortion was first formalized by Procaccia and Rosenschein in [15], and
has been used in subsequent studies of the social choice problem with partial (or noisy)
information about the underlying utilities (e.g. [3]). The formal definition is as follows.

Definition 5 (distortion). Let −→π ∈ Snm be a preference profile, and let f : Snm → A be a
social choice function. The distortion of f is then given by

dist(−→π , f) = sup
u:π(u)=−→π (u)

maxa∈A sw(a,u)

sw(f(−→π ),u)
(5.1)

In [3], Boutilier et al. proposed a randomized social choice rule f with distortion
O(
√
m logm), and provided a corresponding lower bound of Ω(

√
m). This rule f makes

use of a positional scoring function H(·), that they refer to as the harmonic scoring func-
tion. In the harmonic scoring function, the score of a candidate ranked in position i is
Hi = 1/i. Given preference profile −→π , rule f either a) with probability 1/2, chooses each
candidate a with probability proportional to HN (a) =

∑
i∈N H(πi(a)), or b) with the re-

maining probability 1/2, returns a uniformly random candidate.
We will make use of this social choice rule f to design an online algorithm achieving

social welfare within a factor of O(
√
m logm) of the optimal welfare. As before, we assume

an adversarial setting: the collection of agent preferences can be arbitrary, but they are
presented to the algorithm in an order determined by a (uniform) random permutation σ.
Our algorithm A is described as Algorithm 2, below.

5In keeping with our simplifying assumption that preference profiles do not include indifference, we can
assume that ties in utility are broken in some consistent manner.
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Algorithm 2: Online Candidate Selection Algorithm for Utility Maximization

Input: Candidate set A, parameter n, sequence of preference profiles arriving online

1 Let t← n2/3 log n;
2 Observe the first t agents, T = {σ(1), . . . , σ(t)};
3 a∗ ← f(πσ(1), . . . , πσ(t));
4 Choose candidate a∗ and let the process run to completion;

Given a particular utility profile u we will write E[sw(A)] to denote the expected social
welfare of the outcome returned by A, given preference profile −→π (u), over permutations σ
and randomness in A. We will also write OPT for the optimal social welfare attainable for
u, i.e. OPT = maxa∈A

∑
i ui(a).

Theorem 6. Suppose n > m3. Then for all u, E[sw(A)] ≥ 1
O(
√
m logm)

OPT .

The idea behind the proof of Theorem 6 is to note that the algorithm for offline utility
maximization due to Boutilier et al. [3] works primarily by applying the low-distorition PSF
f . However, our Theorem 1 implies that PSF value maximization can be approximated well
by an online algorithm. We can therefore approximate the set that maximizes the (offline)
value of f in the online setting. As long as the errors due to sampling and omitting the
first t agents are not too large, this then implies an approximation to the utility-maximizing
candidate set. The details of the proof appear in the full version of the paper.

6 The Distributional Model

We next suppose that agent preferences are distributed according to the well-studied Mallows
model, which defines a family of permutation distributions. Roughly speaking, Mallow’s
model assumes that preferences are aligned according to some base permutation π̂, but each
agent’s permutation is (independently) perturbed according to a particular error measure.
We begin by giving a formal definition of this distribution.

Let us begin our formal definition by introducing the Kendall-tau distance (which is also
known as the Kemeny distance or the bubble-sort distance):

Definition 7 (Kendall-tau distance). For all π, π′ ∈ Sm, the Kendall-tau distance between
π and π′ is dK(π, π′) = #{i 6= j : π(i) < π(j) and π′(i) > π′(j)}.

Definition 8 (The Mallows model). Let φ ∈ (0, 1) and π̂ ∈ Sm. The Mallows model distri-
bution D(π̂, φ) is a distribution over permutations of {1, . . . ,m}, such that the probability
of a permutation π ∈ Sm is

Pr[π] = φdK(π,π̂)/Z (6.1)

where Z is a normalization constant: Z =
∑
π∈Sm φ

dK(π̂,π).

Fact 9. It can be shown that Z = 1 · (1 + φ) · · · · · (1 + · · ·+ φm−1).

We note that the Mallows model induces a unimodal distribution. Furthermore, the
parameter φ can be seen as controlling the amplitude of error with respect to permutation
π̂: as φ approaches 1 the distribution tends to uniformity, and as φ approaches 0 the
distribution approaches a point mass at π̂.

We will assume that the agent preference rankings are drawn independently from a
Mallows model distribution D(π̂, φ), where the underlying reference ranking π̂ is unknown.
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We will assume that the dispersion parameter φ is known in advance. Our optimization task
in this model is to select a S ⊆ A of size at most k, in an online fashion, so as to maximize
the expected value of S among the remaining agents (with respect to a given positional
scoring function).

For simplicity of notation and without loss of generality, from hereon we assume that
π̂ is the identity permutation. That is, π̂(i) = i. We note that since D(π̂, φ) is a uni-
modal distribution, Theorem 1 and Claim 4 together imply an immediate corollary for this
distributional model.

Theorem 10. Let F (·) be an arbitrary positional scoring function, and let A be the online
algorithm listed as Algorithm 1. Then if m < n1/3−ε for any ε > 0, we have E[V (A)] ≥
(1− (k−1k )k − o(1))OPT .

Given this result, our motivating question for this section is whether we can obtain
improved results by making use of the particular form of the Mallows model.

6.1 An Improved Result for Arbitrary PSFs

Suppose that our goal is to maximize the value of an arbitrary PSF F (·), scaled so that

F (1) = 1. Write Am =
∑m−1
i=0 φi. We begin with a lemma about the Mallows model, which

shows that in a sampled permutation π, we do not expect any particular candidate to be
placed very far from its position in the reference ranking (the proof appears in the appendix
of the full version paper):

Lemma 11. Let π ∼ D(π̂, φ). Then for any i 6= j, Pr[π−1(i) = i] ≥ Pr[π−1(i) = j] + 1−φ
Am

.

Given this lemma, our strategy will be to observe many samples from the distribution,
then attempt to guess the identities of the top k elements in the underlying permutation π̂.
Since each candidate is most likely to appear in its position from π̂, we expect to be able
to determine π̂ after a relatively small number of samples. Our algorithm is provided as
Algorithm 3, below.

Algorithm 3: Online Candidate Selection Algorithm for the Mallows Model

Input: Candidate set A, Mallows model parameter φ, parameter n, sequence of
preference profiles arriving online

1 Let t← 2( 1−φ
2Am

)2 logm log n;

2 Observe the first t agents, T = {σ(1), . . . , σ(t)};
3 For each i = 1, . . . , k, let ai be the candidate that occurs most often in position i

among πσ(1), . . . , πσ(t).;
4 Choose candidates a1, . . . , ak and let the process run to completion;

We now show that this algorithm does, indeed, exhibit vanishing regret as n grows large.

Theorem 12. Suppose that n > m2+ε 1
1−φ for some ε > 0. Then algorithm A satisfies

E[v(A)] ≥ (1− o(1))OPT .

The proof of the theorem, which relies on the Hoeffding and the union bound, appears
in the full version of the paper.
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6.2 The Borda Scoring Rule

We now demonstrate that if our positional scoring function is the canonical Borda scoring
function, then we can obtain a good approximation with fewer samples (and hence a weaker
restriction on the size of n relative to m). In the Borda positional scoring function, for an
agent with preference π ∈ Sm, the score is defined as follows: Bi(a) = m − π(a); i.e. the
scores are evenly spread between 0 and m− 1.

We begin with a lemma about the Mallows model, which shows that we do not expect
the top candidate to be placed very far from its position in the reference ranking:

Claim 13. Let π ∼ D(π̂, φ), and let a = π−1(i); i.e. the first item in the permutation.
Then with high probability π̂(a) = o(m).

Proof. Fix c ∈ (0, 1). Now, consider the probability that any of the elements bc ·mc , . . . ,m
appear in position one in a sampled permutation π:

Pr[π(i) = 1 : i ≥ bc · nc] =

m∑

i=bc·nc

∑

π∈Sm:π(i)=1

φdK(π̂,π)

Zm
=

m∑

i=bc·nc

φi−1 · Zm−1
Zm

=

m∑

i=bc·nc

φi−1

1 + φ+ · · ·+ φm−1
(6.2)

The claim follows from the fact that this is essentially a sum of exponentially small terms

We will complement the above claim by showing that w.h.p. (albeit not necessarily expo-
nentially small), the position of the first element in a sampled permutation in the reference
ranking is bounded by O(logm). We then argue that by sampling more permutations, we
can augment our bound. The claims are essentially consequences of the results obtained by
Braverman and Mossel. Recall that an equivalent statement of the probability of sampling
a permutation is Pr[π] = e−βi, where β = −lnφ.

Claim 14 ([4]).

Pr[π−1(1) ≥ i] ≤ e−βi/(1− e−β) (6.3)

The proof of this claim is similar to the one of Claim 13.

Corollary 15.

Pr[π−1(1) ≥ lnm] ≤ m−β/(1− e−β) (6.4)

The following claim argues that the error in our estimate for the first element in π̂ goes
linearly small with the number of sampled permutations σ1, . . . , σr ∼ D(π̂, φ).

Claim 16 ([4]). Suppose that the permutations π1, . . . , πr are drawn from D(π̂, φ), and let
π(a) = 1

r

∑r
i=1 π

i(a).

Pr[|π(`)− `| ≥ i] ≤ 2 ·
(

(5i+1)·e−βi
1−e−β

)r
, for all i ∈ [m]. (6.5)

Setting i = lnn, we obtain the following corollary:

Corollary 17. Let α > 0. Then for sufficiently large n,

Pr[|π(a`)− `| ≥
α+ 2

β · r lnn] < n−α (6.6)
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Despite the above results that imply that using the top-ranked element in even a single
sample should get us close to the top-ranked element in the reference ranking, we still have to
argue that w.h.p., this estimate also approximates the expected top-ranked element, induced
by the distribution. The following result provides an affirmative answer to this question.

Theorem 18 ([4]). Let L = max
(

6 · α+2
β·r logm, 6 · α+2+1/β

β

)
. Then except with probability

< 2 ·m−α, for any maximum-likelihood πm and for all `, we have

|πm(a`)− π̂(a`)| ≤ 32L (6.7)

where π̂ is the reference ranking.

So in total, with probability n−α, |π(a`) − πm(a`)| ≤ O(1). Thus, we get a natural
algorithm for maximizing the average Borda score for all but the first log n agents:

Theorem 19. The algorithm that samples the first log n permutations and puts on the slate
the element from A with the highest average score obtains a 1 − O(1/n)-approximation of
the optimal average Borda score.

The theorem follows from the previous conclusion and by recalling that the maximum
value any element can receive is m− 1.

6.3 The case of k ≥ 1

Here, we show that by allowing the selection of k elements from A, the probability of
maximizing the expected Borda rank, increases exponentially.

Theorem 20. Let π1, . . . , πlogn be a a set of log n sample permutations, randomly drawn
from distribution D(π̂, φ). And let π be their average ranking. Then

Pr[π(ai) > log n+ i : ∀i ∈ [k]] < n−O(k) (6.8)

Proof. Let π be a permutation over A such that for all i ∈ [k], π(ai) ≥ log n + i. Then
consider the i’th element a in π. The number of pairwise inversions that exist in π w.r.t
it are at least log n, by our assumption that π̂(a) > log n + i. Then by definition of the

distribution, the probability of sampling such a permutation π is at most
Zm−k

∏k
i=1 φ

logn

Zm
≤

φk·logn = n−O(k)

Note that the above theorem needs to be complemented with an upper bound on the
gap between the reference ranking position of and the maximum-likelihood of each candi-
date. However, we can easily get this by sampling r = log n permutations and applying
Theorem 18, which gives a maximal O(1) gap between the maximum-likelihood position
and the reference rank, for any element in A, with polynomially (in n) small probability. I
do believe however, that the polynomially small probability of an error could be shown to
be in fact exponentially small in k (i.e. n−O(k)).

7 Conclusions and Future Directions

We have given two methods for choosing the (approximately) best candidate in two natural
and standard settings for the online choice problem at hand. As we have demonstrated,
even with just a budget of 1, one could obtain very good results in the Mallows model,
with a relatively small sample set. In the adversarial setting, we have shown that with
a relatively small sample set (albeit not logarithmically small) one can approximate the
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optimal choice of a candidate with up to an o(1) multiplicative error, with high probability.
More importantly, we have shown that by taking a sampling approach we can approximate
the social optimum, whenever the voting rule is a positional scoring function. As a result,
this gives a useful tool when moving to a utilitarian setting.

One direction for future investigation would be to improve the rate at which the regret
vanishes as n grows, both in the distributional setting as well as in the adversarial setting.
Another direction that our study raises is the study of more involved constraints. In par-
ticular, we believe that if the alternatives have associated costs, then one could extend our
work to cases in which there is a knapsack constraint. In terms of the our original example,
we could imagine that there are costs attributed to the construction of the manufacturing
lines. Furthermore, we can imagine that there are unit costs for producing copies of the
alternatives in their production lines. More precisely, the decision maker will pay an initial
price ta for setting up the production line for alternative a, as well as an additional price of
la for manufacturing a copy of alternative a for each agent who selects it.

The majority of our work in this paper deals with voting rules that are based on positional
scoring functions, and we have shown how to extend our approaches to settings in which there
are underlying utilities that induce the agent preferences. However, it will be interesting to
consider settings where the voting rule is based on a non-positional scoring function.

Also, one could lift the constraint that requires the decision to be irrevocable, i.e. once
an item is added, it cannot be replaced by another item. In this case, one could observe that
such a model resembles the online learning setting (e.g. [17]). Alternatively, as previously
studied in [1] for related settings, we can consider a setting in which the irrevocability of
the decisions is relaxed. Specifically, we would like to consider the case that the decision
maker is allowed to remove alternatives from the slate at a cost.

We could also extend our work by considering cases in which the agents can strategi-
cally delay their arrival, so as to increase their payoffs due to having a larger set of selected
alternatives. Clearly, the pure sampling approach we have taken in this paper would be
problematic, as none of the agents would like to take part in the initial sampling of pref-
erences, and would thus delay their arrival in order to avoid it. Also, this scenario may
tie-in with the previous extension, so that the agents, who can delay their arrivals, will be
somewhat discouraged to do so due to a more powerful algorithm.
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Resistance to bribery when aggregating soft
constraints

Alberto Maran, Maria Silvia Pini, Francesca Rossi, and K. Brent Venable

Abstract

We consider a multi-agent scenario, where the preferences of several agents are modelled via
soft constraint problems and need to be aggregated to compute a single ”socially optimal”
solution. We study the resistance of various ways to compute such a solution to influence the
result, such as those based on the notion of bribery. In doing this, we link the cost of bribing
an agent to the effort needed by the agent to make a certain solution optimal, by only changing
preferences associated to parts of the solution. This leads to the definition of four notions of
distance from optimality of a solution in a soft constraint problem. The notions differ on the
amount of information considered when evaluating the effort.

1 Introduction
Often agents need to cooperate, rather than compete, in order to take a collective decision. By doing
this, the decision can be better than what they would have chosen had they reasoned in isolation.
Examples are collections of experts that submit their suggestions on what to do, which are then
aggregated to obtain a single suggestion. Such experts could be, for example, classifiers in machine
learning tasks, or web page rankers in web search. To make a very concrete example, when looking
for a hotel in a certain city, often we use systems that exploit several different search engines, each
one reporting a hotel ranking. Such rankings are usually reported to the user as they are, while it
would be more useful if they were aggregated to get a collective hotel ranking from where to choose.

In this paper we study such scenarios, modelled by a collection of agents that express their
preferences over a common set of solutions to a problem. We assume that such preferences are
modelled by soft constraints. To consider concrete instances of soft constraints, we focus on fuzzy
and weighted constraints. The agents’ preferences are then aggregated to compute a single ”socially
optimal” solution. To model this, we consider some voting rules. Although voting rules have been
defined and studied in the context of political elections, they do exactly what we want: aggregating
individual’s preferences into a single collective ”winner”. We then study the resistance of this set-
ting, considering different voting rules, to external or internal attempts to influence the result. This
happens often in political elections, but it could occur also in our settings.

For example, when voting on a Doodle event to choose a date for a meeting, if one participant
sees how the others have voted (and thus can compute the result by considering these votes and her
true vote), she could vote in a strategic way (that is, differently to what her true vote would say)
to get a better result for her. This example is an instance of the so-called manipulation, where one
or more agents may misreport their votes to get a better solution. Other attempts to influence the
result, usually referred to as ”control”, may come from a chair of the voting process, who can have
the power, to set the number of voters, or the candidate decisions, or the voting rule to use.

A third kind of attempt may come from an external agent, usually called the ”briber”, who has a
preferred solution, and tries to get that solution as the result of the voting process, by paying some
agents to vote in a certain way, and by doing this while staying within its budget. In defining bribing
scenarios, it is thus necessary to decide what the briber can ask an agent to do (for example, just
making a certain candidate optimal, or changing more of its preference ordering) and how costly it
is for the briber to submit a certain request. The cost usually represents the effort the agent has to
make to satisfy the briber’s request.

Classical results on voting theory tell us that every voting rule can be influenced by such at-
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tempts. However, for some voting rules, it may be computationally difficult for the manipulators,
or the chair, or the briber to understand how to design the attempt. Such rules are then said to be
resistant to these attempts.

In this paper we study whether our soft constraint aggregation scenarios are resistant to bribery.
We consider two main approaches to aggregating the preferences: a sequential one, where agents
vote on each variable at a time, and a one-step approach, where agents vote just once on entire
solutions. We then define five cost schemes to compute the cost of satifying a briber’s request. We
find out that the one-step approach (which uses the Plurality voting rule) is not resistant to bribery:
it is computationally easy for a briber to know whom to bribe and what to ask for, in order to make
its preferred candudate win (if possible). On the other hand, the sequential approaches (which are
based on voting rules such as Plurality, Approval, and Borda), are all resistant to bribery. This is very
interesting, since the sequential approaches are also better in terms of complexity of determining the
collective solution. As noted above, the cost schemes used in the bribery setting can be seen as
a measure of the effort for an agent to respond to a briber’s request. If the request is related to
making a certain solution, say A, optimal (which means voting for it, if we use Plurality), then
the cost can be considered a measure of how much the agent needs to change in its soft constraint
problem in order to makeA optimal. We assume that the agents want to do this by modifying just the
preferences of parts of A, since otherwise also other solutions would be unnecessarily moved from
their position in the preference ordering. We notice that studying resistance to bribing in constraint-
based preference aggregation is interesting and useful in itself, but it has also a wider applicability
within typical constraint programming tasks, such as computing the top k solutions and encoding
solution preferences.

2 Background
Soft constraints. A soft constraint [15] involves a set of variables and associates a value from a
(partially ordered) set to each instantiation of its variables. Such a value is taken from a c-semiring1,
which is defined by 〈A,+,×, 0, 1〉, where A is the set of preference values, + induces an ordering
over A (where a ≤ b iff a + b = b), × is used to combine preference values, and 0 and 1 are
respectively the worst and best element. A Soft Constraint Satisfaction Problem (SCSP) is a tuple
〈V,D,C,A〉 where V is a set of variables, D is the domain of the variables, C is a set of soft
constraints (each one involving a subset of V ), A is the set of preference values.

An instance of the SCSP framework is obtained by choosing a specific c-semiring. For in-
stance, a classical CSP [15] is just an SCSP where the c-semiring is SCSP = 〈{false, true}, ∨,∧,
false, true〉. Choosing SFCSP = 〈[0, 1], max,min, 0, 1〉 instead means that preferences are in
[0,1] and we want to maximize the minimum preference. This is the setting of fuzzy CSPs (FCSPs)
[15], that we will use in the examples of this paper. In the paper we will also consider the setting
of weighted CSPs (WCSPs), where the c-semiring is SWCSP = 〈R+, min,+, +∞, 0〉, i.e., pref-
erences are interpreted as costs from 0 to +∞, and we want to minimize the sum of the costs. We
note that SCSPs generalize CSPs.

Figure 1 shows the constraint graph of an FCSP where V = {x, y, z}, D = {a, b} and C =
{cx, cy, cz, cxy, cyz}. Each node models a variable and each arc models a binary constraint, while
unary constraints define variables’ domains. For example, cy associates preference 0.4 to y = a and
0.7 to y = b. Default constraints such as cx and cz will often be omitted in the following examples.

Solving an SCSP means finding some information about the ordering induced by the constraints
over the set of all complete variable assignments. In the case of FCSPs and WSCSPs, such an
ordering is a total order with ties. In the example above, the induced ordering has (x = a, y =
b, z = b) and (x = b, y = b, z = b) at the top, with preference 0.5, (x = a, y = a, z = a) and
(x = b, y = a, z = a) just below with 0.4, and all others tied at the bottom with preference 0.2. An

1This is just a semiring with additional properties motivated by constraint reasoning.
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x=a −> 1

x=b −> 1

(y=a,z=a) −> 0.9

(y=a,z=b) −> 0.2

(y=b,z=a) −> 0.2

(y=b,z=b) −> 0.5

(x=a,y=a) −> 0.9

(x=a,y=b) −> 0.8

(x=b,y=a) −> 0.7

(x=b,y=b) −> 0.6

 x

y=a −> 0.4 z=a −> 1

  y z

y=b −> 0.7 z=b −> 1

Figure 1: A tree-shaped FCSP.

optimal solution, say s, of an SCSP is then a complete assignment with an undominated preference
(thus (x = a, y = b, z = b) or (x = b, y = b, z = b) in this example). Given a variable x, we write
s ↓ x to denote the value of x in s.

Given an FCSP Q and a preference α, we will denote as cutα(Q) the CSP obtained from Q
allowing only tuples with preference greater than or equal to α. The set of solutions of Q with
preference greater than or equal to α coincides with the set of solutions of cutα(Q).

Finding an optimal solution is an NP-hard problem, unless certain restrictions are imposed,
such as a tree-shaped constraint graph. Constraint propagation may help the search for an optimal
solution. Given a variable ordering o, an FCSP is directional arc-consistent (DAC) if, for any two
variables x and y linked by a fuzzy constraint, such that x precedes y in the ordering o, we have
that, for each a in the domain of x, fx(a) = maxb∈D(y)(min(fx(a), fxy(a, b), fy(b))), where fx,
fy , and fxy are the preference functions of cx, cy and cxy . This definition can be generalized to any
instance of the SCSP approach by replacing max with + and min with ×. Therefore, for WCSPs
it is sufficient to replace max with min and min with sum.

DAC is enough to find the preference level of an optimal solution when the problem has a
tree-shaped constraint graph and the variable ordering is compatible with the father-child relation
of the tree [15]. In fact, such an optimum preference level is the best preference level in the domain
of the root variable.

Voting rules. A voting rule allows a set of voters to choose one among a set of candidates.
Voters need to submit their vote, that is, their preference ordering (or part of it) over the set of
candidates, and the voting rule aggregates such votes to yield a final result, usually called the
winner. In the classical setting [2], given a set of candidates C, a profile is a collection of total
orderings over the set of candidates, one for each voter. Given a profile, a voting rule maps it onto a
single winning candidate (if necessary, ties are broken appropriately). In this paper, we will often
use a terminology which is more familiar to multi-agent settings: we will sometimes call “agents”
the voters, “solutions” the candidates, and “decision” or “best solution” the winning candidate.

Some examples of widely used voting rules, that we will study in this paper, are:

• Plurality: each voter states a single preferred candidate, and the candidate who is preferred
by the largest number of voters wins;

• Borda: given m candidates, each voter gives a ranking of all candidates, the ith ranked candi-
date gets a score of m− i, and the candidate with the greatest sum of scores wins;

• Approval: given m candidates, each voter approves between 1 and m− 1 candidates, and the
candidate with most votes of approval wins.

We know that every voting rule is manipulable [2]. However, if it is computationally difficult
to influence the result by using a certain voting rule, we can say that the voting rule is resistant to
such attempts. Thus the computational complexity of various attempts to influence the result of the
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voting process has been studied [3, 11, 6, 14, 12]. Besides manipulation, which refers to scenarios
where there is a voter (or a group of voters) who can get a better result by lying about its preference
ordering, another kind of attempt to influence the result is called bribery: there is an outside agent,
called the briber, that wants to affect the result of the election by paying some voters to change their
votes, while being subject to a limitation of its budget.

Sequential preference aggregation. Assume to have a set of agents, each one expressing
its preferences over a common set of objects via an SCSP whose variable assignments correspond
to the objects. Since the objects are common to all agents, this means that all the SCSPs have the
same set of variables and the same variable domains but they may have different soft constraints,
as well as different preferences over the variable domains. In [8] this is the notion of soft profile,
which is formally defined as a triple (V,D, P ) where V is a set of variables (also called issues),
D is a sequence of |V | lexicographically ordered finite domains, and P a sequence of m SCSPs
over variables in V with domains in D2. A fuzzy profile (resp., weighted profile) is a soft profile
with fuzzy (resp., weighted) soft constraints. An example of a fuzzy profile where V = {x, y},
Dx = Dy = {a, b, c, d, e, f, g}), and P is a sequence of seven FCSPs, is shown in Fig. 2.

x

y

(x=a,y=a)−>1

(x=b,y=b)−>0.9

(x=a,y=b)−>0.7

(x=b,y=a)−>0.5

(x=a,y=b)−>1

(x=b,y=a)−>0.9

(x=d,y=d)−>1

P4
y

x

all other tuples−>0

(x=a,y=b)−>1

(x=c,y=c)−>1

(x=b,y=a)−>0.9
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y
all other tuples−>0

x

y

(x=a,y=b)−>1

(x=b,y=a)−>0.9

(x=e,y=e)−>1
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all other tuples−>0

x

y

(x=f,y=f)−>1

(x=a,y=b)−>0.9

(x=b,y=a)−>1
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all other tuples−>0 y

x

(x=g,y=g)−>1

(x=a,y=b)−>0.9

(x=b,y=a)−>1
all other tuples−>0

P7

P1,P2

all other tuples−>0

Figure 2: A fuzzy profile.

The idea proposed in [8, 7] to aggregate the preferences in a soft profile in order to compute
the winning variable assignment is to sequentially vote on each variable via a voting rule, possibly
using a different rule for each variable. Given a soft profile (V,D, P ), assume |V | = n, and consider
an ordering of the variables O = 〈v1, . . . , vn〉, and a corresponding sequence of voting rules R =
〈r1, . . . , rn〉 (that will be called “local rules”). The sequential procedure is a sequence of n steps,
where at each step i,

• All agents are first asked for their preference ordering over the domain of variable vi, yielding
profile pi over such a domain. To do this, the agents achieve DAC on their SCSP, considering
the ordering O.

• Then, the voting rule ri is applied to profile pi, returning a winning assignment for variable vi,
say di. If there are ties, the first one following the given lexicographical order will be taken.

• Finally, the constraint vi = di is added to the preferences of each agent and DAC is achieved
to propagate its effect considering the reverse ordering of O.

After all n steps have been executed, the winning assignments are collected in the tuple 〈v1 =
d1, . . . , vn = dn〉, which is declared the winner of the election. This is denoted by SeqO,R(V,D, P ).

2Notice that a soft profile consists of a collection of SCSPs over the same set of variables, while a profile (as in the
classical social choice setting) is a collection of total orderings over a set of candidates.
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A sequential approach similar to this one has been considered in [13], where however agents’
preferences are expressed via CP-nets.

In the soft profile shown in Figure 2, assume the variable ordering is 〈x, y〉 and ri = Approval
for all i = 1, 2. In step 1, agents achieve DAC. This changes the preferences of the agents over x.
For example, in P1 and P2, x = a maintains preference 1, x = b gets preferences 0.9, and all other
domain values get preference 0, while in P3, x = a and x = c maintain preference 1, x = b gets
preference 0.9, while all other values get preference 0. Then, Approval is applied on the profile over
x where the sets of approved values are all the optimals: {a} for the first two voters and respectively
{c, a}, {d, a}, {e, a}, {f, b}, and {g, b} for the others. Thus, x = a is chosen and the constraint
x = a is added to all SCSPs, and its effect is propagated by achieving DAC on the domain of y. In
step 2, achieving DAC does not modify any preference (since y is the last variable) and the set of
approved values for y is {a, b} for P1 and P2 and {b} for the other agents. Thus the elected solution
with the sequential procedure is s = (x = a, y = b), which has preference 0.7 for P1 and P2, 1 for
P3, P4, and P5, and 0.9 for P6 and P7.

An alternative to this sequential procedure would be to generate the preference orderings for
each voter from their FCSPs, and then to aggregate them in one step via a voting rule, for example
Approval. In our example, (x = a, y = b) gets 3 votes (that is, it is optimal for 3 agents), (x =
a, y = a) and (x = b, y = a) each gets 2 votes, (x = f, y = f), (x = d, y = d), (x = c, y = c),
(x = e, y = e), and (x = g, y = g) each gets 1 vote, while all other solutions get no vote. Thus the
winner is (x = a, y = b).

3 The bribery problem
We consider scenarios where a collection of agents need to take a decision, by selecting it out of
a set of possible decisions, that are described by the Cartesian product of the domains of a set of
variables. These variables are shared by all agents. Each agent has its own preferences over such
decisions, described via a set of soft constraints and charges the briber for changing his preferences
according to a cost scheme. In this paper, by soft constraints we mean either fuzzy or weighted
constraints. Also, we assume that all agents have tree-shaped soft constraints problems. Note that
the set of solutions of such constraint problems (that is, the set of decisions among which to choose
one) is in general exponentially large w.r.t. the size of the soft constraint problems. We also assume
that the number of such solutions is exponentially large w.r.t. the number of agents. We now define
the bribery problem of which we will study the computational complexity:

Definition 1 Given a voting rule V and a cost scheme C, we denote by (V,C)-Bribery the problem
of determining if it is possible to make a preferred candidate win, when voting rule V is used, by
bribing agents and by spending less than a certain budget according to cost scheme C.

3.1 Winner determination
It makes sense to consider only winner determination approaches which are polynomial to compute:
if it is difficult to compute the winning decision, it is also difficult for a briber to compute how to
bribe the agents (since he needs to know who the winner is without the bribery). We consider two
main approaches: sequential and one-step. For the sequential approach, we employ the sequential
voting procedure described in the previous section. We have an ordering O over the variables, and
we are going to consider each variable in turn in such an ordering. At each step, each agent provides
some information about the considered variable, say X , which depends on the voting rule we use:

• Sequential Plurality (SP): one best value for X;

• Sequential Approval (SA): all best values for X;
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• Sequential Borda (SB): a total order (possibly with ties) over the values of X , along with the
preference values for each domain element.

We then choose one value for the considered variable, as follows:

• SP and SA: the value voted by the highest number of agents;

• SB: the value with best score, where the score of a value is the sum of its preferences over all
the agents; notice that ”best” here means maximal in the case of fuzzy constraints, while it is
the minimal in the case of weighted constraints.

Once a value is chosen for a variable, this value is broadcasted to all agents, who fix variable
X to this value in their soft constraints and achieve DAC in the reverse ordering w.r.t. O. We then
continue with the next variable, and so on until all variables have been handled.

The alternative to a sequential approach is a one-step approach, where each agent votes over
decisions regarding all variables, not just one at a time. In this case, a possible voting rule to use
is what we call One-step Plurality (OP), where each agent provides an optimal solution of his soft
constraint problem, and then we select the solution which is provided by the highest number of
agents.

For all the voting rules we consider (SP, SA, SB, and OP), it is computationally easy for an agent
to vote. An approach like OP is however less satisfactory that the sequential approaches in terms
of ballot expressiveness: since the number of solutions is exponentially large with respect to the
number of agents, there is an exponential number of solutions which are not voted by any agent.
However, if we want agents to be able to compute their vote in polynomial time, we need to set a
bound to the number of solutions they can vote for, and this means that in all cases an exponentially
large number of solutions will not be voted. So there is trade-off between easiness of computing
votes and ballot expressiveness.

We don’t consider one step Approval since voting could require exponential time due to the fact
that each agent may have an exponential size set of optimals.

3.2 Bribery actions and cost schemes
If we use Plurality to determine the winner, either in its sequential or one-step version, the most
natural request a briber can have for an agent is to ask the agent to make a certain solution (or a
certain value in the sequential case) optimal in his soft constraint problem. In order to do this, the
agent can modify the preference values inside its variable domains and/or constraints.

To define the cost of a briber’s request, which is to make a certain solution A optimal, we
consider the following approaches:

• Cequal: The cost is fixed (without loss of generality, we will assume it is 1), no matter how
many changes are needed to make A optimal;

• Cdo: The cost is the distance from the preference of A, denoted with pref(A), to the optimal
preference of the soft constraint problem of the agent, denoted with opt. If we are dealing
with fuzzy numbers and we may prefer to have integer costs, the cost will be defined as
Cdo = (opt − pref(A)) ∗ l, where l is the number of different preference values allowed.
With weighted constraints, if costs are natural numbers, we may defineCdo = pref(A)−opt,
since opt is the smallest cost.

• Cdon: The cost is determined by considering both the distance between the preference of
A and the optimal preference, and the number of parts of A, say t, that correspond to the
projections ofA over the constraints, that must be modified in order to makeA optimal. Thus,
if we have n variables, with fuzzy constraints we may define Cdon = ((opt− pref(A)) ∗ l ∗
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M) + t, where M is a large integer and 1 ≤ t ≤ 2n − 1. If instead we consider weighted
constraints, we define Cdon = ((pref(A)− opt) ∗M) + t. In both cases, the role of M is to
assure a higher bribery cost for a less preferred candidate: we want that the highest cost at a
given preference level for A, that is, d ∗M + 2n− 1, where d = (opt− pref(A)) ∗ l and n
is the number of variables, to be smaller than the lowest cost at the next preference level, that
is, (d+ 1)M + 1. This yields M > 2n− 2.

• Cdow: The cost is computed by considering the same as in Cdon, but each preference to be
modified is associated with a cost proportional to the change required on that preference. If we
denote by ti any tuple ofA with preference≤ opt, then the cost will be ((opt−pref(A))∗ l∗
M)+

∑
ti
(opt− pref(ti)) ∗ l for fuzzy constraints, where the role of M is similar to the one

in Cdon. For weighted constraints, we analogously define Cdow = ((pref(A)− opt) ∗M) +∑
ti
(pref(ti)− opt). However, it is easy to see that

∑
ti
(pref(ti)− opt) = pref(A)− opt,

thus we have Cdow = ((pref(A)− opt) ∗ (M + 1)).

• Cdonw: The cost is the combination of Cdon and Cdow. For fuzzy constraints: Cdonw =
((opt− pref(A)) ∗ l ∗M) + t ∗M ′ +∑ti

(opt− pref(ti)) ∗ l, where M ′ has a similar role
as M w.r.t. the second and third component of the sum. For weighted constraints: Cdonw =
((pref(A)− opt) ∗M) + t (by simplifying as in Cdow).

4 Winner and cost determination are both computationally easy
We are now ready to prove formally that, for all the voting rules we consider, winner determina-
tion is computationally easy. As noted earlier, if it were computationally difficult, bribery would
necessarily be computationally difficult, so it would not be interesting to study the complexity of
bribery. If instead winner determination is computationally easy, we may wonder if the voting rule
is resistant to bribery (that is, bribery is computationally difficult) or not.

Theorem 1 Winner determination takes polynomial time for SP, SA, SB, and OP when agents’ pref-
erences are tree-shaped fuzzy or weighted CSPs.

Proof: For each variable, SP (resp., SA) requires most preferred value(s) in the domain of that vari-
able. SB instead requires an ordering over such values. The fact that we are considering tree-shaped
soft constraint problems ensures that voting, in all these cases, can be done in polynomial time by
achieving DAC. Winner determination is then polynomial as well, since it just requires a number
of polynomial steps which equals the number of variables. For OP, computing an optimal solution
is polynomial on tree-shaped soft constraint problems, so voting is polynomial. Determining the
winner requires just counting the number of votes for each of the voted candidates (which are in
polynomial number), so it is polynomial as well. 2

It is polynomial also to compute the cost to respond to a briber’s request, for all our cost schemes.

Theorem 2 Given a tree-shaped fuzzy or weighted CSP and an outcome A, determining the cost to
make A an optimal outcome takes polynomial time for Cequal, Cdo, Cdon, Cdow, and Cdonw .

Proof: We can check if A is already optimal in polynomial time by first computing the optimal
preference opt and then checking if it coincides with the preference of A, denoted pref(A). If so,
the cost is 0. Otherwise, with Cequal the cost is always 1. To compute the cost according to Cdo,
Cdon, Cdow, and Cdonw, we need to compute opt, the numbers of tuples of A with preference worse
than opt, and the distance of their preferences from opt. All of these components can be computed
in polynomial time for tree-shaped problems. 2
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5 Resistance to bribery when voting with SP, SA, and SB
We can now study the resistance to bribery of the voting rules we consider, that is, SP, SA, SB, and
OP. Here we consider SP, SA, and SB. We recall that agents vote with tree-shaped fuzzy or weighted
CSPs.

Theorem 3 (V,C)-Bribery is NP-complete (and also W[2]-complete with parameter being the bud-
get) for V ∈ {SP, SA, SB} and C ∈ {Cequal, Cdo}.

Proof: Membership in NP is easy to prove. To show completeness, we provide a polynomial
reduction from the OPTIMAL LOBBYING (OL) problem [5]. In this problem, we are given an m×n
0/1 matrix E and a 0/1 vector ~x of length n where each column of E represents an issue and each
row of E represents a voter. We say E is a binary approval matrix with 1 corresponding to a “yes”
vote and ~x is the target group decision. We then ask if there a choice of k rows of the matrix E such
that these rows can be edited so that the majority of votes in each column matches the target vector
~x. This problem is shown to be W [2]-complete with parameter k. By giving a polynomial reduction
from OL to our bribery problem, we show that our problem is NP-complete (actuallyW [2]-complete
with parameter being the budget B). Given an instance (E, ~x, k) of OL, we construct an instance of
(V-Cdo)-Bribery, where V ∈ {SP, SA, SB}, containing constraints with only independent binary
variables. The number of variables, n, is equal to the number of columns in E. For each row
of E, we create a voter with the preferences over the n variables as described in the row of E.
In particular, for each variable the value indicated in the row will be associated with preference 1
while the other value will be associated with preference 0. Thus, each voter has a unique most
preferred solution with preference 1 and all other complete assignments have preference 0. We set
the preferred outcome A = ~x. This means that according to Cdo, all voters not voting for A have
the same cost to be bribed, which is (opt − pref(A)) ∗ 2 = (1 − 0) ∗ 2 = 2. Finally, we set the
budget B = 2k. With Cequal, the cost is always 1 if A is not already voted for. We note that since
we have only two values for each variable, SP, SA and SB coincide with sequential majority, thus A
wins the election if and only if there is a selection of k rows of E such that ~x becomes the winning
agenda of the OL instance. Since both fuzzy and weighted CSPs generalize CSPs, the result holds
also for such classes of soft constraints. 2

Theorem 4 (V,C)-Bribery is NP-complete (and also W[2]-complete) for V ∈ {SP, SA, SB} and
C ∈ {Cdon, Cdow, Cdonw}, if M > n ∗m, where n is the number of variables and m the number
of voters.

Proof: We use a reduction similar to the one described for Thm. 3 from the optimal lobbying
problem. In particular the structure of the soft profile is the same. The only things that vary are
the costs for each voter and the budget. With fuzzy constraints, assume that we have l different
levels of preferences and let us denote with di the positive integer (opti − pref(A)) ∗ l, were
i varies over the voters. For Cdon, the cost for voter i is di ∗ M + ti where ti is the number
of tuples where the candidate voted by voter i differs from A. For Cdow, the cost is di ∗ M +∑
t∈Diffi(A)(opti− pref(t)), where Diffi(A) is the set of tuples in the soft constraint problem of

agent i which not belong to A. Let us define budget B to be B = kl(M + n) for fuzzy constraints
and B = k(M + n) for weighted constraints. Since we have only binary variables, SP, SA and SB
coincide with sequential majority. There is a bribery strategy that does not exceed B if and only if
there is a way to change at most k rows to solve the OL problem. We note that requiring M > n∗m
is of key importance for the connection between the budget B and the modifications of k rows. For
Cdonw, the cost is di ∗M + ti ∗M ′+

∑
ti∈Diffi(A)(opti−pref(ti)). Here a similar constraint for

M ′ would work for the reduction. For weighted constraints, a similar reasoning works as well. 2
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6 Resistance to bribery when voting with OP
We now consider the one-step approach to aggregate the soft constraint problems, via voting rule
OP. In the proof of our main theorem we need to compute n cheapest alternative candidates for an
agent to vote for. We will thus start by studying the computational complexity of this task.

6.1 Computing the k cheapest candidates
We start by consideringCdo and by showing that computing a set of k cheapest candidates according
to this cost scheme is computationally easy. This will then be used also to compute a set of k cheapest
candidates according to Cequal.

Theorem 5 Given a tree-shaped fuzzy or weighted CSP, computing a set of k cheapest outcomes
according to Cdo and Cequal is in P when k is given in unary.

Proof: The cost of an outcome according to Cdo is an integer proportional to the distance between
the preference of the outcome and the preference of an optimal outcome. In order to compute
k cheapest solutions, we assume to have a linear order over the variables and the values in their
domains. Such linear orders can be provided by the agent or can be chosen by the system. They
do not need to be the same for all agents. For tree-shaped fuzzy CSPs, it has been shown in [4]
that, given such linear orders and an outcome s, it is possible to compute, in polynomial time, the
outcome following s in the induced lexicographic linearization of the preference ordering over the
outcomes. The procedure that performs this is called Next. Thus, in order to compute k cheapest
according to Cdo, we compute the first optimal outcome according to the linearization and then we
generate the set of k cheapest candidates by applying Next k − 1 times (each time on the outcome
of the previous step). Similarly, computing the k best solutions of a weighted CSP can be done in
polynomial time by using the procedure suggested in [9]. If we consider Cequal, an agent will not
charge the briber for changing his vote to another optimal candidate and will charge a fixed cost to
change his vote in favor of any other (non-optimal) candidate. Thus any of the above procedures can
be used (although, if k exceeds the cardinality of the set of optimal solutions, the remaining ones
could, in principle, be generated randomly in a much faster way). 2

Theorem 6 Given a tree-shaped weighted CSP, computing a set of k cheapest outcomes according
to Cdow is in P when k is given in unary.

Proof: This result follows immediately from the fact that, for weighted CSPs, Cdow is proportional
to Cdo. 2

We now consider the other cost schemes. We start by describing a general algorithm, which we
callKCheapest, that will work forCdon, as well as forCdow and forCdonw via small modifications.
In what follows we assume that a voter represents his preferences with a tree-shaped fuzzy CSP. The
input to KCheapest is a tree-shaped fuzzy CSP P , an integer k, and a cost scheme C. The output
is a set of k cheapest solutions of P according to C. KCheapest performs the following steps:

1. Find k optimal solutions of P , or all optimal solutions if they are less than k. If the number
of solutions found is k, we stop, otherwise let k′ be the number of remaining solutions to be
found.

2. Look for the remaining top solutions within non-optimal solutions. More in detail, until
k′ best solutions have been found or all solutions of P have been exhausted, consider each
preference pl associated to some tuple in P in decreasing order and, for each tuple t of P with
preference pl, perform the following:

(a) Compute the new fuzzy CSP, Pt, obtained by fixing the tuple in the constraint (that is,
by forbidding all other tuples in that constraint).
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(b) Compute a new soft CSP, say Pwt , associated to Pt, defined as follows:

i. the constraint topology of Pwt and Pt coincide;
ii. each tuple with a preference greater than or equal to opt in Pt has weight 0 in Pwt ;

iii. each tuple with a preference pt such that pl ≤ pt < opt in Pt has weight c in
Pwt defined as follows: c = 1 if C = Cdo, c = pt − opt if C = Cdow and
c = (1, pt− opt) if C = Cdonw;

iv. each tuple with preference less than pl in Pt has weight +∞ in Pwt .

Thus, Pwt is a weighted CSP if C = Cdon or C = Cdow, while it is a SCSP defined on
the Cartesian product of two weighted semirings if C = Cdonw.

(c) Compute the k′ best solutions of all the solutions if they are less than k′ of Pwt .

Take the k′ top solutions (or all solutions if less than k′) among the sets of best solutions
computed for Pwt , ∀t such that pref(t) = pl.

Theorem 7 Given a tree-shaped fuzzy CSP P , computing a set of k cheapest outcomes according
to Cdon, Cdow, and Cdonw is in P when k is given in unary.

The above statement can be proven by showing that the solutions returned by algorithm
KCheapest are indeed the k cheapest (or all the solutions if the k exceeds the total number of
solutions) according to the selected cost scheme (depending on how the weights are defined in step
(iii)) and that KCheapest runs in polynomial time.

6.2 Bribery with OP is easy
Faliszewski [10] shows that bribery when voting with plurality in single variable elections with
non-uniform cost schemes is in P through the use of flow networks. The algorithm requires the
enumeration of all candidates as part of the construction of the flow network. In our model, the
number of candidates can be exponential in the size of the input, so we cannot use that construction
directly. However, we show that a similar technique works by considering only a polynomial number
of candidates.

Theorem 8 (OP,C)-Bribery is in P for C ∈ {Cequal, Cdo, Cdon, Cdow, Cdonw} when agents vote
with tree-shaped fuzzy CSPs and for C ∈ {Cequal, Cdo, Cdow} when agents vote with tree-shaped
weighted CSPs.

Proof: We consider all r ∈ {1, . . . , n} and ask if the bribers’ favorite candidate A can be made a
winner with exactly r votes without exceeding its budget B. If there is at least one r such that this
is possible, then it means that the answer to the bribery problem is yes, otherwise it is no. We show
that, for each r, the corresponding decision problem can be solved in polynomial time. This means
that the overall bribery problem is in P . To solve the decision problem for a certain r, we transform
this problem to a minimum-cost flow problem [1]. The network has a source s, a sink t, and three
“layers” of nodes.

The first layer has one node for each voter v1, . . . , vn. There are also n edges (s, vi), with
capacity 1 and cost 0.

For the second layer of nodes, for each voter in the given profile, we add in this second layer
nodes corresponding to A, to all the candidates with at least one vote (at most n), and to the n
non-voted cheapest candidates for this voter, according to the cost scheme, thus adding at most
2n + 1 candidates for each voter. Intuitively, this second layer models the profile modified by the
bribery, where each voter can change its vote or also maintain the previous one. The important
point is that the non-voted candidates that we do not include in the second layer can be avoided
since not using them does not increase the cost of the bribery. Providing n non-voted candidates for

296



each voter is enough, since there are n voters and in the worst case each of them has to vote for a
different candidate. For each node Sij in the second layer corresponding to voter vi, we add an edge
from vi to Sij with capacity +∞ and cost equal to the cost of bribing vi to vote for the candidate
corresponding to node Sij . Finding such candidates, and the cost for the voter to vote for them,
takes polynomial time, no matter the cost scheme. Finding the voted candidates is easy since finding
the optimal outcome in tree-shaped fuzzy or weighted CSPs takes polynomial time. Finding the n
cheapest non-voted candidates, can be done by applying the procedures described in Section 6.1. In
general, it is sufficient to compute the 2n cheapest candidates in order to make sure we have at least
n non-voted candidates. Moreover, given a voter, computing the cost for such a voter to vote for one
of the candidates is easy for both voted and non-voted candidates given the results in Section 4.

In the third layer of the network, we add a node for each candidate who already appears some-
where in the network (up to n2 + n+ 1). One of these nodes represents A. These third layer nodes
are the nodes that enforce the constraint that no candidate besides A can receive more than r votes.
These nodes have an edge from the nodes of the second layer representing the same candidate, with
zero cost and infinite capacity. The output link from each of the third layer nodes to the sink has
capacity r. The cost is 0 for the edge from A to the sink, while for all other candidates it is a large
integer M to force as much flow through the node A as possible.

If we had included nodes for all the candidates in the second layer, we would have used a network
equivalent to the one used in the proof of Theorem 3.1 in [10], which shows that there is a minimum
cost flow of value n if and only if there is a way to solve the bribery problem. However, since we
have a number of candidates which is superpolynomial in the size of the input, we would not have a
polynomial algorithm. By including only the cheapest n alternative candidates for each voter, along
with A and all the voted candidates, the result still holds. In fact, assume there is a minimum-cost
flow in the larger network which goes through one of the nodes which we omit. This means that a
voter has been forced to vote for another, more expensive, non-voted candidate since all its cheapest
candidates had already r votes each. However, this is not possible, since we have only a total of
n − 1 votes that can be given by the other voters, and we provide n non-voted candidates. We will
build, at worst, n networks with O(n2) nodes and O(n3) edges. Since minimum-cost feasible flow
problem can be solved in polynomial time in the number of nodes and edges using for example the
Edmonds-Karp algorithm [1], the overall running time of this method is polynomial. 2

7 Conclusions
Our results about the resistance to bribery of our ways to aggregate the preferences of a collection of
agents, when they are modelled via soft constraints, can be seen in Table 1. We can see that OP is not
resistant to bribery, since it is computationally easy for the briber to compute who to bribe and what
to ask for, and to check whether he can do it within its budget. On the other hand, the sequential
approaches (SP, SA, and SB) are all resistant to bribery, if agents compute costs according to Cequal,
Cdo, Cdon, Cdow or Cdonw . Thus, it is clear that sequential approaches should be preferred if
resistance to bribery is an important feature. Notice that, when a problem is polynomial for soft
constraints, it is also so for CSPs. Thus, OP is easy to bribe also when agents use CSPs.
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An Empirical Study of Voting Rules and
Manipulation with Large Datasets

Nicholas Mattei and James Forshee and Judy Goldsmith

Abstract

The study of voting systems often takes place in the theoretical domain due to a lack of large
samples of sincere, strictly ordered voting data. We derive several million elections (more
than all the existing studies combined) from a publicly available data, the Netflix Prize dataset.
The Netflix data is derived from millions of Netflix users, who have an incentive to report
sincere preferences, unlike random survey takers. We evaluate each of these elections un-
der the Plurality, Borda, k-Approval, and Repeated Alternative Vote (RAV) voting rules. We
examine the Condorcet Efficiency of each of the rules and the probability of occurrence of
Condorcet’s Paradox. We compare our votes to existing theories of domain restriction (e.g.,
single-peakedness) and statistical models used to generate election data for testing (e.g., Impar-
tial Culture). Additionally, we examine the relationship between coalition size and vote deficit
for manipulations of elections under the Borda rule. We find a high consensus among the
different voting rules; almost no instances of Condorcet’s Paradox; almost no support for re-
stricted preference profiles, very little support for many of the statistical models currently used
to generate election data for testing, and very small coalitions needed to promote second-place
candidates to the winning position in elections.

1 Introduction
One of the most common methods of preference aggregation and group decision making in human
systems is voting. Many scholars wish to empirically study how often and under what conditions
individual voting rules fall victim to various voting irregularities [6, 9]. Due to a lack of large,
accurate datasets, many computer scientists and political scientists are turning towards statistical
distributions to generate election scenarios in order to verify and test voting rules and other decision
procedures [22, 25]. These statistical models may or may not be grounded in reality and it is an
open problem in both the political science and social choice fields as to what, exactly, election data
looks like [24]. As the computational social choice community continues to grow there is increasing
attention on empirical results (see, e.g., [25]) and we hope to address this problem with our study.

A fundamental problem in research into properties of voting rules is the lack of large data sets to
run empirical experiments [20,24]. There have been studies of several distinct datasets but these are
limited in both number of elections analyzed [6] and size of individual elections within the datasets
analyzed [9, 24]. While there is little agreement about the frequency with which different voting
paradoxes occur or the consensus between voting methods, all the studies so far have found little
evidence of Condorcet’s Voting Paradox [10] (a cyclical majority ordering) or preference domain
restrictions such as single peakedness [4] (where one candidate out of a set of three is never ranked
last). Additionally, most of the studies find a strong consensus between most voting rules except
Plurality [6, 9, 20].

We begin in Section 2 with a survey of the datasets that are commonly used in the literature.
We then detail in Section 3 our new dataset, including summary statistics and a basic overview
of the data. We then move into Section 4 which is broken into multiple subsections where we
attempt to answer many questions about voting. Section 4.1 details an analysis that attempts to
answer the questions “How often does Concert’s Paradox occur?”, “How often does any voting
cycle occur?”, and a look at the prevalence of single peaked preferences and other domain restricted
election profiles [4, 23]. Section 4.2 investigates the consensus between multiple voting rules. We
evaluate our millions of elections under the voting rules: Plurality, Copeland, Borda, Repeated
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Alternative Vote, and k-Approval. In Section 4.3 we evaluate our new dataset against many of the
statistical models that are in use in the ComSoc and social choice communities to generate synthetic
election data. Section 5 details an experiment we preform to investigate, empirically, the relationship
between necessary coalition size and vote deficit for manipulations of the Borda rule. This paper
reports on an expanded analysis in terms of number of tests and amount of data used from the
previously published work by Mattei [13, 14].

2 Survey of Existing Datasets
The literature on the empirical analysis of large voting datasets is somewhat sparse, and many studies
use the same datasets [9, 24]. These problems can be attributed to the lack of large amounts of data
from real elections [20]. Chamberlin et al. [6] provided empirical analysis of five elections of the
American Psychological Association (APA). These elections range in size from 11,000 to 15,000
ballots (some of the largest elections studied). Within these elections there are no cyclical majority
orderings and, of the six voting rules under study, only Plurality fails to coincide with the others on
a regular basis. Similarly, Regenwetter et al. analyzed APA data from later years [21] and observed
the same phenomena: a high degree of stability among elections rules. Felsenthal et al. [9] analyzed
a dataset of 36 unique voting instances from unions and other professional organizations in Europe.
Recently, data from a series of elections in Ireland have been studied in a variety of contexts in social
choice [12]. Under a variety of voting rules Felsenthal et al. also found a high degree of consensus
between voting rules (with the notable exception of Plurality).

All of the empirical studies surveyed [6, 9, 16, 20, 21, 24] came to a similar conclusion: there
is scant evidence for occurrences of Condorcet’s Paradox [17]. Many of these studies find no oc-
currence of majority cycles (and those that find cycles find them in rates of much less than 1% of
elections). Additionally, each of these (with the exception of Niemi and his study of university elec-
tions, which he observes is a highly homogeneous population [16]) find almost no occurrences of
either single-peaked preferences [4] or the more general value-restricted preferences [23].

Given this lack of data and the somewhat surprising results regarding voting irregularities, some
authors have taken a more statistical approach. Over the years multiple statistical models have been
proposed to generate election pseudo-data to analyze (e.g., [20, 24]). Gehrlein [10] provides an
analysis of the probability of occurrence of Condorcet’s Paradox in a variety of election cultures.
Gehrlein exactly quantifies these probabilities and concludes that Condorcet’s Paradox probably will
only occur with very small electorates. Gehrlein states that some of the statistical cultures used to
generate election pseudo-data, specifically the Impartial Culture, may actually represent a worst-case
scenario when analyzing voting rules for single-peaked preferences and the likelihood of observing
Condorcet’s Paradox [10]

Tideman and Plassmann have undertaken the task of verifying the statistical cultures used to gen-
erate pseudo-election data [24]. Using one of the largest datasets available, Tideman and Plassmann
find little evidence supporting the models currently in use to generate election data. Additionally,
Tideman and Plassmann propose several novel statistical models which better fit their empirical data.

3 The New Data
We have mined strict preference orders from the Netflix Prize Dataset [2]. The Netflix dataset offers
a vast amount of preference data; compiled and publicly released by Netflix for its Netflix Prize [2].
There are 100,480,507 distinct ratings in the database. These ratings cover a total of 17,770 movies
and 480,189 distinct users. Each user provides a numerical ranking between 1 and 5 (inclusive) of
some subset of the movies. While all movies have at least one ranking, it is not the case that all
users have rated all movies. The dataset contains every movie rating received by Netflix, from its
users, between when Netflix started tracking the data (early 2002) up to when the competition was
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announced (late 2005). This data has been perturbed to protect privacy and is conveniently coded
for use by researchers.

The Netflix data is rare in preference studies: it is more sincere than most other preference
data sets. Since users of the Netflix service will receive better recommendations from Netflix if
they respond truthfully to the rating prompt, there is an incentive for each user to express sincere
preference. This is in contrast to many other datasets which are compiled through surveys or other
methods where the individuals questioned about their preferences have no stake in providing truthful
responses.

We define an election as E(m,n), where m is a set of candidates, {c1, . . . ,cm}, and n is a set
of votes. A vote is a strict preference ordering over all the candidates c1 > c2 > · · · > cm. For
convenience and ease of exposition we will often speak in the terms of a three candidate election
and label the candidates as A,B,C and preference profiles as A > B >C. All results and discussion
can be extended to the case of more than three candidates. A voting rule takes, as input, a set of
candidates and a set of votes and returns a set of winners which may be empty or contain one or
more candidates. In our discussion, elections return a complete ordering over all the candidates
in the election with no ties between candidates (after a tiebreaking rule has been applied). The
candidates in our data set correspond to movies from the Netflix dataset and the votes correspond
to strict preference orderings over these movies. We break ties according to the lowest numbered
movie identifier in the Netflix set; these are random, sequential numbers assigned to every movie.

We construct vote instances from this dataset by looking at combinations of three movies. If
we find a user with a strict preference ordering over the three moves, we tally that as a vote. For
example, given movies A,B, and C: if a user rates movie A = 1, B = 3, and C = 5, then the user has
a strict preference profile over the three movies we are considering and hence a vote. If we can find
350 or more votes for a particular movie triple then we regard that movie triple as an election and
we record it. We use 350 as a cutoff for an election as it is the number of votes used by Tideman and
Plassmann [24] in their study of voting data. While this is a somewhat arbitrary cutoff, Tideman and
Plassmann claim it is a sufficient number to eliminate random noise in the elections [24]. We use
the 350 number so that our results are directly comparable to the results reported by Tideman and
Plassmann.

The dataset is too large to use completely (
(17770

3

)
≈ 1×1012) so we have subdivided it. We have

divided the movies into 10 independent (non-overlapping with respect to movies), randomly drawn
samples of 1777 movies. This completely partitions the set of movies. For each sample we search
all the

(17770
3

)
≈ 9.33×108 possible elections for those with more than 350 votes. For 3 candidate

elections, this search generated 14,003,522 distinct movie triples in total over all the subdivisions.
Not all users have rated all movies so the actual number of elections for each set is not consistent.
The maximum election size found in the dataset is 24,670 votes; metrics of central tendency are
presented in Tables 1 and 2.

Set 1 Set 2 Set 3 Set 4 Set 5
Median 610.0 592.0 597.0 583.0 581.0
Mean 964.8 880.6 893.3 843.3 829.9
Max. 18,270.0 19,480.0 19,040.0 17,930.0 12,630.0

Elements 1,453,012.0 1,640,584.0 1,737,858.0 1,495,316.0 1,388,892.0
Set 6 Set 7 Set 8 Set 9 Set 10

Median 584.0 585.0 580.0 600.0 573.0
Mean 853.2 868.4 841.3 862.7 779.2
Max. 20,250.0 24,670.0 21,260.0 17,750.0 13,230.0

Elements 1,344,775.0 931,403 1,251,478 1,500,040 1,260,164

Table 1: Summary statistics for 3 candidate elections.
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Using the notion of item-item extension [11], we attempted to extend every triple found in the
initial search. Item-item extension allows us to trim our search space by only searching for 4 movie
combinations which contain a combination of 3 movies that was a valid voting instance. For each
set we only searched for extensions within the same draw of 1777 movies, making sure to remove
any duplicate extensions. The results of this search are summarized in Table 2. For 4 candidate elec-
tions, this search generated 11,362,358 distinct movie triples over all subdivisions. Our constructed
datasets contains more than 5 orders of magnitude more distinct elections than all the previous stud-
ies combined and the largest single election contains slightly more votes than the largest previously
studied election from data.

Set 1 Set 2 Set 3 Set 4 Set 5
Median 471.0 450.0 458.0 446.0 440.0
Mean 555.6 512.2 532.7 508.0 490.2
Max. 3,519.0 2,965.0 4,032.0 2,975.0 2,192.0

Elements 1,881,695.0 1,489,814.0 1,753,990 1,122,227.0 1,032,874
Set 6 Set 7 Set 8 Set 9 Set 10

Median 449.0 454.0 447.0 432.0 424.0
Mean 512.2 521.3 513.0 475.8 468.2
Max. 3,400.0 3,511.0 3,874.0 2,574.0 2,143.0

Elements 1,082,377.0 642,537 811,130 1,117,798 427,916

Table 2: Summary statistics for 4 candidate elections.

The data mining and experiments were performed on a pair of dedicated machines with dual-
core Athlon 64x2 5000+ processors and 4 gigabytes of RAM. All the programs for searching the
dataset and performing the experiments were written in C++. All of the statistical analysis was
performed in R using RStudio. The initial search of three movie combinations took approximately
36 hours (parallelized over the two cores) for each of the ten independently drawn sets. The four
movie extension searches took approximately 250 hours per set.

4 Analysis and Discussion
We have found a large correlation between each pair of voting rules under study with the exception
of Plurality (when m = 3,4) and 2-Approval (when m = 3). A Condorcet Winner is a candidate
who is preferred by a majority of the voters to each of the other candidates in an election [9].
The voting rules under study, with the exception of Copeland, are not Condorcet Consistent: they
do not necessarily select a Condorcet Winner if one exists [17]. Therefore, we also analyze the
voting rules in terms of their Condorcet Efficiency, the rate at which the rule selects a Condorcet
Winner if one exists [15]. In Section 4.2 we see that the voting rules exhibit a high degree of
Condorcet Efficiency in our dataset. The results in Section 4.1 show extremely small evidence for
cases of single peaked preferences and very low rates of occurrence of preference cycles. Finally,
the experiments in Section 4.3 indicate that several statistical models currently in use for testing new
voting rules [22] do not reflect the reality of our dataset. All of these results are in keeping with the
analysis of other, distinct, datasets [6, 9, 16, 20, 21, 24] and provide support for their conclusions.

4.1 Preference Cycles and Domain Restrictions
Condorcet’s Paradox of Voting is the observation that rational group preferences can be aggregated,
through a voting rule, into an irrational total preference [17]. It is an important theoretical and
practical concern to evaluate how often the scenario arises in empirical data. In addition to analyzing
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instances of total cycles (Condorcet’s Paradox) involving all candidates in an election, we check for
two other types of cyclic preferences. We also search our results for both partial cycles, a cyclic
ordering that does not include the top candidate (Condorcet Winner), and partial top cycles, a cycle
that includes the top candidate but excludes one or more other candidates [9].

Table 3 summarize the rates of occurrence of the different types of voting cycles found in 4
candidate set (3 candidate table is omitted for space). The cycle counts for m = 3 are all equivalent
due to the fact that there is only one type of possible cycle when m = 3. There is an extremely low
instance of total cycles for all our data (< 0.11% of all elections). This corresponds to findings in
the empirical literature that support the conclusion that Condorcet’s Paradox has a low incidence of
occurrence. Likewise, cycles of any type occur in rates < 0.4% and therefore seem of little practical
importance in our dataset as well. Our results for cycles that do not include the winner mirror the
results of Felsenthal et al. [9]: many cycles occur in the lower ranks of voters’ preference orders in
the election due to the voters’ inability to distinguish between, or indifference towards, candidates
the voter has a low ranking for or considers irrelevant.

Set 1 Set 2 Set 3 Set 4 Set 5
Partial Cycle 4,088 (0.22%) 4,360 (0.29%) 3,879 (0.22%) 1,599 (0.14%) 1,316 (0.13%)
Partial Top 2,847 (0.15%) 3,042 (0.20%) 2,951 (0.17%) 1,165 (0.10%) 974 (0.09%)

Total 892 (0.05%) 1,110 (0.07%) 937 (0.05%) 427 (0.04%) 293 (0.03%)
Set 6 Set 7 Set 8 Set 9 Set 10

Partial Cycle 1,597 (0.15%) 1,472 (0.23%) 1,407 (0.17%) 1,274 (0.11%) 1,646 (0.38%)
Partial Top 1,189 (0.11%) 1,222 (0.19%) 1,018 (0.13%) 870 (0.08%) 1,123 (0.26%)

Total 325 (0.03%) 438 (0.07%) 331 (0.04%) 198 (0.02%) 451 (0.11%)

Table 3: Number of elections demonstrating various types of voting cycles for 4 candidate elections.

Black first introduced the notion of single-peaked preferences [4], a domain restriction that states
that the candidates can be ordered along one axis of preference and there is a single peak to the graph
of all votes by all voters if the candidates are ordered along this axis. Informally, the idea is that
every member of the society has an (not necessarily identical) ideal point along a single axis and
that, the farther an alternative is from the bliss point, the lower that candidate will be ranked. A
typical example is that everyone has a preference for the volume of music in a room, the farther
away (either louder or softer) the music is set, the less preferred that volume is.

This is expressed in an election as the scenario when some candidate, in a three candidate elec-
tion, is never ranked last. The notion of restricted preference profiles was extended by Sen [23] to
include the idea of candidates who are never ranked first (single-bottom) and candidates who are
always ranked in the middle (single-mid). Domain restrictions can be expanded to the case where
elections contain more than three candidates [1]. Preference restrictions have important theoretical
applications and are widely studied in the area of election manipulation. Many election rules become
easy to affect through bribery or manipulation when electorates preferences are single-peaked [5].

Table 4 summarizes our results for the analysis of different restricted preference profiles when
m = 3. There is (nearly) a complete lack (10 total instances over all sets) of preference profile
restrictions when m = 4 and near lack ( < 0.05% ) when m = 3. It is important to remember that
the underlying objects in this dataset are movies, and individuals, most likely, evaluate movies for
many different reasons. Therefore, as the results of our analysis confirm, there are very few items
that users rate with respect to a single dimension.

4.2 Voting Rules
We analyze our dataset under the voting rules Plurality, Borda, 2-Approval, and Repeated Alterna-
tive Vote (RAV). We assume the reader is familiar with the normal voting rules discussed here. We

303



Set 1 Set 2 Set 3 Set 4 Set 5
Single Peaked 29 (0.002%) 92 (0.006%) 624 (0.036%) 54 (0.004%) 11 (0.001%)

Single Mid 0 (0.000%) 0 (0.000%) 0 (0.000%) 0 (0.000%) 0 (0.000%)
Single Bottom 44 (0.003%) 215 (0.013%) 412 (0.024%) 176 (0.012%) 24 (0.002%)

Set 6 Set 7 Set 8 Set 9 Set 10
Single Peaked 162 (0.012%) 148 (0.016%) 122 (0.010%) 168 (0.011%) 43 (0.003%)

Single Mid 0 (0.000%) 0 (0.000%) 0 (0.000%) 0 (0.000%) 0 (0.000%)
Single Bottom 590 (0.044%) 147 (0.016%) 152 (0.012%) 434 (0.029%) 189 (0.015%)

Table 4: Number of 3 candidate elections demonstrating preference profile restrictions.

note that RAV is an extension of the alternative vote (AV) where the process is repeated (removing
the winning candidate at each step) to generate a total order over all the candidates. A more com-
plete treatment of voting rules and their properties can be found in Nurmi [17] or Arrow, Sen, and
Suzumura [1].

We follow the analysis outlined by Felsenthal et al. [9]. We establish the Copeland order as
“ground truth” in each election; Copeland always selects the Condorcet Winner if one exists and
many feel the ordering generated by the Copeland rule is the “most fair” when no Condorcet Winner
exists [9, 17]. After determining the results of each election, for each voting rule, we compare
the order produced by each rule to the Copeland order and compute the Spearman’s Rank Order
Correlation Coefficient (Spearman’s ρ) to measure similarity [9].

We have omitted the tables of our results for space considerations, see Mattei [13, 14] for addi-
tional details and results. For the elections with m = 3 and m = 4 we have Borda and RAV agreeing
with Copeland≈ 98% of the time, on average. For Plurality, when m = 3 we have≈ 92% agreement
with Copeland. This correlation drops to ≈ 87% when we move to m = 4. Plurality performs the
worst as compared to Copeland across all the datasets. 2-Approval does fairly poorly when m = 3
(≈ 90%) but does surprisingly well (≈ 96%) when m = 4. We suspect this discrepancy is due to
the fact that when m = 3, individual voters are able to select a full 2/3 of the available candidates.
All sets had a median value of 1.0 and small standard error 0.2 for plurality and much less for all
rules. Our analysis supports other empirical studies in the field that find a high consensus between
the various voting rules [6, 9, 21].

There are many considerations one must make when selecting a voting rule for use within a given
system. Merrill suggests that one of the most powerful metrics is Condorcet Efficiency [15]. We
eliminated all elections that did not have a Condorcet Winner in this analysis. All voting rules select
the Condorcet Winner a surprising majority of the time. For plurality, Borda, and RAV we have a
Condorcet Efficient of ≈ 95%, on average. The worst case is 2-Approval, when m = 3, as it results
in the lowest Condorcet Efficiency in our dataset (≈ 88%). The high rate of elections that have a
Condorcet Winner (> 80%) could be an artifact of how we select elections. By virtue of enforcing
strict orders we are causing a selection bias in our set: we are only checking elections where many
voters have a preference between any two items in the dataset.

Overall, we find a consensus between the various voting rules in our tests. This supports the
findings of other empirical studies in the field [6, 9, 21]. Merrill finds much lower rates for Con-
dorcet Efficiency than we do in our study [15]. However, Merrill uses statistical models to generate
elections rather than empirical data to compute his numbers and this is likely the cause of the dis-
crepancy [10].

4.3 Statistical Models of Elections
We evaluate our dataset to see how it matches up to different probability distributions found in
the literature. We briefly detail several probability distributions (or “cultures”) here that we test.
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Tideman and Plassmann provide a more complete discussion of the variety of statistical cultures
in the literature [24]. There are other election generating cultures, such as weighted Independent
Anonymous Culture, which generate preference profiles that are skewed towards single-peakedness
or single-bottomness. As we have found no support in our analysis for restricted preference profiles
we do not analyze these cultures (a further discussion and additional election generating statistical
models can be found in [24]).

We follow the general outline in Tideman and Plassmann to guide us in this study [24]. For ease
of discussion we divide the models into two groups: probability models (IC, DC, UC, UUP) and
generative models (IAC, Urn, IAC-Fit). Probability models define a probability vector over each
of the m! possible strict preference rankings. We note these probabilities as pr(ABC), which is the
probability of observing a vote A > B >C for each of the possible orderings. In order to compare
how the statistical models describe the empirical data, we compute the mean Euclidean distance
between the empirical probability distribution and the one predicted by the model.

Impartial Culture (IC): An even distribution over every vote exists. That is, for the m! possible
votes, each vote has probability 1/m! (a uniform distribution).

Dual Culture (DC): The dual culture assumes that the probability of opposite preference orders
is equal. So, pr(ABC) = pr(CBA), pr(ACB) = pr(BCA) etc. This culture is based on the idea that
some groups are polarized over certain issues.

Uniform Culture (UC): The uniform culture assumes that the probability of distinct pairs of
lexicographically neighboring orders (that share the same top candidate) are equal. For example,
pr(ABC)= pr(ACB) and pr(BAC)= pr(BCA) but not pr(ACB)= pr(CAB) (as, for three candidates,
we pair them by the same winner). This culture corresponds to situations where voters have strong
preferences over the top candidates but may be indifferent over candidates lower in the list.

Unequal Unique Probabilities (UUP): The unequal unique probabilities culture defines the
voting probabilities as the maximum likelihood estimator over the entire dataset. We determine, for
each of the data sets, the UUP distribution as described below.

For DC and UC each election generates its own statistical model according to the definition of
the given culture. For UUP we need to calibrate the parameters over the entire dataset. We follow
the method described in Tideman and Plassmann [24]: first re-label each empirical election in the
dataset such that the order with the most votes becomes the labeling for all the other votes. This
requires reshuffling the vector so that the most likely vote is always A > B >C. Then, over all the
reordered vectors, we maximize the log-likelihood of

f (N1, . . . ,N6;N, p1, . . . , p6) =
N!

∏6
r=1 Nr!

6

∏
r=1

pNr
r (1)

where N1, . . . ,N6 is the number of votes received by a vote vector and p1, . . . , p6 are the probabilities
of observing a particular order over all votes (we expand this equation to 24 vectors for the m = 4
case). To compute the error between the culture’s distribution and the empirical observations, we re-
label the culture distribution so that preference order with the most votes in the empirical distribution
matches the culture distribution and compute the error as the mean Euclidean distance between the
discrete probability distributions.

Urn Model: The Polya Eggenberger urn model is a method designed to introduce some cor-
relation between votes and does not assume a complete uniform random distribution [3]. We use a
setup as described by Walsh [25]; we start with a jar containing one of each possible vote. We draw
a vote at random and place it back into the jar with a ∈ Z+ additional votes of the same kind. We
repeat this procedure until we have created a sufficient number of votes.

Impartial Anonymous Culture (IAC): Every distribution over orders has an equal likelihood.
For each generated election we first randomly draw a distribution over all the m! possible voting
vectors and then use this model to generate votes in an election.

IAC-Fit: For this model we first determine the vote vector that maximizes the log-likelihood
of Equation 1 without the reordering described for UUP. Using the probability vector obtained for
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m = 3 and m = 4 we randomly generate elections. This method generates a probability distribution
or culture that represents our entire dataset.

For the generative models we must generate data in order to compare them to the culture distri-
butions. To do this we average the total elections found for m = 3 and m = 4 and generate 1,400,352
and 1,132,636 elections, respectively. We then draw the individual election sizes randomly from the
distribution represented in our dataset. After we generate these random elections we compare them
to the probability distributions predicted by the various cultures.

IC DC UC UUP
Set 1 0.3064 (0.0137) 0.2742 (0.0113) 0.1652 (0.0087) 0.2817 (0.0307)
Set 2 0.3106 (0.0145) 0.2769 (0.0117) 0.1661 (0.0089) 0.2818 (0.0311)
Set 3 0.3005 (0.0157) 0.2675 (0.0130) 0.1639 (0.0091) 0.2860 (0.0307)
Set 4 0.3176 (0.0143) 0.2847 (0.0113) 0.1758 (0.0100) 0.2833 (0.0332)
Set 5 0.2974 (0.0125) 0.2677 (0.0104) 0.1610 (0.0082) 0.2774 (0.0300)
Set 6 0.3425 (0.0188) 0.3027 (0.0143) 0.1734 (0.0108) 0.3113 (0.0399)
Set 7 0.3043 (0.0154) 0.2704 (0.0125) 0.1660 (0.0095) 0.2665 (0.0289)
Set 8 0.3154 (0.0141) 0.2816 (0.0114) 0.1712 (0.0091) 0.2764 (0.0318)
Set 9 0.3248 (0.0171) 0.2906 (0.0130) 0.1686 (0.0100) 0.3005 (0.0377)

Set 10 0.2934 (0.0144) 0.2602 (0.0121) 0.1583 (0.0087) 0.2634 (0.0253)
Urn 0.6228 (0.0249) 0.4745 (0.0225) 0.4745 (0.0225) 0.4914 (0.1056)
IAC 0.2265 (0.0056) 0.1691 (0.0056) 0.1690 (0.0056) 0.2144 (0.0063)

IAC-Fit 0.0363 (0.0002) 0.0282 (0.0002) 0.0262 (0.0002) 0.0347 (0.0002)

Table 5: Mean Euclidean distance between the empirical data set and different statistical cultures
(standard error in parentheses) for elections with 3 candidates.

IC DC UC UUP
Set 1 0.2394 (0.0046) 0.1967 (0.0031) 0.0991 (0.0020) 0.2533 (0.0120)
Set 2 0.2379 (0.0064) 0.1931 (0.0042) 0.0975 (0.0023) 0.2491 (0.0127)
Set 3 0.2633 (0.0079) 0.2129 (0.0051) 0.1153 (0.0032) 0.2902 (0.0159)
Set 4 0.2623 (0.0069) 0.2156 (0.0039) 0.1119 (0.0035) 0.2767 (0.0169)
Set 5 0.2458 (0.0044) 0.2040 (0.0028) 0.1059 (0.0027) 0.2633 (0.0138)
Set 6 0.3046 (0.0077) 0.2443 (0.0045) 0.1214 (0.0040) 0.3209 (0.0223)
Set 7 0.2583 (0.0088) 0.2094 (0.0053) 0.1060 (0.0038) 0.2710 (0.0161)
Set 8 0.2573 (0.0052) 0.2095 (0.0034) 0.1059 (0.0023) 0.2508 (0.0145)
Set 9 0.2981 (0.0090) 0.2414 (0.0049) 0.1202 (0.0045) 0.3258 (0.0241)

Set 10 0.2223 (0.0046) 0.1791 (0.0035) 0.1053 (0.0021) 0.2327 (0.0085)
Urn 0.6599 (0.0201) 0.4744 (0.0126) 0.4745 (0.0126) 0.6564 (0.1022)
IAC 0.1258 (0.0004) 0.0899 (0.0004) 0.0900 (0.0004) 0.1274 (0.0004)

IAC-Fit 0.0463 (0.0001) 0.0340 (0.0001) 0.0318 (0.0001) 0.0472 (0.0001)

Table 6: Mean Euclidean distance between the empirical data set and different statistical cultures
(standard error in parentheses) for elections with 4 candidates.

Table 5 and Table 6 summarizes our results for the analysis of different statistical models used to
generate elections. In general, none of the probability models captures our empirical data. Uniform
Culture (UC) has the lowest error in predicting the distributions found in our empirical data. We
conjecture that this is due to the process by which we select movies and the fact that these are
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ratings on movies. Since we require strict orders and, generally, most people rate good movies
better than bad movies, we obtain elections that look like UC scenarios. By this we mean that The
Godfather is an objectively good movie while Mega Shark vs. Crocosaurus is pretty bad. While
there are some people who may reverse these movies, most users will rate The Godfather higher.
This gives the population something close to a UC when investigated in the way that we do here.

The data generated by our IAC-Fit model fits very closely to the various statistical models.
This is most likely due to the fact that the distributions generated by the IAC-Fit procedure closely
resemble an Impartial Culture (since our sample size is so large). We, like Tideman and Plassmann,
find little support for the static cultures’ ability to model real data [24]

5 Manipulation of Borda Elections
In this section, we present empirical results for experiments involving algorithms given by Zuck-
erman et al. to manipulate elections under the Borda voting rule [27]. Much of the analysis of
manipulation and algorithms for manipulation takes place in the theoretical domain, including look-
ing at the frequency of manipulation relative to the total election size for scoring rules given by Xia
and Conitzer [26]. Additionally, Pritchard et al. have looked at the asymptotic and average set sizes
necessary to manipulate elections under a variety of rules [18, 19]. Unfortunately, Pritchard’s anal-
ysis is under the Impartial Culture assumption, which is an election distribution that we have seen
does not match our data.

Our experiment takes ballot data for an election under the Borda rule and a non-winning candi-
date, then adds manipulators one by one until the distinguished candidate wins. The question we ask
is, how many manipulators are needed? The algorithm greedily calculates the ballot for each manip-
ulator, given all of the unmanipulated ballots and the ballots of the previous manipulators. The next
manipulator’s ballot has the distinguished candidate first, and then lists the rest of the candidates in
reverse order of their total points so far [27]. This algorithm by Zuckerman et. al has been proven
to either find the optimal coalitional manipulation, or over-guess by one voter [27]. In a furthur em-
pirical study Davies et al. compared two additional algorithms for finding Borda manipulations to
Zuckerman et al.’s [8]. Davies et al. found that, while all three algorithms found the optimal manipu-
lation over 75% of the time, Davies et al.’s AVERAGE FIT algorithm found the optimal manipulation
over 99% of the time.
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Figure 1: Deficit vs. minimum coalition size for
Zuckerman’s algorithm

5000 10000 15000 20000

Deficit

2000

4000

6000

8000

10000

12000

Minimum coalition size

Figure 2: Deficit vs. minimum coalition for pro-
moting third-place candidates

The size of the coalition is determined both by the distribution of votes and by the deficit of the
distinguished candidate, namely, the difference between the number of points assigned to the current
winner and the number of points assigned to the distinguished candidate. We ask a fundamentally
different question than the earlier experiments on Borda manipulation algorithms. At minimum, a
Borda manipulation requires a coalition size linear in the deficit size, d [8]. We want to know how
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often, and under what conditions, do we have a linear coalition requirement versus when we require
a super-linear coalition.

Figure 1 shows the relationship of the initial deficit to the coalition size. For our experiment we
used 296,553 elections, ranging in size from 350 to 18,269 voters, from Set 1 (detailed in Section 3).
The average number of voters per election in this size is 991.68, and the median is 621. Each point
in the graph in Figure 1 represents the a coalition size for an election with that deficit, regardless of
which candidate was promoted. For 99% of the elections we tested, it took b d

2 c+1 coalition mem-
bers. Figure 2 shows coalition sizes as a function of deficit for promoting the third-place candidate
to a winner.

For those elections where promoting the 3rd-place candidate took a coalition of more than
b d

2 c+ 1, the average deficit for promoting the second-place candidate is 306, and the average cor-
responding coalition size is 154 (= b d

2 c+1). For those elections, the average deficit for promoting
the third-place candidate is 873, and the average corresponding coalition size is 572.

6 Conclusion
We have identified and thoroughly evaluated a novel dataset as a source of sincere election data.
We find overwhelming support for many of the existing conclusions in the empirical literature.
Namely, we find a high consensus among a variety of voting methods; low occurrences of Con-
dorcet’s Paradox and other voting cycles; low occurrences of preference domain restrictions such as
single-peakedness; a lack of support for existing statistical models which are used to generate elec-
tion pseudo-data; and some interesting differences between the sizes of coalitions needed to promote
a 2nd-place candidate and a 3rd-place candidate, using Zuckerman’s algorithm for Borda. Our study
is significant as it adds more results to the current discussion of what is an election and how often
do voting irregularities occur? Voting is a common method by which agents make decisions both
in computers and as a society. Understanding the unique statistical and mathematical properties of
voting rules, as verified by empirical evidence across multiple domains, is an important step. We
provide a new look at this question with a novel dataset that is several orders of magnitude larger
than the sum of the data in previous studies. This empirical work is very much in the spirit of the
overall ComSoc approach: we are using computational tools (data mining and access to extremely
large sets of preference data) to address concerns in the social choice community. It is our hope
that, with this dataset, we inspire others to look for novel datasets and empirically test some of their
theoretical results.

The collection and public dissemination of the datasets is a central point our work. We plan
to establish a repository of election data so that theoretical researchers can validate with empirical
data. We plan to identify several other free, public datasets that can be viewed as “real world”
voting data. The results reported in our study imply that our data is reusable as real world voting
data. Therefore, it seems that the Netflix dataset, and its > 1012 possible elections, can be used as a
source of election data for future empirical validation of theoretical voting studies. We would like to,
instead of comparing how voting rules correspond to one another, evaluate their power as maximum
likelihood estimators [7]. Additionally, we would like to expand our evaluation of statistical models
to include several new models proposed by Tideman and Plassmann, and others [24]. We will
continue to analyze manipulation algorithms from the literature on elections from this data set.
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Bounding the Cost of Stability in Games with
Restricted Interaction

Reshef Meir, Yair Zick, Edith Elkind, and Jeffrey S. Rosenschein

Abstract

We study stability of cooperative games with restricted interaction, in the model that was in-
troduced by Myerson [20]. We show that the cost of stability of such games (i.e., the subsidy
required to stabilize the game) can be bounded in terms of natural parameters of their interac-
tion graphs. Specifically, we prove that if the treewidth of the interaction graph is k, then the
relative cost of stability is at most k + 1, and this bound is tight for all k ≥ 2. Also, we show
that if the pathwidth of the interaction graph is k, then the relative cost of stability is at most k.

1 Introduction
Coalitional game theory models scenarios where groups of agents can work together profitably: the
agents form teams, or coalitions, and each coalition generates a payoff, which then needs to be
shared among the members of that coalition. The agents are assumed to be selfish, so the payoffs
should be divided in such a way that each agent is satisfied with his share. In particular, it is desirable
to allocate the payoffs so that no group of agents can do better by deviating from their current
coalitions and embarking on a project of their own; the set of all payoff division schemes that have
this property is known as the core of the game. However, this requirement turns out to be very
strong: indeed, there are many games that have an empty core.

There are several ways to capture the intuition behind the notion of the core while relaxing the
core constraints. For instance, one can assume that deviation comes at a cost, so players will not
deviate unless the profit from doing so exceeds a certain threshold; formalizing this approach leads to
the notions of ε-core and least core. Alternatively, one can assume that the deviators are non-myopic,
and will not attempt a deviation if it may be followed by a counter-deviation that makes them worse
off; this idea is captured by the notion of bargaining set. Yet another approach, which was pioneered
by Myerson [20], is based on the idea that communication among agents may be limited, and agents
cannot form a deviating coalition unless they can communicate with one another. In more detail, the
communication network among the agents is described by an interaction graph, where agents are
nodes, and an edge denotes the presence of a communication link; allowable coalitions correspond
to connected subgraphs of the interaction graph. Myerson’s model can be seen as a special case of a
restriction scheme known as partition systems (see Chapter 5 in Bilbao [6] for an overview). Finally,
coalitional stability may be achieved via subsidies: an external party may be willing to stabilize the
game by offering a lump sum to the agents as long as they form some desired coalition structure. The
minimal subsidy required in order to guarantee stability is known as the cost of stability (CoS) [4]
(in what follows, it will be convenient to use a modified version of this notion known as relative cost
of stability (RCoS ) [19], which is defined as the ratio between the minimal total payoff needed to
ensure stability and the total value of an optimal coalition structure).

In this paper, we study the interplay between the latter two concepts, namely, restricted interac-
tion and the cost of stability. Our goal is to bound the (relative) cost of stability of a game in terms of
natural parameters of its interaction graph. One such parameter is the treewidth: this is a combina-
torial measure of graph structure that ranges from 1 (a tree or a forest) to n−1 (a complete graph on
n vertices), and, intuitively, says whether the graph is close to being a tree. A closely related notion
is that of pathwidth, which measures how close the graph is to being a path. We are motivated by
the classic result of Demange [10], who showed that if the interaction graph is a tree then the core of
the game is not empty. Given this result, it is natural to ask if games whose interaction graphs have
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small treewidth are close to having a non-empty core.

Our Contribution Our main contribution is a complete characterization of the relationship be-
tween the treewidth of the interaction graph and the cost of stability. We show that if the treewidth
of the interaction graph of a game G is k, then the relative cost of stability of G is at most k + 1.
Moreover, we demonstrate that this bound is tight whenever k ≥ 2. We also show that the bound on
the relative cost of stability can be improved to k if the pathwidth of the interaction graph is k, and
this is also tight.

Related Work There is a significant body of work on subsidies in cooperative games. Many of the
earlier papers focused on cost-sharing games, where agents share the cost of a project, rather than
its profits (see, for example, [17, 12]). For profit-sharing games, Bachrach et al. [4] have recently
introduced the notion of cost of stability (CoS), which is defined as the minimal subsidy needed
to stabilize such games. Bachrach et al. gave bounds on the cost of stability for several classes of
coalitional games, and analyzed the complexity of computing the cost of stability in weighted voting
games. Several groups of researchers have extended this analysis to other classes of coalitional
games [21, 18, 2, 19, 14, 15]. In particular, Meir et al. [19] and Greco et al. [15] studied questions
related to the CoS in games with restricted cooperation, providing bounds on the CoS for some
simple graphs.

It is well known that many graph-related problems that are computationally hard in the general
case become tractable once the treewidth of the underlying graph is bounded by a constant (see,
e.g., [9]). There are several graph-based representation languages for cooperative games, and for
many of them the complexity of computational questions that arise in cooperative game theory (such
as finding an outcome in the core or an optimal coalition structure) has been bounded in terms of the
treewidth of the corresponding graph [16, 3, 5, 14]. However, in general bounding the treewidth of
the Myerson graph (except for the special case of width 1) does not lead to a tractable solution for
these computational questions, as shown by Greco et al. [15] and more recently by Chalkiadakis et
al. [8]. Moreover, the notion of treewidth was mostly applied in the context of algorithmic analysis
of cooperative games; to the best of our knowledge, our work is the first to employ treewidth to
prove a game-theoretic result that is not computational in nature.

2 Preliminaries
We will now present the definitions that will be used in this paper. In what follows, we use boldface
lowercase letters to denote vectors, and uppercase letters to denote sets of agents.

A transferable utility (TU) game is a tuple G = 〈N, v〉, where N = {1, . . . , n} is a finite set
of agents and v : 2N → R is the characteristic function of the game. We assume that v(∅) = 0.
Also, unless explicitly stated otherwise, we restrict our attention to games where the characteristic
function takes non-negative values only, i.e., v(S) ≥ 0 for all S ⊆ N .

A TU game G = 〈N, v〉 is superadditive if v(S ∪ T ) ≥ v(S) + v(T ) for every S, T ⊆ N such
that S ∩ T = ∅; it is monotone if v(S) ≤ v(T ) for every S, T ⊆ N such that S ⊆ T . Further, G is
said to be simple if for all S ⊆ N it holds that v(S) ∈ {0, 1}. Note that, unlike, e.g., [22], we do not
require simple games to be monotone; this allows us to use the inductive argument in Section 3.2. A
coalition S in a simple game G = 〈N, v〉 is said to be winning if v(S) = 1 and losing if v(S) = 0.

Following [1], we assume that agents may form coalition structures. A coalition structure over
N is a partition of N into disjoint subsets. The value of a coalition structure CS over N , denoted
by v(CS ), is given by v(CS ) =

∑
S∈CS v(S). We denote the set of all coalition structures over

N by CS(N), and write OPT (G) = max{v(CS ) | CS ∈ CS(N)}. CS is said to be optimal if
v(CS ) = OPT (G). Note that in superadditive games v(N) = OPT (G).

Payoffs and Stability Having split into coalitions and generated profits, agents need to divide the
gains among themselves. A payoff vector is simply a vector x = (x1, . . . , xn) ∈ Rn+, where the i-th
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coordinate is the payoff to agent i ∈ N . We denote the total payoff to a set S ⊆ N by x(S), i.e., we
write x(S) =

∑
i∈S xi. We say that a payoff vector x is a pre-imputation for a coalition structure

CS if for all S ∈ CS it holds that x(S) = v(S). A pair of the form (CS ,x), where CS ∈ CS(N)
and x is a pre-imputation for CS , is referred to as an outcome of the game G = 〈N, v〉; an outcome
is individually rational if xi ≥ v({i}) for every i ∈ N . If x is a pre-imputation for CS that is
individually rational, it is called an imputation for CS . We say that an outcome (CS ,x) of a game
G = 〈N, v〉 is stable if x(S) ≥ v(S) for all S ⊆ N . The set of all stable outcomes of G is called the
core ofG, and is denoted Core(G). We let S(G) denote the set of all payoff vectors (not necessarily
pre-imputations) that satisfy the stability constraints, i.e., we set

S(G) = {x ∈ Rn | x(S) ≥ v(S) for all S ⊆ N}.
We refer to payoff vectors such that x(N) ≥ OPT (G) as super-imputations; note that S(G) consists
of super-imputations only.

The Relative Cost of Stability of a game G is the minimal total payoff that stabilizes the game.
Formally, we set

RCoS (G) = inf

{
x(N)

OPT (G)
| x ∈ S(G)

}
.

Note that RCoS (G) ≥ 1 for every TU game G, and RCoS (G) = 1 implies Core(G) 6= ∅.
Interaction Graphs and Treewidth An interaction network over N is a graph H = 〈N,E〉.

Given a game G = 〈N, v〉 and an interaction network over N , we define a game G|H = 〈N, v|H〉
by setting v|H(S) = v(S) if S forms a connected subgraph of H , and v|H(S) = 0 otherwise; that
is, in G|H a coalition S ⊆ N may form if and only if S forms a connected subgraph of H .

A tree decomposition of H is a tree T over the nodes V (T ) with the following properties:

1. Each node of T is a subset of N .

2. For every pair of nodes X,Y ∈ V (T ) and every i ∈ N , if i ∈ X and i ∈ Y then for any node
Z on the (unique) path between X and Y in T we have i ∈ Z.

3. For every edge e = {i, j} of E there exists a node X ∈ V (T ) such that e ⊆ X .1

The width of a tree decomposition T is tw(T ) = maxX∈V (T ) |X| − 1; the treewidth of H is
defined as tw(H) = min{tw(T ) | T is a tree decomposition of H}. Examples of graphs with
low treewidth include trees (whose treewidth is 1) and series-parallel graphs (whose treewidth is at
most 2); see, e.g., [7].

Given a subtree T ′ of a tree decomposition T (we use the term “subtree” to refer to any con-
nected subgraph of T ), we denote the agents that appear in the nodes of T ′ by N(T ′). Conversely,
given a set of agents S ⊆ N , we let T (S) denote the subgraph of T induced by the node set
{X ∈ V (T ) | X ∩ S 6= ∅}; it is not hard to check that T (S) is a subtree of T for every S ⊆ N .
Given a tree decomposition T of H and a node R ∈ V (T ), we can set R to be the root of T . In this
case, we denote the subtree rooted in a node S ∈ V (T ) by TS .

A tree decomposition of a graph H such that T is a path is called a path decomposition of H .
The pathwidth of H is defined as pw(H) = min{tw(T ) | T is a path decomposition of H}. It is
known that for any graph H , tw(H) ≤ pw(H) and pw(H) = tw(H) ·O(log(n)).

3 Treewidth and the Cost of Stability
Our goal in this section is to provide a general upper bound on the cost of stability for TU games
whose interaction networks have bounded treewidth. We start by proving a bound for simple games;
we then show how to extend it to the general case.

1We note that a tree decomposition of hypergraphs is defined in the same way, except that every hyperedge must be
contained in some node.
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3.1 Simple Games

Algorithm 1: STABLE-PAYOFF-TW(G = 〈N, v〉 , H, k, T )

Fix an arbitrary R ∈ V (T ) to be the root;
t← 0, N1 ← N , x← 0n;
for A ∈ V (T ), traversed from the leaves upwards do

t← t+ 1;
if there is some S ⊆ N(TA) ∩Nt such that v|H(S) = 1 then

for i ∈ A ∩Nt do
xi ← 1

Nt+1 ← Nt \N(TA);
// remove all agents in N(TA) from the entire tree

else
Nt+1 ← Nt;

return x = (x1, . . . , xn);

We will now show that ifG is a game with a set of agentsN andH is an interaction network over
N then RCoS (G|H) ≤ tw(H)+1. Our proof is constructive: we design an algorithm (Algorithm 1)
that receives as its input a simple game G = 〈N, v〉, a network H , a parameter k, and a tree
decomposition T ofH of width of at most k, and outputs a stable super-imputation forG|H . Briefly,
Algorithm 1 picks an arbitrary nodeR ∈ V (T ) to be the root of T and traverses the nodes of T from
the leaves towards the root. Upon arriving at a node A, it checks whether the subtree TA rooted in A
contains a coalition that is winning in G|H (note that we have to check every subset of N(TA)∩Nt,
since G|H is not necessarily monotone). If this is the case, it pays 1 to all agents in A and removes
all agents in TA from every node of T . Note that every winning coalition in TA has to be connected,
so either it is fully contained in a proper subtree of TA or it contains agents in A. The reason for
deleting the agents in TA is simple: every winning coalition that contains members of TA is already
stable (one of its members is getting a payoff of 1). The algorithm then continues up the tree in the
same manner until it reaches the root. Note that Algorithm 1 is very similar to the one proposed
by Demange [10]; however, Algorithm 1 may pay 2 · OPT (G|H) if H is a tree.2 Moreover, while
Demange’s algorithm runs in polynomial time, Algorithm 1 may require exponential time, since it
is designed to work for non-monotone simple games. However, if the simple game given as input is
monotone, a straightforward modification (check whether v|H(S) = 1 only for S = N(TA) rather
than for every S ⊆ N(TA)) will make it run in polynomial time.

Theorem 3.1. For every simple game G = 〈N, v〉 and every interaction network H over N it holds
that RCoS (G|H) ≤ tw(H) + 1.

Proof. Let T be a tree decomposition of H such that tw(T ) = k. Suppose first that G|H is su-
peradditive. This means that any two winning coalitions in G|H intersect. Hence, for every pair
of winning coalitions S1, S2 ⊆ N the subtrees T (S1) and T (S2) intersect. This implies that there
exists a node A ∈ V (T ) that belongs to the intersection of all subtrees that correspond to winning
coalitions in T (this fact is known as Helly’s Theorem for Trees), and hence intersects every win-
ning coalition. Therefore we can stabilize the game by paying 1 to every agent in A. Thus, our total
payment is |A| ≤ tw(T ) + 1 ≤ k + 1.

We now turn to the more general case of arbitrary simple games. Let x be the output of Algo-
rithm 1. We claim that x is stable (i.e., x ∈ S(G|H)) and x(N) ≤ k + 1.

2This is because Algorithm 1 operates on the tree decomposition T of H , which has nodes of size 2. In this special case
we can modify our algorithm by only paying one of the agents in A—the one that does not appear above A in the tree. The
resulting payoff vector would then coincide with the one constructed by Demange’s algorithm.
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To prove stability, consider a coalition S with v|H(S) = 1; we need to show that x(S) > 0.
Suppose for the sake of contradiction that x(S) = 0; this means that each agent in S is deleted
before he is allocated any payoff. Consider the first time step when an agent in S is deleted; suppose
that this happens at step t when a node A ∈ V (T ) is processed. Clearly for an agent in S to be
deleted at this step it has to be the case that T (S) ∩ TA 6= ∅. Further, it cannot be the case that
S ∩ (A ∩ Nt) 6= ∅, since each agent in A ∩ Nt is assigned a payoff of 1 at step t, and we have
assumed that x(S) = 0. Therefore, T (S) must be a proper subtree of TA. Let B be the root of
T (S), and consider the time step t′ < t when B is processed. At time t′, all agents in S are still
present in T , so the nodeB meets the if condition in Algorithm 1, and therefore each agent inB gets
assigned a payoff of 1. This is a contradiction, sinceB is the root of T (S), and thereforeB∩S 6= ∅,
which implies x(S) > 0.

It remains to show that x(N) ≤ (k + 1)OPT (G). To this end, we will construct a specific
coalition structure CS∗ and argue that x(N) ≤ (k + 1)v(CS∗).

The coalition structure CS∗ is constructed as follows. Let At be the node of the tree considered
by Algorithm 1 at time t, and let St = N(TAt

) ∩ Nt, i.e., St is the set of all agents that appear in
TAt

at time t. Let T ∗ be the set of all values of t such that At meets the if condition in Algorithm 1.
For each t ∈ T ∗ the set St contains a winning coalition; let Wt be an arbitrary winning coalition
contained in St. Finally, let L = N \ (∪t∈T∗Wt), and set

CS∗ = {L} ∪ {Wt | t ∈ T ∗}.

Observe that CS∗ is a coalition structure, i.e., a partition of N . Indeed, L ∩Wt = ∅ for all t ∈ T ∗,
and, moreover, if i ∈ Wt for some t > 0, then i was removed from T at time t, and cannot be a
member of coalition Wt′ for t′ > t. Further, we have v(CS∗) = |T ∗|.

To bound the total payment, we observe that no agent is assigned any payoff at time t 6∈ T ∗, and
each agent that is assigned a payoff of 1 at time t ∈ T ∗ is a member of At. Hence we have

x(N) =
∑

t∈T∗
x(At) ≤

∑

t∈T∗
|At| ≤

∑

t∈T∗
(k + 1)

= (k + 1)|T ∗| = (k + 1)v(CS∗) ≤ (k + 1)OPT (G),

which proves that RCoS (G) ≤ k + 1.

We note that under the payment scheme constructed by Algorithm 1 the payoff of every agent is
either 1 or 0. Note also that the proof of Theorem 3.1 goes through as long as G|H is simple, even
if G itself is not simple.

3.2 The General Case
Using Theorem 3.1, we are now ready to prove our main result.

Theorem 3.2. For every game G = 〈N, v〉 and every interaction network H over N it holds that
RCoS (G|H) ≤ tw(H) + 1.

Proof. We first prove the claim for all integer-valued games. We use an inductive argument on
OPT (G|H) = m. If OPT (G|H) = 1 then in particular G|H is simple, so we are done by Theo-
rem 3.1. Now suppose that our claim is true for all m′ < m; we will show that it holds for m. To
simplify notation, we identify v with v|H , i.e., we write v in place of v|H throughout the proof. We
define the following simple game G′ = 〈N, v′〉:

v′(S) =

{
1 if v(S) > 0
0 otherwise
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By Theorem 3.1, there exists a super-imputation x′ such that x′(S) ≥ v′(S) for all S ⊆ N and
x′(N) ≤ (tw(H) + 1)v(CS ′), where CS ′ is an optimal coalition structure over G′. Moreover, we
can assume that x′ ∈ {0, 1}n, as Algorithm 1 outputs such a super-imputation. We define a game
G′′ = 〈N, v′′〉 by setting

v′′(S) = max{0, v(S)− x′(S)}.
Note that v′′(S) ∈ Z+ for all S ⊆ N , since x′ ∈ {0, 1}n and G is integer-valued. Moreover, let
CS ′′ be an optimal coalition structure for G′′, and let CS ′′+ = {S ∈ CS ′′ | v′′(S) > 0}. We have

∑

S∈CS ′′

v′′(S) =
∑

S∈CS ′′+

v′′(S) =
∑

S∈CS ′′+

v(S)− x′(S).

Moreover, for every S ∈ CS ′′+ we have v(S) − x′(S) > 0; in particular this means that v(S) > 0,
which implies that v′(S) = 1 ≤ x′(S). Therefore for any S ∈ CS ′′+ we have

v′′(S) = v(S)− x′(S) ≤ v(S)− 1 < v(S).

We conclude that ∑

S∈CS ′′

v′′(S) =
∑

S∈CS ′′+

v′′(S) <
∑

S∈CS ′′+

v(S) ≤ m.

Thus, the value of an optimal coalition structure over G′′ is strictly less than m, i.e., we can apply
the induction hypothesis to G′′. This means that there is a super-imputation x′′ such that x′′(N) ≤
(tw(H) + 1)v′′(CS ′′) and x′′(S) ≥ v′′(S) for all S ⊆ N . We set x = x′ + x′′. We will now show
that x(N) ≤ (tw(H) + 1)OPT (G) and x(S) ≥ v(S) for all S ⊆ N .

First, observe that for all S ⊆ N we have x(S) = x′(S) + x′′(S) ≥ x′(S) + v′′(S) ≥ x′(S) +
v(S)−x′(S) = v(S), so x is a stable super-imputation for G. Now, let CS ′′ be an optimal coalition
structure over G′′, and consider CS ′′ \CS ′′+, i.e., the set of all coalitions of value 0 in CS ′′. We can
assume without loss of generality that CS ′′ \ CS ′′+ is a singleton, i.e., there is only one coalition of
value 0 in CS ′′; we denote this coalition by S0. Let CS ′ be an optimal coalition structure over G′,
and let CS ′+ = {S ∈ CS ′ | v′(S) = 1}. Set N∗ = N \ S0; then we have

x′(N∗) ≥
∑

S∈CS ′+

x′(S ∩N∗) ≥
∑

S∈CS ′+

v′(S ∩N∗) = |{S ∈ CS ′+ | S ∩N∗ 6= ∅}|.

Let t∗ = |{S ∈ CS ′+ | S ∩ N∗ 6= ∅}| and let t0 = |{S ∈ CS ′+ | S ⊆ S0}|. t∗ is number of
coalitions in CS ′+ that intersectN∗, and t∗ is the number of those that are contained in S0. The total
value of CS ′ is thus |CS ′+| = t∗ + t0.

We are now ready to bound x(N). We obtain

x(N) = x′(N) + x′′(N) ≤ (tw(H) + 1)v′′(CS ′′) + (tw(H) + 1)v′(CS ′)

= (tw(H) + 1)


 ∑

S∈CS ′′+

(v(S)− x′(S)) + |CS ′+|




= (tw(H) + 1)


 ∑

S∈CS ′′+

v(S)− x′(N∗) + |CS ′+|




≤ (tw(H) + 1)
(
v(CS ′′+)− t∗ + |CS ′+|

)
= (tw(H) + 1)

(
v(CS ′′+) + t0

)
. (1)

Further, we have t0 =
∑
S∈CS ′+:S⊆S0

v′(S) ≤ ∑S∈CS ′+|S⊆S0
v(S), so the final term in (1) is at

most (tw(H)+1)
(
v(CS ′′+) +

∑
S∈CS ′+:S⊆S0

v(S)
)

. This is a sum over a partition of (a subset of)
N , so its total value is at most that of OPT (G|H), which concludes the proof for the integer case.
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To extend this result to non-integer-valued games, we make the following observation. Given
a game G = 〈N, v〉, we can consider the game εG = 〈N, vε〉 given by vε(S) = εv(S) for every
S ⊆ N ; we note that if G is simple, then for any ε > 0 Algorithm 1 can be applied to the game
εG and hence Theorem 3.1 remains true for εG. Moreover, in εG every agent receives a payoff
of either ε or 0. Further, when defining the modified characteristic function v′, we can set ε =
minS⊆N{v(S) | v(S) > 0} and let v′(S) = ε whenever v(S) > 0 (instead of setting v′(S) = 1).
The rest of the proof can be modified appropriately (with a different ε chosen at each iteration); in
particular, instead of using induction on OPT (G|H), we use induction on the number of coalitions
with non-zero value.

The RCoS of any cooperative game, even with unrestricted cooperation, is at most
√
n (see [4,

18]). Thus, we obtain RCoS (G|H) ≤ min{tw(H) + 1,
√
n}, assuming that coalition structures are

allowed. Moreover, when applied to superadditive games, Theorem 3.2 implies that there is some
stable super-imputation x such that x(N) ≤ (tw(H) + 1)v(N).3

Finally, since a simple superadditive game can be viewed as a collection of intersecting sets, we
obtain the following corollary, which may be of independent interest.

Corollary 3.3. Let H = 〈N,E〉 be a graph, and let Rk = 〈N,F , k〉 be an instance of HITTING
SET [13], where F = {Sj}mj=1 is a collection of pairwise intersecting subsets of N , and every Sj
is connected in H (i.e.,

〈
Sj , E|Sj

〉
is connected). Then for all k ≤ tw(H)− 1 it holds that Rk is a

“yes”-instance of HITTING SET and a hitting set of size (at most) k can be found efficiently.

3.3 Tightness
Demange [10] showed that if tw(H) = 1, then the game G|H admits a stable outcome, i.e.,
RCoS (G|H) = 1. This result is limited to games whose interaction networks are trees. How-
ever, we will now show that if the treewidth of the interaction network is at least 2, then the upper
bound of tw(H) + 1 proved in Theorem 3.2 is tight.

Theorem 3.4. For every k ≥ 2 there is a simple superadditive game G = 〈N, v〉 and an interaction
network H over N such that tw(H) = k and RCoS (G|H) = k + 1.

Proof. Instead of definingH directly, we will describe its tree decomposition T . There is one central
node A = {z1, . . . , zk+1}. Further, for every unordered pair I = {i, j}, where i, j ∈ {1, . . . , k+1}
and i 6= j, we define a set DI that consists of 7 agents and set N = A ∪⋃i 6=j∈{1,...,k+1}D{i,j}.

The tree T is a star, where leaves are all sets of the form {zi, zj , d}, where d ∈ D{i,j}. That is,
there are 7 ·

(
k+1
2

)
leaves, each of size 3. Since the maximal node of T is of size k+1, it corresponds

to some network whose treewidth is at most k. We set Di =
⋃
j 6=iD{i,j}; observe that for any two

agents zi, zj ∈ A we have Di ∩ Dj = D{i,j}. Given T , it is now easy to construct the underlying
interaction network H: there is an edge between zi and every d ∈ D{i,j} for every j 6= i; see
Figure 1 for more details.

For every unordered pair I = {i, j} ⊆ {1, . . . , k + 1}, let QI denote the projective plane
of dimension 3 (a.k.a. the Fano plane) over DI . That is, QI contains seven triplets of elements
from DI , so that every two triplets intersect, and every element d ∈ DI is contained in exactly 3
triplets in QI . Winning sets are defined as follows. For every i = 1, . . . , k + 1 and every selection{
Q{i,j} ∈ Q{i,j}

}
j 6=i the set {zi}∪

⋃
j 6=iQ{i,j} is winning. Thus for every zi there are 7k winning

coalitions containing zi, each of size 1 + 3k. Let us denote by Wi the set of winning coalitions
that contain zi; observe that for every d /∈ A, d appears in exactly 3 · 7k−1 winning coalitions in
Wi: d belongs to some D{i,j}, and is selected to be in a winning coalition with zi if a triplet Q{i,j}

3Note that, while the proof for simple superadditive games is straightforward, we cannot use the inductive argument made
in Theorem 3.2 directly, as superadditivity may not be preserved; therefore, we must go through all steps of the proof.
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containing d is joined to zi. There are 3 triplets in Q{i,j} that contain d, and there are 7k−1 ways to
choose the other triplets (seven choices from every one of the other k − 1 sets).

We first argue that all winning coalitions intersect. Indeed, let Ci, Cj be winning coalitions
such that zi ∈ Ci, zj ∈ Cj . Then both Ci and Cj contain some triplet from Q{i,j}. Suppose
Q{i,j} ⊆ Ci, Q

′
{i,j} ⊆ Cj . Since Q{i,j}, Q′{i,j} ∈ Q{i,j}, they must intersect, and thus Ci and Cj

must also intersect. This implies that the simple game induced by these winning coalitions is indeed
superadditive and has an optimal value of 1. Note that if we pay 1 to each zi ∈ A, then the resulting
super-imputation is stable, since every winning coalition intersects A. To conclude the proof, we
must show that any stable super-imputation must pay at least k + 1 to the agents.

Given a stable super-imputation x, we know that x(Ci) ≥ 1 for every Ci ∈ Wi. Thus,∑
Ci∈Wi

x(Ci) ≥ 7k. We can write
∑
Ci∈Wi

x(Ci) as

∑

Ci∈Wi

x(Ci) =
∑

Ci∈Wi


xzi +

∑

d6=zi|d∈Ci

xd


 = 7kxzi +

∑

Ci∈Wi

∑

d 6=zi|d∈Ci

xd

= 7kxzi +
∑

d∈Di

1
∑

Ci∈Wi|d∈Ci

xd = 7kxzi +
∑

d∈Di

3 · 7k−1xd

= 7kxzi + 3 · 7k−1x(Di).

This immediately implies that xzi ≥ 1− 3
7x(Di). Observe that

∑
zi∈A x(Di) = 2

∑
i<j x(D{i,j}),

as each D{i,j} appears exactly twice in the summation: once in Di and once in Dj . Also, observe
that

∑
i<j x(D{i,j}) = x(N \A), so

∑k+1
i=1 x(Di) = 2x(N \A). Finally,

x(N) = x(A) + x(N \A) =
k+1∑

i=1

xzi + x(N \A)

≥
k+1∑

i=1

(
1− 3

7
x(Di)

)
+ x(N \A) =

k+1∑

i=1

1− 3

7
2x(N \A) + x(N \A)

= k + 1 + (1− 6

7
)x(N \A) ≥ k + 1

Thus, the relative cost of stability in our game is at least k + 1.

We observe that Theorem 3.4 does not hold when k = 1 since the width of our construction is at
least 2 (each leaf is of size 3). Indeed, if it were to hold for k = 1, we would obtain a contradiction
with Demange’s theorem.

4 Pathwidth and the Cost of Stability
For some graphs we can bound not just their treewidth, but also their pathwidth. For example, for a
simple cycle graph both the treewidth and the pathwidth are equal to 2. For games over interaction
networks with bounded pathwidth, the bound of tw(H) + 1 shown in Section 3 can be tightened.

Theorem 4.1. For every TU game G = 〈v,N〉 and every interaction network H over N it holds
that RCoS (G|H) ≤ pw(H), and this bound is tight.

Proof. Note first that it suffices to show that our bound holds for simple games; we can then use
the reduction described in the proof of Theorem 3.2. For simple games, our proof is very similar
to the proof of Theorem 3.1; however, here we will show that in every node Aj that satisfies the if
condition of Algorithm 2 we can identify an agent that we do not need to pay.
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Figure 1: The interaction network H when k = 2 in Theorem 3.4. On the right there is the tree
decomposition T . There are three sets: A = D1,3 = {a1, . . . , a7}, B = D1,2 = {b1, . . . , b7} and
C = D2,3 = {c1, . . . , c7}. An edge connects z1 to all agents in A and B, z2 to B and C, and z3
to C and A. Agent z1 forms winning coalitions with triplets of agents from A and B that are on a
dotted line, Similarly, z2 and z3 form winning coalitions with their respective sets.

Our algorithm first deals with winning coalitions of size 1. This step can be justified as follows.
Suppose we remove all agents in I = {i ∈ N | v({i}) = 1} and construct a stable super-imputation
x′ for the game G′|H , where G′ = 〈N ′, v′〉, N ′ = N \ I , and v′(S) = v(S) for each S ⊆ N \ I ,
so that x′(N ′) ≤ pw(H). Now, consider a super-imputation x for G given by xi = 1 for i ∈ I ,
xi = x′i for i ∈ N ′. We have x(N) = x′(N ′) + |I|, and, furthermore, x(S) ≥ v|H(S) for every
S ⊆ N , i.e., x is a stable super-imputation for G|H . On the other hand, it is not hard to check that
OPT (G|H) = OPT (G′|H) + |I|. Hence, we obtain

x(N)

OPT (G|H)
=

x′(N ′) + |I|
OPT (G′|H) + |I| <

x′(N ′)
OPT (G′|H)

≤ pw(H),

i.e., x witnesses that RCoS (G|H) ≤ pw(H). Thus, we begin Algorithm 2 by paying all winning
singletons 1 and ignoring them (and any winning coalitions that contain them) for the rest of the
execution; note, however, that we do not remove the winning singletons from H , i.e., we do not
modify our path decomposition or its width.

Next we show stability. Given a node Aj , we must make sure that each winning coalition in
N(TAj

) is paid at least 1. By the proof of Theorem 3.1, paying all agents in Aj is sufficient. Note,
however, that there is no need to pay an agent i that is not in N(TAj

) \ Aj : since we removed all
winning singletons, every winning coalition inN(TAj ) that contains i (and that is not yet stabilized)
must also contain another agent from Aj .

Finally, we must show that in every paid node Aj , j ≥ 2, there is at least one agent that is not
paid. Note that Aj has a unique child Aj−1. If Aj ⊆ Aj−1, then no agent in Aj is being paid (as
they had already been paid when processing Aj−1). Otherwise, there is some agent i ∈ Aj \ Aj−1.
Since T is a path and all nodes containing i must be connected, we have i /∈ N(Aj) \Aj . Thus i is
not paid. Note that in Algorithm 2 the agents inA1 are not paid in the first iteration of the algorithm.

To show tightness, we use a slight modification of the construction from Section 3.3; we omit
the details due to space constraints.
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Algorithm 2: STABLE-PAYOFF-PW(G = 〈N, v〉 , H, k, T )

Set T = (A1, . . . , Am);
x← 0n;
I ← {i ∈ N | v({i}) = 1};
for i ∈ I do

xi ← 1;

N1 ← N \ I;
// Remove all singletons
t← 1;
for j = 1 to m do

if there is some S ⊆ N(TAj
) ∩Nj such that v(S) = 1 then

for i ∈ Aj ∩Nj do
if i ∈ N(TAj ) \Aj then

// Pay agents unless it is the first node they
appear in

xi ← 1

Nj+1 ← Nj \N(TAj
);

// Remove all agents in N(TAj
) from the entire path

else
Nj+1 ← Nj ;

return x = (x1, . . . , xn);

5 Conclusions, Discussion, and Future Work
Our main result shows a tight connection between the treewidth of an interaction network and the
minimal subsidy required to stabilize a game played by the interacting agents: Simply put, as the
interaction becomes “simpler”, the game becomes easier to stabilize. To the best of our knowledge,
this is the first time that the notion of treewidth is used to obtain results that are purely game-theoretic
rather than algorithmic in nature.

While we provide bounds on RCoS both in terms of the treewidth of the interaction network
and in terms of its pathwidth, we view the former result as more significant than the latter: indeed,
the result for the pathwidth only provides an improved bound when the pathwidth is exactly equal
to the treewidth, which is quite uncommon.

Our results imply a separation between games whose interaction networks are acyclic, which
have been shown to be stable [10], and other games. That is, treewidth of 1 implies RCoS of 1, but
for any higher value of treewidth, the RCoS is somewhat higher. In particular, the result of Demange
is not a special case of our theorem, although it can be proved using a very similar technique (i.e.,
by breaking the game into multiple simple games).

Games with implicit Myerson graphs While interaction networks have been introduced by My-
erson as an external restriction independent of the value function, for some families of cooperative
games this restriction is implicit in the game description. A prominent example is the class of in-
duced subgraph games (ISG) proposed by Deng and Papadimitriou [11], where agents correspond to
vertices of a graph, and the value of a coalition is the sum of weights of the edges between coalition
members. Imposing the very same graph as an interaction network will preserve the value of any
coalition in the game. Therefore, we can deduce a bound on the RCoS of a given ISG directly from
its description, by measuring the treewidth of its underlying graph. Other families that implicitly
induce a Myerson graph are matching games and some variations of network flow games.
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Hypergraphs Myerson’s model can be generalized to hypergraphs rather than graphs [23]. Since
our methods work with tree decompositions rather than the interaction networks themselves, they
apply equally well to this case. Interestingly, the underlying hypergraph of a game defined via a
marginal contribution net [16] also induces a Myerson (hyper)graph, which can in turn be used to
bound the required subsidy.

The least core We remark that the cost of stability is closely related to another important notion
of stability in cooperative games, namely, the least core; specifically, Meir et al. [19] show that the
value of both the strong least core and the weak least core of a cooperative game can be bounded in
terms of its additive cost of stability. Briefly, the value of the least core measures the dissatisfaction
of coalitions in the “most stable” outcome, and is perhaps the most standard measure of stability in
cooperative games. Our results, combined with those of [19], imply that any bound on the treewidth
or pathwidth of the interaction graph translates into a bound on this important quantity. This provides
further evidence that simple social interactions increase stability.

5.1 Future Work
While our bound on the cost of stability is tight in the worst case, it may be further improved by
considering finer restrictions on the structure of the interaction network and/or the value function
itself. More generally, we believe that this new connection between a well-studied graph parameter
such as the treewidth and the stability properties of a related game is fascinating. We look forward
to studying how such parameters can be used to reveal other hidden connections in both cooperative
and non-cooperative game theory.
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Manipulating Two Stage Voting Rules

Nina Narodytska and Toby Walsh

Abstract

We study the computational complexity of computing a manipulation of a two stage
voting rule. An example of a two stage voting rule is Black’s procedure. The first
stage of Black’s procedure selects the Condorcet winner if they exist, otherwise
the second stage selects the Borda winner. In general, we argue that there is no
connection between the computational complexity of manipulating the two stages
of such a voting rule and that of the whole. However, we also demonstrate that we
can increase the complexity of even a very simple base rule by adding a stage to the
front of the base rule. In particular, whilst Plurality is polynomial to manipulate,
we show that the two stage rule that selects the Condorcet winner if they exist
and otherwise computes the Plurality winner is NP-hard to manipulate with 3 or
more candidates, weighted votes and a coalition of manipulators. In fact, with any
scoring rule, computing a coalition manipulation of the two stage rule that selects
the Condorcet winner if they exist and otherwise applies the scoring rule is NP-hard
with 3 or more candidates and weighted votes. It follows that computing a coalition
manipulation of Black’s procedure is NP-hard with weighted votes. With unweighted
votes, we prove that the complexity of manipulating Black’s procedure is inherited
from the Borda rule that it includes. More specifically, a single manipulator can
compute a manipulation of Black’s procedure in polynomial time, but computing a
manipulation is NP-hard for two manipulators.

1 Introduction

There exist several voting procedures that work in stages. For example, Black’s procedure
is a two stage voting rule whose first stage elects the Condorcet winner, if one exists, and
otherwise moves to a second stage which elects the Borda winner [12]. As a second example,
the French presidential elections use a two stage runoff voting system. If there is a majority
winner in the first stage, then this candidate is the overall winner, otherwise we go to the
second stage where there is a runoff vote between the two candidates with the most votes
in the first round. Such two stage voting rules can inherit a number of attractive axiomatic
properties from their parts. For example, Black’s procedure inherits Condorcet consistency
from its first part, and properties like monotonicity, participation and the Condorcet loser
property from its second part. Inheriting such properties from its parts might be considered
an attractive feature of two stage voting rules. On the other hand, a less desirable property
of one of the base rules can infect the overall two stage rule. For instance, it has been
shown that, with single peaked votes, many types of control and manipulation problems
are polynomial for Black’s procedure [4]. This polynomiality is essentially inherited from
the first stage of the rule which selects the Condorcet winner (which must exist with sin-
gle peaked votes). Such vulnerability to manipulation and control might be considered an
undesirable property for a two stage voting rule. This raises several interesting questions
from the perspective of computational social choice. For example, with unrestricted votes
as opposed to single peaked votes, are two stage voting rules more or less computationally
difficult to manipulate than single stage voting rules? How does the computational com-
plexity of manipulating a two stage voting rule depend on the computational complexity of
manipulating the two rules that it composes? In this paper, we address such questions.

Our work builds upon recent research that looks at methods to combine together voting
rules. In [10], we considered a recursive combinator that successively eliminates the least
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popular candidate(s). This captures voting rules proposed in the past like those of Nanson,
Baldwin or Coombs (all described in more detail in the next section). By comparison, we
consider here a sequential combinator where the first rule eliminates all but the most popular
candidates and the second rule then decides between those that remain. This captures
voting rules proposed in the past like Black’s procedure. Perhaps closest to this work is the
sequential combinator introduced in [11]. This is an intermediate position between the two
extremes of eliminating the least popular and all but the most popular candidates. Elkind
and Lipmaa’s combinator eliminates candidates by applying some given number of rounds
of the first rule before using the second rule to decide between the candidates that remain.
Even more recently, we have considered a parallel combinator that combines together the
opinions of two (or more) different voting rules [16]. This combinator applies both rules
simultaneously and compares their results. As well as proving computational properties of
existing voting rules like Black’s procedure, this paper strengthens the evidence that adding
multiple rounds to voting will often increase the computational resistance to manipulation.

2 Background

A profile is a sequence of n total orders over m candidates. A voting rule is a function map-
ping a profile onto a set of winners (strictly speaking this is a social choice correspondence).
We consider some of the most common voting rules.
Scoring rules: Given a scoring vector (w1, . . . , wm) of weights, the ith candidate in a vote
scores wi, and the winner is the candidate with highest total score over all the votes. The
Plurality rule has the weight vector (1, 0, . . . , 0), the Veto rule has the vector (1, 1, . . . , 1, 0),
and the Borda rule has the vector (m− 1,m− 2, . . . , 0).
Cup: The winner is the result of a series of pairwise majority elections between candidates.
Given the agenda, a binary tree in which the roots are labelled with candidates, we label
the parent of two nodes by the winner of the pairwise majority election between the two
children. The winner is the label of the root.
Black’s procedure: This rule has two stages. We first determine if there is a Condorcet
winner, a candidate that beats all others in pairwise majority comparisons. If there is, this
is the winner. Otherwise, we return the result of the Borda rule.
Single Transferable Vote (STV): This rule requires up to m− 1 rounds. In each round,
the candidate with the least number of voters ranking them first is eliminated until one of
the remaining candidates has a majority.
Nanson’s and Baldwin’s rules: These are iterated versions of the Borda rule. In Nanson’s
rule, we compute the Borda scores and eliminate any candidate with less than half the mean
score. We repeat until there is an unique winner. In Baldwin’s rule, we compute the Borda
scores and eliminate the candidate with the lowest score. We again repeat until there is an
unique winner.
Coombs’ rule: This is an iterated version of the Veto rule. We repeatedly eliminate the
candidate with the most vetoes until we have one candidate with a majority.

We consider both unweighted and integer weighted votes. A weighted votes can simply
be viewed as a block of identical unweighted votes.

3 Two stage voting rules

We consider a general class of two stage voting rules. Given voting rules X and Y , the rule
XThenY applies the voting Y to the profile constructed by eliminating all but the winning
candidates from the voting rule X. Both X and Y can themselves be two stage voting
rules giving us the possibility to construct multi-stage voting rules. For example, Black’s
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procedure is CondorcetThenBorda where Condorcet is the multi-winner rule that elects
the Condorcet winner if it exists, and otherwise elects all candidates. As a second example,
Plurality with Runoff is TopTwoThenMajority where TopTwo is the multi-winner voting
rule that elects the candidates with the two most plurality votes. There are many possible
rules that we might choose to combine this way. Condorcet is an attractive choice for the
first rule as it guarantees that the resulting combination is Condorcet consistent. However,
there are other interesting choices including:

CondorcetLoser: This is the rule that elects all candidates except, when it exists, the
Condorcet loser.

CopelandSet: This is the rule that elects all candidates in the Copeland set. The Copeland
score of a candidate is the number of candidates that it beats less the number of
candidates that beats it. The Copeland set contains those candidates with the maximal
Copeland score. When there is a Condorcet winner, this is the only candidate in the
Copeland set.

SmithSet: This is the rule that elects all candidates in the Smith set. This is the smallest
non-empty set of candidates such that every candidate in the set beats every candidate
outside the set in pairwise elections. When there is a Condorcet winner, this is the only
candidate in the Smith set. Voting rules like Nanson’s and Kemeny are guaranteed to
pick candidates from the Smith set.

SchwartzSet: This is the rule that elects all candidates in the Schwartz set. The Schwartz
set is a subset of the Smith set and is the union of all the undominated sets. A set is
undominated if every candidate inside the set is pairwise unbeaten by every candidate
outside, and no non-empty proper subset satisfies this property. When there is a
Condorcet winner, this is the only candidate in the Schwartz set.

We can also consider recursive definitions. We suppose any recursion terminates when
either we have a single candidate left, or the set of candidates left does not reduce in
size. For example, we can recursively define STV by STV = PluralityLoserThenSTV
where PluralityLoser is the rule that elects all candidates but the candidate with the
fewest first place votes. As a second example, we can recursively define Baldwin’s rule by
Baldwin = BordaLoserThenBaldwin where BordaLoser is the multi-winner rule that
elects all candidates but the candidate with the lowest Borda score. Nanson’s rule can be
defined recursively in a similar way. As a third example, we can define Coombs’ rule by
Coombs = MajorityThen(V etoLoserThenCoombs) where Majority elects the candidate
with a majority of first place votes or, if there is no such candidate, elects all candidates,
and V etoLoser is the rule that elects all candidates but the candidate with the most last
placed votes.

4 Axiomatic and algebraic properties

It is interesting to consider which axiomatic properties are inherited from the base rules
being combined. For example, it is simple to see that we can inherit Condorcet consistency
or the Condorcet loser properties.

Proposition 1. For any voting rule X, the combinations CondorcetThenX,
CopelandSetThenX, SmithSetThenX and SchwartzSetThenX are Condorcet consis-
tent. Similarly, for any voting rule Y , the combination CondorcerLoserThenY satisfies
the Condorcet loser property.

325



With recursively defined rules, we can give a similar result. We say that a multi-winner
rule is Condorcet consistent if it includes the Condorcet winner in the set of winners, and
satisfies the Condorcet loser property if the set of winners never includes the Condorcet
loser.

Proposition 2. Suppose Y is recursively defined by Y = XThenY and X is Condorcet
consistent. Then Y is also Condorcet consistent. Similarly, if X satisfies the Condorcet
loser property then Y does also.

Note that the Borda loser is never the Condorcet winner. Hence, the multi-winner rule
BordaLoser is Condorcet consistent. Thus, it follows from Proposition 2 that Baldwin’s
rule (which is recursively defined using BordaLoser) is also Condorcet consistent.

There are also axiomatic properties which can be lost by combining together voting rules.
For example, the Borda loser rule which eliminates the lowest Borda scoring candidate is
monotonic since increasing one’s preference for a candidate can only prevent them from
being the Borda loser. However, Baldwin’s rule, which is the recursive version of the Borda
loser rule, is not monotonic. It will therefore be interesting to identify conditions under
which two stage voting rules are monotonic.

This combinator has a number of interesting algebraic properties. For example, the
Identity rule that returns all candidates is a left and right identity of the Then combinator.
Note that the Then combinator is neither commutative nor associative. If a voting rule is
recursively defined then it is idempotent (that is, XThenX = X). More complex algebraic
identities can be derived such as the following.

Proposition 3. If X is idempotent then XThen(XThenY ) = XThenY and
(YThenX)ThenX = YThenX.

More specialized properties can also be derived such as the following.

Proposition 4. SmithSetThenNanson = Nanson.

Proposition 5. If X is Condorcet consistent and only returns the Condorcet winner when
they exist then CondorcetThenX = X.

5 Complexity of manipulation

One of the main contributions of this paper is to consider the impact of two stage voting rules
on the computational complexity of computing a manipulation. As in previous studies (e.g.
[2, 6]), we consider manipulation with unweighted votes and a small number of manipulators,
and manipulation with weighted votes, a coalition of manipulators and a small number of
candidates. As is common in the literature, we break ties in favour of the manipulators.

5.1 Weighted votes, general results

With weighted votes, we first argue that is no connection in general between the com-
putational complexity of computing a manipulation of a two stage voting rule and the
computational complexity of manipulating its parts.

Proposition 6. There exist voting rules X and Y with the following properties for weighted
votes:

1. computing coalition manipulations of X, Y and XThenY are polynomial;

2. computing coalition manipulations of X and Y are polynomial but of XThenY is
NP-hard;
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3. computing a coalition manipulation of X is polynomial and of Y is NP-hard, but of
XThenY is polynomial;

4. computing a coalition manipulation of X is polynomial, but of Y and XThenY are
NP-hard;

5. computing a coalition manipulation of X is NP-hard, but of Y and XThenY are
polynomial;

6. computing a coalition manipulation of X is NP-hard and of Y is polynomial, but of
XThenY is NP-hard;

7. computing coalition manipulations of X and Y are NP-hard but of XThenY is poly-
nomial;

8. computing coalition manipulations of X, Y and XThenY are NP-hard.

Proof: The NP-hardness results are derived from the NP-hardness of computing a coalition
manipulation of STV with 3 or more candidates [7].

1. Consider X = FirstRoundCup and Y = Cup. FirstRoundCup is the multi-winner
rule that runs one round of the Cup voting rule. Note that FirstRoundCupThenCup
is the Cup rule itself, and both FirstRoundCup and Cup are polynomial to manipulate
by a coalition even with weighted votes [7].

2. Consider X = TopTwo and Y = Majority where TopTwo elects the two candidates
with the two highest plurality scores. On 3 candidates, TopTwoThenMajority is
Plurality with runoff, which itself is equivalent STV which is NP-hard to manipulate
by a coalition of weighted voters when we have 3 or more candidates [7].

3. Consider X = Plurality′ and Y = STV where Plurality′ is the decisive form of
plurality that includes tie-breaking in some fixed order. Note that XThenY is again
Plurality′ which is polynomial to manipulate by a coalition even with weighted votes
[7].

4. Consider X = Identity and Y = STV where Identity is the identity rule that elects
all the candidates in the election. Note that XThenY is also STV .

5. Consider X = STV1 which is the multi-winner voting rule that elects both the STV
winner and the candidate with the lexicographically smallest label, and Y elects the
candidate with the lexicographically smallest label. Note that XThenY always elects
the candidate with the lexicographically smallest label. Such a rule is polynomial to
manipulate by a coalition even with weighted votes.

6. Consider X = STV and Y = Identity. Note that XThenY is again STV .

7. Consider X = STV2 and Y = STV3 where STV2 is the multi-winner rule that elects
the STV winner as well as those candidates with the lexicographically smallest and
largest names, and STV3 elects the plurality winner between the candidates with the
lexicographically smallest and largest names if there are 3 or fewer candidates and
otherwise elects the STV winner. Note that XThenY elects the plurality winner
between the candidates with the lexicographically smallest and largest names, and
computing a coalition manipulation of such a rule is polynomial even with weighted
votes.

8. Consider X = Y = STV ′ where STV ′ is the decisive form of STV where we tie-break
in favour of the manipulators. Note that XThenY is also STV ′.

♥
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5.2 Weighted votes, specific rules

With weighted votes, we already know that several multi-stage voting rules are NP-hard
to manipulate including STV, Plurality with runoff, Baldwin’s rule (all with 3 candidates),
and Nanson’s rule (with 4 candidates) [7, 15]. We first show that computing a manipu-
lation of CondorcetThenX with weighted votes is NP-hard for any scoring rule X. This
contrasts to scoring rules in general where computing a coalition manipulation is NP-hard
for any rule that is not isomorphic to Plurality, but is polynomial for Plurality. This demon-
strates that adding the test for a Condorcet winner to give CondorcetThenX increases the
computational complexity of manipulation over that for the scoring rule X alone.

Proposition 7. Deciding whether there exists a coalitional manipulation for
CondorcetThenPlurality with weighted votes is NP-complete with 3 or more candi-
dates.

Proof: We reduce from the number partitioning problem with n numbers ki, i = 1, . . . , n,∑n
i=1 ki = 2K. We have n manipulators with the weight ki each.
Consider a non-manipulator profile. Suppose voters with total weight 2K cast (a, b, p)

and voters with total weight 2K cast (b, a, p). The candidate p is a Condorcet loser as it
loses to both a and b. Moreover, as a and b are tied, there is no Condorcet winner.

Note that if all manipulators put p in the first position then p wins under plurality. How-
ever, the manipulators have to make sure that they also do not make a or b the Condorcet
winner. Note that if a (b) gets a higher score than b (a) then a (b) is the Condorcet winner.
Therefore, the only way to prevent one of them from becoming the Condorcet winner is to
partition the total weight of votes between a and b. Thus, manipulators with a total weight
of K have to vote (p, a, b) and the remaining manipulators have to vote (p, b, a). Therefore,
there exists a manipulation iff there is a partition with the required sum K. ♥

Proposition 8. With weighted votes and any scoring rule X that is not isomorphic to
Plurality, computing a coalition manipulation of CondorcetThenX is NP-hard for 3 or
more candidates.

Proof: Without loss of generality, we consider a scoring rule which gives a score of α1 for
a candidate in 1st place in a vote, α2 for 2nd place, and 0 for 3rd place. We adapt the
reduction used in the proof of Theorem 6 in [8] for the NP-hardness of manipulating any
scoring rule that is not isomorphic to Plurality voting. The reduction is from the number
partitioning problem and constructs an election with a weight of 6α1K − 2 votes over the
candidates a, b and p (who the manipulators wish to make win). Within these votes, the
manipulators have a weight of 2(α1 + α2)K votes, and the rest are fixed. The number
partition problem is to divide a set of integers summing to 2K into two equal sums. There
is a manipulator of weight ki for every integer ki in the set being partitioned. We now add
6α1K − 1 triples of votes: (a, b, p), (b, p, a), (p, a, b). This has no impact on the differences
in the scores between the candidates. However, it creates a Condorcet cycle so that there
cannot be a Condorcet winner whatever the manipulators do with their votes. Hence, we
must pass to the second round where the winner is decided by the scoring rule X. As in the
proof of Theorem 6 in [8], there is a manipulation that makes p the winner of the scoring rule
X iff there is a partition into two equal sums. Thus, computing a coalition manipulation of
CondorcetThenX is NP-hard. ♥

It follows immediately that coalition manipulation of Black’s procedure, which is
CondorcetThenBorda is NP-hard with 3 or more candidates.

Corollary 1. With weighted votes, coalition manipulation of Black’s procedure is NP-hard
with 3 or more candidates.
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5.3 Unweighted votes, general results

As with weighted votes, there is no connection in general between the computational com-
plexity of computing a manipulation of a two stage voting rule with unweighted votes and
the computational complexity of computing a manipulation of its parts.

Proposition 9. There exist voting rules X and Y with the following properties:

1. computing manipulations of X, Y and XThenY are polynomial;

2. computing manipulations of X and Y are polynomial but of XThenY is NP-hard;

3. computing a manipulation of X is polynomial and of Y is NP-hard, but of XThenY
is polynomial;

4. computing a manipulation of X is polynomial, but of Y and XThenY are NP-hard;

5. computing a manipulation of X is NP-hard, but of Y and XThenY are polynomial;

6. computing a manipulation of X is NP-hard and of Y is polynomial, but of XThenY
is NP-hard;

7. computing manipulations of X and Y are NP-hard but of XThenY is polynomial;

8. computing manipulations of X, Y and XThenY are NP-hard.

Proof: The NP-hardness results are derived from the NP-hardness of manipulating STV
with unweighted votes and a single manipulator [2].

1 Identical examples to the weighted case.

2 Consider the multi-winner voting rule X that eliminates the incumbent candidate, and
the rule Y that elects the plurality winner between the candidates that are preferred
by at least one voter to the incumbent or, if there are no such candidates, the STV
winner. Now X is polynomial to manipulate as it ignores the votes. Similarly, Y
is polynomial to manipulate since the manipulators should always put the candidate
that they wish to win in first place, and the incumbent anywhere else in their vote.
If all other voters prefer the incumbent to any other candidate, then this vote will
ensure that the manipulators’ preferred candidate wins. On the other hand, if the
other voters prefer one ore more candidates to the incumbent, then this is the best
vote for ensuring the manipulators’ preferred candidate is the plurality winner. Now
XThenY is NP-hard to manipulate. We adapt the reduction used in [2] to prove
that STV is NP-hard to manipulate by a single manipulator. We simply introduce an
additional candidate, the incumbent into the voting profile used in this proof.

3-8 Identical examples to the weighted case.

♥

5.4 Unweighted votes, specific rules

With unweighted votes, we already know that a number of specific multi-stage voting rules
are NP-hard to manipulate including STV [2], Nanson’s, Baldwin’s [15] and Coombs rules
[10] (all with a single manipulator). We can add to this list Black’s procedure. Like Borda
voting on which it is based, a single manipulator can compute a manipulation of Black’s
procedure in polynomial time, but coordinating two manipulators makes the problem NP-
hard.

329



Proposition 10. Manipulation of Black’s procedure with unweighted votes and two manip-
ulators is NP-hard.

Proof: We adapt the reduction used in the proof of Theorem 3.1 in [3] for the NP-
hardness of manipulating Borda voting. This reduction is from a special case of numerical
matching with target sums. It constructs an election with 5 votes, 3 fixed votes and 2
votes of the manipulators over the candidates 1 to m. We now add 6 sets of cyclic votes:
(1, 2, . . . ,m−1,m), (2, 3 . . . ,m, 1), . . . , (m−1,m, . . . ,m−3,m−2), (m, 1, . . . ,m−2,m−1).
This has no impact on the differences in the scores between the candidates. However,
it creates a Condorcet cycle so that there cannot be a Condorcet winner whatever the
manipulators do with their two votes. Hence, we must pass to the second round where
the winner is decided by the Borda rule. As in the proof of Theorem 3.1 in [17], there
is a manipulation that makes a chosen candidate the Borda winner iff there is a solution
to the numerical matching problem with target sums. Thus, computing a manipulation of
CondorcetThenBorda, which is Black’s procedure, is NP-hard. ♥
Proposition 11. Deciding whether one manipulator can make a candidate win for Black’s
procedure with unweighted votes is polynomial.

Proof: We consider several cases.
Suppose no Condorcet winner exists in the profile P of votes of the non-manipulators,

but there are a 6= p and b 6= p such that beatP (a, b) = beatP (b, a), where beatP (v1, v2) is the
number of times v1 beats v2 in P . In this case, p loses regardless of how the manipulator
votes as the manipulator’s vote must give an advantage of one vote to a or b. Hence, one of
a or b must be the Condorcet winner.

Suppose no Condorcet winner exists in P and there is no a 6= p and b 6= p such that
beatP (a, b) = beatP (b, a). Then the manipulator casts a vote using to the greedy rule. This
vote does not create a Condorcet winner that is different from p, hence it is optimum for
both the Condorcet criterion and Borda rule.

Suppose there is a Condorcet winner in P , a 6= p. If there is no b such that beatP (a, b) =
beatP (b, a)+1 then a is the winner regardless of the manipulator’s vote. Therefore, suppose
there exists a set B such that beatP (a, b) = beatP (b, a) + 1, b ∈ B. If there exists b such
that scoreP (a) ≥ scoreP (b) then a will be ranked below b in the manipulator’s vote that
is constructed based on the greedy algorithm (or we can swap a and b if their scores are
equal). Therefore,we assume that scoreP (a) < scoreP (b). Let b∗ be the candidate with the
minimum score scoreP , so that b∗ = argminb∈B(scoreP (b)). The manipulator must rank
a below b∗ to prevent a from being the Condorcet winner. This is equivalent to assuming
that scoreP (a) = scoreP (b∗) and using the greedy algorithm to construct the manipulator’s
vote. If this is a successful manipulation then we are done. If it is not then there is no way
to construct a successful manipulation. ♥

6 Multiple ballots

So far, we have assumed that voters vote only once. However, the Then combinator is
naturally sequential. We can therefore consider the case where voters are allowed to re-vote
in each round. For example, in the French presidential elections, voters re-vote in the second
stage. Such re-voting increases the potential for manipulation in two ways. First, as we
illustrate here, there are elections which can only be manipulated when the manipulators
vote differently in the two rounds. Of course, all those elections where manipulators can
change the result by strategically voting the same way in both rounds remain manipulable.
Second, as we also argue in the next section, the first round of voting reveals voters’ pref-
erences, thereby enabling manipulations to take place that require such knowledge. Third,
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voters can vote strategically in the first round to give their preferred candidate an easier
contest in the second round.

If voters re-vote between rounds, we add “with re-voting” to its name. Hence, plurality
with runoff and re-voting is the two stage election rule used in French presidential elections
in which, unless there a majority in the first round, plurality is used in the first round to
select two candidates to go through to the runoff, and voters then re-vote in the second
round to decide the winner of the runoff. The following example demonstrates that there
exist elections where strategic voting with plurality with runoff is not possible, but is with
plurality with runoff and re-voting.

Example 1. Suppose we have 2 votes for (a, b, p), 2 votes for (b, a, p), 1 vote for (b, p, a), 2
votes for (p, a, b) and 2 manipulators whose preferences are (p, a, b). In addition, we suppose
in the event of a tie in the first round between all 3 candidates, the manipulators’ preferred
candidate p and a go through to the runoff. Note that if the manipulators vote truthfully,
then p and b have the most votes in the first round, and b wins the runoff by 5-4. To make
p the winner, the manipulators need a and p to be in the runoff. This is possible if and only
if one of the manipulators votes for a and the other votes for p in the first round. We then
have a 3-way tie and, according to the tie-breaking rule, a and p go through to the runoff. If
the manipulators do not re-vote in the runoff, a wins the runoff by 5-4. On the other hand,
if the manipulators can re-vote in the runoff, both can vote for p, and p will beat a by 5-4.

7 Revealed preferences

One of the strong assumptions made in much work on (the complexity of) manipulation
is that the manipulators know the other voters’ preferences [9]. There are many situations
where this is unrealistic. When we have re-voting, it is reasonable to suppose voters’ pref-
erences have been (partially) revealed by the first round of voting. This introduces new
opportunities for manipulation. Consider Black’s procedure with re-voting and a manipula-
tor who lacks any knowledge of the other voters’ preferences, so votes truthfully in the first
round. The following example demonstrates that this manipulator can vote strategically in
the second round based on the votes revealed in the first round.

Example 2. Suppose the first round reveals that there are 2 votes for (a, b, p), 2 votes for
(b, p, a), 1 vote for (p, a, b), and a single manipulator’s truthful vote for (p, b, a). There is
no Condorcet winner so all candidates go through to the second round. Without re-voting,
b has the highest Borda score in the second round and is the overall winner. On the other
hand, suppose the manipulator changes their vote in the second round to (p, a, b) based on
the preferences revealed in the first round. Then, assuming the other votes remain the same,
the Borda scores of all candidates are equal. If such a 3-way tie is broken in favour of the
manipulator, then the manipulator’s preferred candidate p now wins.

It is natural to consider more game theoretic behaviours in such two stage voting rules.
Re-voting can be viewed as a finite repeated sequential game so we can use concepts like
subgame perfect Nash equilibrium and backward induction to predict how agents will play
strategically in each round. An interesting open question is the computational complexity
of computing such strategic behaviour. This sort of strategic voting has already received
some attention in the literature. For example, Bag, Sabourian and Winter prove that a
class of voting rules which use repeated ballots and eliminate one candidate in each round
are Condorcet consistent [1]. They illustrate this class with the weakest link rule in which
the candidate with the fewest ballots in each round is eliminated.

It is also natural to consider iterated voting in multiple stage voting rules. After each
round of voting, we might suppose that agents change their vote according to a best response
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strategy, starting perhaps from a truthful vote. We can also consider the situation where the
full preferences of the agents are revealed in each round of voting, as well as the situation
where only partially information is revealed like total Borda scores. However, unlike previous
studies like [14], candidates are also eliminated in each round.

8 Related work

As noted earlier, a number of well known voting rules like Black’s procedure and Plurality
with runoff are instances of this voting schema. However, there exist many other related
voting rules. For example, Conitzer and Sandholm [5] studied the impact on the computa-
tional complexity of manipulation of adding an initial round of the Cup rule to a voting rule
X. This initial round eliminates half the candidates and makes manipulation NP-hard to
compute for several voting rule including plurality and Borda. Consider the multi-winner
voting rule, Bisect which runs an election between given pairs of candidates, and returns
the winning half of the candidates. Then Conitzer and Sandholm’s study can be viewed as
of the two stage voting rule BisectThenX. Elkind and Lipmaa [11] extended this idea to
a general technique for combining two voting rules. The first voting rule is run for some
number of rounds to eliminate some of the candidates, before the second voting rule is ap-
plied to the candidates that remain. They proved that many such combinations of voting
rules are NP-hard to manipulate.

Beside STV, Nanson’s, Baldwin’s and Coombs rule, a number of other recur-
sively defined rules have been put forwards in the literature. For example, Tide-
man proposed the Alternative Smith rule [18]. This is recursively defined as
SmithSetThen(PluralityLoserThenAlternativeSmith). Other complex multi-stage rules
have also been proposed. For example, [13] has proposed a complex rule that computes the
Schwartz choice set, then iteratively applies Copeland’s procedure to this set until a fixed
point is reached. If several candidates remain at this point, the rule then selects the plurality
winners. If there are several such winners, the rule then chooses among then according to
the number of second place votes, and so on. If this still does not select a winner, a lottery
is then used amongst the candidates that remain.

We recently proposed a combinator for taking the consensus of two (or more) voting
rules. Given two voting rules X and Y , the combinator X + Y computes the winners of X
and Y and then recursively applies X + Y to this set. If X and Y are majority consistent
(that is, given an election with just two candidates, they both return the majority winner)
then X +Y is (XorY )ThenMajority where XorY returns the union of the winners of X
and Y .

9 Conclusions

We have considered voting rules which have multiple stages. For example, Black’s procedure
selects the Condorcet winner if they exist, otherwise in the second stage, it selects the
Borda winner. We denoted this as CondorcetThenBorda. Combining voting rules together
in this way can increase their resistance to manipulation. For example, whilst Plurality is
polynomial to manipulate with weighted votes, CondorcetThenPlurality is NP-hard with 3
or more candidates and a coalition of manipulators. A combination of voting rules can also
inherit computational resistance to manipulation from its part. For example, we proved
that computing a manipulation of Black’s procedure, which is CondorcetThenBorda, is
NP-hard with weighted or unweighted votes. There are many directions for future work.
For instance, it would also be interesting to consider the impact of such two stage voting on
other types of control, on bribery and on issues like the computation of possible winners.
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Complexity and Approximability of Social Welfare
Optimization in Multiagent Resource Allocation1

Nhan-Tam Nguyen, Trung Thanh Nguyen, Magnus Roos, and Jörg Rothe

Abstract

A central task in multiagent resource allocation, which provides mechanisms to allocate (bun-
dles of) resources to agents, is to maximize social welfare. We assume resources to be indi-
visible and nonshareable and agents to express their utilities over bundles of resources, where
utilities can be represented in the bundle form, the k-additive form, and as straight-line pro-
grams. We study the computational complexity of social welfare optimization in multiagent
resource allocation, where we consider utilitarian and egalitarian social welfare and social
welfare by the Nash product. We prove that exact social welfare optimization by the Nash
product is DP-complete for the bundle and the 3-additive form, where DP is the second level
of the boolean hierarchy over NP. For utility functions represented as straight-line programs,
we show NP-completeness for egalitarian social welfare optimization and social welfare opti-
mization by the Nash product. Finally, we show that social welfare optimization by the Nash
product in the 1-additive form is hard to approximate, yet we also give fully polynomial-time
approximation schemes for egalitarian and Nash product social welfare optimization in the
1-additive form with a fixed number of agents.

1 Introduction
Multiagent resource allocation (MARA) deals with distributing resources to agents that have prefer-
ences over (bundles of) resources. These resources are assumed to be indivisible and nonshareable.
Agents express their preferences by means of utility functions. Hence, every given allocation of
resources to agents induces a vector of utilities that can be aggregated to a single value, the social
welfare of this allocation. There are different notions of social welfare, ranging from the well-
known utilitarian social welfare to egalitarian social welfare, to compromises between these two
notions such as the Nash product and generalizations thereof (k-rank dictator functions, etc.).

In a bit more detail, utilitarian social welfare sums up the agents’ individual utilities in a given
allocation, thus providing a useful measure of the overall—and also of the average—benefit for
society. For instance, in a combinatorial auction the auctioneer’s aim is to maximize the auction’s
revenue (i.e., the sum of the prizes paid for the items auctioned), no matter which agent can realize
which utility.

In contrast, egalitarian social welfare gives the utility of the agent who is worst off in a given
allocation, which provides a useful measure of fairness in cases where the minimum needs of all
agents are to be satisfied. For example, think of distributing humanitarian aid items (such as food,
medical aid, blankets, tents, etc.) among the needy population in a disaster area (e.g., an area hit by
an earthquake or a tsunami). Guaranteeing every survivor’s continuing survival is the primary goal
in such a scenario, and it is best captured by the notion of egalitarian social welfare.

As mentioned above, the Nash product, the product of the agents’ utilities, can be seen as a com-
promise between these two approaches. On the one hand, it has the (strict) monotonicity property of
utilitarian social welfare because an increase in any agent’s utility leads to an increase of the Nash
product (provided all agents have positive utility). On the other hand, the Nash product increases

1Preliminary versions of parts of this paper appear in the proceedings of the 11th International Joint Conference on
Autonomous Agents and Multiagent Systems [17], of the 6th European Starting AI Researcher Symposium [16], and of the
12th International Symposium on Artificial Intelligence and Mathematics [18]. This work was supported in part by DFG grant
RO-1202/14-1, ARC grant DP110101792, a DAAD grant for a PPP project in the PROCOPE program, and a fellowship from
the Vietnamese government.
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as well when reducing inequitableness among agents by redistributing utilities, thereby providing a
measure of fairness. Looking at the ordering that is induced by the allocations, the “social welfare
ordering,” Moulin [15] presents further beneficial properties of the Nash product. For example, the
Nash product is uniquely characterized by independence of individual scale of utilities,2 i.e., even if
different “currencies” are used to measure the agents’ utilities, the social welfare ordering remains
unaffected.

All these notions of social welfare have in common that they seek to model that a high value
of social welfare implies well-being among the society of agents (that is, for the group as a whole).
Thus, the goal is to find allocations that maximize social welfare. How difficult is this task? The
main purpose of this paper is to find answers to this question—for various central notions of so-
cial welfare, for distinct ways of representing utility functions, and for different ways of modeling
MARA problems.

Although resource allocation problems are important for human agents as well, we are mostly
concerned with (autonomous) software agents having individual utilities and acting in a shared en-
vironment (e.g., in a multiagent system). Therefore, it is of particular interest to study the com-
putational complexity of MARA problems and to tackle computational hardness results by means
of approximation algorithms. We present NP-completeness results for decision problems associ-
ated with egalitarian and Nash product social welfare optimization, and DP-completeness results
for decision problems associated with Nash product social welfare optimization. We complement
our results on the computational complexity of MARA decision problems by proving that the Nash
product social welfare optimization problem is hard to approximate in the 1-additive form. For a
fixed number of agents, we also give fully polynomial-time approximation schemes for egalitarian
and of Nash product social welfare optimization in the 1-additive form.

This paper is organized as follows: In Section 2, we formalize the MARA framework that we
have adopted from the profound survey by Chevaleyre et al. [5], and we introduce the needed back-
ground from complexity theory, including the perhaps lesser known complexity class DP, as well
as some basic notions of approximation theory. Then, in Section 3, we briefly survey related work
to see the context of our results. In Section 4 we present computational complexity results for the
decision versions related to social welfare optimization, and in Section 5 we are concerned with ap-
proximability of social welfare optimization. In Section 6, we summarize our results and conclude
with some open questions.

2 Preliminaries

2.1 Multiagent Resource Allocation Settings
We adopt the framework for multiagent resource allocation described in the survey by Chevaleyre
et al. [5]. Let A = {a1,a2, . . . ,an} be a set of n agents and let R = {r1,r2, . . . ,rm} be a set of
m indivisible and nonshareable resources (i.e., each resource is assigned as a whole and can be
assigned to only one agent). Subsets of R are called bundles of resources.

Every agent associates utility to every bundle of resources by specifying a utility function
ui : 2R → F, where 2R denotes the power set of R and F is a numerical set (such as the set N of
nonnegative integers, the set Z of integers, the set Q of rational numbers, and the set Q+ of nonneg-
ative rational numbers). The idea behind utility functions mapping bundles of resources rather than
single resources to values in F is that agents might be willing to pay either more or less for a bundle
than the sum of their utilities for this bundle’s single items. For example, owning a pair of matching
shoes is likely to be more valuable to an agent than the sum of the values each single shoe has for
this agent. On the other hand, an agent who is willing to bid on 100 identical items might expect

2Similarly, utilitarian social welfare is characterized by independence of individual zeros of utilities: A constant shift of
an agent’s utility function does not change the social welfare ordering.
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some discount and so has less utility for the bundle of 100 items than 100 times the utility assigned
to a single item.

Let U = {u1,u2, . . . ,un} be the set of the agents’ utility functions. A triple (A,R,U) is called a
multiagent resource allocation setting (a MARA setting, for short).

A concrete distribution of resources to agents is an allocation. Formally, for a given MARA
setting (A,R,U), an allocation is a mapping

X : A → 2R

with
⋃

ai∈A X(ai) = R (i.e., every resource is given to some agent) and X(ai)∩X(a j) = /0 for any two
distinct agents ai and a j (i.e., no resources are given to multiple agents). The set of all allocations
for a MARA setting (A,R,U) is denoted by ΠA,R and has cardinality nm. We use the shorthand ui(X)
to denote the utility ui(X(ai)) agent ai can realize in allocation X because we assume agents not to
be interested in externalities.

2.2 Representations of Utility Functions
Utility functions can be given in different ways, and the representation form potentially affects the
complexity of the corresponding problems. We consider the following representation forms for
utility functions:

1. The bundle form: A utility function u : 2R → F is in bundle form if it is represented by a list
of pairs (R′,u(R′)) for any bundle R′ ⊆ R, omitting pairs with zero utility. This representation
form is “fully expressive” (i.e., every utility function can be described in bundle form), but its
drawback is a potentially exponential representation size in the number of resources.

2. The k-additive form, for some fixed positive integer k: A utility function u : 2R → F is in
k-additive form if for each bundle T ⊆ R with ‖T‖ ≤ k, there is a unique coefficient αT ∈ F
such that for every bundle R′ ⊆ R the following holds:

u(R′) = ∑
T⊆R′,‖T‖≤k

αT .

Sometimes we write (T, ℓ) for the coefficient αT = ℓ. This coefficient expresses the “syner-
getic” value of some agent owning all the resources in T . This representation form is fully
expressive only if k is large enough. On the other hand, choosing k to be relatively small
allows for a relatively succinct representation of utility functions. Originally, Grabisch [11]
defined the k-additive form. However, in multiagent resource allocation it was proposed for
representing utilities by Chevaleyre et al. [6, 7] and, independently, in combinatorial auctions
by Conitzer et al. [8].

3. Straight-line program representation: Informally, a straight-line program is a topologically
sorted list of gates of a boolean circuit C that takes as input an m-dimensional binary vector
and outputs s bits. Interpreting the input vector as a bundle of resources R′ and the output as the
binary representation of u(R′), we can say that C (or a corresponding straight-line program)
represents utility function u.

Formally (see, e.g., [9]), an (m,s)-combinational logic network is a directed graph with m
input nodes (β1, . . . ,βm) of in-degree 0, s output nodes (γs−1, . . . ,γ0) of out-degree 0, and gate
nodes of in-degree at most 2 and out-degree at least 1. A gate node represents one of the
common boolean operations (∧,∨,¬). An input to the nodes (β1, . . . ,βm) can be interpreted
as a vector of length m and vice versa. Hence, every input vector β induces3 an output vector

3Every bit at a gate node is induced as usual: If a is a gate node with a 2-ary boolean operation σ , then the bit induced at
a is b1σb2, provided that (b1,a) and (b2,a) are edges of the graph, σ is a binary operation, and by b1 and b2 we mean the
induced bits at nodes b1 and b2. For the boolean operation ¬, the definition is analogous.
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C(β ), where we denote by C(β )i the i-th least significant bit of C(β ). Let R = {r1, . . . ,rm},
let u : 2R → N be a utility function and C an (m,s) combinational logic network. Denote by
βS the characteristic vector that has for every j ∈ {1, . . . ,m} the j-th coordinate equal 1 if and
only if r j ∈ S for some S ⊆ R. Utility function u is realized by C if for every S ⊆ R with binary
vector βS the following holds:

u(S) =
s−1

∑
i=0

2i ·C(βS)i.

The advantages of straight-line programs are mainly the efficiency of evaluation (linear time
in the number of nodes) and its conciseness, which is supported by the following result by
Pippenger and Fischer [22] and Schnorr [27].

Fact 1 Let f : {0,1}m → {0,1}s. If there exists a deterministic Turing machine that computes
f in time T , then there exists a straight-line program of O(T logT ) lines that computes f as
well.

In multiagent resource allocation, utility representations by straight-line programs were intro-
duced by Dunne et al. [9].

2.3 Measures of Social Welfare
The notion of social welfare is a tool to assess and rank allocations based on specific measures of
quality. Thus, different allocations might be “the best allocation,” depending on the notion of social
welfare that is employed. We will study the following notions of social welfare.

Definition 2 For a MARA setting (A,R,U) and an allocation X ∈ ΠA,R, define

1. the utilitarian social welfare of X as swu(X) = ∑
ai∈A

ui(X);

2. the egalitarian social welfare of X as swe(X) = min
ai∈A

{ui(X)};

3. the Nash product of X as swN(X) = ∏
ai∈A

ui(X).

4. As an additional notation, for S ∈ {u,e,N}, denote the maximum utilitarian/egalitarian/ Nash
product social welfare of a MARA setting M = (A,R,U) (or of a problem instance that con-
tains a MARA setting M) by

maxS(M) = max{swS(X) |X ∈ ΠA,R}.

We write max(M) for maxS(M) when S is clear from context.

2.4 Problems Modeling Social Welfare Optimization
We are now ready to formally define the problems modeling social welfare optimization in mul-
tiagent resource allocation. We start with the decision problems. For F ∈ {N,Z,Q+,Q} and
form ∈ {bundle}∪{k-add |k ≥ 1}∪{SLP}, where k-add abbreviates “k-additive” and SLP “straight-
line program,” define:

F-NASH PRODUCT SOCIAL WELFARE OPTIMIZATIONform

Given: A MARA setting M = (A,R,U), where form indicates how every ui : 2R → F in U is
represented, and a threshold t ∈ F.

Question: Is there an allocation X ∈ ΠA,R such that swN(X) ≥ t?
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We abbreviate this problem by F-NPSWOform (sometimes omitting the prefix “F-”). The
exact version of this problem is denoted by F-EXACT NASH PRODUCT SOCIAL WELFARE
OPTIMIZATIONform (or, for short, by F-XNPSWOform) and asks, given a MARA setting M =
(A,R,U) and a target t ∈ F, whether maxN(M) = t.

The corresponding problems for utilitarian and egalitarian social welfare can be defined analo-
gously and are abbreviated by F-USWOform and F-ESWOform, respectively.

Apart from decision problems we also consider the corresponding three maximization problems,
one for each type of social welfare. For example, the maximization problem for utilitarian social
welfare is formally defined as follows:

F-MAXIMUM UTILITARIAN SOCIAL WELFAREform

Input: A MARA setting M = (A,R,U), where form indicates how every ui : 2R → F in U is
represented.

Output: maxu(M).

As a shorthand, write F-MAX-USWform. Based on swe and swN , F-MAXIMUM EGALITAR-
IAN SOCIAL WELFAREform (or F-MAX-ESWform) and F-MAXIMUM NASH PRODUCT SOCIAL
WELFAREform (or F-MAX-NPSWform) are defined accordingly.

2.5 Some Background on Complexity Theory and Approximation Theory
We assume basic knowledge of complexity theory, in particular of the complexity classes P, NP,
and coNP, of central notions such as (polynomial-time many-one) reducibility (denoted by ≤p

m ),
hardness and completeness of a problem for a complexity class with respect to ≤p

m , etc. (see, e.g.,
the textbooks by Garey and Johnson [10], Papadimitriou [20], and Rothe [25]).

Papadimitriou and Yannakakis [21] introduced the complexity class DP, which consists of the
differences of any two NP-problems. DP is the second level of the boolean hierarchy over NP and it
is widely assumed that NP and coNP are both strictly contained in DP.

Typical DP problems are UNIQUE SATISFIABILITY (“Does a given boolean formula have ex-
actly one satisfying assignment?”) and exact variants of optimization problems such as the exact
version of the TRAVELING SALESPERSON PROBLEM (EXACT-TSP): “Given a graph and an inte-
ger t, does a shortest traveling salesperson tour have length exactly t?” Intuitively, this problem
is potentially harder than the usual TSP because both an NP problem (“Does there exist a tour of
length at most t, i.e., is the minimum tour length at most t?,” which is the usual TSP) and a coNP
problem (“Do all tours have length at least t, i.e., is the minimum tour length at least t?”) have to
be solved to solve EXACT-TSP, which is complete for DP.

Turning to approximation theory, we define approximation algorithms for maximization prob-
lems and polynomial-time approximation schemes. Then we discuss reducibilities to prove inap-
proximability results.

Definition 3 (α-approximation algorithm) Let Π be a maximization problem and α : N → (0,1).
An α-approximation algorithm A for Π is a polynomial-time algorithm such that for each instance
x of Π,

val(A(x)) ≥ α(|x|) ·OPT(x),

where val(A(x)) denotes the value of a solution produced by A on input x and where OPT(x) denotes
the value of an optimal solution for x.

The approximation factor α might be a constant function such as 1 − ε for some ε , 0 < ε < 1,
or a function of the input size, such as 1/logn and 1/nc for some c > 0.
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Definition 4 (FPTAS) A maximization problem Π has a fully polynomial-time approximation
scheme (FPTAS) if for each ε , 0 < ε < 1, there exists a (1− ε)-approximation algorithm Aε for Π,
where the running time is polynomial in 1/ε as well.

One approach to prove inapproximability for a maximization problem is to find an α-gap-
introducing reduction from an NP-complete problem.

Definition 5 (α-gap-introducing reduction) Let A ⊆ Σ∗ be an NP-complete problem, Π be a max-
imization problem, and let α : N → [0,1] be a polynomial-time computable function of the input size.
An α-gap-introducing reduction from A to Π is given by two polynomial-time computable functions
f and g such that for each x ∈ Σ∗,

1. g(x) is an instance of Π,

2. if x ∈ A then OPT(g(x)) ≥ f (x), and

3. if x 6∈ A then OPT(g(x)) < α(|x|) · f (x).

Note that an α-approximation algorithm B for a maximization problem Π that has an α-gap-
introducing reduction from an NP-complete problem A implies x ∈ A if and only if the value of the
solution B(g(x)) is at least α(|x|) · f (x). Hence, there can be no α-approximation algorithm for Π,
unless P = NP.

Definition 6 (L-reduction) Let Π1 and Π2 be some maximization problems. An L-reduction from
Π1 to Π2 is given by two polynomial-time computable functions f and g and two parameters α
and β such that for each instance x of Π1,

1. y = f (x) is an instance of Π2,

2. OPT(y) ≤ α ·OPT(x), and

3. for each solution s2 for y of value v2, s1 = g(s2) is a solution for x of value v1 such that

OPT(x)− v1 ≤ β · (OPT(y)− v2).

Having an L-reduction from maximization problem Π1 to Π2 with parameters α ,β and an
(1 − ε)-approximation algorithm for Π2 implies a (1 − αβε)-approximation algorithm for Π1 by
invoking f on the instance x of Π1 to get an instance y of Π2, then running the approximation al-
gorithm for Π2 on y and, at last, translating the solution back via g. Note that if Π1 does not admit
a (1 − ε)-approximation algorithm and reduces to Π2 with parameters α = β = 1 then Π2 cannot
have a (1− ε)-approximation algorithm either.

For more background on approximation theory, see, e.g., the textbook by Vazirani [28] and the
survey by Arora and Lund [1].

3 Related Work
The first paper concerned with classifying MARA problems in terms of their complexity is due to
Chevaleyre et al. [6], see also [7]. They showed that the decision problem associated with util-
itarian social welfare optimization is NP-complete for both the bundle and the k-additive form.
Dunne et al. [9] proved that the problem remains NP-complete if utility functions are represented by
straight-line programs. For further results on the complexity of fair allocation problems, we refer to
Bouveret’s thesis [3].

Roos and Rothe [24] proved NP-completeness for egalitarian social welfare optimization and
social welfare optimization by the Nash product for the bundle form and for the k-additive form.
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Table 1: Complexity of decision problems for (exact) social welfare optimization. Key: NP-c means
“NP-complete” and DP-c means “DP-complete.”

Social Welfare Bundle Reference k-Additive Reference

Utilitarian NP-c Chevaleyre et al. [7] NP-c, k ≥ 2 Chevaleyre et al. [7]

Egalitarian NP-c Roos & Rothe [24] NP-c, k ≥ 1 Roos & Rothe [24] and
Lipton et al. [14]

Nash Product NP-c Roos & Rothe [24] and NP-c, k ≥ 1 Roos & Rothe [24]Ramezani & Endriss [23]

Exact Utilitarian DP-c Roos & Rothe [24] DP-c, k ≥ 2 Roos & Rothe [24]Exact Egalitarian

Exact Nash Product DP-c Theorem 7 DP-c, k ≥ 3 Theorem 8

Social Welfare SLP Reference

Utilitarian NP-c Dunne et al. [9]

Egalitarian NP-c Theorem 11Nash Product

In addition, they proved DP-completeness for exact utilitarian and exact egalitarian social wel-
fare optimization for both representation forms. Lipton et al. [14] provided a reduction to prove
NP-hardness of finding a minimum-envy allocation (i.e., an allocation X that minimizes the envy
maxi, j{0,ui(X(a j))− ui(X(ai))}). This reduction proves NP-hardness of the decision problem as-
sociated with egalitarian social welfare optimization as well. Independently of the result of Roos
and Rothe [24], Ramezani and Endriss [23] proved the same NP-completeness result of Nash prod-
uct social welfare optimization for the bundle form. Previous completeness results are summed up
together with our results in Table 1.

Known approximability and inapproximability results in multiagent resource allocation have
been surveyed recently in [19].

4 Complexity of Decision Problems Associated with Social Wel-
fare Optimization

4.1 Utilities in the Bundle Form and the k-Additive Form
Roos and Rothe [24] conjectured that exact social welfare optimization by the Nash product is
DP-complete for the bundle form and for the k-additive form. We confirm their conjecture in the
affirmative.

It might be tempting to think that hardness for the decision problem associated with utilitarian
social welfare optimization directly transfers to that for the Nash product by the straightforward
reduction that maps utilities of value k to 2k (cf. [23]). Note that not the exponential blow-up of
the numbers encoding utilities causes a problem here, since the reduction from SET PACKING that
Chevaleyre et al. [7] define to show NP-hardness of Q-USWObundle yield instances with utilities
zero or one only. However, the reason for why this reduction doesn’t work for the bundle form is
that utilities of value zero that are omitted in the instances for utilitarian social welfare need to be
encoded by the value 20 = 1 in the resulting instance for the Nash product. In the worst case, this
causes an exponential increase in the size of the instance constructed, and thus the reduction is not
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polynomial-time.
Relatedly, another reason for why Nash product and utilitarian social welfare are not equivalent

is that if we make the plausible assumption that the empty bundle has utility zero for everyone, the
Nash product is trivially zero when there are fewer resources than agents (which implies that at least
one agent must remain empty-handed), while utilitarian social welfare is not in that case.

Theorem 7 Q+-XNPSWObundle is DP-complete.

Theorem 8 For each k ≥ 3, Q+-XNPSWOk-add is DP-complete.

The proofs of Theorems 7 and 8 are omitted due to space limitations. In order to prove DP-
hardness for Q+-XNPSWObundle, we need the following lemma by Chang and Kadin [4], who
provided a sufficient condition for DP-hardness. It makes use of the definition of AND2.

Definition 9 Let L ⊆ Σ∗ be a decision problem. L has AND2 if there exists a polynomial-time
computable function f such that for all strings x,y ∈ Σ∗, it holds that

x ∈ L∧ y ∈ L ⇐⇒ f (x,y) ∈ L.

Lemma 10 (Chang and Kadin [4]) Let L ⊆ Σ∗ be a decision problem. If L is both NP-hard and
coNP-hard and has AND2, then L is DP-hard.

We roughly present the idea of the proofs of Theorems 7 and 8. First, note that the proof of
NP-hardness of Q+-XNPSWObundle (see [24]) in fact proves coNP-hardness of this problem as
well, and this reduction produces MARA settings, where the agents’ utility functions take on binary
values only. Since this is a special case of Q+-XNPSWObundle, hardness results carry over. To apply
Lemma 10, it remains to show that any two instances can be merged in the sense of AND2. Note
that trivial merging of two Q+-XNPSWObundle instances fails to prove AND2: Consider instances
M1 and M2 with target t1 and t2, respectively, with t1 < t2. Both instances are no-instances in that M1
overachieves, i.e., max(M1) > t1, and M2 underachieves, i.e., max(M2) < t2. However, the maximum
of each instance equals the target of the other instance, that is, max(M1) = t2 and max(M2) = t1. If
we trivially merged both instances, we would have a yes-instance with a greatest Nash product of
t1 ·t2, the target of the merger. Therefore, we preprocess both input instances with a polynomial-time
algorithm.

4.2 Utilities Represented by Straight-Line Programs
When utilities are represented by straight-line programs, we prove NP-completeness for egalitarian
social welfare optimization and social welfare optimization by the Nash product. This helps to com-
plete the picture for the complexity of social welfare optimization problems with straight-line pro-
gram representation of utility functions, which Dunne et al. [9] initiated by their NP-completeness
result for utilitarian social welfare optimization.

Theorem 11 Q-ESWOSLP and Q+-NPSWOSLP are NP-complete.

Proof. Membership in NP is easy to see. To show NP-hardness, we reduce from the NP-complete
problem MAX3SAT, which is formally defined as follows:

MAX3SAT

Given: A boolean formula ϕ in 3-CNF (i.e., in conjunctive normal form with three literals per
clause) and k ≥ 2.

Question: Is there an assignment to the variables of ϕ such that at least k clauses are satisfied?
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Let ϕ =
m∧

i=1

(z1
i ∨ z2

i ∨ z3
i ) be a given boolean formula in 3-CNF, where z j

i , 1 ≤ i ≤ m and

j ∈ {1,2,3}, is a literal of some variable v ∈ V = {v1, . . . ,vn}. Define A = {a1,a2} and
R = {r1, . . . ,rn,rn+1, . . . ,r2n}. We say a bundle S ⊆ R or its corresponding vector αS =
(x1, . . . ,xn,xn+1, . . . ,x2n) is valid if

n∧

i=1

XOR(xi,xn+i) =
n∧

i=1

(¬xi ∧ xn+i)∨ (xi ∧¬xn+i) = 1,

i.e., XOR denotes the boolean exclusive-or operation. Define a1’s utility function as

u1(S) =

{
number of satisfied clauses in ϕ by S if S is valid
0 otherwise

and a2’s utility function as

u2 ≡
{

m if we reduce to the egalitarian social welfare
1 if we reduce to social welfare by the Nash product.

Write

u1(αS) =

(
n∧

i=1

XOR(xi,xn+i)

)
·

m

∑
i=1

(z1
i ∨ z2

i ∨ z3
i ),

where we replace4 z j
i by the corresponding value of xk, k ∈ {1, . . . ,n}, if z j

i is a positive literal of xk;
otherwise (that is, if z j

i is a negated variable) we replace it by the value of xn+k, k ∈ {1, . . . ,n}. By
Proposition 1, we know there is an SLP of polynomial size that represents u1.

Now consider a 3-CNF formula ϕ whose maximum number of satisfied clauses is k for some
assignment A : X → {0,1}. Assignment A induces an assignment vector αS = (A(v1), . . . ,A(vn),1−
A(v1), . . . ,1−A(vn)). By definition, αS is valid and a1’s utility is exactly k. The remaining resources
go to a2. Because a2’s utility can be ignored, the social welfare is a1’s utility, that is, the maximum
number of satisfied clauses in ϕ .

For the other direction, note that we reduced from a legal 3-CNF formula. So there is an as-
signment that satisfies at least one clause. Hence, a1 realizes a utility of at least one. Now let
k ≥ 1 be the maximum social welfare of this instance. By definition, u1(S) = k for some valid
αS = (x1, . . . ,xn,xn+1, . . . ,x2n). Truncating αS by dropping the last n coordinates yields an assign-
ment that satisfies k clauses. ❑

5 Approximability of Social Welfare Optimization
In the previous section, we have shown that the decision versions of certain social welfare optimiza-
tion problems are intractable: either NP-complete for the standard problem that asks whether a given
threshold of social welfare can be reached or exceeded in a given MARA setting, or DP-complete
for the exact variant. It is natural to ask whether the optimization problems corresponding to these
decision problems are intractable as well, or whether they allow efficient approximation schemes.

Known approximability and inapproximability results in multiagent resource allocation have
been surveyed recently in [19]. Here we prove some novel results not included there. The first one
is an inapproximability result about social welfare optimization by the Nash product for 1-additive
utilities. We prove this result by a reduction from the well-known NP-complete problem EXACT
COVER BY THREE SETS, which is defined as follows:

4Because we have a boolean circuit, we actually insert an edge (xk,o
q
p), where oq

p, p ∈ {1, . . . ,m}, q ∈ {1,2}, denotes the
∨-gate that is responsible for z j

i in clause p.
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EXACT COVER BY THREE SETS (X3C)

Given: A finite set B with ‖B‖ = 3n and a collection C = {S1, . . . ,Sm} of 3-element subsets
of B.

Question: Does there exist a subcollection C′ ⊆ C such that every element of B occurs in exactly
one of the sets in C′?

Theorem 12 Assuming P 6= NP, MAX-NPSW1-add cannot be approximated within a factor of 2/3+
ε for any ε > 0.

Proof. Let (B,C) with ‖B‖ = 3n and C = {S1, . . . ,Sm} be an instance of X3C. Without loss of
generality, assume that m ≥ n. Construct an instance M = (A,R,U) of Q+-MAX-NPSW1-add as
follows. Let A be a set of m agents, where agent ai corresponds to Si, and let R = B ∪ D be a set of
2n+m resources. That is, there are 3n “real” resources that correspond to the 3n elements of B, and
there are m−n “dummy” resources in D. Define the agents’ utilities as follows. For each ai ∈ A and
each r j ∈ R, let

ui(r j) =





1/3 if r j ∈ Si

1 if r j ∈ D
0 otherwise.

Also, define ui( /0) = 0 for all i, 1 ≤ i ≤ m.
Suppose that (B,C) is a yes-instance of X3C. Then there exists a set I ⊆ {1, . . . ,m}, ‖I‖ = n,

such that Si ∩S j = /0 for all i, j ∈ I, i 6= j, and
⋃

i∈I Si = B. Hence, we assign the bundle Si to agent ai
for each i ∈ I, and the dummy resources to the m − n remaining agents. This allocation maximizes
the Nash product social welfare, which now is at least 1. Furthermore, the sum of all agents’ utilities
is at most m. Hence, the product of the agents’ individual utilities is maximal if and only if all agents
have the same utility, which exactly equals 1.

Conversely, if (B,C) is a no-instance of X3C, we show that the maximum Nash product social
welfare is at most 2/3. Obviously, the sum of all agents’ utilities is at most m− 1/3 in this case. The
Nash product social welfare reaches the maximal value iff the utilities of the agents are as balanced
as possible. The best allocation that satisfies this property is the following. Dummy resources
are distributed to m − n agents, n − 1 agents get the n − 1 disjoint bundles from (S1, . . . ,Sm), and
the last agent is assigned the remaining bundle which has utility of at most 2/3. This implies that
maxN(M) ≤ 2/3. Therefore, an approximation algorithm with a factor better than 2/3 will distinguish
the “yes” and “no” instances of X3C. ❑

Theorem 12 shows that MAX-NPSW1-add cannot have a PTAS unless P = NP. This result also
holds for MAX-ESW1-add due to Bezáková and Dani [2]. However, we show that there is an FPTAS
for this problem whenever the number of agents is fixed, using a technique that was also used to give
an FPTAS for a variety of scheduling problems (see [26] and [13]). We assume that for any agent
ai, the utility function ui is nonnegative and ui( /0) = 0. The proof is omitted as well.

Theorem 13 Both MAX-NPSW1-add and MAX-ESW1-add admit an FPTAS for any fixed number
of agents.

Coming back to the straight-line program representation of utility functions, notice that the re-
duction in the proof of Theorem 11 is an L-reduction with parameters α = β = 1. There is a one-
to-one correspondence between assignments of variables and assignments of resources to the first
agent, where the maximum number of satisfied clauses equals the social welfare after the reduction.
By setting the utility function of the second agent to the constant zero-function, we have a reduction
with the same properties for the utilitarian case. Using the inapproximability result for Max3SAT
by Håstad [12], we conclude:
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Corollary 14 Q-MAX-USWSLP, Q-MAX-ESWSLP, Q+-MAX-NPSWSLP are NP-hard to approx-
imate within a factor of 7/8 + ε for every ε > 0.

6 Conclusions
We have classified the decision versions of social welfare optimization problems for egalitarian and
Nash product social welfare (for utilities represented by straight-line programs) and the exact variant
for Nash product social welfare (for utilities in the bundle form and in the k-additive form) in terms of
computational complexity. In addition, we have shown new approximability and inapproximability
results for utilitarian, egalitarian, and Nash product social welfare. As interesting open problems for
future work, we mention the study of complexity and approximability of social welfare optimization
problems for different representation forms, improving approximation algorithms, and identifying
tractable cases of restricted problem variants.
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On the Complexity of Voting Manipulation under
Randomized Tie-Breaking

Svetlana Obraztsova Yair Zick Edith Elkind

Abstract

Computational complexity of voting manipulation is one of the most actively studied topics in
the area of computational social choice, starting with the groundbreaking work of Bartholdi
et al. [2]. Most of the existing work in this area, including that of Bartholdi et al., implicitly
assumes that whenever several candidates receive the top score with respect to the given vot-
ing rule, the resulting tie is broken according to a lexicographic ordering over the candidates.
In this paper, we explore an equally appealing method of tie-breaking, namely, selecting the
winner uniformly at random among all tied candidates. We show that under this method of
breaking ties, all scoring rules, the Bucklin rule and Plurality with Runoff remain easy to ma-
nipulate; however, finding a manipulative vote becomes NP-hard for Copeland and Maximin.
We extend some of our easiness results to elections with multiple winners. We show that if the
number of winners is small, then manipulation is in P for all scoring rules, and it is in P for
k-Approval for any number of winners.

1 Introduction
Whenever a group of agents have to make a joint decision, the agents’ opinions need to be aggregated
in order to identify a suitable course of action. This applies both to human societies and to groups
of autonomous agents; the entities that the agents need to select from vary from political leaders to
song contest winners and joint plans. The standard way to aggregate preferences is by asking the
agents to vote over the available candidates: each agent ranks the candidates, and a voting rule, i.e.,
a mapping from collective rankings to candidates, is used to select the winner.

In most preference aggregation settings, each agent wants his most favorite alternative to win,
irrespective of other agents’ preferences. Thus, he may try to manipulate the voting rule, i.e., to
misrepresent his preferences in order to obtain an outcome that he ranks higher than the outcome of
the truthful voting. Indeed, the famous Gibbard–Satterthwaite theorem [9, 15] shows that whenever
the agents have to choose from 3 or more alternatives, every reasonable voting rule is manipulable,
i.e., for some collection of voter’s preferences some voter can benefit from lying about his ranking.
This is bad news, as the manipulator may exercise undue influence over the election outcome, and a
lot of research effort has been invested in identifying voting rules that are more resistant to manipu-
lation than others, as measured by the fraction of manipulable profiles or the algorithmic complexity
of manipulation (see [7] for an overview).

Many common voting rules operate by assigning scores to candidates, so that the winner is the
candidate with the highest score. Now, in elections with a large number of voters and a small number
of candidates there is usually only one candidate that obtains the top score. However, this does
not necessarily hold when the alternative space is large, as may be the case when, e.g., agents in a
multiagent system use voting to decide on a joint plan of action [6]. If, nevertheless, a single outcome
needs to be selected, such ties have to be broken. In the context of manipulation this means that the
manipulator should take the tie-breaking rule into account when choosing his actions. Much of the
existing literature on voting manipulation circumvents the issue by assuming that the manipulator’s
goal is to make some distinguished candidate p one of the election winners, or, alternatively, the
unique winner. The former assumption can be interpreted as a tie-breaking rule that is favorable to
the manipulator, i.e., given a tie that involves p, always selects p as the winner; similarly, the latter
assumption corresponds to a tie-breaking rule that is adversarial to the manipulator. In fact, most of
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the existing algorithms for finding a manipulative vote work for any tie-breaking rule that selects the
winner according to a given ordering on the candidates; the two cases considered above correspond
to this order being, respectively, the manipulator’s preference order or its inverse.

However, till recently, an equally appealing approach to tie-breaking, namely, selecting the win-
ner among all tied candidates uniformly at random, has been rarely studied. Two exceptions to this
pattern that we are aware of are [11] and [5]; however, [11] does not deal with manipulation at all,
while [5] considers a very different model of manipulation. Perhaps one of the reasons for this is
that under randomized tie-breaking the outcome of the election is a random variable, so it is not
immediately clear how to compare two outcomes: is having your second-best alternative as the only
winner preferable to the lottery in which your top and bottom alternatives have equal chances of
winning?

We deal with this issue by augmenting the manipulator’s preference model: we assume that the
manipulator assigns a numeric utility to all candidates, and his goal is to vote so as to maximize
his expected utility, where the expectation is computed over the random choices of the tie-breaking
procedure; this approach is standard in the social choice literature (see, e.g., [10]) and has also been
used in [5]. We show that in this model all scoring rules are easy to manipulate; this is also the
case for Bucklin (both for its classic and simplified versions). On the other hand, we prove that
manipulation under randomized tie-breaking is hard for Maximin and Copeland. We complement
these hardness results by identifying a natural assumption on the manipulator’s utility function that
makes Maximin easy to manipulate. We also analyze the complexity of manipulation for three
voting rules that compute the winners using a multi-step procedure, namely, Plurality with Runoff,
STV, and Ranked Pairs. Thus, we provide an essentially complete picture of the complexity of
manipulating common voting rules under randomized tie-breaking (see Table 1 in the end of the
paper). Finally, we explore the complexity of manipulation when voters need to choose several
winners. We show that for the k-Approval voting rule, multi-winner manipulation is in P; moreover,
if the number of winners to be selected is small (i.e., bounded by a constant), then manipulating an
election under any scoring rule is also in P.

Some of the results that appear in this paper were previously published in [14] and [13]; however,
the material in Section 5 is new.

2 Preliminaries
An election is given by a set of candidates C = {c1, . . . , cm} and a vector R = (R1, . . . , Rn),
where each Ri, i = 1, . . . , n, is a linear order over C; Ri is called the preference order (or, vote) of
voter i. We denote the space of all linear orderings over C by L(C). The vectorR = (R1, . . . , Rn)
is called a preference profile. For readability, we will sometimes denote Ri by �i. When a �i b for
some a, b ∈ C, we say that voter i prefers a to b. We denote by r(cj , Ri) the rank of candidate cj in
the preference order Ri: r(cj , Ri) = |{c ∈ C | c �i cj}|+ 1.

A voting rule F is a mapping that, given a preference profile R over C, outputs a candidate
c ∈ C; we write c = F(R). Many classic voting rules, such as the ones defined below, are, in fact,
voting correspondences, i.e., they map a preference profileR to a non-empty subset S of C. Voting
correspondences can be transformed into voting rules using tie-breaking rules.

A tie-breaking rule for an election (C,R) is a mapping T = T (R, S) that for any S ⊆ C,
S 6= ∅, outputs a candidate c ∈ S. We say that a tie-breaking rule T is lexicographic with respect to
a preference ordering � over C if for any preference profile R over C and any S ⊆ C it selects the
most preferred candidate from S with respect to �, i.e., we have T (S) = c if and only if c � a for
all a ∈ S \ {c}.

A composition of a voting correspondence F and a tie-breaking rule T is a voting rule T ◦ F
that, given a preference profile R over C, outputs T (R,F(R)). Clearly, T ◦ F is a voting rule and
T ◦ F(R) ∈ F(R).
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Voting Rules We now describe the voting rules (correspondences) considered in this paper. For all
rules that assign scores to the candidates the winners are the candidates with the highest scores.

Scoring rules: Any vector α = (α1, . . . , αm) ∈ Rm with α1 ≥ . . . ≥ αm defines a scoring rule
Fα. Under this rule, each voter grants αi points to the candidate it ranks in the i-th position;
the score of a candidate is the sum of the scores it receives from all voters. The vector α is
called a scoring vector. A well-known example of a family of scoring rules is Borda, given
by αm = (m− 1, . . . , 1, 0); another example is k-Approval, where a candidate gets one point
for each voter that ranks him in the top k positions. 1-Approval is also known as Plurality.

Bucklin: Let k∗ be the smallest k such that the k-approval score of some c ∈ C is at least bn/2c+1;
we say that k∗ is the Bucklin winning round. Given a candidate c ∈ C, his Bucklin score is
his k∗-approval score. Under the simplified Bucklin rule, candidates whose Bucklin score is
at least bn/2c + 1 are the winners, while under Bucklin, winners are those with the highest
Bucklin score.

Copeland: We say that a candidate a wins a pairwise election against b if more than half of the
voters prefer a to b; if exactly half of the voters prefer a to b, then a is said to tie his pairwise
election against b. Given a rational value α ∈ [0, 1], under the Copelandα rule each candidate
gets 1 point for each pairwise election he wins and α points for each pairwise election he ties.

Maximin: For every pair of candidates c, d ∈ C, we set s(c, d) = |{i | c �i d}|. The Maximin
score of a candidate c ∈ C is given by mind∈C\{c} s(c, d); that is, c’s Maximin score is the
number of votes he gets in his worst pairwise election.

Plurality with Runoff and STV: Under the STV rule, the election proceeds in rounds; in each
round, the candidate with the lowest Plurality score is eliminated, and candidates’ scores
are recomputed. The winner is the candidate that survives till the last round. Plurality with
Runoff can be thought of as a compressed version of STV: we first select two candidates
with the highest Plurality scores, and then output the winner of the pairwise election between
them. Note that these definitions are somewhat ambiguous, as several candidates may have
the lowest/highest Plurality score; we will comment on this issue in Section 4.

3 The Model
Given a preference profileR over a candidate setC and a preference order L overC, let (R−i, L) be
the preference profile obtained from R by replacing Ri with L. We say that a voter i ∈ {1, . . . , n}
can successfully manipulate an election (C,R) with respect to a voting rule F if F(R−i, L) �i
F(R). We will now explain how to extend this definition to voting correspondences under the
assumption that ties are broken uniformly at random.

Given a voting correspondence F and an election (C,R), suppose that F(C,R) = S, where
|S| > 1. Suppose that we select the winner uniformly at random, i.e., every candidate in S has
the same chance of being selected. In this case, knowing the manipulator’s preference ordering is
not sufficient to determine his optimal strategy. For example, suppose that the manipulator prefers
a to b to c, and by voting strategically he can change the output of F from b to {a, c}. It is not
immediately clear if this manipulation is beneficial. Indeed, if the manipulator strongly prefers a,
but is essentially indifferent between b and c, then the answer is probably positive, but if he strongly
dislikes c and slightly prefers a to b, the answer is likely to be negative (of course, this also depends
on the manipulator’s risk attitude).

Thus, to model this situation appropriately, we need to know the utilities that the manipulator
assigns to all candidates. Under the assumption of risk neutrality, the manipulator’s utility for a set
of candidates is equal to his expected utility when a candidate is drawn from this set uniformly at
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random, or, equivalently, to his average utility for a candidate in this set. Since we are interested in
computational issues, we assume that all utilities are positive integers given in binary.

Formally, given a set of candidates C, we assume that the manipulator is endowed with a utility
function u : C → N. This function can be extended to sets of candidates by setting u(S) =
1
|S|
∑
c∈S u(c) for any S ⊆ C.

3.1 Single-Winner Elections
We now define the manipulation problem in the single-winner case. As all voting rules considered
in this paper are anonymous, we can fix any voter as the manipulator. In what follows, it will be
convenient to assume that the manipulator is voter n.

Definition 3.1. An instance of the F -RANDMANIPULATION problem is a tuple (E, u, q), where
E = (C,R) is an election, u : C → N is the manipulator’s utility function such that u(c) ≥ u(c′)
if and only if c �n c′, and q is a non-negative rational number. It is a “yes”-instance if there exists
a vote L such that u(F(R−n, L)) ≥ q and a “no”-instance otherwise.

The optimization version of F-RANDMANIPULATION is defined similarly. We remark that F -
RANDMANIPULATION is in NP for any polynomial-time computable voting correspondence F :
it suffices to guess the manipulative vote L, determine the set S = F(R−n, L), and compute the
average utility of the candidates in S.

3.2 Multi-Winner Elections
There are settings where voters elect more than one candidate. In that case, ` members of C will
be named the winners, or the elected committee. There are many voting rules that are designed
specifically for this setting and aim to select the candidates that best represent the voters (see e.g.
Chamberlin and Courant [3]). However, in this paper, we will focus on using scoring rules for the
purpose of manipulation; this approach is reasonable when voting is used to select the finalists of a
contest, or to allocate grants or fellowships (see, for example the work by Meir et al. [12]). Given a
scoring rule, if we want to elect a committee of size `, it is natural to choose the ` candidates with
the highest score. However, we may still need to break ties. Suppose, for instance, that ` = 3 and we
have two candidates whose score is 10 and two candidates whose score is 9. Clearly, the candidates
whose score is 10 should be elected no matter what, but we need to choose one of the candidates
whose score is 9, e.g., by tossing a fair coin. We will now explain how to formalize this approach.

Fix a scoring rule Fα with α = (α1, . . . , αm) and an election E = (C,R) with |C| = m. Given
a candidate c ∈ C, let sc denote c’s score in E under Fα. We say that candidates c and c′ are on the
same level if sc = sc′ . There are p ≤ m levels, denoted H1, . . . ,Hp; we set s(Hj) to be the score
of the candidates in Hj , and assume that s(H1) > . . . > s(Hp). Let Wj = ∪jq=1Hq . If |Wj | ≤ `,
then the tie-breaking rule does not apply to Wj . Formally, let j0 = max{j | |Wj | ≤ `} and set
W = Wj0 . The set W is called the confirmed set: these are the candidates who will definitely be
in the elected committee. The set P = Hj+1 is called the pending set: these are the candidates to
which we must apply the tie-breaking rule. Note that |H1| > ` impliesW = ∅ and P = H1, and
|W| = ` implies P = ∅. For single-winner elections (` = 1) we obtain P = ∅ if |H1| = 1, and
P = H1 otherwise. The randomized tie-breaking rule operates by choosing `′ = `−|W| candidates
from the set P uniformly at random.

We assume that the manipulator’s utility is additive, i.e., if a committee S ⊆ C is elected, his
utility is given by

∑
c∈S u(c) = |S|u(S). Let Ts(P) denote the random variable that takes values

in the space of all s-subsets of P , with each subset being equally likely. Given a variable ξ, let E[ξ]
denote its expectation. Then the manipulator’s utility in E (under truthful voting) is

∑

c∈W
u(c) + E[

∑

c∈T`′ (P)
u(c)],
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where `′ = `− |W|.
We are now ready to define the computational problem that is associated with manipulating

a multi-winner election under randomized tie-breaking with respect to a scoring rule Fα, α =
(α1, . . . αm). We will refer to this problem as Fα-RANDMULTIMANIPULATION. An instance of
this problem is given by an electionE = (C,R) with |C| = m, a committee size `, the manipulator’s
utility function u : C → N, which satisfies u(c) ≥ u(c′) if and only if c �n c′, and a non-negative
rational number q. It is a “yes”-instance if there exists a vote L such that the manipulator’s utility in
(C, (R−n, L)) is at least q and a “no”-instance otherwise.

4 Single-Winner Elections
We begin by analyzing the family of scoring rules. We observe that for any scoring rule, manipula-
tion is easy under randomized tie-breaking.

Theorem 4.1. For any scoring vector α = (α1, . . . , αm) Fα-RANDMANIPULATION is in P.

Theorem 4.1 can be obtained as a corollary of Theorem 5.2 in Section 5 (see [14] for a direct
proof). It implies that for scoring rules, assuming that ties are broken uniformly at random does not
increase the complexity of manipulation compared to lexicographic tie-breaking.

Similarly, both the classic and the simplified versions of the Bucklin rule can be manipulated in
polynomial time; the proof is omitted due to space constraints.

Theorem 4.2. Bucklin-RANDMANIPULATION and simplified Bucklin-RANDMANIPULATION are
in P.

In contrast, if we break ties uniformly at random, manipulation under Maximin becomes NP-
hard. In fact, our hardness result holds even for a fairly simple utility function: Let w be the
Maximin winner prior to the manipulators vote; if we set u(w) = 0, u(c) = 1 for c ∈ C \ {w},
then Maximin-RANDMANIPULATION becomes NP-complete. The proof is omitted due to space
constraints.

Theorem 4.3. Maximin-RANDMANIPULATION is NP-complete.

While Maximin-RANDMANIPULATION is NP-complete in general, there is an efficient algo-
rithm for this problem assuming that the manipulator’s utility function has special structure. Specifi-
cally, recall that in the model of [2] the manipulator’s goal is to make a specific candidate p a winner.
This suggests that the manipulator’s utility can be modeled by setting u(p) = 1, u(c) = 0 for all
c ∈ C \ {p}. We will now show that for such utilities, Maximin-RANDMANIPULATION is in P.

Theorem 4.4. If the manipulator’s utility function is given by u(p) = 1, u(c) = 0 for c ∈ C \ {p},
Maximin-RANDMANIPULATION is in P.

Proof. Consider an election E = (C,R) with the candidate set C = {c1, . . . , cm} and recall that n
is the manipulating voter. In this proof, we denote by s(ci) the Maximin score of a candidate ci ∈ C
in the election E′ = (C,R′), whereR′ = R−n. Let s = maxci∈C s(ci).

For any ci ∈ C, the manipulator’s vote increases the score of ci either by 0 or by 1. Thus, if
s(p) < s− 1, the utility of the manipulator will be 0 irrespective of how he votes.

Now, suppose that s(p) = s − 1. The manipulator can increase the score of p by 1 by ranking
p first. Thus, his goal is to ensure that after he votes (a) no other candidate gets s + 1 point and (b)
the number of candidates in C \ {p} with s points is as small as possible. Similarly, if s(p) = s,
the manipulator can ensure that p gets s + 1 points by ranking him first, so his goal is to rank the
remaining candidates so that in C \ {p} the number of candidates with s + 1 points is as small as
possible. We will now describe an algorithm that works for both of these cases.

We construct a directed graph G with the vertex set C that captures the relationship among the
candidates. Namely, we have an edge from ci to cj if there are s(cj) votes in R′ that rank cj above
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ci. Observe that, by construction, each vertex in G has at least one incoming edge. We say that ci
is a parent of cj in G whenever there is an edge from ci to cj . We remark that if the manipulator
ranks one of the parents of cj above cj in his vote, then cj’s score does not increase. We say that a
vertex ci of G is purple if s(ci) = s(p) + 1, red if s(ci) = s(p) and ci 6= p, and green otherwise;
note that by construction p is green. Observe also that if s(p) = s, there are no purple vertices in the
graph. We will say that a candidate cj is dominated in an ordering L (with respect to G) if at least
one of cj’s parents in G appears before cj in L. Thus, our goal is to ensure that the set of dominated
candidates includes all purple candidates and as many red candidates as possible.

Our algorithm is based on a recursive procedure A, which takes as its input a graph H with a
vertex set U ⊆ C together with a coloring of U into green, red and purple; intuitively, U is the set
of currently unranked candidates. It returns “no” if the candidates in U cannot be ranked so that
all purple candidates in U are dominated by other candidates in U with respect to H . Otherwise, it
returns an ordered list L of the candidates in U in which all purple candidates are dominated, and a
set S consisting of all red candidates in U that remain undominated in L with respect to H .

To initialize the algorithm, we call A(G). The procedure A(H) is described below (Algo-
rithm 1). We claim thatA(G) outputs “no” if and only if no matter how the manipulator votes, some
candidate in C \ {p} gets s(p) + 2 points. Moreover, if A(G) = (L, S) and the set S contains r red
candidates, then for any vote of the manipulator that ensures that all candidates in C \ {p} have at
most s(p) + 1 points there are at least r red candidates with s(p) + 1 points. We will split the proof
of this claim into several lemmas, whose proofs are omitted.

Lemma 4.5. At any point in the execution of the algorithm, ifA(H) = (L, S), then each candidate
in U \ S is dominated in H .

We are now ready to prove that our algorithm correctly determines whether the manipulator can
ensure that no candidate gets more than s(p) + 1 points.

Lemma 4.6. The algorithm outputs “no” if and only if for any vote L there is a purple candidate
that is undominated.

It remains to show that the set S output by the algorithm contains as few candidates as possible.

Lemma 4.7. At any point in the execution of Algorithm 1, if A(H) = (L, S), then in any ordering
of the candidates in U in which each purple vertex in U is dominated, at least |S| red vertices in U
are undominated.

Combining Lemma 4.6 and Lemma 4.7, we conclude that Algorithm 1 outputs (L, S), then L is
the optimal vote for the manipulator and if Algorithm 1 outputs “no”, then the manipulator’s utility
is 0 no matter how he votes. Also, it is not hard to see that Algorithm 1 runs in polynomial time.

We remark that Theorem 4.4 has recently been extended to utility functions that assign utility
of 1 to a constant number of candidates and utility of 0 to all other candidates (see [17]).

For the Copeland rule, RANDMANIPULATION is also NP-hard. To show this, we give a reduc-
tion from the INDEPENDENT SET problem [8] (proof omitted due to space constraints).

Theorem 4.8. Copelandα-RANDMANIPULATION is NP-complete for any rational α ∈ [0, 1].

Some common voting rules, such as, e.g., STV, do not assign scores to candidates; rather, they
are defined via multi-step procedures. When one computes the winner under such rules, ties may
have to be broken during each step of the procedure. A natural approach to winner determination
under such rules is to use the parallel universes tie-breaking [4]: a candidate c is an election winner
if the intermediate ties can be broken so that c is a winner after the final step. Thus, any such rule
defines a voting correspondence in the usual way, and hence the corresponding RANDMANIPULA-
TION problem is well-defined. In this paper we consider three rules in this class, namely, Plurality
with Runoff, STV, and Ranked Pairs (we use the definition in [4]).
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Algorithm 1: A(H)

L← ∅;
if H contains p then

L← [p]; H ← H \ {p};
while H contains a candidate c that is green or has a parent that has already been ranked in
the input graph H do

L← L ::[c]; H ← H \ {c};
// :: is the string append operation.
if H = ∅ then

return (L, ∅);

if there is a purple candidate in H with no parents in H then
return “no”;

if there is a red candidate c in H with no parents in H then
H ′ ← H with c colored green;
OUT ← A(H ′);
if OUT =“no” then

return “no”
(L′, S′)← OUT ;
return (L::L′, S′ ∪ {c}).

Let T be some cycle in H;
// At this point in the algorithm, each vertex of H has a

parent, thus there is a cycle in H
Collapse T ;
// i.e., (a) replace T with a single vertex t, and (b) for

each y 6∈ T, add an edge (t, y) if H contained an edge (x, y) for
some x ∈ T and add an edge (y, t) if H contained a vertex z
with (y, z) ∈ H

if T contains at least one red vertex then
color t red;

else
color t purple;

H ′ ← H after the contraction;
OUT ← A(H ′);
if OUT = “no” then

return “no”;

(L′, S′)← OUT ;
if t ∈ S′ then

// t must be red, so T contains a red vertex
Let c be some red vertex in T ;
Let L̂ be an ordering of the vertices in T that starts with c and follows the edges of T ;
Let L′′ be the list obtained from L′ by replacing t with L̂;
return (L::L′′, (S′ \ {t}) ∪ {c}).

else
// t /∈ S, so by Lemma 4.5 t is dominated in H ′

Let a be a parent of t that precedes it in L′;
Let c be some child of a that appears in T ;
Let L̂ be an ordering of the vertices in T that starts with c and follows the edges of T ;
Let L′′ be the list obtained from L′ by replacing t wish L̂;
return (L::L′′, S′).
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Figure 1: Proof of Theorem 5.1

Proposition 4.9. Plurality with Runoff-RANDMANIPULATION is in P.

We omit the proof of Proposition 4.9 due to space constraints; briefly, the main idea of the proof
is that the best manipulative vote can be found by placing some candidate first and then ranking the
remaining candidates according to their utility.

However, for STV and Ranked Pairs, RANDMANIPULATION is NP-hard. The proof of this fact
hinges on an observation that allows us to inherit hardness results from the standard model of voting
manipulation. Recall thatF-COWINNERMANIPULATION is the computational problem of deciding
whether given an election E = (C,R) the manipulator can make a specific candidate p ∈ C one of
the election winners under a voting correspondence F .

Proposition 4.10. For any voting correspondence F , the problem F-COWINNERMANIPULATION
many-one reduces to F-RANDMANIPULATION.

Since for STV and Ranked Pairs COWINNERMANIPULATION is known to be NP-hard (see,
respectively, [1] and [16]), we obtain the following corollary.

Corollary 4.11. STV-RANDMANIPULATION and Ranked Pairs-RANDMANIPULATION are NP-
hard.

5 Multi-Winner Elections
We now discuss the complexity of manipulating multi-winner elections when ties are broken uni-
formly at random.

We begin by analyzing the k-Approval voting correspondence. It turns out that k-Approval-
RANDMULTIMANIPULATION can be decided in polynomial time.

Theorem 5.1. k-Approval-RANDMULTIMANIPULATION is in P.

Proof. Consider the election (C,R−n), and let P ′ andW ′ be, respectively, the pending set and the
confirmed set in this election. Set X ′ = C \ (P ′ ∪ W ′). Let s+ be the lowest k-Approval score
among the candidates in W ′ (set s+ = +∞ if W ′ = ∅), let s− be the highest k-Approval score
among the candidates in X ′ (set s− = −∞ if X ′ = ∅), and let s be the k-Approval score of the
candidates in P ′ (if P ′ = ∅, s remains undefined). LetW ′− ⊆ W ′ be the set of candidates whose
k-Approval score is s+, and let X ′+ ⊆ X ′ be the set of candidates whose k-Approval score is s−;
also, set W ′+ = W ′ \ W ′− and X ′− = X ′ \ X ′+. Note that s− < s+, and if P ′ 6= ∅, we have
s− < s < s+.

Let E be the election obtained after the manipulator votes, and suppose that in E the confirmed
set isW and the pending set is P; also, set X = C \ (W ∪ P). We will now argue that, no matter
how the manipulator votes, we haveW ′+ ⊆ W and X ′− ⊆ X , i.e., points allocated to candidates in
W ′+ ∪ X ′− do not affect the election outcome. Indeed, in E the score of every candidate inW ′+ will
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be at least s+ + 1, and there can be at most |W ′| ≤ ` candidates with such score, so every candidate
inW ′+ will end up inW . Further, in E the score of every candidate in X ′− will be at most s−, and
there are at least |P ′|+ |W ′| ≥ ` candidates whose score is at least s− + 1, so the score of s− will
be insufficient for being placed in P .

Now, suppose that the manipulator has decided to approve kw candidates inW ′−. Then, to max-
imize his utility, he has to approve kw candidates inW ′− with the highest utility. A similar argument
works for P ′ and X ′+. As for the candidates inW ′+ ∪ X ′−, it does not matter which ones he chooses
to approve, since, as argued above, his vote will not change the status of these candidates. Thus, the
outcome of the election is completely determined by a triple of non-negative integers (kw, kp, kx),
where kw, kp, and kx are, respectively, the number of candidates inW ′−,P ′, andX ′+ that the manipu-
lator approves. Hence, the manipulator can go over all triples of integers (kw, kp, kx) ∈ {0, . . . , k}3,
and, for each triple, check if it corresponds to a valid vote and compute the expected utility that he
obtains from approving kw highest-utility candidates fromW ′−, kp highest-utility candidates from
P ′, and kx highest-utility candidates from X ′+, and distributing the remaining points (if any) among
the rest of the candidates. The manipulator can then check if the expected utility from the best such
triple is at least q. Clearly, (kw, kp, kx) corresponds to a valid vote if and only if

• 0 ≤ kw ≤ |W ′−|,

• 0 ≤ kp ≤ |P ′|,

• 0 ≤ kx ≤ |X ′+|, and

• 0 ≤ k − kw − kp − kx ≤ |X ′−|+ |W ′+|,

and the manipulator’s expected utility from any such vote can be computed in time O(k). Thus, the
overall running time of our algorithm is O(k4). Since we can assume that k ≤ m, this running time
is polynomial in the input size.

We now show that when the size of the committee, `, is bounded by a constant, then Fα-
RANDMULTIMANIPULATION is in P for any scoring rule Fα. This immediately implies the single
winner case discussed in Section 4.

Theorem 5.2. Fα-RANDMULTIMANIPULATION is in P when ` is bounded by a constant.

Proof. Fix a scoring rule Fα with a scoring vector α = α1 ≥ . . . ≥ αm and an election (C,R) with
|C| = m, and let s = (s1, . . . , sm) be the vector of the candidates’ scores in (C,R−n). For each
k ≤ ` and each subsetWk ⊆ C of size k, we check if the manipulator can vote so that the confirmed
set is Wk. If this is indeed the case, we find the best set of ` − k pending winners for this choice
of Wk; that is, we identify a set Pk with |Pk| > ` − k such that after the manipulator’s vote the
confirmed set isWk, the (identical) scores of the candidates in Pk are strictly less than those of any
c ∈ Wk, and the manipulator’s expected utility from Pk is maximized. Notice that the requirement
|Pk| > ` − k is necessary; otherwise, Pk ∪ Wk are the confirmed winners, which contradicts our
objective of having Wk as the confirmed winners. We then compute the manipulator’s expected
utility from having the candidates inWk as the confirmed winners and the candidates in Pk as the
pending winners, and select a triple (k,Wk,Pk) that maximizes the manipulator’s expected utility.

The candidate setC has at most
∑`
k=1

(
m
k

)
∈ O(m`) subsets of size at most `; thus, it remains to

show that for each subset of size at most ` the procedure described in the previous paragraph can be
implemented in polynomial time. Fix a k ≤ ` and a setWk. First, we pick k entries of α; these are
the scores that we will assign to candidates inWk. There are

(
m
k

)
= O(m`) ways of choosing such

a set of scores; we go over all possible choices. We then order the candidates inWk by decreasing
order of scores under s, and assign the lowest among the selected k scores to the first candidate, the
second lowest to the second candidate and so on. IfWk can be made confirmed winners under some
assignment of the k scores selected, then in particular they can be made confirmed winners under
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this assignment. Now, let H1, . . . ,Hp be the levels of the candidates in C \ Wk. We renumber the
candidates in C \ Wk so that for all i ∈ 1, . . . , p− 1, all candidates in Hi are before the candidates
in Hi+1. Given a level Hi, we order the candidates in Hi so that if c, c′ ∈ Hi and the manipulator
prefers c to c′, then c′ precedes c. Let α′ = {αi1 , . . . , αim−k

} be the remaining m − k scores that
the manipulator needs to assign; we assume αi1 ≤ . . . ≤ αim−k

.
We assign αi1 , . . . , αi|H1|

to H1 in that order. Similarly, we assign αi|H1|+1
, . . . , αi|H1|+|H2|

to
H2 and so on until all scores are assigned. This assignment, denoted σ0, ensures that at each level,
the manipulator’s favorite candidates from that level receive the highest scores. Let Φ be the highest
score of any candidate in C \ Wk under σ0. Observe that for every score assignment to candidates
in C \Wk the score of some candidate in C \Wk after the manipulator’s vote is at least Φ. Thus, if
Φ is greater than or equal to the score of some c ∈ Wk, thenWk cannot be made confirmed winners
using this score assignment, and we proceed to check a different assignment of scores toWk. Thus,
from now one we assume that the score of each candidate inWk is greater than Φ. Let P0 be the set
of candidates whose score is Φ after submitting σ0. We can try to modify σ0 in order to increase the
manipulator’s utility, by swapping some candidates in the vote. Note that reassigning scores given
to members of P0 will either result in a non-tied outcome, or decrease the manipulator’s expected
utility from the set of tied candidates. Indeed, suppose that a candidate c ∈ P0 received a score
of β and now receives a higher score β′; this increases his score to be strictly more than Φ. If this
results in a strictly higher utility for the manipulator, this means that the manipulator can strictly
increase his utility by greedily assigning the highest scores in α′ to the candidates he prefers the
most, with no ties formed. On the other hand, if we assign a lower score to c, this means that some
other candidate in a higher level receives a higher score, and the same argument applies. Thus, any
swap we make will only involve candidates not in P0. However, note that the manipulator’s utility
is unaffected by candidates whose score is less than Φ. Thus, for any candidate c not in P0, we can
just check if there is some score that will give him a total score of Φ. If such c ∈ (C \ Wk) \ P0

exists, and adding c to P0 increases the manipulator’s expected utility, we can add c to P0. Having
done so for each candidate, we denote the resulting set by P1. We claim that P1 is indeed the set of
pending candidates we require. However, it is not guaranteed that |P1| > `− k. If it is, then we are
done. Otherwise, there are two cases.

Case 1: Given Wk and the scores we assign Wk, it is impossible to find a score assignment such
thatWk are confirmed winners.

Case 2: Even if there is a set Pk of pending winners, there is a set P ′ of candidates of size exactly
` − k such that the manipulator’s utility from Wk ∪ P ′ is at least his expected utility from
havingW as the confirmed winners and Pk as the pending winners.

Observe that both cases imply that if |P1| ≤ `−k we can just move on to another score assignment to
Wk, and ignore the current assignment: it is either impossible to haveWk as the confirmed winners,
or there is another candidate set with the same utility that can be made confirmed winners and will
be found in some other iteration. We must show that indeed one of these two cases holds.

If neither case holds, there exists a vote σ′ such that if the manipulator submits σ′, the set of
confirmed winners isWk, the set of pending winners is Pk, and for any set P ′ ⊆ C \ Wk such that
|P ′| = `−k and the setWk ∪P ′ is a feasible set of winners it holds that the manipulator’s expected
utility from havingW as the confirmed winners and Pk as the pending winners is greater than his
utility fromWk ∪ P ′.

First, consider the case where both confirmed and pending candidates get a total score of more
than Φ points. Let cj1 , . . . , cj`−k

be the manipulator’s most preferred ` − k candidates in Pk; by
assumption, we must have that the manipulator’s expected utility from P ′ is at most

∑`−k
p=1 u(cjp).

Let S be the set consisting of these ` − k candidates andWk. Consider any candidate cj ∈ S and
suppose the manipulator grants αj′ points to cj . The score of cj after the manipulator votes is strictly
more than Φ; thus j′ < j. We set S ′ = {cj′ ∈ C | αj′ is assigned to some cj under σ′}.
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Now, consider the vote obtained from σ0 by swapping the votes given to cj and its corresponding
candidate cj′ . Observe that some candidates can be in two such swaps—once acting as cj and once
as cj′—in this case we begin from the swap which uses the candidate as cj and afterwards we use
the candidate who was put on his place for the next swap. All candidates in C \ S \ S ′ do not have
their scores changed, so they still get at most Φ points; more importantly, all candidates in S now
get strictly more than Φ points. Further, all candidates in S ′ \ S get less than Φ points. Thus, in
this case S are the confirmed winners and the manipulator’s expected utility is at least as high as
that from havingWk as the confirmed winners and Pk as the pending winners, a contradiction. The
other case is when the candidates in Wk have more than Φ points, but the candidates in Pk have
exactly Φ points. This case is handled similarly; we omit the details due to space constraints.

6 Conclusions
Implementing a randomized tie-breaking rule proves to be an interesting new direction in compu-
tational social choice. Some voting rules (such as scoring rules and Bucklin) remain manipulable
when employing randomized tie-breaking; however, computational barriers to manipulation arise
for Copeland and Maximin. We also show that the target committee size does not affect the com-
plexity of manipulating k-Approval, and procedures for choosing a constant-size committee that are
based on scoring rules are manipulable as well.

While the picture for the single winner case is fairly complete, some problems in the multi-
winner case remain open. For example, it is unclear whether Fα-MULTIRANDMANIPULATION
remains in P if the size of the committee is unbounded, apart from the special case shown here for
k-Approval. Moreover, the effects of randomized tie-breaking on coalitional manipulation are also
unclear. While the hardness results shown in our work immediately imply hardness for coalitional
manipulation under the same voting rules, the easiness results do not easily generalize.

To conclude, tie-breaking rules strongly influence the manipulability of elections; even when
they do not induce hardness of manipulation, the techniques required in order to manipulate under
randomized tie-breaking are quite different from those employed for lexicographic tie-breaking.
This suggests that the choice of a tie-breaking rule is an important aspect of designing a good voting
system and should not be ignored.

P NP-hard
Single-Winner (` = 1) Plurality w/Runoff Copeland

Maximin (restricted) Maximin (general)
Simplified Bucklin STV
Classic Bucklin Ranked Pairs

Multi-Winner (` ≥ 1) Scoring Rules (for constant `)
k-Approval

Table 1: Complexity of RANDMANIPULATION and MULTIRANDMANIPULATION for classic vot-
ing rules.
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Coordination via Polling in Plurality Voting Games
under Inertia

Reyhaneh Reyhani and Mark C. Wilson and Javad Khazaei

Abstract

We discuss a new model for strategic voting in plurality elections under uncertainty. In particu-
lar, we introduce the concept ofinertia to capture players’ uncertainty about poll accuracy. We
use a sequence of pre-election polls as a source of partial information. Under some behavioural
assumptions, we show how this sequence can help agents to coordinate on an equilibrium out-
come. We study the model analytically under some special distributions of inertia, and present
some simulation results for more general distributions. Some special cases of our model yield
a voting rule closely related to the Instant Runoff voting rule and give insight into the political
science principle known as Duverger’s law. Our results show that the type of equilibrium and
the speed of convergence to equilibrium depend strongly on the distribution of inertia and the
preferences of agents.

1 Introduction

Voting as a preference aggregation method is widely used in human society and artificially designed
systems of software agents. A large amount of recent research has considered the situation where a
single individual or a small coalition attempts to manipulate an election result in its favour, assum-
ing the remaining agents are naive (that is, always vote sincerely). Such an assumption on agent
behaviour can be justified if the goal is to prove computational hardness results. However, if we
wish to understand how voting rules function under fully strategic behaviour, we need to study a
game-theoretic model of strategic manipulation.

The plurality rule is the most widely used voting rule, despite substantial criticism from social
choice theorists. One point in its favour is its simplicity and space-efficiency: an agent needs only
report a single alternative instead of submitting a full preference order, a list of utilities, or a binary
approval vector, as is the case with most other rules. However, even such a simple rule can become
complicated when strategic voting behaviour is considered. In this paper, we study plurality voting
under the assumption that all agents act strategically, as a starting point for a study of further classes
of rules.

Voting games notoriously have many equilibria, and agents often cannot coordinate on a par-
ticular equilibrium outcome. Hence, voting games are hard to understand. The lack of publicly
known information can exacerbate the lack of coordination of agents. A commonly used device
that addresses the coordination issue, especially for plurality elections, is to use publicly announced
pre-election polls. Such polls, which amount to an approximate simulation of an election with the
same agents and alternatives, increase the commonly known information among agents and may
influence their strategic behaviour. However, the beliefs of agents regarding the accuracy of these
results can be different. This is a key point in the present paper, and we introduce the concept of
inertia to describe these differences in beliefs.

Several authors from the political science and economics disciplines have discussed the influence
of pre-election polls in plurality elections, both empirically and theoretically. The key topic of
interest is what is called “Duverger’s law”, a general political science principle stating that plurality
voting tends to lead to two-party competition [13]. More recently some papers have appeared that
study equilibria in plurality voting games from a more algorithmic viewpoint (e.g. [6], [1]). Most
of the models that have been used, with a few exceptions (e.g. [3], [6]), concern static equilibria,
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classifying them as “duvergerian” or “non-duvergerian”, and fail to discuss the dynamic process of
converging to equilibria via the use of polls. There are several important differences between our
work and existing literature. One of the differences is related to the different amount of information
and strategic behaviour of agents. The other extra feature considered in the present paper is agent-
dependent beliefs about the reliability of this information.

1.1 Our Contribution

We present a model for plurality elections that allows for heterogeneous agents. We introduce the
concept of an agent’sinertia, which is that agent’s perception of the accuracy of the poll result. This
perception is the result of each agent’s belief about such sources of error as coverage bias, miscount-
ing, roundoff error, and noise in the announcement of results. This concept is rather general and
seems realistic enough to be used for both human society and for designed systems of autonomous
agents. This article focuses on the plurality rule, places some restrictions on agent behaviour, and
considers some particular distributions of inertia. We present some numerical and analytic results
on convergence to equilibria, both duvergerian and non-duvergerian. For example, a duvergerian
equilibrium often occurs when all agents have the same value of inertia.

2 Game Model

We have a set of agents each of whose set of allowable actions is to vote for a single alternative (not
necessarily their most desirable alternative). Abstention is not allowed. Each agent has a total order
on the set of alternatives (indifference is not allowed) but as the voting rule is plurality, they vote for
one alternative. Agents participate in a sequence of pre-election polls before the real election. In
our model, these polls include all agents and alternatives in real election, not just a random sample.
The information that these polls reveal does not have any effect on the agents’ sincere preference
order. In fact, we are interested in the strategic voting effect of polls rather than the so-called
bandwagon or underdog effects considered in some papers [5]. In those papers, agents do not have
a fixed preference order and their preference for an alternative is influenced by the popularity of that
alternative.

We now discuss the assumptions in our model regarding the information and strategic behaviour
of agents.

The information available for agents

The amount of information available to agents is a very important factor in their choice of strat-
egy. The effect of poll information on the election result has been discussed in [12]. Complete
information in plurality voting has been assumed in [8] and there is incomplete information in [11].

In the context of a repeated game, such as this sequence of polls under the plurality rule, in order
to have complete information each agent would have to know how many agents of eachtype(sincere
preference order) there are (this is usually called thevoting situation). Even if this is unknown, we
might expect to know the number of agents expressing each preference order in the previous poll.
However, opinion polls for plurality will typically report only the number of agents ranking each
alternative first, which we call thescoreboard. This lack of information on further preferences of
other agents is crucial in the analysis below.

We use the concept ofinertia to describe the reaction of agents toward the announced poll result.
Agent coverage bias, miscounting or error and noise in announcing the result cause different values
of uncertainty. This uncertainty brings about an inertia in agents. Each agent has an inertia value
from the interval[0, 1]. An agent with inertia value of zero believes that the poll result is accurate.
However, the poll result is meaningless to an agent with inertia value of one. In fact this agent
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does not consider the poll result in his decision making process. Other agents lie between these
two extremes. Each agent’s inertia value does not change during the sequence of polls. This seems
reasonable because the set of participants in each poll does not change (it is always the entire set of
agents), and the same system is used for counting and announcing the results in polls.

As far as we know this concept is new. The probability of miscounting has been discussed in [8],
but is the same for all agents, whereas we have different values of inertia for different agents. The
Poisson model of population uncertainty, in which there is uncertainty about the numbers of each
type of agent, has been considered in [10]. In this paper agents have beliefs about these numbers that
have been modelled as independent Poisson random variables. However, in our model, each agent
just knows his own inertia and sincere preference order, and the scoreboard after each poll. This
assumption makes sense for a system with no communication or coordination. This incomplete in-
formation influences the equilibrium result. Roughly speaking, it allows more alternatives to remain
viable from the viewpoint of each agent.

The strategic behaviour of agents

The voting game described so far is still very general and allows for a wide range of outcomes.
Voting games with more than two alternatives have many Nash equilibria and are not necessarily
dominance solvable [2]. Eliminating dominated strategies is not sufficient to determine the result.
Other refinements of equilibria such as strong and coalition-proof Nash equilibria do not always
exist [7]. Some authors try to restrict the strategies of players by additional assumptions such as by
assuming no voting for an alternative from another party [9].

In this paper, we assume agents have lexicographic preferences. Each agent infinitely prefers
alternativex to alternativey, so he does not ignore any chance of winning of a more preferred
alternativex [4]. Lexicographic preferences are not consistent with the idea of a cardinal utility
function and probabilities are not relevant. Rather, they give a strong bias toward sincere voting
which can still be overcome when an alternative is perceived to be a definite loser.

We also assume that each voter votes in each poll in the same way that he would if that poll
were the actual election. One scenario in which this would occur is when voters do not know
whether the current poll is the actual election. For example, the system designer may introduce
this requirement. Thus voters will not attempt to vote strategically in the sense of misleading other
voters, although they do vote strategically in the sense of playing their perceived best response.
Note that the restricted information given by the scoreboard helps in this regard. For example, ifbca
voters could infer how manycab voters there were , they could vote forc in order that thecab voters
do not abandonc, which might allowa to defeatb.

Therefore, agents vote for their most preferred alternative whom they perceive as having a non-
zero chance of winning in further polls.

After each poll, each agent considers a setW of potential winners, consisting of all alternatives
whom that agent perceives as having non-zero chance to win sometime in future. This set does not
depend on the agents’ preference order and only depends on the scoreboard and his inertia value.
Agents update this set after the announced result of each poll. Agents start by voting sincerely in
the first poll. Then, they update their votes according to their beliefs about potential winners during
the sequence of polls. All these assumptions on behaviour are common knowledge as far as agents
are concerned.

3 Game Dynamics

3.1 Notation

There is a setC of alternatives (we use indexc for alternatives) which hasm members, and a setV
of players withn members (we use indexν for agents). We consider a sequence ofK polls indexed
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by k, where the last poll is the election. However, agents are not aware of the value ofK. Each
agent has a sincere strict preference order on alternatives. There arem! different preference orders
(or types) which are indexed byt. We have plurality as our scoring rule in which each agent votes
for only one alternative. Therefore, we can assume that the set of possible strategies for playerν is
Sν = C. We use the following notations through the paper:

• sk(c): the normalized score of alternativec in poll k, namely the proportion of agents who
have voted forc at pollk,

• ck(h): the alternative who hash-th highest score in pollk (e.g. ck(1) is the winner of poll
k, note that we do not consider ties in this paper as this case occurs relatively rarely in large
electorates),

• vt: the number of agents with type (or preference order)t,

• Wε,k: the set of potential winners from the view point of player with inertia valueε according
to the result of pollk,

• Vc,k: the set of agents who vote for alternativec in poll k.

Definition 1 (The concept of certain and doubtful). Suppose that according to the poll result
sk(i) < sk(j). An agent with inertiaε is certain about this statement if

(1 + ε)sk(i) < (1 − ε)sk(j). (1)

Otherwise, he isdoubtful.

Note that this formula implies that if inertia of an agent is 0, then he will always be certain thatj
is ahead ofi provided that such a result is reported. Also, Equation (1) implies that an agent with
inertia equal to 1 will always be doubtful of any claimed scores.

The supporters of each alternative may be certain that the score of their favoured alternative is
less than the winner, yet they might still consider that alternative as a potential winner and vote for
him in the next poll. We study the concept of potential winner in the next section.

Example 1. Consider a 3 alternative election, and suppose the result of pollk is sk(ck(1)) =
45%, sk(ck(2)) = 30% andsk(ck(3)) = 25%. Any agent with inertia less than111 is certain that
alternative3 has fewer votes than alternative2, but agents with inertia more than that are doubtful
about this statement. In other words, those withε > 1

11 do not use this statement, while the others
consider it in their strategic computations.

3.2 Set of potential winners

In the initial state (k = 0), an agent with inertiaε does not have any information about the number
of supporters of each alternative. Therefore, he sees all alternatives as potential winners,Wε,0 = C,
and he votes sincerely in the first poll. For the next poll, the agent votes for the most desirable
alternative who can win in future (not necessarily the next poll) according to his interpretation of the
poll result and the voting strategies of other agents (the strategy of agents is common knowledge).

Each agent’s set of potential winners should satisfy some basic properties. The key necessary
properties that we require are as follows. These are all common knowledge.

• non-emptiness: Any agent with any inertia valueε believes that there exists at least one agent
with a positive chance of winning. W should clearly be nonempty for every voter, and contain
the highest scoring candidate in the current poll.
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• upward closure: if an agent with inertiaε believes thatck(x) ∈ Wε,k, then he believesck(x−
1) ∈ Wε,k. This seems reasonable: if an agent believes that some alternatives have a chance
to win in future in the best case, then that agent also believes that all alternatives with higher
current poll support also have a chance to win in future.

• overtaking: a possible winner must be able to overtake a higher scoring candidate who is also
a possible winner. Overtaking the next higher scoring alternative is a necessary condition
for winning, because the only chance an alternative has for attracting more support is that
he improves his ranking position in the scoreboard. This is justified by the belief of agents
about the upper closure of set of potential winners. For overtaking, alternativeck(x) needs
extra support, and this support can only be obtained from the supporters of alternatives with a
lower score than alternativeck(x). This is because agents who have already voted for higher
scoring alternatives thanck(x) will change their votes tock(x) if they perceive that their
current choice does not have any chance to win. Upper closure ofWε,k would then lead to
inconsistent beliefs.

If ck(x) cannot overtakeck(x−1) in the next poll, in the most favourable case, thenx 6∈ Wε,k.
We describe this case precisely in Proposition 1.

We first give an example to give the intuition behind our definitions.

Example 2. Consider scoreboard(a, b, c, d) = (40%, 29%, 21%, 10%) and agentν with ε = 0.
Voter ν reasons as follows: for each agent with inertiaε, either alternatived ∈ Wε,k or not. If yes,
then also alternativesa, b, c ∈ Wσ,k (upward closure). The agents whose most desirable potential
winner is alternatived have already voted for him, and the other agents prefer to vote for alternatives
a, b or c in the next poll. Thus, the score ofd cannot be increased andd /∈ W0,k. However, alternative
c ∈ W0,k because it is possible that all supporters of alternatived switch toc, yielding scoreboard
(40%, 29%, 31%, 0), andc can overtake alternativeb, and in the next round allb-supporters may
switch to alternativec, and he can overtake alternativea. Because of upward closureb, a ∈ W0,k.

The basic properties above show that the currently highest-scoring alternative is always consid-
ered a potential winner by each agent. The necessary conditions do not defineW uniquely. Because
of lexicographic preferences, voters do not abandon candidates easily, and so it makes sense thatW
should be as large as possible. Of course if voters voted differently in the polls and the election (for
example if they know that the next round is the election and have no other constraints on strategic
action),W might be smaller. For example, a candidate may be able to win by successively attracting
support from others, but the number of rounds remaining may not be enough for this to occur. We
are ruling out this case by our assumptions on voter behaviour. For example, uncertainty about the
time of the actual election allied to lexicographic preferences implies thatW should be as large as
possible. Thus we argue that the necessary conditions are sufficient.

We now show how to define the set of potential winners recursively starting from the top scoring
alternative.

Definition 2. For2 ≤ i ≤ m, define conditionCikε by

(1 + ε)
∑

h≥i

sk(ck(h)) > (1 − ε)sk(ck(i − 1)). (Cikε)

Proposition 1 (The conditions for being a potential winner). After the announced result of poll
k, ck(x) ∈ Wε,k if and only if all conditionsCikε for 2 ≤ i ≤ x hold. Algorithm 1 computes the set
Wε,k.

Proof. Upward closure shows that the best chance ofck(x) overtakingck(x − 1) consists in at-
tracting all supporters of agents currently voting for alternativesck(h) with h > x, and retaining
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Algorithm 1 Function for constructingWε,k

Require: k ≥ 1
Wε,k = {ck(1)}
for i = 2 to m do

if ConditionCikε holdsthen
Wε,k = Wε,k ∪ {ck(i)}

else
break

end if
end for

all current supporters. This yields conditionCxkε, and so Algorithm 1 is clearly correct. Since
overtaking of even higher alternatives must occur also, unrolling the loop in Algorithm 1 yields the
result.

Remark1. In the majority case from the viewpoint of an agent with inertia valueε, in which

(1 − ε)sk(ck(1)) > (1 + ε)
∑

c 6=ck(1)

sk(c),

alternativeck(2) and consequently all other alternatives exceptck(1) do not have any chance to win
in the future. Thus,Wε,k = {ck(1)}.

Example 3. Suppose the result of pollk is sk(a) = 55%, sk(b) = 30% andsk(c) = 15%. Accord-
ing to Proposition 1,

Wε,k =






{a} 0 ≤ ε ≤ 1
11 ;

{a, b} 1
11 < ε ≤ 1

3 ;

{a, b, c} 1
3 < ε ≤ 1.

Therefore, we have 3 different sets forWε,k based on the inertia value of agents. In the first inertia
value interval, agents perceive the result of pollk as a majority case. Therefore, their set of potential
winners is a singleton and they vote fora in poll k+1. In the second inertia value interval, they vote
for a or b in poll k + 1 based on their preference order. For example, an agent with preference order
cab votes fora and an agent with preference ordercba votes forb in poll k + 1. In the third case
where agents have high inertia, they do not care about the announced result of the poll. In fact, they
believe each candidate to be viable and they just vote sincerely in pollk + 1. An agent with inertia
value of 1 always votes sincerely, regardless of the poll result.

4 Equilibrium Results for some special cases

4.1 Zero inertia

In the special case where inertia is identically zero for all agents, the set of potential winners is
identical for all agents. We show that in this case the sequence of polls converges to a duvergerian
equilibrium, i.e., a two party competition. Note that the inertia value is fixed in all polls and also we
assume there is no majority case.

Theorem 1 (duvergerian equilibrium ). In a plurality voting game with common inertia value
ε = 0, the polling sequence yields a duvergerian equilibrium in a non-majority case after at most
m − 2 polls.
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Proof. Let m be the number of alternatives andε = 0. As agents have the same value of inertia,
either all agents perceive the result as majority case or all of them perceive it as a non-majority
case. As we explained before, in the majority case, agents vote for the highest scoring alternative
(refer to Remark 1). In a non-majority case, we have(sk(ck(1)) ≤

∑
c 6=ck(1) sk(c). According to

Proposition 1,ck(2) ∈ W0,k, therefore,| W0,k |≥ 2.
For all ν ∈ Vc,k for which c ∈ C \ W0,k, ν changes his vote to his most desirable alternative

in W0,k. Thus,sk+1(c) = 0, for eachc ∈ C \ W0,k. According to Proposition 1,ck(m) /∈ W0,k.
Therefore, in each poll, at least the last scored alternative is eliminated and after at mostm−2 polls,
we have a duvergerianequilibrium.

Remark2. There is a connection with the voting method instant runoff (IRV). Whenm = 3, if
inertia is identically zero then our assumptions mean that the plurality election is actually just IRV.
For general inertia and generalm, we could fix someβ > 0 and require that the election system
automatically deletes the alternative whose support becomes less thanβ for the next poll. If we
assume that 2 alternatives do not reach this boundaryβ simultaneously, we again simulate IRV.
However, our procedure is more general, as several alternatives may be eliminated at one step.

4.2 Constant non-zero inertia

Suppose that all agents have the same value of inertiaθ, with 0 < θ ≤ 1. Again note that the set
of potential winners is identical for all agents at all times and the inertia value is fixed in all polls.
This case is similar to the setup of Messner and Polborn [8] where the probability of miscounting is
positive but small. Messner and Polborn introduce the concept of robust equilibrium and show that
for plurality games with 3 alternatives, all such equilibria are duvergerian. However, in that paper,
the value ofθ is common knowledge between all agents, and this is not the case in our model. The
behavioural assumptions of agents also differ. Paper [8] shows that duvergerian equilibrium happens
in all robust equilibria of plurality games with 3 alternatives.

We consider a 3-alternative election with a large number of agents, with a fixed inertia valueθ
which is the same for all agents. W.l.o.g. we may assume thats1(c) < s1(b) < s1(a). We also
assume there is no majority case (refer to Remark 1).

Proposition 2. Let

θ′ = max{
s1(a) − s1(b) − s1(c)
s1(a) + s1(b) + s1(c)

,
s1(b) − s1(c)
s1(b) + s1(c)

}. (2)

A c supporter with inertiaθ ≤ θ′ will change his vote toa or b in the second poll.

Proof. According to Proposition 1,

c ∈ Wθ,1 ⇔

{
(1 + θ)(s1(b) + s1(c)) > (1 − θ)s1(a)

(1 + θ)s1(c) > (1 − θ)s1(b)
Therefore,c ∈ Wθ,1 ⇔ θ > θ′, andc ∈ C \ Wθ,1 ⇔ θ ≤ θ′.

Theorem 2. Consider a plurality voting game withm = 3, and fixed inertia valueθ which is
the same for all agents. Assuming a non-majority case, the polling sequence yields a duvergerian
equilibrium after 1 poll ifθ ≤ θ′.

Proof. Similar to previous case, as agents have the same value of inertia, either all agents perceive
the result as majority case or all of them perceive it as a non-majority case. As we explained before,
in the majority case, agents vote for the highest scoring alternative (refer to Remark 1). In a non-
majority case, according to Proposition 2, as the inertia values of all agents are equal,c supporters
abandonc immediately, and a duvergerian equilibrium is reached after onepoll.
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Figure 1: Score of the last alternative (c) as a function ofk with uniform inertia distribution for three
different cases whereV = (s1(a), 35%, 100% − s1(a) − 35%, 5%)

Remark3. Note that same constant non-zero inertia cases do not yield duvergerian equilibrium,
depending on the value ofθ. If θ > θ′, then every agent continues voting sincerely and the poll
results will not change in the sequence.

Example 4. Consider plurality rule with 3 alternatives where the the scoreboard of the first poll
is (40%, 35%, 25%). If the inertia value of all agents areθ and θ ≤ 1

6 , we have a duvergerian
equilibrium.

4.3 Uniform distribution of inertia

We consider a 3-alternative election with a large number of agents, with a uniform inertia distribu-
tion on [0,1]. We describe the initial setup via a quadruple which is based on the first poll result
(s1(a), s1(b), s1(c)) and the true percentagev6 of typecba agents (note this value is not known to
any agent). W.l.o.g., we may assume thats1(c) < s1(b) < s1(a) and we approximate the discrete
uniform distribution across agents by a continuous one for purposes of computation.

All c supporters who believe thatc is a loser change their votes in favour of their second alter-
native. The percentage of typet agents (cab andcba) who vote in favour of alternativei (a and
b respectively) in pollk + 1 is denoted byαt,i,k. Note that the assumption of a common inertia
distribution implies that for allk, αcab,a,k = αcba,b,k ≡ αk andα0 = 0.

Proposition 3. For a uniform distribution of inertia for all agents during the sequence of polls and
initial result V = (s1(a), s1(b), s1(c), v6), we have

αk =
1

1 +
2k
(

s1(c)−v6
s1(b)+v6

)k
(s1(b)+v6−2s1(c))

(s1(b)−s1(c))

(
−2k

(
s1(c)−v6
s1(b)+v6

)k
+
(
1− v6

s1(c)

)k
)

(3)

Proof. According to the order of alternatives in the first poll and Proposition 1, ac supporter con-
cludes thatc is a loser and changes his vote if(1 + ε)sk(c) < (1 − ε)sk(b).

Therefore,αk = p{ε < sk(b)−sk(c)
sk(b)+sk(c)}. The score of alternativesa, b andc in poll k is given by:

sk(a) = s1(a) + αk−1v5 sk(b) = s1(b) + αk−1v6 (4)

sk(c) = s1(c) − αk−1v6 − αk−1v5 (5)
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Therefore,

αk = p{ε <
s1(b) − s1(c) + αk−1(s1(c) + v6)
s1(b) + s1(b) − αk−1(s1(c) − v6)

} for all k ≥ 1. (6)

The stated solution formula for this recurrence is readily established byinduction.

Proposition 4. The score of the last alternative in the first poll (which we denote byc) satisfies

lim
k→∞

sk(c) =

{
0 if s1(b) + v6 ≥ 2s1(c)(

2s1(c)−v6−s1(b)
s1(c)−v6

)
s1(c) if s1(b) + v6 < 2s1(c)

(7)

Proof. The score of alternativec afterk + 1 polls is

sk+1(c) = (1 − αk)s1(c) (8)

According to Proposition 3, if we convergek to infinity, we have

lim
k→∞

αk =

{
1 s1(b) + v6 ≥ 2s1(c);
s1(b)−s1(c)

s1(c)−v6
s1(b) + v6 < 2s1(c).

The result follows immediately.

Remark4. The convergence to zero is exponentially fast with the exponential rate decreasing as we
approach the boundary between the two cases, and at the boundary it is subexponential. Figure 1
shows three special cases (the boundary case and 2 different cases in its neighbourhood).

Theorem 3. In a plurality voting game with 3 alternatives and initial resultV =
(s1(a), s1(b), s1(c), v6) and uniform distribution of inertia, the polling sequence yields a duverge-
rian equilibrium if and only ifs1(b) + v6 ≥ 2s1(c).

Proof. Follows immediately from Proposition4.

Fig 1 illustrates this inequality whenv6 = 5% ands1(b) = 35%. Fors1(a) ≥ 45%, we have a
duvergerian equilibrium.

4.4 Other distributions of inertia

The above results are for very special inertia distributions; explicit analysis of this type is not pos-
sible for general distributions. In this subsection, we investigate some different distributions via
numerical simulations. Intuitively, we expect that distributions skewed to the left (with more agents
of low inertia) will converge to theε ≡ 0 case more quickly.

We consider the continuous triangular distributionT (p) whose density function’s graph has
vertices at(0, 0), (p, 2) and(1, 0).

Example 5 (The effect of inertia distribution: Triangular vs. Uniform ). Consider the initial
resultV = (s1(a), s1(b), s1(c), v6) = (45%, 35%, 20%, 5%). According to Theorem 3, we have
a limiting duvergerian equilibrium for uniform inertia distribution. Numerical results in Figure 1
(the line fors1(a) = 45%) also confirm this result. When we change the inertia distribution to be
triangular with apex 0.5, we have the result in Figure 2. As we see in Figure 1, the convergence is
very slow but changing the inertia distribution toT (0.5) accelerates the process.

Example 6 (The effect of voting situation). In Figure 2, we have5% cba agents. Figure 3 shows
the result of the same situation with10% cba agents which leads to a faster convergence. Note that
the voting situation is not known to agents.
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Figure 2:V = (45%, 35%, 20%, 5%) andT (0.5) inertia distribution
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Figure 3:V = (45%, 35%, 20%, 10%) andT (0.5) inertia distribution

Example 7 (The effect of skewness of inertia distribution). Consider V =
(40%, 35%, 25%, 10%) with an inertia distribution ofT (0.5). This yields a non-duvergerian
equilibrium, and it appears that the score ofc converges to 22, as shown in Figure 4. However,
the same voting situation with an inertia distributionT (0.3) results in a duvergerian equilibrium
as shown in Figure 5. In this case, more agents validate the poll result, and we have a duvergerian
equilibrium after 10 polls.

5 Conclusion and Future Directions

In this paper we tried to study a repeated game with unknown number of rounds and incomplete
information. The strategy of each player depends on his belief about the belief of other players. The
sequence of opinion polls helps agents to coordinate on an equilibrium in an environment with some
uncertainties about the accuracy of these polls. The amount of information available to agents has a
critical role in influencing the strategic choices of agents. In this paper, we try to simplify the model
with some assumptions about the strategy of players as a starting point for studying this game. Even
in this simplified model, there are too many special cases that can happen depending on the inertia
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Figure 4:V = (40%, 35%, 25%, 10%) andT (0.5) inertia distribution
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Figure 5:V = (40%, 35%, 25%, 10%) andT (0.3) inertia distribution

distribution or preference distribution of agents. We try to explain the model by some examples that
give insight into different scenarios.

As a future direction, it is interesting to study how the strategy of agents will change if they have
more information or in a more complicated model, each agent has different amounts of information.
For example, some agents may have extra information than others regarding the inertia distribution
of other agents or their preference order or the number of rounds ahead. Therefore, they may have
different belief about the strategy of each agent.

Another interesting direction would be to to allow inertia to change from one poll to the next.
For example, if random sampling is used instead of polling all voters, the sample size might vary
between polls. More generally we want to explore the effect of inertia in other models with different
behavioural assumptions for example, when voters use some some simple heuristic strategies. We
expect to observe substantial differences in equilibrium outcomes when non-zero inertia is intro-
duced into the model.
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Empathetic Social Choice on Social Networks

Amirali Salehi-Abari and Craig Boutilier

Abstract

Social and economic networks play a fundamental role in facilitating interactions
and behaviors between individuals, businesses, and organizations. It is widely recog-
nized that such networks can correlate behaviors (and arguably preferences) among
connected agents. We introduce a model for social choice—specifically, consensus
decision making—on such networks that reflects certain interdependencies among
agent utilities. Specifically, we define an empathetic social choice framework in which
agents derive utility based on both their own intrinsic preferences and the satisfac-
tion of their neighbors. We show how this problem translates into a weighted form
of classical preference aggregation (e.g., social welfare maximization or certain forms
of voting), and develop effective algorithms for consensus decision making that we
believe should scale to large-scale (online) social or economic networks. Preliminary
experiments validate the effectiveness of our proposed algorithms.

1 Introduction

Social networks play a central role in individual interactions and decision making. Indeed,
it is widely acknowledged that the behaviors [7], and to a lesser extent the preferences, of
individuals connected in a social network are correlated in ways that can be explained, in
part, by network structure [10, 13]. Because of this, and the increasing availability of data
that allows one to infer such relationships, the study of social choice problems on social
networks is one of tremendous practical import. In fact, arguably most group decision
problems, whether social, corporate, or policy-oriented, involve people at least some of
whom are linked via myriad social ties. However, social choice in the context of social
networks is something that has received, until recently, relatively little attention. Recent
work has examined, for example, the formation of (hedonic) coalitions on social networks
[6, 5], and stable matching on social networks [3, 16], in which the network captures one’s
affinity for potential partners. The influence of social networks on voting behavior has
received considerable attention in the social sciences (e.g., [1, 14, 15]), and the emergence
of online social network has even spawned computational research on the mechanisms to
support delegation of votes in an online network [4].

In this paper, we consider the problem of consensus decision making on social networks,
for example, in the form of voting over some option space. Specifically, we consider the
problem of selecting a single option from a set of alternatives, for some group connected by
a social network—e.g., a local constituency electing a political representative, or colleagues
selecting a venue for a corporate retreat. While individuals have, as usual, personal intrinsic
utility over the option space, we also incorporate a novel form of empathetic utility on
social networks: in our model, the utility (or satisfaction) of an individual with a winning
alternative a is a function of both her intrinsic utility for a and her empathetic utility for
the “happiness” of her neighbors in the network. This use of empathetic utility can be seen
as reflecting recent findings that suggest a person’s happiness is influenced by the happiness
of others with whom they are connected [11].

We consider two varieties of empathetic preference. In the first, the local empathetic
model, the utility of individual i for alternative a combines her intrinsic preference for a
with the intrinsic preference of i’s neighbors for a, where the weight given to the preference
of any neighbor j depends on the strength of the relationship between i and j. For instance,
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in selecting a restaurant, i may be willing to sacrifice some of her own intrinsic preference
for the chosen restaurant if her colleagues are happier with the cuisine, and she defers more
strongly to her closest friends. In the second, global empathetic model, i’s utility for a
depends on her intrinsic preference and the total utility that her neighbors have for a (not
just their intrinsic preference). In other words, she doesn’t just want her neighbors to be
satisfied with a, she wants them to have high utility, which depends on the utility of their
neighbors, and so on. For example, in voting for a political candidate, i may have a mild
preference for a over b, but if b is strongly preferred by not only her closest neighbors, but
also by their neighbors and many others in the community, she might prefer to see b elected
so she won’t have to interact with grumpy neighbors for the next five years.

Our main contributions in this paper are to develop a model for preference aggregation
(e.g., certain forms of voting) that select consensus alternatives in a way that is sensitive
to both intrinsic and empathetic preferences. Of course, we don’t expect voters to actually
compute such combined preferences; indeed, they may not have direct knowledge of the
preferences of their neighbors. Instead voters specify their preferences for options and for
the satisfaction of their neighbors (the latter could be inferred or estimated directly from
the social network in some settings). We then propose methods for computing optimal
alternatives under both the local and the global models. The former, unsurprisingly, cor-
responds to a simple form of weighted preference aggregation or weighted voting in which
each voter implicitly “delegates” a portion of her vote to her neighbors. The latter, because
individual utilities are co-dependent—indeed, utility spreads throughout the network much
like PageRank values—requires the solution of a linear system to determine the optimal
(fixed-point) option for the group. We describe (mild) conditions under which a fixed point
is guaranteed to exist, and show that it too results in a form of weighted voting, where the
weights assigned to each voter’s intrinsic preference is readily derived from the solution to
this linear system. Experiments explore various properties of our model and algorithms.

2 Social Empathetic Model

We begin by outlining our basic social choice model, motivating two notions of empathetic
preference on social networks, and then defining socially optimal outcomes within this model.
We also briefly discuss related work.

2.1 The Social Choice Setting

Apart from empathetic preferences on a social network, which we specify below, the choice
framework we adopt is standard. We assume a set of alternatives A = {a1, . . . , am} and a
set of agents N = {1, . . . , n}. Each agent j has intrinsic preferences over A in the form
of either a (strict) preference ranking �Ij or a utility function uIj . For ease of presentation,
we describe preferences in terms of utility functions, but discuss below on how to interpret
voting procedures within our model. For example, in our experiments we use simple utility
functions based on rankings of alternatives and score-based voting rules (specifically, Borda
and plurality) to define “utility” for alternatives.

Our goal is to select a single consensus alternative a∗ ∈ A that implements some social
choice function f relative to the preferences of N . For example, if agents’ utilities were
dictated solely by intrinsic preference and f were (utilitarian) social welfare, we would
select a∗ = arg max

∑
j u

I
j (a). If preferences were given by intrinsic preference rankings, f

would typically be represented by some voting rule (e.g., plurality or Borda).1

1Our model below applies directly to more general social choice problems, such as assign-
ment/segmentation problems with network externalities (where individuals may be assigned different al-
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2.2 Empathetic Preference on Social Networks

We depart now from the typical social choice framework by considering empathetic prefer-
ences, in which the preferences of one agent are dependent on those of others. We consider
the specific case in which these influences are induced by connections in a social network
(though the notion of empathetic preference need not be confined to networks). We focus on
agent utility functions rather than preference rankings, since these allow the straightforward
expression of quantitative tradeoffs between intrinsic and empathetic preference.2

Before discussing additional motivation, we introduce our model and notation. We
assume a directed weighted graph G = (N , E) over agents, with an edge jk indicating that
j’s utility is dependent (in a way to be specified below) on its neighbor k’s preference, the
strength of this dependence given by edge weight wjk. Naturally j’s utility will usually
depend on its own intrinsic preferences, so loops jj will usually be present. We assume
that wjk ≥ 0 for any edge jk, and that

∑
k wjk = 1 for any j (though allowing variable

weightings to reflect, say, weighted voting schemes is also possible). For convenience, we
treat missing edges as if they had weight zero (and vice versa). Thus, we represent the graph
with a weight matrix W = [wij ]. We generally think of these edges as corresponding directly
to some relationship in a social network, or possibly induced from such relationships. See
Fig. 1(a) for an illustration.

We take j’s utility for a to be a linear combination of it’s own intrinsic preference for a
and the empathetic preference derived from each of its neighbors—recall that we consider
pure consensus/single-winner voting scenarios in which a single option a is selected for all
j ∈ N—where network weights determine the relative importance of each.3 Letting ejk(a)
denote the empathetic utility derived by j from k, we define j’s utility uj(a) to be

uj(a) = wjju
I
j (a) +

∑

k 6=j
wjkejk(a).

The ratio of wjj to
∑
k 6=j wjk captures the relative importance of intrinsic and empathetic

utility to j.
We consider two ways in which to define empathetic preferences ejk. In the local empa-

thetic model, we simply define ejk(a) = uIk(a); in other words, j’s utility for a is simply a
linear combination of intrinsic utilities of j’s neighbor (including it’s own):

uj(a) =
∑

k

wjku
I
k(a). (1)

This model captures the fact that an agent j is concerned about the “direct” preference of a
neighbor k for alternative a; but the fact that k’s utility may depend on k’s own neighbors
does not impact j. For instance, consider a family or a group of friends deciding on a movie
(or restaurant or outing): the preferences of certain family members (e.g., parents) for a
specific film may depend on the preferences of others (e.g., children, whom they want to be
entertained by the choice of film).

In the global empathetic model, we define ejk(a) = uk(a), so that k’s complete utility for
a—which may depend on k’s own neighbors—influences j’s utility for a, giving rise to

uj(a) = wjju
I
j (a) +

∑

k 6=j
wjkuk(a). (2)

ternatives), matching problems, and so on, without difficulty. Our algorithms are, however, specific to the
“single-choice” assumption.

2Suitable qualititative expression of such tradeoffs is an important ongoing research direction.
3More general non-linear models are possible as well.
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Figure 1: Social network and ranked preferences, with weights under the local and global em-
pathetic model. Using Borda or plurality-based utility, the consensus winner is different in each
model: a under intrinsic; b under local empathetic; c under global empathetic.

In this model, j’s utility for a depends on the utility (not just intrinsic preference) of its
neighbors for a. For example, a voter may care about the overall level of satisfaction of
her neighbors when voting for a political representative, but recognize that there is a larger
societal effect at work, where their satisfaction also depends on their neighbors, etc. More
concretely, companies linked in complex supply chain may well care about the overall success
of their suppliers and customers, and consider adopting industry-specific or economic policies
in that light. In the global model, the circular dependence of utilities requires a fixed point
solution to the linear system defined by Eq. 2 (see below).

Correlations of behavior and/or preferences among agents connected in social network
is widely accepted, and can be explained by a variety of mechanisms [10, 13]. Among these
are: technology/information diffusion, in which agents become aware of opportunities or
innovations from connections to their neighbors; network externalities, in which the bene-
fits of adopting some behavior increase with the number of neighbors doing the same; or
homophily, in which people with similar characteristics (say, preferences) more readily form
social ties. Our empathetic model is somewhat different in that a person’s intrinsic pref-
erences over options A are not presumed to be correlated with their neighbors, but their
revealed preferences for A might be: their choices (or stated utilities) will generally reflect
some consideration, however estimated, of their neighbors’ preferences as well.

2.3 Social Welfare as Weighted Intrinsic Utilities

In realistic social choice situations, agents with empathetic preferences must often perform
sophisticated reasoning not only about their intrinsic preferences for alternatives, but also
about those of their neighbors. Thus, even in the local empathetic setting, expressing
preferences (e.g., voting) is difficult since agents usually have incomplete (and in some
cases, no) information about the preferences of their friends, neighbors, or colleagues. The
global empathetic setting is even more complex, since an agent is further required to reason
about her neighbors’ network connections as well as their intrinsic/empathetic tradeoffs.

In our models, preference aggregation and optimization can be performed by simply
having agents specify their intrinsic preferences, as is standard in social choice, and the
weights they assign to neighbors in their local network. In social scenarios, this can remove
a considerable informational and cognitive burden from agents who might otherwise be re-
quired to determine their total utility for alternatives. In other situations, agents might
not wish to reveal their preferences to their neighbors, but might still want their neighbors
to obtain a favorable result (consider, for example, a collection of companies, voting over
some economic policy alternatives, that are linked together in complex supply chain rela-
tionships which correlates their stability or profitability). It turns out that, given a known
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network G, the problem of consensus decision making with empathetic preferences can be
recast as a weighted preference aggregation problem over intrinsic preferences alone. Not
only does this ease the burden on agents, it also allows one to recast the problem as one
of simple weighted voting, or of weighted (utilitarian) social welfare maximization, render-
ing the decision making process itself fully transparent. Here we focus on social welfare
maximization.

For the local model, determining the weights associated with each agents’ intrinsic pref-
erence is straightforward. Assume network weights W. Let u(a) be the n-vector of agent
utilities to be computed as a function of the corresponding vector uI(a) of intrinsic utilities
for some fixed alternative a. By Eq. 1, we have u(a) = WuI(a). Then letting ω = e>W
(where e is a vector of ones), the social welfare of any alternative a under the local empa-
thetic model is given by

sw l(a,u
I) = ω>uI(a). (3)

Thus social welfare maximization under local empathetic utility is simply weighted maxi-
mization of intrinsic preference, where the weight of j’s intrinsic utility ωj is simply the sum
of the weights of its incoming edges.

Fig. 1(b) illustrates the local model in action. The derived weights for each agent are
shown. We assume preference rankings, and suppose utilities are dervied from these using
either Borda or plurality scores. We see that the decision can be different under the local
model than using voting based on intrinsic preferences along (a wins in the intrinsic model,
while b wins in the local model). Indeed, using score-based voting rules, we can readily
interpret this model as a form of empathetic voting, where the weight one assigns to a
neighbor can be interpreted as the extent to which one would sacrifice one’s own preferences
to improve a neighbor’s intrinsic satisfaction with the winning alternative.

Things are slightly more subtle in the global empathetic model. Computing the utility
vector u(a) for alternative a requires solving a linear system to compute the fixed point of
Eq. 2. Unfortunately, a unique solution is not guaranteed to exist.4 However, in addition to
our assumptions above of non-negativity (i.e., W ≥ 0) and normalization (i.e.,

∑
k wjk = 1

for all j), a third mild condition on the social network (weight matrix W) is sufficient to
ensure a unique fixed point solution, namely, positive self-loop: wjj > 0 for all j. Let D be
the n× n diagonal matrix with djj = wjj . We can write Eq. 2 as

u(a) = (W −D)u(a) + DuI(a). (4)

As a consequence,

Theorem 2.1 (Fixed-point Utility) Assuming nonnegativity, normalizaton, and posi-
tive self-loop, Eq. 4 has a unique fixed-point solution u(a) = (I−W + D)−1DuI(a).

(Proofs of all results are included in the longer version of this paper.) As in the local model,
social welfare maximization in the global model can be interpreted as weighted maximization
of intrinsic preference (though with a less straightforward interpretation):

Corollary 2.1 In the global empathetic model, social welfare of alternative a is given by
sw(a,uI) = ω>uI where ω> = e>(I−W + D)−1D.

Once again, in (score-rule based) voting contexts, one can interpret the global empathetic
model as trading off one’s own satisfaction with a winning alternative with the “overall” (not
just intrinsic) satisfaction of one’s neighbors: see Fig. 1(c) for an illustration. We discuss
weight computation in Sec. 3.

4Consider two individuals j and k, with wjj = wkk = 0, wjk = wkj = 1, uIj (a) = 0.1, and uIk(a) = 1.
The induced system does not have a unique fixed-point solution.
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2.4 Related Work

We are unaware of other formal models which consider the dependency between agent
utilities in a social network using the type of empathetic utility we introduce above. However,
empathetic utilities might be viewed as a form of network externality in an agent’s utility
function, though unlike typical models of externalities, an agent’s utility depends on the
(latent) utility of its neighbors for the chosen alternative rather than the behavior of, or
allocation made to (at least directly), her neighbors (or others).

Decision making in the presence of network externalities has recently attracted attention.
Bodine-Baron et al. [3] study stable matchings (e.g., of students to residences) with peer
effects: these local network externalities reflect the fact that students prefer to be assigned
to the same residence as their friends in a social network. Brânzei and Larson address coali-
tion formation on social networks in two different settings: (a) agent utility for a coalition
depends on its affinity weights with others in the coalition [5]; and (b) agent utility depends
on her distance to others on the induced social network [6]. The problem of auction design
in social networks with positive network externalities is studied in [12].

Boldi et al. [4] consider voting on social networks, describing a form of delegative democ-
racy in which an individual can either express her preferences directly, or to delegate her vote
to a proxy from among her neighbors. In our model, individuals are not asked to delegate
their votes or preferences: we simply consider the dependency of their preferences on those
of others, though this can be viewed loosely as implicit, partial delegation of preferences.

3 Computing Winners in the Empathetic Models

We now consider the question of computing the social welfare maximizing alternative in both
the local and global empathetic models. In Sec. 2.3, we observed that—for both the local and
global empathetic models—social welfare can be expressed as sw(a,uI) = ω>uI(a) for an
appropriate weight vector ω. Given the vectors uI(a) for any a ∈ A, we can readily compute
the optimal alternative a∗ = arg maxa∈A ω>uI(a), requiring O(nm) time. Of course, this
presupposes access to ω, which has different meanings in each model, and hence requires
different approaches for its computation. In the global model, this suggests a different
method for computing a∗ as well, without (necessarily) requiring the full computation of ω.

We first consider the local model, where ω> can be calculated easily with a single vector-
matrix multiplication, ω> = e>W, in time O(n2). However, social networks are generally
extremely sparse, with the number of outgoing edges associated with any node j in the graph
bounded by some small constant c which is independent of the network size (generally, social
networks, while potentially locally dense, are sparse in a global sense). In sparse networks, ω
can be computed much more efficiently: ωj is simply the sum of j’s outgoing edges weights.
If the outgoing neighbors of any node are bounded by a constant, ω can be computed in O(n)
time and a∗ can be determined in the straightforward fashion mentioned above in O(nm)
time. Thus the complexity of computing optimal alternatives in the local empathetic model
is no different than that of straightforward social welfare maximization of straightforward
(e.g., scoring rule-based) voting.

In the global model, ω> has a more complicated expression, ω> = e>A−1D where
A = I −W + D (see Cor. 2.1). The difficulty lies largely in matrix inversion: A−1 can
be computed via Gauss-Jordan elimination, which has complexity O(n3). This implies that
straightforward computation of a∗ requires O(n3 + nm) time. In general, matrix inversion
is no harder than matrix multiplication (see, e.g., [9, Thm. 28.2]). Although efficient matrix
multiplication is the topic of ongoing research (e.g., [8]), its complexity cannot be less than
O(n2) since all n2 entries must be computed. Therefore, straightforward computation of a∗

in the global model cannot have complexity less than O(n2 + nm).
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We expect n to be extremely large in at least some social choice problems on social
networks, e.g., in the tens of thousands (number of people in a small town), the millions
(large big cities), or hundreds of millions (large country, number of Facebook or Twitter
users). This makes algorithms that scale more than linearly in n problematic, both from
the perspective of time and memory. Of course, many iterative methods have been proposed
for matrix inversion and solving linear systems (e.g., Jacobi, Gauss-Siedel) which have O(n)
complexity (in non-sparse systems) per iteration and tend to converge very quickly in prac-
tice. We now briefly describe the use of a standard Jacobi method for computing a∗ in
the global model. We first show how to compute the utility vector u(a) for each alterna-
tive a, and then propose an algorithm called iterated candidate elimination (ICE) that will
compute the optimal a∗ without (necessarily) computing each u(a) fully.

Consider first a simple iterative method for computing u(a). Let u(t)(a) be the estimated
utilities for alternative a after t iterations.

Theorem 3.1 Consider the following iteration:

u(t+1)(a) = (W −D)u(t)(a) + DuI(a).

Assuming nonnegativity, normalizaton, and positive self-loop, this method converges to u(a),
the solution to Eq. 4.

For each j ∈ N , the method computes:

u
(t+1)
j (a) = wjju

I(a) +
∑

k 6=j
wjku

(t)
k (a). (5)

We can interpret u
(t)
j (a) as agent j’s estimated utility for alternative a after t iterations.

This updating scheme has a natural interpretation in terms of agent behavior: suppose that
each individual is able to repeatedly observe her friends’ revealed utilities, and updates her
own utility for various alternatives in response. This process will eventually converge (this
is true even if the updates are “asynchronous”). One can readily bound the error in the
estimated utilities at the tth iteration:

Theorem 3.2 In the iterative scheme above,

∥∥∥u(a)− u(t)(a)
∥∥∥
∞
≤ (1− w̃)

t
∥∥∥u(a)− u(0)(a)

∥∥∥
∞
,

where w̃ = min1≤i≤n wii.

Hence, societies in which individuals have self-loops with relatively larger weight (i.e., less
empathy) converge to fixed-point utilities faster societies with greater empathy (our empir-
ical results below support this).

This error bound allows one to bound the error in estimated social welfare if the utilities
of all alternatives are estimated in this fashion. Let sw (t)(a) =

∑
j u

(t)
j (a).

Theorem 3.3 Assume uIj (a) ∈ [c, d] and u
(0)
j (a) ∈ [c, d], for all j ∈ N . Under the con-

ditions above, for any t:
∣∣sw(a)− sw (t)(a)

∣∣ ≤ n(d − c) (1− w̃)
t
, where w̃ = min1≤i≤n wii.

As a result, we know that (under the same assumptions):

Proposition 3.4 If sw (t)(b)− sw (t)(a) ≥ 2n(d− c) (1− w̃)
t

then sw(b) > sw(a).
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We can exploit Prop. 3.4 in a simple iterative algorithm for computing a∗ we call iterated
candidate elimination (ICE). The intuition behind ICE is to iteratively update the estimated
utilities of the subset C ⊂ A of candidates that are non-dominated, and gradually prune
away any candidate that is dominated by another until only one, a∗, remains. Roughly, ICE

first initializes C = A and u
(0)
j (a) = c for all j ∈ N , a ∈ A. An iteration of ICE consists of:

(1) updating estimated utilities using Eq. 5 for all j and a ∈ C; (2) computing estimated

social welfare of each a ∈ C; (3) determining the maximum estimated social welfare ŝw (t);

(4) testing each a ∈ C for domination, i.e., ŝw (t) − sw (t)(a) ≥ 2n(d − c) (1− w̃)
t
; and

(5) eliminating all dominated candidates from C. The algorithm terminates when only one
candidate (i.e., a∗) remains in C (the pseudo-code for the algorithm is provided in the longer
version of this paper). The running time of ICE is at most O(tmn2) where t is the number
of iterations required. More precisely, ICE runs in O(tm|E|) time; and if the number of
outgoing edges is bounded, O(tmn). Our hope is that in practice, the methods converges
in relatively few iterations, a fact indeed borne out in our preliminary experiments below.
ICE also provides a natural means of approximation in large problems.

4 Empirical Results

We now describe some preliminary experiments on randomly generated networks and intrin-
sic preferences designed to test the differences in the decisions that result under standard
non-empathetic, local empathetic and global empathetic models, the impact of these deci-
sions on different agents, and the performance of the ICE algorithm.
Experimental Setup. Our test scenarios require generation of intrinsic preferences and
a social network. We assume that individual intrinsic utilities arise from an underlying
preference ordering overA. In all experiments, we assume m = 5 or m = 10 alternatives, and
draw a random preference ordering for each agent j under the impartial culture assumption
(all permutations are equally likely). For simplicity, and to draw connections to voting
on social networks, we assume j’s utility is given by the Borda or plurality score of the
alternative in its ranking. If treating these strictly as utility, they embody very different,
extreme assumptions: Borda treats utility differences as smooth and linear, whereas plurality
views utility in a more “all or nothing fashion.”

We generate random social networks using a preferential attachment model for scale-free
networks [2] (this is only one of many models that can be adopted). The model works in
the following iterative fashion: start with n0 initial nodes; we repeatedly add nodes (until
we have a graph with n nodes), where each new node added is connected to k ≤ n0 existing

nodes, and an existing node i is selected as a neighbor with probability Pi = deg(i)∑
j deg(j) . We set

n0 = 2 and k = 1 or k = 2 in all our experiments. We then convert the resulting undirected
graph to an directed graph by replacing each undirected edge with the two corresponding
directed edges; add a self-loop to each node with weight α; then add normalized weights to
all other edges (all outgoing edges from j excluding the self loop have equal weights that
sum to 1−α). The parameter α ∈ (0, 1] represents the degree of self-interest, and 1−α the
degree of empathy in the society.
Performance Metrics. To measure whether the different models result in difference deci-
sions, we assume the agents actual utility model is one of intrinsic (non-empathetic), local or
global. We then consider making decisions using any of these models as an assumed utility
model, and measure the effect on actual utility (e.g., global empathetic utility) of making
a decision using the assumed model (e.g., intrinsic). Since decisions might be different in
each case, we measure the loss in social welfare due to making a decision using the incorrect
model. Let swac(·) and swas(·) be social welfare under the actual and assumed models,
respectively, and aw and as be the corresponding optimal alternatives (or winners). We
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Actual Utility
Assumed Utility

intrinsic local global WSWL

intrinsic 0%(0%) 1.45%(9.95%) 1.10%(8.00%) 5.59%(14.63%)
local 2.95%(19.28%) 0%(0%) 0.09%(3.21%) 11.22%(25.10%)
global 1.78%(12.73%) 0.07%(2.73%) 0%(0%) 9.01%(20.97%)

Table 1: Average (maximum) RSWL and WSWL: 2500 runs, Borda scoring, m = 5, n =
1000, k = 1, α = 0.25.

Actual Utility
Assumed Utility

intrinsic local global

intrinsic 0.0%(0.0%) 28.4%(100.0%) 22.6%(100.0%)
local 28.5%(100.0%) 0.0%(0.0%) 1.2%(86.9%)
global 22.3%(100.0%) 1.1%(97.0%) 0.0%(0.0%)

Table 2: Average (maximum) NSWL: 2500 runs, Borda, m = 5, n = 1000, k = 1, α = 0.25.

define relative social welfare loss (RSWL) to be L(as, ac) = [swac(aw)−swac(as)]/swac(aw)
(we sometimes report it as a percentage). RSWL has a lower bound that is independent
of the assumed model: let the alternative a− have minimum social welfare under the ac-
tual model (so it is no better than the decision under the assumed model). Worst-case
social welfare loss (WSWL) is defined as W (ac) = [swac(aw) − swac(a−)]/swac(aw). Fi-
nally, it usually makes sense to normalize RSWL by considering the range of possible so-
cial welfare values actually attainable: normalized social welfare loss (NSWL) is simply
N(as, ac) = [swac(aw)− swac(as)]/[swac(aw)− swac(a−)]. This offers a more realistic pic-
ture of loss due to using an incorrect assumed utility model (by comparing it to the loss
associated with making the worst possible decision under the actual model).

Social Welfare Loss. We first consider RSWL, WSWL and NSWL for all nine com-
binations of assumed and actual utility models. We fix α = 0.25, n = 1000, m = 5, k = 1,
and the scoring rule to Borda. We generate 50 random networks, and for each generate 50
intrinsic utility profiles (2500 problem instances), and compute RSWL and WSWL. Aver-
age (with maximum in parentheses) RSWL for various combinations of actual and assumed
models is reported in Table 1 as are average (maximum) WSWL. Maximum RSWL is more
than 19% and 12% when intrinsic utility is assumed but actual utility is local or global,
respectively. Moreover, we can see that global vs. local and local vs. global are quite close.
Notice that average differences are quite slight: this is because the impartial culture model,
in essence, renders are alternatives quite close in terms of Borda or plurality score. By
normalizing for the fact that most decisions are reasonably good, we get a more accurate
picture of the loss incurred by using non-empathetic voting. NSWL is reported in Table 2,
which shows that making the wrong assumptions can be quite damaging; e.g., the intrinsic
model loses 22.3–28.5% of empathetic social welfare on average.

Since impartial culture is generally viewed as an unrealistic model of real-world prefer-
ences, we also tested our methods using preferences drawn from 2002 Irish electoral data
from the Dublin West constituency, with 9 candidates and 29, 989 ballots of top-t form, of
which 3800 are complete rankings.5 Generating 1000-node networks as above, we randomly
assign full rankings to nodes from this set of 3800 complete rankings. Results on RSWL
and WSWL for plurality scoring are shown in Table 3. As above, average RWSL is slight;
but the maximum values show significant social welfare loss in certain instances, especially
when using the intrinsic model to make decisions for empathetic preferences.
Utility and Societal Weights. We now examine how individual utility—and its intrinsic
and empathetic components—and computed weights depend on their degree of nodes in
the social networks in global empathetic model. Using data from the previous experiment,

5See www.dublincountyreturningofficer.com.
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Actual Utility
Assumed Utility

intrinsic local global WSWL

intrinsic 0%(0%) 1.82%(33.62%) 1.30%(19.55%) 97.22%(99.62%)
local 2.64%(39.25%) 0%(0%) 0.01%(6.80%) 97.28%(99.85%)
global 1.53%(31.26%) 0.10%(8.4%) 0%(0%) 97.24%(99.77%)

Table 3: Average (maximum) RSWL and WSWL for West Dublin data set: 2500 runs,
plurality scoring, m = 9, n = 1000, k = 1, α = 0.25.
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Figure 2: Average (a) instrinsic and empathetic utilities and (b) individual weights as function of
node degree (global model, 2500 runs, n = 1000, m = 5, α = 0.25, Borda scoring).

we show average utility and average weight in Fig. 2. From Fig. 2(a) we see that as node
degree increases (each node has identical in/out-degree), overall utility tends to increase;
moreover most of this increase is due to in large part to an increase in intrinsic utility.
Fig. 2(b) also illustrates a strong correlation between degree and agent weight. Nodes with
higher degree are more powerful and “influential” in the choice of the consensus alternative.
This correlation might be an artifact of the specific social networks we generate. However,
the relationship between Figs. 2(a) and (b)—which is independent of the specifics of our
experiments—shows that individuals with higher weight tend to prefer the consensus winner
more than individuals with lower weight.
The effect of m, k, and scoring rule. We now explore the impact on RSWL of changing
the numbers of agents m, the number of initial nodes k when generated the network, and
difference between Borda and plurality scoring. We set α = 0.25, n = 1000, and run 2500
instances for each parameter setting (as above).

Fig. 4 shows average (and maximum, minimum) RSWL for three actual, assumed
model combinations for various combinations of rule, m and k, denoted by rule(m, k) (e.g.,
Plura(5, 1) represents m = 5, k = 1, and plurality). Comparing Borda(5, 1) and Plura(5, 1),
and Borda(10, 1) and Plura(10, 1), we see plurality is more susceptible to social welfare loss
than Borda. Increasing m has negligible effect on RSWL when Borda is used, but this is not
true of plurality. Surprisingly, increasing k from 1 to 2 decreases RSWL (see Borda(5, ·)):
this occurs because, when k = 2, the resulting network is denser since each node has at
least two neighbors. This connectivity, causes the number of “very influential” agents to
increase; but since weights are normalized (the sum of all weights sums to n), their overall
influence decreases as they “share their influence,” and weight variance over N decreases.
Self-loop weight α. When we vary the self-loop weight α, it has a significant effect on
RSWL when the actual utility model is global but the intrinsic utility model is assumed.
We fix n = 1000, m = 5, k = 1 and vary α over {0.05, 0.1, 0.25, 0.5, 0.75} (2500 instances for
each setting). Table 4 shows that, for both Borda and plurality, increasing α (i.e., decreasing
overall degree of empathy) decreases RSWL.
Number of Iterations of ICE. Finally we examine how the self-loop weight α and
Borda/plurality utilities affect the expected number of iterations by the iterated candidate
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Figure 3: The average (maximum, minimum) RSWL (2500 runs).

α = 0.05 α = 0.1 α = 0.25 α = 0.5 α = 0.75 α = 1

Borda 15.84% 14.82% 12.73% 9.79% 5.42% 0%
Plurality 39.12% 36.29% 31.02% 22.46% 13.09% 0%

Table 4: Maximum values of RSWL, global vs. intrinsic models.

elimination algorithm. We fix n = 1000 andm = 5, and vary α over {0.05, 0.1, 0.25, 0.5, 0.75}
(2500 instances). Fig. 4(a) illustrates estimated social welfare for each alternative in one
representative instance, with α = 0.25 and Borda scoring (this instance of ICE converges
in under 2 milliseconds). It converges completely in 24 iterations (n.b. n = 1000). Alterna-
tives a4 and a5 are eliminated at iterations 16 and 17, respectively; a1 after 20 iterations;
and a2 after 24 iterations; hence a3 is optimal. We note that the relative ordering of the
alternatives is fixed after 6 iterations (in this instance), which might suggest new methods
for early termination.

Fig. 4(b) shows the average (and max, min) number of iterations of ICE for various α,
for both Borda and plurality. In all cases, the number of iterations is small compared to
the size of the network. ICE is relatively insensitive to the scoring rule, and convergence
time decreases dramatically with increasing α, as is typical for iterative algorithms (e.g., for
Markov chains). (i.e., for a specific α, the average required iterations is almost the same for
Borda and plurality).

5 Concluding Remarks and Future Work

We have presented a new model for social choice situations in which an individual’s intrinsic
preference for alternatives is combined with their empathetic preferences, reflecting their
desire to see others satisfied with the selected alternative. Treating a social network as one
possible measure of strength of empathetic preference, we developed models and algorithms,
for both local and global empathetic settings, that allow one to compute social welfare
maximizing outcomes efficiently by weighting the contribution of each agent. Our models
have a natural interpretation as empathetic voting models when scoring rules are used.
Critically, we require only that individuals specify their intrinsic preferences (and network
weights): they need not reason about their neighbor’s preferences.

This model, while novel, is merely a starting point for a broader investigation into the
role of empathetic preferences in social choice. We are currently exploring more realistic pro-
cesses for simultaneous generation of networks and preferences that are even better suited
to empathetic voting than preferential attachment networks. While our focus has been the
choice of a single alternative/winner, our model can also be applied to matching, assignment,
and other group decision problems; each will require its own analysis and algorithmic de-
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Figure 4: (a) Estimated social welfare over iterations of ICE for 1 run and (b) average (with
maximum and minimum) number of iterations of ICE.

velopments. More importantly is the question of the prevalence and strength of empathetic
preferences, the extent to which social network structure is indicative of such preferences,
and how one can best discover these preferences in practical settings without an excessive
burden on users. Two other important directions are: voting schemes in which agents can
specify their tradeoffs between intrinsic and empathetic preference in a more qualitative
fashion; and considering the possibility that agents are not truthful and fully aware of their
utility functions. These questions require both social scientific and computational insight.
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Exploiting Polyhedral Symmetries

in Social Choice1

Achill Schürmann

Abstract

One way of computing the probability of a specific voting situation under the Im-
partial Anonymous Culture assumption is via counting integral points in polyhedra.
Here, Ehrhart theory can help, but unfortunately the dimension and complexity of
the involved polyhedra grows rapidly with the number of candidates. However, if we
exploit available polyhedral symmetries, some computations become possible that
previously were infeasible. We show this in three well known examples: Condorcet’s
paradox, Condorcet efficiency of plurality voting and in Plurality voting vs Plurality
Runoff.

1 Introduction

Under the Impartial Anonymous Culture (IAC) assumption, the probability for certain
election outcomes can be computed by counting integral solutions to a system of linear
inequalities, associated to the specific voting event of interest (see for example [GL11]).
There exists a rich mathematical theory going back to works of Ehrhart [Ehr67] in the 1960s
that helps to deal with such problems. We refer to [BR07] and [Bar08] for an introduction.
The connection to Social Choice Theory was discovered by Lepelley et al. [LLS08] and
Wilson and Pritchard [WP07]. A few years earlier a similar theory had been described
specifically for the social choice context by Huang and Chua [HC00] (see also [Geh02]).
Based on Barvinok’s algorithm [Bar94] there now exists specialized mathematical software
for performing previously cumbersome or practically impossible computations. The first
available program was LattE, with its newest version LattE integrale (see [LDK+11a]);
alternatives are barvinok (see [VB08]) and Normaliz (see [BIS12]) which are also usable
within the polymake framework (see [GJ00]).

The purpose of this note is to shed some light on the possibilities for social choice
computations that arise through the use of Ehrhart theory and weighted generalizations of
it (see [BBL+10]). We in particular show how symmetry of linear systems characterizing
certain voting events can be used to reduce computation times, and in some cases, even leads
to previously unkown results. As examples, we consider three well studied voting situations
with four candidates: Condorcet’s paradox, the Condorcet efficiency of plurality voting and
different outcomes in Plurality vs Plurality Runoff.

In Section 2 we review some linear models for voting events and introduce some of
the used notation. In Section 3 we sketch how counting integral points in polyhedra and
Ehrhart’s theory can be used to compute probabilities for voting outcomes. In Section 4 we
show how the complexity of computations can be reduced by using a symmetry reduced,
lower dimensional reformulation. We in particular show how to use integration to obtain
exact values for the limiting probability of voting outcomes when the number of voters tends
to infinity. As examples, we obtain previously unknown, exact values for two four candidate
election events: for the Condorcet efficiency of plurality voting and for Plurality vs Plurality
Runoff.

1An earlier version of this paper has been published online by Social Choice and Welfare, April 13th
2012.
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2 Linear systems describing voting situations

Notation

For the start we look at three candidate elections, as everything that will follow can best be
motivated and explained in smaller examples. Assume there are n voters, with n ≥ 2, and
each of them has a complete linear (strict) preference order on the three candidates a, b, c.
We subdivide the voters into six groups

(nab, nac, nba, nbc, nca, ncb) , (1)

according to their six possible preference orders:

abc(nab) acb(nac) bac(nba) bca(nbc) cab(nca) cba(ncb)

For example, there are nab voters that prefer a over b and b over c. We omit the last
preference in the index, as it is determined once we know the others. This type of indexing
will show to be useful when we reduce the number of variables in Section 4.

The tuple (1) is referred to as a voting situation. In an election with

n = nab + nac + nba + nbc + nca + ncb (2)

voters, there are
(
n+5
5

)
possible voting situations. We make the simplifying Impartial Anony-

mous Culture (IAC) assumption that each of these voting situations is equally likely to occur.

Condorcet’s Paradox

Maybe the most famous voting paradox goes back to the Marquis de Condorcet (1743–
1793). He observed that in an election with three or more candidates, it is possible that
pairwise comparison of candidates can lead to an intransitive collective choice. For instance,
candidate a could be preferred over candidate b, b could be preferred over candidate c and
c could be preferred over candidate a. In this case there is no Condorcet winner, that is,
someone who beats every other candidate by pairwise comparison.

The condition that candidate a is a Condorcet winner can be described via two linear
constraints:

nab + nac + nca > nba + nbc + ncb (3)

nab + nac + nba > nca + nbc + ncb (4)

( a beats b )

( a beats c )

The probability of candidate a being a Condorcet winner in an election with n voters
can be expressed as the quotient

Prob(n) =
card

{
(nab, . . . , ncb) ∈ Z6

≥0 satisfying (2), (3), (4)
}

(
n+5
5

) .

The denominator is a polynomial of degree 5 in n. It had been observed by Fishburn and
Gehrlein [GF76] (cf. [BB83]) that the numerator shows a similar behavior: Restricting to
even or odd n it can be expressed as a degree 5 polynomial in n. The leading coefficient of
both polynomials is the same and we approach the same probability for large elections (as
n tends to infinity). This limiting probability is known to be

lim
n→∞

Prob(n) =
5

16
.

Having the probability for candidate a being a Condorcet winner, we obtain the proba-
bility for a Condorcet paradox (no Condorcet winner exists) as 1−3 ·Prob(n) with an exact
limiting probability of 1

16 .
In a similar way we can determine probabilities for other voting events.
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Condorcet efficiency of Plurality voting

If there is a Condorcet winner, there is good reason to consider him to be the voter’s choice.
However, many common voting rules do not always choose the Condorcet winner even if
one exists. This is in particular the case for the widely used plurality voting, where the
candidate with a majority of first preferences is elected.

The condition that candidate a is a Condorcet winner but candidate b is the plurality
winner can be expressed by the two inequalities (3) and (4), together with the two additional
inequalities

nba + nbc > nab + nac (5)

nba + nbc > nca + ncb (6)

( b wins plurality over a )

( b wins plurality over c )

The Condorcet efficiency of a voting rule is the conditional probability that a Condorcet
winner is elected if one exists. As there are 3 ·2 possibilities for choosing a Condorcet winner
and another plurality winner, we obtain

Prob(n) =
6 · card

{
(nab, . . . , ncb) ∈ Z6

≥0 satisfying (2), (3), (4), (5), (6)
}

3 · card
{

(nab, . . . , ncb) ∈ Z6
≥0 satisfying (2), (3), (4)

}

for the likelihood of a Condorcet winner being a plurality loser. Again, depending on n
being odd or even, one obtains polynomials in n in the denominator and the numerator
(see [Geh82]). The exact value of the limit limn→∞ Prob(n) is 16/135. Therefore, the
Condorcet efficiency of plurality voting with three candidates is 119/135 = 88.148%.

Plurality vs Plurality Runoff

Plurality Runoff voting is a common practice to overcome some of these “problems” of
Plurality voting. It is used in many presidential elections, for example in France. After a
first round of plurality voting in which none of the candidates has achieved more than 50%
of the votes, the first two candidates compete in a second runoff round.

The condition that candidate b is the plurality winner, but candidate a wins the second
round of Plurality Runoff can be expressed by the two inequalities (5) and

nab + nac > nca + ncb, (7) ( a wins plurality over c )
together with the linear condition (3) that a beats b in a pairwise comparison. The proba-
bility that another candidate is chosen in the second round as the number of voters tends
to infinity is known to be 71/576 = 12.32638% (see [LLS08]).

Four and more candidates

Having m candidates we can set up similar linear systems in m! variables. For example, in an
election with four candidates a, b, c, d we use the 24-dimensional vector xt = (nabc, . . . , ndcb).
Here, indices are taken in lexicographical order. The condition that a is a Condorcet winner
is described by the three inequalities that imply a beats b, a beats c and a beats d in
a pairwise comparison. As linear systems with 24 variables become hard to grasp, it is
convenient to use matrices for their description. We are interested in all non-negative integral
(column) vectors x satisfying the matrix inequality Ax > 0 for the matrix A ∈ Z3×24 with
entries

(8)

1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 -1

1 1 1 1 1 1 1 1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 1 1 -1 -1 -1

1 1 1 1 1 1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1
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3 Likelihood of voting situations and Ehrhart’s theory

Integral points in polyhedral cones

In order to deal with an arbitrary number of candidates, let us put the example above in a
slightly more general context. In any of the three voting examples, the voting situations of
interest lie in a polyhedral cone, that is, in a set P of points in Rd (with d = 6 or d = 24 in
case of three or four candidate elections) satisfying a finite number of homogeneous linear
inequalities. In addition to the strict inequalities which are different in each of the examples,
the condition that the variables ni are non-negative can be expressed by the homogeneous
linear inequalities ni ≥ 0.

Let P,S ⊂ Rd denote two d-dimensional polyhedral cones, each defined by some homoge-
neous linear (possibly strict) inequalities. We may assume that P is contained in S and that
both polyhedral cones are contained in the orthant Rd≥0. If we are interested in elections
with n voters, we consider the voting situations (integral vectors) in the intersection of P
and S with the affine subspace

Ldn =

{
(n1, . . . , nd) ∈ Rd |

d∑

i=1

ni = n

}
.

The expected frequency of voting situations being in P among voting situations in S is then
expressed by

Prob(n) =
card

(
P ∩ Ldn ∩ Zd

)

card (S ∩ Ldn ∩ Zd)
. (9)

When estimating the probability of candidate a being a Condorcet winner for instance,
the homogeneous polyhedral cone S is simply the non-negative orthant Rd≥0 described by
the linear inequalities ni ≥ 0. In that case the denominator is known to be equal to

(
n+ d− 1

d− 1

)
.

This is a polynomial in n of degree d− 1 (the dimension of Ldn ∩ S).

Ehrhart theory

By Ehrhart’s theory, the number of integral solutions in a polyhedral cone intersected
with Ldn can be expressed by a quasi-polynomial in n. Roughly speaking, a quasi-polynomial
is simply a finite collection p1(n), . . . , pk(n) of polynomials, such that the number of voting
situations is given by pi(n) if i ≡ n mod k.

The degree of the polynomial is equal to the dimension of the polyhedral cone intersected
with Ldn. In the voting events considered here this dimension is always equal to d − 1. So
in the examples with three candidates their degree is always 5. The number k of different
polynomials depends on the linear inequalities involved. For the Condorcet paradox we have
k = 2 polynomials p1(n) and p2(n), where p1(n) gives the answer for odd n (1 ≡ n mod 2)
and p2(n) gives the answer for even n (0 ≡ 2 ≡ n mod 2). For Condorcet efficiency we have
k = 6 (see [Geh02]) and for Plurality vs Plurality Runoff we have k = 12 (see [LLS08]).

Given a polyhedral cone P, the quasi-polynomial q(n) = card
(
P ∩ Ldn ∩ Zd

)
can be

explicitly computed using software packages like LattE integrale [latte] or barvinok

[barvinok]. The result for the polyhedral cone P describing candidate a as the Condorcet
winner could look like
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1/384 * n^5

+ ( 1/64 * { 1/2 * n } + 1/32 ) * n^4

+ ( 17/96 * { 1/2 * n } + 13/96 ) * n^3

+ ( 23/32 * { 1/2 * n } + 1/4 ) * n^2

+ ( 233/192 * { 1/2 * n } + 1/6 ) * n

+ ( 45/64 * { 1/2 * n } + 0 )

The curly brackets {· · · } mean the fractional part of the enclosed number, allowing to
write the quasi-polynomial in a closed form. In this example we get different polynomials
for odd and even n. Note that the leading coefficient (the coefficient of n5) is in both cases
the same. By Ehrhart’s theory this is always the case, as it is equal to the relative volume
of the polyhedron P ∩ Ld1. That is, it is equal to a

√
d-multiple of the standard Lebesgue

measure on the affine space Ld1. The measure is normalized so that the space contains one
integral point per unit volume.

One technical obstacle using software like LattE integrale or barvinok is the use
of polyhedral cones described by a mixture of strict and non-strict inequalities. As the
software assumes the input to have only non-strict inequalities or equality conditions, one
has to avoid the use of strict inequalities. A simple way to achieve this is the replacement
of strict inequalities x > 0 by non-strict ones x ≥ 1, in case x is known to be integral.
For instance, if x is a linear expression with integer coefficients, and if we are interested in
integral solutions as in our examples, this is a possible reformulation.

Altogether, by obtaining quasi-polynomials for numerator and denominator in (9) we
get an explicit formula for Prob(n) via Erhart’s theory.

Limiting probabilities via integration

If we want to compute the exact value of limn→∞ Prob(n) as n tends to infinity, we can
use volume computations without using Ehrhart’s theory. As mentioned above, the leading
coefficients of denominator and numerator correspond to the relative volumes of the sets
P ∩ L1 and S ∩ L1:

lim
n→∞

Prob(n) = lim
n→∞

card
(
P ∩ Ld1 ∩ (Z/n)d

)

card
(
S ∩ Ld1 ∩ (Z/n)d

) =
relvol

(
P ∩ Ld1

)

relvol
(
S ∩ Ld1

)

In fact, as long as we use the same measure to evaluate the numerator and the denomina-
tor, it does not matter what multiple of the standard Lebesgue measure we use to compute
volume on the affine space Ld1. The exact relative volume can be computed using LattE

integrale. Alternatives are for example Normaliz (see [normaliz]) or vinci (see [BEF00]).
Exact computations can be quite involved in higher dimensions (cf. [DF88]). In such cases
it is sometimes only possible to compute an approximation, using Monte Carlo methods for
instance.

4 Reducing the dimension by exploiting polyhedral
symmetries

In many models the involved linear systems and polyhedra are quite symmetric. In partic-
ular, permutations of variables may lead to equivalent linear systems describing the same
polyhedron. Such symmetries are often visible in smaller examples and can automatically
be determined for larger problems, for instance by our software SymPol (see [RS10]). In
the three examples described in Section 2, we can exploit such symmetries to reduce the
complexity of computations.
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Condorcet’s paradox

In case of a being a Condorcet winner in a three candidate election, the variables nab and
nac occur pairwise (as nac + nab) in inequalities (3), (4) and in equation (2). The same is
true for nbc and ncb. By introducing new variables na = nac + nab and n∗a = nbc + ncb we
can reduce the dimension of the linear system to only four variables:

na + nca − n∗a − nba > 0

na + nba − n∗a − nca > 0

na + nca + n∗a + nba = n

na, n∗a, nba, nca ≥ 0.

The index a indicates that we group all variables which carry candidate a as their first
preference and index ∗a stands for grouping of all variables with candidate a ranked last. In
the reduced linear system each 4-tuple (na, n∗a, nba, nca) represents several voting situations,
previously described by 6-tuples. For na we have (na + 1) different possibilities of non-
negative integral tuples (nac, nab). Similar is true for n∗a. Together we have

(na + 1)(n∗a + 1)

voting situations with three candidates represented by each non-negative integral vector
(na, n∗a, nba, nca).

In the four candidate case it is possible to obtain a similar reformulation by grouping
among 24 variables. We introduce a new variable for sets of variables having same coefficients
in the linear system. Having a matrix representation as in (8), this kind of special symmetry
in the linear system is easy to find by identifying equal columns. Introducing a new variable
for each set of equal columns we get

(10)

na − nba + nca + nda + n∗ab − n∗ac − n∗ad − n∗a > 0

na + nba − nca + nda − n∗ab + n∗ac − n∗ad − n∗a > 0

na + nba + nca − nda − n∗ab − n∗ac + n∗ad − n∗a > 0

These three inequalities describe voting situations in which candidate a beats candidates
b, c and d each in a pairwise comparison. As in all of our examples, we additionally have
the condition that the involved variables add up to n and that all of them are non-negative.

As before, the used indices of variables reflect which voter preferences are grouped. As
in the three candidate case, na and n∗a denote the number of voters with candidate a being
their first and last preference respectively. Similarly, xy and ∗yx in the index indicate that
voters with preference order starting with x, y and ending with y, x have been combined.

Using our software SymPol [sympol] one easily checks that the original system with
24 variables has a symmetry group of order 199065600. The new reduced system with 8
variables, obtained through the above grouping of variables, turns out to have a symmetry
group of order 6 only. So most of the symmetry in the original system is of the simple form
that is detectable through equal columns in a matrix representation. The remaining 6-fold
symmetry comes from the possibility to arbitrarily permute the variables nba, nca, nda when
at the same time the variables n∗ab, n∗ac, n∗ad are permuted accordingly. This symmetry is
due to the fact that candidates b, c and d are equally treated in the linear system (10). The
two new variables na and n∗a each combine six of the former variables. The other six new
variables each combine two former ones.
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Weighted counting

In general, if we group more than two variables, say if we substitute the sum of k variables
n1 + . . .+ nk by a new variable N , we have to include a factor of

(
N + k − 1

k − 1

)

when counting voting situations via N . If we substitute d variables (n1, . . . , nd) by D
new variables (N1, . . . , ND), say by setting Ni to be the sum of ki of the variables nj , for
i = 1, . . . , D, then we count for each D-tuple

p(N1, . . . , ND) =

D∏

i=1

(
Ni + ki − 1

ki − 1

)
(11)

many voting situations.
In the example above, with four candidates and candidate a being the Condorcet winner,

we have d = 24, D = 8 and we obtain a degree 16 polynomial
(
na + 5

5

)
(nba + 1)(nca + 1)(nda + 1)(n∗ab + 1)(n∗ac + 1)(n∗ad + 1)

(
n∗a + 5

5

)

to count voting situations for each 8-tuple

(na, nba, nca, nda, n∗ab, n∗ac, n∗ad, n∗a) .

Geometrically, the polyhedral cone P ⊂ Rd is replaced by a new polyhedral cone P ′ ⊂ RD
in a lower dimension. As the counting is changed we obtain for the probability (9) of voting
situations in P among those in S:

Prob(n) =

∑

x∈P∩Ld
n∩Zd

1

∑

x∈S∩Ld
n∩Zd

1
=

∑

y∈P′∩LD
n ∩ZD

p(y)

∑

y∈S′∩LD
n ∩ZD

p(y)
. (12)

Here, S ′ is equal to the corresponding homogeneous polyhedral cone obtained from S ⊂ Rd,
and p(y) is the polynomial (11) in D variables. In the example of Condorcet’s paradox, S ′
is simply equal to the full orthant RD≥0.

As seen in Section 3, we can use Ehrhart’s theory to determine an explicit formula for
Prob(n). The right hand side of the formula above suggests that we can do this also via
weighted lattice point counting in dimension D. A corresponding Ehrhart-type theory has
recently been considered (see [BBL+10]). A first implementation is available in the package
barvinok via the command barvinok summate. We successfully tested the software on
some reformulations of three candidate elections, but so far barvinok seems not capable
to do computations for the four candidate case. However, there still seems quite some
improvement possible in the current implementation (personal communication with Sven
Verdoolaege). It can be expected that future versions of LattE integrale will be capable
of these computations (personal communication with Matthias Köppe). It appears to be
“just” a matter of implementing the ideas in [BBL+10].

We note that, theoretically, it can generally be expected that weighted counting over
a smaller dimensional polyhedron is faster than unweighted counting over a corresponding
high dimensional polyhedron. However, due to fact that a suitable implementation for
weighted counting is not available at the moment, latter approach may practically still be a
good choice. For instance, the latest version of Normaliz (July 2012) appears to be capable
to obtain the Ehrhart quasi-polynomials for the 23-dimensional polyhedra considered in this
note (personal communication with Winfried Bruns and Bogdan Ichim).
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Limiting probabilities via integration

If we want to compute the exact value of limn→∞ Prob(n) we may use integration. Using (12)
we get through substitution of y = nz:

lim
n→∞

Prob(n) = lim
n→∞

∑

y∈P′∩LD
n ∩ZD

p(y)

∑

y∈S′∩LD
n ∩ZD

p(y)
= lim

n→∞

∑

z∈P′∩LD
1 ∩(Z/n)D

p(nz)

∑

z∈S′∩LD
1 ∩(Z/n)D

p(nz)

= lim
n→∞

∑

z∈P′∩LD
1 ∩(Z/n)D

p(nz)/ndeg p

∑

z∈S′∩LD
1 ∩(Z/n)D

p(nz)/ndeg p
=

∫

P′∩LD
1

lt(z) dz

∫

S′∩LD
1

lt(z) dz

.

Here, the division of numerator and denominator by a degree of p (deg p) power of n shows
that the integrals on the right are taken over the leading term lt(z) of the polynomial
p(z) only. Thus determining the exact limiting probability is achieved by integrating a
degree d −D monomial over a bounded polyhedron (polytope) in the (D − 1)-dimensional
affine space LD1 . We refer to [LDK+11b] for background on efficient integration methods
(cf. [BBL+11] and [Sch98]).

As in the case of relative volume computations in dimension d, the integral is taken
with respect to the relative Lebesgue measure – here on the affine space LD1 . In fact, as we
are computing a quotient, any measure being a multiple of the standard Lebesgue measure
on LD1 will give the same value.

For the example with candidate a being a Condorcet winner in a four candidate election,
the leading term to be integrated is

n5a · nba · nca · nda · n∗ab · n∗ac · n∗ad · n5∗a,

which is much simpler than the full polynomial. Integrating this polynomial over the
reduced 8-dimensional polyhedron can be done using LattE integrale (called with op-
tion valuation=integrate). In this way one obtains in a few seconds an exact value of
1717/2048 for the probability that a Condorcet winner exists (as n tends to infinity). This
value corresponds to the one obtained by Gehrlein in [Geh01] and serves as a test case for
our method. The corresponding volume computation with LattE integrale (called with
option valuation=volume) in 24 variables did not finish after several weeks of computa-
tion. This is due to the fact that triangulating a 24-dimensional polyhedron is much more
involved than integration over a corresponding lower dimensional polyhedron (of dimension
8 in this case). However, Winfried Bruns, Bogdan Ichim and Christof Söger report (May
2012) that the 24-dimensional volume computation is doable with the newest version of their
software Normaliz (see [normaliz]). Nevertheless, their volume computation, using sophis-
ticated heuristics for triangulations (see [BIS12]), is still much slower than the corresponding
integration over the 8-dimensional polyhedron.

In a similar way we can deal with other voting situations as well.

Condorcet efficiency of plurality voting

Assuming candidate a is a Condorcet winner, but candidate b wins a plurality voting, we
obtain a reduced system in the three candidate case with five variables:
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na − nba − nbc − ncb + nca > 0

na + nba − nbc − ncb − nca > 0

−na + nba + nbc > 0

nba + nbc − ncb − nca > 0

Here the only reduction is the grouping na = nab + nac. The corresponding polynomial
weight is na + 1.

The four candidate case is more involved. The linear system with 24 variables has
a comparatively small symmetry group of order 92160. We can group six variables into
na. Taking the reduced system (10) of three inequalities with 8 variables (modeling that
candidate a is a Condorcet winner) we have to add three inequalities for the condition that
candidate b wins plurality. These can be shortly described by nb > na, nc, nd, but a grouping
of variables in nb, nc and nd is incompatible with the other three conditions. Instead we
use new variables nb∗a, nc∗a and nd∗a (in (10) combined in n∗a) for preferences in which a is
ranked last. Additionally we have to keep the variables where candidate a is ranked third
(in (10) combined in n∗ab, n∗ac, n∗ad).

In the three inequalities (10) we can simply substitute n∗a by nb∗a + nc∗a + nd∗a and
n∗ad, n∗ac and n∗ab by nbca + ncba, nbda + ndba and ncda + ndca. The additional three linear
inequalities for candidate b being a plurality winner are then:

nb∗a + nba + nbca + nbda − na > 0

nb∗a + nba + nbca + nbda − nc∗a − nca − ncba − ncda > 0

nb∗a + nba + nbca + nbda − nd∗a − nda − ndba − ndca > 0

This reduced linear system has 6 inequalities for 13 variables. It still has a symmetry of
order 2 coming from an interchangeable role of candidates c and d. The degree 11 polynomial
used for integration is

n5a · nba · nca · nda · nb∗a · nc∗a · nd∗a.
With it, using LattE integrale, we obtain an exact limit of

10658098255011916449318509

14352135440302080000000000
= 74.261410 . . .%

for the Condorcet efficiency of plurality voting with four candidates. To the best of our
knowledge this value has not been computed before.

Plurality vs Plurality Runoff

The case of Plurality vs Plurality Runoff has a high degree of symmetry. For three candidates
we obtain a reduced four dimensional reformulation:

nb − na > 0

na − nca − ncb > 0

na + nca − nb − ncb > 0

Counting is done via the polynomial weight (na + 1)(nb + 1). Integration of nanb over
the corresponding 3-dimensional polyhedron yields the known limiting probability.
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If we consider elections with m candidates, m ≥ 4, we can set up a linear system with
only 2(m − 1) variables and m inequalities. We denote the candidates by a, b and ci for
i = 1, . . . ,m− 2:

nb − na > 0

For i = 1, . . . ,m− 2 : na − nci·a·b − nci·b·a > 0

na +

m−2∑

i=1

nci·a·b − nb −
m−2∑

i=1

nci·b·a > 0

The first two lines model that candidate b wins plurality over candidate a and that
candidate a is second, winning over candidates ci, for i = 1, . . . ,m− 2. The last inequality
models the condition that candidate a beats b in a pairwise comparison. The variable nci·a·b
gives the number of voters with candidate ci being their first preference and candidate a being
ranked before candidate b. Similarly, nci·b·a is the number of voters with first preference
ci and candidate b being ranked before candidate a. We use “·” to denote any ordering
of candidates; in contrast to “∗” used before we also allow an empty list here. For both
variables, nci·a·b and nci·b·a, we group (m−1)!/2 of the m! former variables. The new variables
na and nb both represent (m − 1)! former variables. Therefore, counting is adapted using
the polynomial weight

(na · nb)(m−1)!−1 ·
m−2∏

i=1

(nci·a·b · nci·b·a)(m−1)!/2−1

of degree m!− 2m+ 2.
The above inequalities assume that candidates b and a are ranked first and second in

a plurality voting. So having the probability for the corresponding voting situations, we
have to multiply by m(m − 1) to get the overall probability of a plurality winner losing in
a second Plurality Runoff round.

For four candidates (m = 4) we obtain an exact limiting probability of

2988379676768359

12173449145352192
= 24.548339 . . .%.

This result can be obtained using the weighted, dimension-reduced problem with LattE

integrale, as well as by a relative volume computation in 24 variables. However, the latter
is a few hundred times slower than integration over the dimension reduced polyhedron. A
similar result from a volume computation is obtained in [LDK+11b].

To be certain about our new results, we computed the value above, as well as the
likelihood for the existence of a Condorcet winner, with a fully independent Maple calcu-
lation, using the package Convex (see [convex]). For it, we first obtained a triangulation
(non-overlapping union of simplices) of the dimension-reduced polyhedron and then applied
symbolic integration to each simplex.

We also tried to solve the five candidate case, where the polyhedron is only 7-dimensional
(in 8 variables). The integration of a polynomial of degree 112, however, seems a bit too
difficult for the currently available technology. Nevertheless it seems that we are close to
obtain exact five candidate results as well.

5 Conclusions

Using symmetry of linear systems we can obtain symmetry reduced lower dimensional re-
formulations. These allow to compute exact limiting probabilities for large elections with
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four candidates. In this work we only gave a few starting examples. Similar calculations
are possible for many other voting situations as well. Even during the work on this project,
the software packages LattE integrale and Normaliz for corresponding polyhedral com-
putations have introduced substantial improvements. We can look forward to capabilities
of future versions.

At the moment, for elections with five or more candidates further ideas seem necessary.
One possibility to reduce the complexity of computations further is the use of additional
symmetries which remain in our reduced systems.
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On Elections with Robust Winners

Dmitry Shiryaev, Lan Yu, Edith Elkind

Abstract

We study the sensitivity of election outcomes to small changes in voters’ preferences. We
assume that a voter may err by swapping two adjacent candidates in his vote; we would like to
check whether the election outcome would remain the same given up to δ errors. We describe
polynomial-time algorithms for this problem for all scoring rules as well as for the Condorcet
rule. We are also interested in identifying elections that are maximally robust with respect
to a given voting rule. We define the robustness radius of an election with respect to a given
voting rule as the maximal number of errors that can be made without changing the election
outcome; the robustness of a voting rule is defined as the robustness radius of the election that
is maximally robust with respect to this rule. We derive bounds on the robustness of various
voting rules, including Plurality, Borda, and Condorcet.

1 Introduction
Voting provides a convenient method for preference aggregation in heterogeneous groups of agents:
the group members report how they order the available alternatives (from the most preferred one
to the least preferred one), and a voting rule is used to select a winner. There is a wide variety of
voting rules that can be used for this purpose, with each of these rules encoding a certain approach
to aggregating the preferences of the group members. Clearly, for a voting rule to work as intended,
it has to be the case that every voter can reliably submit a ranking that fully reflects his opinion of
the available alternatives. However, it is not realistic to assume that this is always the case.

Indeed, there are two main reasons for submitting an erroneous vote. First, the voters may
be unable to invest sufficient time and resources in investigating the properties of all the available
alternatives, and, as a result, they may err by ordering fairly similar alternatives in a way that deviates
from the one they would have chosen if they were to study their options in more detail. Second,
voters can make mistakes when filling out their ballots; again, while they are unlikely to rank their
top alternative last, they may inadvertently swap adjacent alternatives.

Thus, we may wonder if an outcome of a given election would have remained the same if each
vote was a perfect reflection of the respective voter’s preferences. Of course, the answer to this
question depends on the observed election outcome: if the two most successful candidates are close
to being tied, it is quite plausible that the error-free outcome would have been different, but if
the current winner leads by a significant margin, the election outcome is likely to reflect the true
collective opinion. In other words, given an election, it is natural to ask how robust its outcome is,
given that our perception of the voters’ preferences may be noisy.

In this paper, we study this question for several voting rules, namely, the class of all scoring rules
and the Condorcet rule, under the assumption that an “elementary” mistake that a voter (or a vote
recording device) can make is to swap two adjacent alternatives in the vote; in recording a given vote,
several such mistakes can be made consecutively. This approach is motivated by a classic model of
noise used in the study of preferences, which is known as the Mallows noise model [7]. However,
in contrast to the Mallows model, we do not assume that mistakes follow a particular distribution.
Rather, we are interested in the worst-case scenario, i.e., whether the election result could have
been different if we were to deviate by δ swaps of adjacent candidates from the observed preference
profile. Thus, we measure the distance between elections using the classic swap distance [3] (also
known as the inversion distance, the bubble-sort distance, or the Kemeny distance), and we ask
whether all elections within a given distance bound δ from the observed election E have the same
outcome as E.
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We remark that this computational problem can be viewed as the destructive version of the well-
studied swap bribery problem [4] with unit costs. In more detail, in the (constructive version of)
the swap bribery problem it is assumed that an external party wants to make a specific candidate
the election winner, and bribes the voters to change their preferences; each voter has a price for
swapping every pair of candidates in his vote, and the question is whether the external party can
achieve its goal given a certain bribery budget. In the destructive version of this problem (which,
to the best of our knowledge, has not been considered in the literature), the briber’s goal would be
to prevent a specific candidate from winning; clearly, this is equivalent to our question under the
assumption that all swaps have the same cost.

We are also interested in understanding the structure of elections whose outcome is maximally
robust with respect to a given voting rule, i.e., those whose winner is most resilient to swaps of
adjacent candidates. Formally for a given voting rule F , we define the robustness radius robF (E, c)
of an electionE with respect to a candidate c as the smallest number of swaps that have to be applied
to E to ensure that c is not the (unique) winner of E under F . The robustness of a voting rule F
for a given number of voters n and a given number of candidates m is then defined as the maximal
robustness radius, over all n-voter m-candidate elections and all candidates in these elections. This
quantity measures the maximum resilience of a voting rule to errors in reported preferences and may
vary quite substantially from one voting rule to another: for instance, our results show that the Borda
rule is considerably more robust than the Condorcet rule.

Our Results We show that our computational problem admits polynomial-time algorithms for all
scoring rules and the Condorcet rule. Further, we obtain essentially matching upper and lower
bounds on the robustness of several classes of scoring rules, including such prominent scoring rules
as Plurality and Borda. Determining the robustness of the Condorcet rule turns out to be more
difficult: while we provide non-trivial upper and lower bounds for this quantity, there is still a gap
that remains to be closed. Interestingly, we show that an election that is (almost) maximally robust
with respect to many scoring rules is provably non-optimal for the Condorcet rule.

Related Work Procaccia et al. [8] also consider robustness of voting rules to swaps of adjacent
candidates. However, their approach differs from ours in several important aspects. First, they
measure the robustness of a given election as a fraction of swaps that leave the outcome unchanged
(they also extend this definition to fixed-length chains of swaps), i.e., while our model of noise is
adversarial, theirs is random. Second, Procaccia et al. are interested in minimally robust elections,
while we focus on elections that are maximally robust. Indeed, while the goal of Procaccia et al. is
to understand which voting rules are most resilient to errors (or, viewed from a different perspective,
least sensitive to changes in voters’ preferences), and thus a worst-case approach is appropriate, our
aim is to understand which features of a preference profile guarantee that a given voting rule will
output the desired result, even in the presence of mistakes. Unsurprisingly, our conclusions are also
very different from those of Procaccia et al.: in our framework, Borda turns out to be extremely
robust, while Plurality is rather fragile, whereas in the model of Procaccia et al. the opposite is true.
Finally, we provide efficient algorithms for computing the robustness radius under many voting
rules; in contrast, the results of Procaccia et al. are non-algorithmic in nature.

Our work is also closely related to (and shares some of the motivation) with the recent work
by Xia [9] on the margin of victory of voting rules. Indeed, Xia explores essentially the same
algorithmic question, but for a different model of errors. Namely, he asks if the election results
would have remained the same if up to δ voters were to change their vote arbitrarily. Thus, our papers
differ in their notion of an elementary error, or, equivalently, in their approach to measuring distance
between elections: while the underlying notion of distance for our work is the swap distance, for [9]
it is the Hamming distance. In other words, while we study the destructive version of the swap
bribery problem [4], paper [9] studies the destructive version of the original bribery problem [5]1.

1To be precise, the margin of victory problem studied in [9] differs from destructive bribery with unit costs in its handling
of ties, but the two problems are nevertheless very similar; see the discussion in [9].
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While our approach is based on a more fine-grained notion of errors than that of [9], we do not
claim that it is generally superior: rather, for either approach there is a range of scenarios where
it is more suitable than the other. In particular, the swap distance-based model seems more attrac-
tive when voters make mistakes due to imperfect introspection or errors in recording their vote,
while the Hamming distance-based approach is more appealing when mistakes are due to (potential)
malfunctioning of the vote-recording device (which is the motivation put forward in [9]).

We remark that both in our model and in the model of [9] the associated algorithmic question is
easy for all scoring rules, but, apart from this, the contribution of the two papers is incomparable:
there are several voting rules studied in [9], but not in our work (though we intend to study these
voting rules in the future), but, on the other hand, Xia does not consider the Condorcet rule (he does,
however, prove NP-hardness results for several voting rules that are refinements of the Condorcet
rule). Also, Xia focuses on the algorithmic aspect of the problem only, while a significant (and per-
haps the most mathematically interesting) part of our contribution is the study of the combinatorial
question of robustness of voting rules; we believe that this question would be just as interesting to
study in the model of [9], and propose it as a direction for future work.

The rest of this paper is organized as follows. After introducing our notation and basic definitions
in Section 2, we formally define the problems we intend to study (Section 3). Sections 4 and 5
present our results for scoring rules and the Condorcet rule, respectively. We conclude in Section 6.

2 Preliminaries
An election is a pair E = (C,R), where C is a set of candidates, or alternatives, and R =
(R1, . . . , Rn) is a preference profile, with each Ri, i = 1, . . . , n, being a linear order over C;
we will sometimes write �i in place of Ri. We will refer to the elements ofR as votes: Ri is is the
vote of the i-th voter in the election (C,R). We denote the number of votes in a preference profile
R by |R|. We say that a voter i prefers a ∈ C to b ∈ C if a �i b. We denote the candidate ranked
by voter i in position j by c(j, Ri). Conversely, we denote the position of a candidate cj in the i-th
vote by pos(cj , Ri). We will sometimes identify C with the set [m] = {1, . . . ,m}. We denote the
space of all n-voter m-candidate elections by En,m.

Given an election E = (C,R), a candidate a is said to win the pairwise election against b if
more than half of the voters prefer a to b; if exactly half of the voters prefer a to b, then a is said
to tie his pairwise election against b. A candidate a ∈ C is said to be the Condorcet winner of the
election E = (C,R) if he beats every other candidate in their pairwise election.

Given two votes R and R′ over a set of candidates C, the swap distance between R and R′,
denoted by dswap(R,R′), is the number of swaps of adjacent candidates needed to transform R
into R′, or, equivalently, the number of pairs (a, b) ∈ C × C such that in R candidate a is ranked
above candidate b, but in R′ candidate b is ranked above candidate a. Given two n-voter elections
E = (C,R) and E′ = (C,R′) over the same set of candidates C, the swap distance between them,
denoted by dswap(E,E′), is given by dswap(E,E′) =

∑
i=1,...,n dswap(Ri, R

′
i).

A voting correspondence (in what follows, we will use the terms voting correspondence and
voting rule interchangeably) is a mapping F that given an election E = (C,R) outputs a non-
empty set of candidatesW = F(E) ⊆ C; the candidates inW are called the winners of the election
E under the voting rule F . We will now define the voting rules that will be considered in this paper.

Scoring rules. Every vector of non-negative reals α = (α1, . . . , αm) that satisfies α1 ≥ · · · ≥ αm
corresponds to a scoring rule Fα, which is defined for m-candidate elections only. Under this rule,
each candidate in an election E = (C,R) with |C| = m receives αi points from every voter
that ranks him in position i; the Fα-score of a candidate c in E (denoted by sα(E, c)) is the total
number of points that c receives in E. The winners under Fα are the candidates with the highest
Fα-score. The vector (α1, . . . , αm) is called the scoring vector that corresponds to the scoring rule

397



Fα. As we are interested in asymptotic complexity results, we will consider families of scoring
rules {Fαm}m≥1, where αm = (αm1 , . . . , α

m
m) and αm1 ≥ · · · ≥ αmm. We require these families

to be polynomial-time computable, i.e., we assume that for each m ≥ 1 and each i = 1, . . . ,m
the number αmi is a non-negative integer given in binary, and, moreover, there is a polynomial-
time algorithm that can output αmi given m and i. There are several prominent voting rules that
correspond to families of scoring rules. In particular, Plurality is the family of scoring rules given
by αm1 = 1, αmi = 0 for all m ≥ 1 and all i = 2, . . . ,m, Veto is the family of scoring rules given by
αmm = 0, αmi = 1 for all m ≥ 1 and all i = 1, . . . ,m− 1, Borda is the family of scoring rules given
by αmi = m − i for all m ≥ 1 and all i = 1, . . . ,m, and k-approval is the family of scoring rules
such that for eachm ≥ 1 it holds that αmi = 1 for i = 1, . . . , k and αmi = 0 for all i = k+1, . . . ,m,

The Condorcet rule. Under the Condorcet rule, if the election has a Condorcet winner, he is the
(unique) election winner; otherwise, the set of winners isC. We remark that it is more common (see,
e.g., [2]) to say that in the latter case the election has no winners. However, in the social choice liter-
ature it is standard to require (as we do) that a voting rule outputs a non-empty winner set for every
election, so we have modified the definition of the Condorcet rule to satisfy this requirement. Since
in this paper we focus on the unique winner variant of our computational problem (see Section 3
for formal definitions), these two definitions are essentially equivalent. However, for the non-unique
variant of our problem this is no longer the case; we discuss this issue in detail in Section 5.

In what follows, we abbreviate the Plurality rule to FP , the Borda rule to FB, k-approval to Fk,
and the Condorcet rule to FC .

3 Our Model
We will now present the two questions that will be the focus of this paper.

Definition 3.1. Given a voting rule F , an instance of F-UC DESTRUCTIVE SWAP BRIBERY (here
“UC” stands for “unit cost”) is given by an election E = (C,R), a candidate c ∈ C, and a
parameter δ ∈ Z+. It is a “yes”-instance if F(E) = {c}, but there exists an election E′ = (C,R′)
with dswap(E,E′) ≤ δ such that F(E′) 6= {c}. Otherwise, it is a “no”-instance.

We remark that in Definition 3.1 we consider the unique winner version of our problem, i.e., we
require c to be the unique winner of the original election, and we seek a modified election for which
this is no longer the case. Alternatively, one could consider the non-unique winner version of the
problem, where c is required to be one of the election winners, and the goal is to find an election
in which c is not an election winner at all. It is not hard to verify that the dynamic programming
algorithm for scoring rules presented in Section 4 can be modified to work for the non-unique winner
version of our problem. However, for the Condorcet rule the relationship between the two variants
of the problem is more complicated (see Section 5). We chose to focus on the unique winner version
of our problem since it provides a better match for the intuition behind the Condorcet rule.

Definition 3.2. Given a voting rule F , an election E = (C,R) and a candidate c ∈ C, the robust-
ness radius of E with respect to c under F , denoted by robF (E, c), is the smallest value of δ such
that there exists an election E′ = (C,R′) with dswap(E,E′) ≤ δ such that F(E′) 6= {c}.

Clearly, robF (E, c) ≥ 0 and robF (E, c) = 0 if and only if c is not the unique winner of E
under F . Moreover, since the swap distance between any pair of n-voter m-candidate elections is at
most δm,n = nm(m−1)

2 , we have robF (E, c) ≤ δm,n for every E ∈ En,m.
Given a voting rule, we would like to understand the structure of the elections that have the

maximum robustness radius with respect to this rule. Thus, overloading notation, we define the
robustness of a voting rule F as a function

robF (m,n) = max{robF (E, c) | E = (C,R) ∈ En,m, c ∈ C}.
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In what follows, we will investigate the complexity of UC DESTRUCTIVE SWAP BRIBERY and
prove upper and lower bounds of robF (m,n) for several families of scoring rules as well as the
Condorcet rule.

4 Scoring Rules
We start by describing a simple dynamic programming algorithm that efficiently solves UC DE-
STRUCTIVE SWAP BRIBERY for any polynomial-time computable family of scoring rules. We then
describe a simpler and faster algorithm for the Borda rule.

Theorem 4.1. The problem {Fαm}m≥1-UC DESTRUCTIVE SWAP BRIBERY is in P for any
polynomial-time computable family of scoring rules {Fαm}m≥1.

Proof. Fix a scoring vector α = (α1, . . . , αm). We will describe an algorithm that given (a) an
election E = (C,R) ∈ En,m that has a unique winner c under Fα and (b) a positive integer δ,
determines whether there exists an election E′ with dswap(E,E′) ≤ δ such that Fα(E′) 6= {c}.
The running time of our algorithm will be polynomial in n, m, log δ and logα1. Clearly, this
implies the statement of the theorem.

Consider an election E = (C,R) ∈ En,m. Suppose that c is the unique winner of E. For each
a ∈ C \ {c}, we will check whether there exists an election Ea with dswap(E,Ea) ≤ δ such that
in Ea the Fα-score of a is at least as high as that of c; we output “yes” if the answer is positive
for at least one a ∈ C \ {c}. Given an election E′ = (C,R′) and a candidate a ∈ C \ {c}, let
def(E′, a) = max{0, sα(E′, c)− sα(E′, a)}; we will refer to the quantity def(E′, a) as the deficit
of a in E′. Thus, our goal is find an election Ea within a distance δ from E such that the deficit of
a in Ea is 0.

We start by considering a variant of this problem where we are only allowed to modify a single
vote Ri ∈ R. Suppose that we are allowed to make at most d swaps in Ri. Let z(i, d) be the
maximum reduction in a’s deficit that can be obtained in this manner. Clearly, we cannot benefit
from swaps that do not involve a or c. Thus, we should use our d swaps to move a upwards or
to move c downwards (or both), and it remains to decide how many swaps to allocate to each of
these actions; this can be determined by considering all possible splits. More precisely, for each
d′ = 0, . . . , d, we consider the vote Ri(d′) obtained by first shifting c by d′ positions downwards in
Ri and then shifting a by d−d′ positions upwards in the resulting vote; among these d+1 votes, we
pick one that reduces a’s deficit as much as possible, and let z(i, d) be the corresponding reduction
in a’s deficit.

We are now ready to describe the dynamic programming algorithm for our problem. For each
d = 0, . . . , δ and each i = 0, . . . , n, let N(i, d) be the smallest deficit of a over all elections at swap
distance at most d from E that differ from E in the first i votes only. The quantities N(i, d) can be
computed as follows. Clearly, for every d = 0, . . . , δ, N(0, d) is simply a’s deficit in the original
election E, which is straightforward to compute. Further, we have

N(i, d) = max

{
0, min
d′=0,...,d

(N(i− 1, d− d′)− z(i, d′))
}

for all d = 0, . . . , δ and all i = 1, . . . , n. Indeed, we simply have to find an optimal way of splitting
d swaps between the i-th vote and the first i− 1 votes; the best way to use the d′ swaps allocated to
the i-th vote is given by z(i, d′). Thus, the quantities N(i, d) can be computed inductively starting
from i = 0. Once we have computed N(n, δ), it remains to check if N(n, δ) = 0; if yes, we have
succeeded in finding an election at distance at most δ from E where a’s score is at least as high as
that of c.

For some scoring rules, the algorithm given in the proof of Theorem 4.1 can be simplified. In
particular, this is the case for the Borda rule. Indeed, under this rule each upwards swap involving a
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but not c, as well as each downwards swap involving c but not a, reduces a’s deficit by 1; the most
“profitable” swaps are the ones that involve both a and c, as they reduce a’s deficit by 2. Thus, our
optimal strategy is to maximize the number of “super-profitable” swaps. This observation allows us
to simplify our algorithm as follows. We first consider the listR′ ⊆ R of all votes where c is ranked
above a. We re-order the votes in this list according to the number of candidates ranked between c
and a, from the smallest to the largest (breaking ties arbitrarily). We then process the votes in R′
one by one. In each vote, we swap c downwards until it is swapped with a. If we have processed
all votes in R′, and we still have some swaps available, we allocate them arbitrarily to swapping c
downwards or swapping a upwards in any vote in R where this can be done. Clearly, this approach
maximizes the number of swaps that reduce the deficit by 2, and is therefore optimal.

We now move on to the study of robustness of scoring rules. We first provide a simple upper
bound that applies to all “reasonable” voting rules. We then show that for the Borda rule this bound
is essentially tight.

We say that a voting rule F is unanimity-consistent if in every election E where some candidate
c is ranked first by all voters it holds that c is a winner of E under F . Note that all voting rules
considered in this paper (and, more broadly, all common voting rules) are unanimity-consistent.

Theorem 4.2. For any unanimity-consistent voting rule F we have robF (m,n) ≤ nm
2 .

Proof. Consider an election E = (C,R) ∈ En,m, and let c be a winner of E under F . For every
candidate a ∈ C \ {c}, let ra be the number of swaps required to get a into the top position in each
vote inR; note that by unanimity consistency performing these ra swaps would make a an election
winner. We have

∑

a∈C\{c}
ra ≤ n(1 + 2 + . . .+ (m− 1)) =

nm(m− 1)

2
.

As |C \{c}| = m−1, by the pigeonhole principle there exists some a ∈ C \{c} such that ra ≤ nm
2 .

Hence, robF (m,n) ≤ nm
2 .

Interestingly, for the Borda rule this bound is essentially tight.

Theorem 4.3. We have robFB(m,n) = nm
2 +O(n+m).

Proof. The upper bound follows immediately from Theorem 4.2. For the lower bound, consider an
election E = (C,R) ∈ En,m, where C = {c1, . . . , cm} and R consists of bn/2c votes of the form
c1 � c2 � . . . � cm and dn/2e votes of the form c1 � cm � . . . � c2. In this election c1 is the
unique Borda winner, and his Borda score is n(m − 1). On the other hand, consider a candidate ci
with i > 1. His Borda score in E is (m− i)bn2 c+ (i− 2)dn2 e = nm

2 +O(n+m).
Now, consider a minimal sequence of swaps that transforms E into an election E′ where ci

is a Borda winner. Each swap decreases the difference between the score of c1 and that of ci by
at most one unless this swap involves both c1 and ci (in which case it decreases the difference in
their scores by 2); however, there can be at most n swaps of the latter type. Therefore, the total
number of swaps required to make ci an election winner is at least nm2 + O(n + m), and therefore
robFB(m,n) ≥ nm

2 +O(n+m).

Next, we consider the k-approval rule with k ≥ m/2. We will use the following construction.
Given a voteR over a candidate setC of sizem, we say thatR′ is obtained fromR by the downwards
shift if c(1, R′) = c(m,R) and for each j = 2, . . . ,m it holds that c(j, R′) = c(j − 1, R). For
instance, by applying the downwards shift to the vote c1 � . . . � cm−1 � cm we obtain the vote
cm � c1 � . . . � cm−1. We say that an election (C,R) ∈ En,m is an (R,n,m)-typhoon if
n = mα for some α ∈ N, R1 = R, for each i = 2, . . . ,m the vote Ri is obtained from the vote
Ri−1 by the downwards shift, and for each j = 1, . . . , α − 1 and each i = 1, . . . ,m it holds that
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Rmj+i = Ri. Further, we say that an election (C,R) ∈ En,m is a (c,R′, n,m)-lidded typhoon if
c ∈ C, n = (m − 1)α for some α ∈ N, R′ is a vote over C \ {c}, and R is obtained from the
(R′, n,m− 1)-typhoon by inserting c into the top position of each vote inR′.

Theorem 4.4. For k ≥ m
2 we have robFk

(m,n) = n(m−k)2
2m +O(n+m).

Proof. For the upper bound, consider an election E = (C,R) ∈ En,m that has some candidate c as
its unique k-approval winner. Consider a candidate a ∈ C \ {c}. To ensure that c in not the unique
winner of E, it suffices to swap a into the top k positions in each vote. Let ra denote the number of
swaps needed to place a into top k positions in every vote. We have

∑

a∈C\{c}
ra ≤ n(1 + 2 + . . .+ (m− k)) =

n(m− k)(m− k + 1)

2
.

As |C \ {c}| = m− 1, by the pigeonhole principle there exists some a ∈ C \ {c} such that

ra ≤
n(m− k)(m− k + 1)

2(m− 1)
=
n(m− k)2

2m
+O(n+m),

which establishes our upper bound.
For the lower bound, we provide a proof for the case n = α(m − 1) for some α ∈ N. Our

proof can be extended to the case where m − 1 does not divide n; we omit the details due to space
constraints.

Let R′ be a vote over the candidate set {c2, . . . , cm} given by c2 � . . . � cm, and let (C,R) be
the (c1, R

′, n,m− 1)-lidded typhoon. Clearly, c1 is the unique winner of (C,R) under k-approval.
Fix a candidate ci with i > 1, and consider a minimal sequence of swaps that makes ci a k-approval
winner. Clearly, the only useful swaps are the ones that shift c1 out of top k positions or ones that
shift ci into top k positions. Shifting ci into top k positions requires at most m − k swaps, while
shifting c1 out of top k positions requires k swaps, and by our choice of k we have k ≤ m − k.
Thus, an optimal sequence of swaps that makes ci a k-approval winner is to shift him into top k
positions in every vote. Since ci appears in each of the bottom m− k positions exactly α times, the
total number of swaps required is

α
(m− k)(m− k + 1)

2
= n

(m− k)(m− k + 1)

2(m− 1)
=
n(m− k)2

2m
+O(n+m).

We conclude that robFk
(m,n) ≥ n(m− k)2/(2m) +O(n+m).

For k-approval with k ≤ m/2, the argument in the proof of Theorem 4.4 no longer applies.
Specifically, while we conjecture that lidded typhoons are maximally robust for small values of k as
well, it is no longer the case that to make some non-top-ranked candidate a an election winner it is
optimal to only perform swaps that shift a into the top k positions. Indeed, for small values of k it
may be easier to move the top-ranked candidate out of the top k positions. We will now show that
this is indeed the case for the Plurality rule.

Theorem 4.5. For m ≥ 6, we have n− 1− n
m−1 ≤ robFP (m,n) ≤ n− d n

m−1e.
Proof. For the upper bound, consider an election E = (C,R) ∈ En,m and suppose that c1 is the
unique Plurality winner of E. Then c1’s Plurality score is at most n. On the other hand, by the
pigeonhole principle there exists a candidate a ∈ C \ {c} that is ranked in top two positions at
least d n

m−1e times. Thus, by using at most d n
m−1e swaps we can ensure that a’s Plurality score

is at least d n
m−1e. Observe that at this point the Plurality score of c is at most n − d n

m−1e, so
using additional n − 2d n

m−1e swaps, we can reduce its Plurality score to at most d n
m−1e. Thus,

robFP (m,n) ≤ n− d n
m−1e.
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For the lower bound, suppose first that n = α(m − 1) for some α ∈ N. Let (C,R) be the
(c1, R

′, n,m)-lidded typhoon, where R′ is an arbitrary preference order over C \ {c1}. Among all
minimum-length sequences of swaps which ensure that c1 is not the unique election winner under
Plurality, pick one which swaps c1 out of the top position in the maximum number of votes, and let
ci, i > 1, be a winner of the resulting election E′. Let N1 be the set of voters in E′ that rank c1 first,
let Ni be the set of voters in E′ that rank ci first, and let N ′ = N \ (Nc ∪Ni) be the set of all other
voters; we have |Ni| ≥ |N1|.

We have N ′ 6= ∅, since otherwise we would have |Ni| ≥ n/2, and for m ≥ 6 the cost of
swapping ci into the top position in n/2 votes exceeds n. Therefore, we have |Ni| = |N1|. Indeed,
if |Ni| > |N1|, we could shorten our swap sequence by not making the swaps in some vote in N ′:
in the resulting election it would still be the case that |Ni| ≥ |N1|. Now, suppose that |Ni| > α.
Then we had to perform at least two swaps in at least one vote in Ni. Consider a modified sequence
of swaps that performs no swaps in this vote (so that it still ranks c1 first), but swaps c1 out of the
top position in two votes in N1. The length of this modified sequence is at most that of the original
sequence, it also ensures that ci’s Plurality score is at least as high as that of c1, and it swaps c1
out of the top position in a higher number of votes, a contradiction with our choice of the swap
sequence. It follows that |Ni| = |N1| = α, which implies that the length of our swap sequence is at
least n− α = n− n

m−1 .
It is easy to generalize this argument to the case where m − 1 does not divide n to obtain a

slightly weaker lower bound of n− 1− n
m−1 ; we omit the details.

It is instructive to compare the bounds obtained in Theorems 4.3, 4.4, and 4.5. Perhaps not
surprisingly, among all k-approval rules with k ≥ m/2, the m/2-approval rule is the most robust,
and Veto is the least robust. It is interesting to note that Borda is about four times more robust that
m/2-approval and m/2 times more robust than Plurality; also Plurality is considerably more robust
than Veto.

5 The Condorcet Rule
In this section, we show that UC DESTRUCTIVE SWAP BRIBERY remains easy for the Condorcet
rule; however, deriving good bounds on robFC (m,n) requires quite a bit of effort.

Theorem 5.1. The problem FC-UC DESTRUCTIVE SWAP BRIBERY is in P.

Proof. Consider an instance of FC-UC DESTRUCTIVE SWAP BRIBERY given by an election E =
(C,R), a candidate c ∈ C and a non-negative integer δ. Suppose that c is the Condorcet winner of
E. Similarly to the proof of Theorem 4.1, for every candidate a ∈ C \ {c} we check if there exists
an election Ea with dswap(E,Ea) ≤ δ such that a beats or ties c in their pairwise election. It is not
hard to see that we can use essentially the same algorithm as for the Borda rule: that is, we order the
votes where a is ranked below c according to the distance between c and a (from the smallest to the
largest) and process these votes one by one, shifting c downwards to appear just below a; we do this
until we exhaust our swap budget. We return “yes” if in the end of this process a beats or ties c in
their pairwise election.

We remark that the proof of Theorem 5.1 does not extend to the the co-winner version of the FC-
UC DESTRUCTIVE SWAP BRIBERY problem. Indeed, suppose that c is a co-winner of an election
E. Then the nearest election where c is not a co-winner is one where some other candidate is the
(unique) Condorcet winner. Thus, given an electionE with no Condorcet winners (where, according
to our definition of the Condorcet rule, all candidates are the election winners), solving the co-
winner version of FC-UC DESTRUCTIVE SWAP BRIBERY is essentially the problem of computing
the winners of E under the Dodgson rule (recall that under this rule, the winners are the candidates
who can be made the Condorcet winners by the smallest number of swaps of adjacent candidates).
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The latter problem is known to be computationally hard [1, 6]. In fact, we can use the results of [1, 6]
to show that the co-winner version of FC-UC DESTRUCTIVE SWAP BRIBERY is computationally
hard as well. We do not present the formal proof of this result, as we do not find the co-winner
version of FC-UC DESTRUCTIVE SWAP BRIBERY intuitively appealing, and therefore we do not
think that this hardness result is informative.

We will now present our upper and lower bounds on the robustness of the Condorcet rule.
It will be convenient to prove bounds on robFC (m+ 1, n) rather than robFC (m,n); our results

are not affected by this change, since they involve an error term than is linear in n + m. First, we
will restate the problem of computing robFC (m + 1, n) as an optimization problem. Given a set
S ⊆ N, let L(S) denote the sum of the smallest d |S|2 e numbers in S. Then, given an election (C,R)
with |R| = n, the quantity L({pos(c,Ri) | i ∈ [n]}) is the sum of the lowest dn/2e positions in
which candidate c appears inR. We can now reformulate our problem as follows.

Lemma 5.2. We have robFC (m+ 1, n) = max(C,R)∈En,m
minc∈C L ({pos(c,Ri) | i ∈ [n]}).

Proof. The proof of Theorem 5.1 shows that for every election E′ = (C ′,R′) ∈ En,m+1 and every
cj ∈ C ′ we have

robFC (E
′, cj) = min

c6=cj
L ({max{0,pos(c,R′i)− pos(cj , R

′
i)} | i ∈ [n]}) .

Indeed, to ensure that cj is not the unique winner of E′ under the Condorcet rule, we need to make
cj tie with or lose to some other candidate c 6= cj , i.e., c has to be ranked higher than cj in at least
dn/2e votes. For each c ∈ C ′ \{cj}, the number of swaps needed to make c appear above cj in vote
i is max{0,pos(c,R′i) − pos(cj , R

′
i)}, and to minimize the total number of swaps for c, we take

the dn/2e votes for which we need the smallest number of swaps. Finally, we choose a candidate
c ∈ C ′ \ {cj} for which the required number of swaps is the smallest.

Now, consider an election E′ = (C ′,R′) ∈ En,m+1 and a candidate cj ∈ C ′. Let Ej =
(C ′,Rj) be the election obtained by moving cj to the top of each vote in E′ (and not changing the
relative order of the remaining candidates). We can simplify the expression for robFC (E

j , cj), since
we have pos(cj , R

j
i ) = 1 and pos(c,Rji ) > pos(cj , R

j
i ) for all i ∈ [n] and all c ∈ C ′ \ {cj}. Thus,

we obtain
robFC (E

j , cj) = min
c6=cj

L({pos(c,Rji )− 1 | i ∈ [n]}).

On the other hand, it is not hard to see that robFC (E
′, cj) ≤ robFC (E

j , cj). Thus, when com-
puting robFC (m+ 1, n), we only need to consider elections where some candidate cj is ranked first
in every vote; denote the set of all such elections by Ejm+1,n. Note also that the identity of this
candidate does not matter. Now, take an election Ej = (C ′,Rj) ∈ Ejm+1,n, let C = C ′ \ {cj} and
consider an election E = (C,R) ∈ En,m obtained by removing cj from each vote in Ej . Note that
any election over C can be obtained in this way.

For every c ∈ C we have L({pos(c,Ri) | i ∈ [n]}) = L({pos(c,Rji ) − 1 | i ∈ [n]}).
Consequently,

robF (m+ 1, n) = max
(C,R)∈En,m

min
c∈C

L({pos(c,Ri) | i ∈ [n]}).

From now on, to simplify notation, we identify the candidate set C with [m] and let sj =
L({pos(j, Ri) | i ∈ [n]}) for each candidate j ∈ [m]. By Lemma 5.2, it suffices to find upper and
lower bounds on maxE∈En,m

minj∈[m] sj . The next theorem provides a lower bound.

Theorem 5.3. For every m,n ∈ N there exists an election E = (C,R) ∈ En,m such that sj ≥
1
6mn+O(m+ n) for every candidate j ∈ [m].
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Proof. We start by giving the proof for the case m = 3k, n = 6` for some k, ` ∈ N.
For each j = 1, . . . , k, we place the candidates j, m − 2j + 1, and m − 2j + 2 in positions j,

m− 2j + 1, and m− 2j + 2 in each vote so that each of them appears 2` times in each position:

j : j . . . j m− 2j + 1 . . .m− 2j + 1 m− 2j + 2 . . .m− 2j + 2
m− 2j + 1 : m− 2j + 2 . . .m− 2j + 2 j . . . j m− 2j + 1 . . .m− 2j + 1
m− 2j + 2 : m− 2j + 1 . . .m− 2j + 1︸ ︷︷ ︸

2`

m− 2j + 2 . . .m− 2j + 2︸ ︷︷ ︸
2`

j . . . j︸ ︷︷ ︸
2`

Clearly, this results in a valid profile over [m]. For instance, form = n = 6 we obtain the following
profile: 



1 1 5 5 6 6
2 2 3 3 4 4
4 4 2 2 3 3
3 3 4 4 2 2
6 6 1 1 5 5
5 5 6 6 1 1




In such an election, for every j ∈ {1, . . . , k} we have

sj = j × 2`+ (m− 2j + 1)× ` = m`+ ` =
1

6
mn+O(m+ n).

By symmetry, sj = sm−2j+1 = sm−2j+2. Therefore, sj = 1
6mn+O(m+ n) for all j ∈ [m].

We will now consider the general case, i.e., we drop the assumption that m is divisible by 3 and
n is divisible by 6. First, we fill in the top 3bm3 c rows and the first 6bn6 c columns of the profile with
3bm3 c candidates as described above. Then we complete each of these 6bn6 c columns by an arbitrary
permutation of the remaining candidates. Each remaining column can be an arbitrary vote over [m].
It is not difficult to adapt the proof for the special case m = 3k, n = 6` to show that the theorem
holds for this profile.

Combining Theorem 5.3 with Lemma 5.2, we obtain robF (m+ 1, n) ≥ 1
6mn+O(m+ n) and

hence
robF (m,n) ≥ 1

6
(m− 1)n+O(m+ n) =

1

6
mn+O(m+ n).

Now we consider the upper bound.

Theorem 5.4. For any E ∈ En,m there exists a candidate j such that sj ≤ λmn + O(m + n) for
any constant λ > (

√
3− 1)/4.

Proof. Fix λ > (
√

3− 1)/4 and suppose for the sake of contradiction that sj > λmn+O(m+ n)
for each j ∈ [m]. Given an election E = (C,R) ∈ En,m, we construct an m × n matrix M(R) as
follows. The j-th row of M(R) lists all n positions in which candidate j occurs in the n votes, in
non-decreasing order. Below is an example of a 3×4 profileR and its corresponding matrixM(R).

R =




1 2 3 3
2 3 2 2
3 1 1 1


 M(R) =




1 3 3 3
1 2 2 2
1 1 2 3




By the definition of M(R), each number between 1 and m (which denotes a position in a vote)
appears exactly n times inM(R). Moreover, sj is simply the sum of the leftmost ` = dn2 e entries of
the j-th row inM(R). Let S denote the submatrix formed by the first ` columns ofM(R), and let Σ
denote the sum of all entries of S. We will derive upper and lower bounds on Σ. For λ > (

√
3−1)/4

the lower bound will exceed the upper bound, leading to a contradiction.
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As we have assumed that sj > λmn+O(m+ n), a lower bound is immediate:

Σ =
m∑

i=1

sj > λm2n+O(m2 +mn).

The upper bound requires much more work. Let a be the smallest entry of the `-th column of
M(R), and let i0 be the index of its row. All entries to the left of a do not exceed a, so si0 ≤ `a.
On the other hand, our assumption implies si0 > λmn+O(m+ n), so we get a lower bound on a:
a > 2λm+O(m+n

n ).
Note that each entry of M(R) that is not in S is at least a. Therefore, all entries that are smaller

than a have to appear in S, and each number between 1 and a−1 has to appear exactly n times. The
sum of these numbers is

Σ1 =

a−1∑

i=1

i · n =
1

2
a2n+O(mn).

Let Σ2 = Σ − Σ1; Σ2 is the sum of all entries of S that are greater than or equal to a. We will
now derive an upper bound on Σ2, which will imply an upper bound on Σ.

LetN≥k denote the number of entries in S that are greater than or equal to k. We will first obtain
a general upper bound on N≥k. Observe that entries with value k appear in at least dN≥k

` e rows,
and each entry in these rows that does not appears in S is greater than or equal to k. Hence the total
number of entries that are greater than or equal to k is at least N≥k (in S) plus (n − `)dN≥k

` e (not
in S). On the other hand, there are exactly (m− k + 1)n entries that are greater than or equal to k,
so we get

N≥k ≤
(m− k + 1)n

1 + n−`
`

= (m− k + 1)`.

In total there are m` entries in S, which include the n(a− 1) entries that are smaller than a. We
want an upper bound for the sum of the remaining m`−n(a− 1) entries. To maximize Σ2, the best
way to fill up the remaining entries is to setN≥k = (m−k+1)` by using entries k = m,m−1, . . .
until we run out of entries. More specifically, we put in ` entries of value m,m − 1, . . . , 2a − 1,
respectively, and after that the entries left are negligible, since there are at most a − 1 of them (as
` ≤ (n+ 1)/2) and the order of their sum is O(m2)). Therefore,

Σ2 ≤
m∑

i=2a−1
i·`+O(m2) =

1

2
(m+2a−1)(m−2a+2)`+O(m2) =

1

2
(m2−4a2)

n

2
+O(m2+mn).

Combining Σ1 and Σ2, we obtain

Σ = Σ1 + Σ2 ≤
1

4
(2a2 +m2 − 4a2)n+O(m2 +mn) =

1

4
(m2 − 2a2)n+O(m2 +mn),

which, by the lower bound on a, can be upper-bounded as

1

4
(m2 − 2 · 4λ2m2)n+O(m2 +mn) =

1

4
(1− 8λ2)m2n+O(m2 +mn).

The lower bound on Σ exceeds this upper bound when λm2n > 1
4 (1 − 8λ2)m2n, i.e., 8λ2 +

4λ− 1 > 0, which holds for λ > (
√

3− 1)/4.

Combining Theorem 5.4 with Lemma 5.2, we obtain robFC (m+ 1, n) ≤ λmn+O(m+n) and
hence robFC (m,n) ≤ λ(m − 1)n + O(m + n) = λmn + O(m + n) for every λ > (

√
3 − 1)/4.

Thus, we have

mn

6
+O(m+ n) ≤ robFC (m,n) ≤ (

√
3− 1

4
+ ε)mn+O(m+ n)
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for every ε > 0. We have 1/6 ≈ 0.167 and (
√

3− 1)/4 ≈ 0.183, i.e., there is a small gap between
our lower and upper bounds. Closing this gap is a natural direction for future work. We remark
that our bounds indicate than the Condorcet rule is considerably less robust than the Borda rule, but
more robust thanm/2-approval. Also, it is interesting to note that the lidded typhoon is not the most
robust election with respect to the Condorcet rule.

6 Conclusions and Future Work
We have introduced the notions of robustness radius of an election and robustness of a voting rule.
We have provided efficient algorithms for computing the robustness radius of a given election with
respect to scoring rules and the Condorcet rule, and we have provided bounds on the robustness
of several voting rules, including Plurality, Borda, k-approval for k ≥ m/2 and the Condorcet
rule. It would be interesting to see if our algorithmic results for destructive swap bribery can be
extended to voting rules not considered in this paper (such as, e.g., Copeland and Maximin) and to
the general cost version of this problem. Similarly, a natural research direction would be to analyze
the robustness of other voting rules.

We remark that the robustness notions introduced in this paper are defined in terms of the swap
distance. However, one can define and study them for other distances over elections, such as the
Hamming distance or the footrule distance. In particular, one might be able to use the techniques
developed by Xia [9] in order to study robustness of voting rules with respect to the Hamming
distance.
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Goodness of fit measures for revealed

preference tests:

Complexity results and algorithms

Laurens Cherchye, Bram De Rock, Bart Smeulders
and Frits C.R. Spieksma

Abstract

We provide results on the computational complexity of goodness of fit measures (i.e.
Afriat’s efficiency index, Varian’s efficiency vector-index and the Houtman-Maks
index) associated with several revealed preference axioms (i.e. WARP, SARP,
GARP and HARP). Our NP-Hardness results are obtained by reductions from the
independent set problem. We also show that this reduction can be used to prove
that no constant factor approximations algorithm exists for the Houtman-Maks
index (unless P = NP). Finally, we give an exact polynomial time algorithm for
finding Afriat’s efficiency index.

Keywords: Revealed preference, Complexity, Nonparametric rationality tests

1 Introduction

Utility maximization is a core hypothesis in neoclassical microeconomics, and testing the
empirical validity of this assumption has attracted considerable attention in the literature.
Such tests based on revealed preference theory have become increasingly popular. An attrac-
tive feature of these tests is that they are intrinsically nonparametric: they check consistency
with the utility maximization hypothesis without requiring a (typically nonverifiable) func-
tional specification of the utility function; and so they maximally avoid the risk of erroneous
conclusions due to a misspecified functional form. The empirical requirements for utility
maximization are summarized in terms of revealed preference axioms, which can be directly
applied to consumption data (prices and quantities) without requiring auxiliary assump-
tions. For example, a key result of revealed preference theory is that consumption can be
represented as maximizing a (well-behaved) utility function if and only if it satisfies the
Generalized Axiom of Revealed Preference (GARP) [26]. Three other axioms that are most
frequently considered in the applied literature are the Weak, Strong and Homothetic Axioms
of Revealed Preference (WARP, SARP and HARP; see Section 2 for exact definitions).

However, a frequently cited weakness of the basic revealed preference tests is that they
are ‘sharp’ tests: they only tell us whether or not observed behavior is exactly consistent
with the revealed preference axiom that is being tested. When consumption data do not pass
the test, there is no indication concerning the severity or the amount of violations. To deal
with this, a number of measures have been proposed in the literature to express how close a
data set is to satisfying rationality. In what follows, we will call these measures “goodness
of fit” measures; they tell us how well a revealed preference axiom fits the data at hand.
Probably the most popular goodness of fit measure in applied work is Afriat’s efficiency
index (AI) [1]. Other frequently used measures are the ones of Houtman and Maks (HI) [15]
and Varian (VI) [27]. Section 2 provides a precise description of these alternative goodness
of fit measures.

The revealed preference axioms and goodness of fit measures have been used intensively
in the applied literature. The first tests of the axioms of revealed preference go back to the
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sixties and seventies. Aggregated household consumption data was used in tests of SARP
by Koo [18, 19], Koo and Hasenkamp [20], Mossin [24] and Landsburg [21]. Varian [26]
tested GARP using similar data. Only Koo tried to measure the severity of the rejections
by focusing on the amount of violations and using a measure similar to HI. Over the last
decade, the goodness of fit measures have been used more and more often. Sippel [25] tests
relaxations of WARP, SARP and GARP related to AI. AI and GARP are used in papers by
Mattei [23], Harbaugh et al. [14] Andreoni and Miller [4], Février and Visser [13], Choi et al.
[7, 8], Dean and Martin [11] and Burghart [6]; the last four papers also use HI. VI and GARP
appears in Cox [10], Mattei [23], Choi et al. [7, 8] and Dean and Martin [11]. For WARP,
all three indices appear in Choi et al. [7]. To the best of our knowledge, there do not exist
any studies that compute goodness of fit measures for HARP, although there exist papers
in which HARP is tested (see for example Manser and McDonald [22]). Finally, we also
note continuing interest in goodness of fit measures, illustrated by the recent introduction
of several new indices in the literature; specifically the money pump index by Echenique et
al. [12] which calculates the monetary cost of irrational behaviour and the minimal swaps
and minimal loss index by Apesteguia and Ballester [5].

This paper is specifically concerned with the computational complexity of the goodness
of fit measures used in revealed preference analysis. In general, computational complexity
becomes an important issue if one wants to consider large data sets. In this respect, we
indicate that large consumption data sets are increasingly available (see e.g. the scanner
consumption data that nowadays can be used), which directly motivates the research ques-
tion we consider here. Indeed, while the computational complexity of methods for testing
GARP and the other revealed preference axioms is well understood by now, this is not
always the case for computing the above mentioned goodness of fit measures.

It is generally thought that calculating AI is easy. However, to our knowledge, no exact
algorithm exists in the literature. Varian [27] provides an approximation algorithm, which
comes within

(
1
2

)m
of the true index-value in m GARP tests. As for the other two indices

(HI and VI), it has been empirically recognized that computing them is computationally
intensive.1 For instance, Varian [27] writes:

“Computing the set of efficiency indices [VI] that are as close as possible to 1 in
some norm is substantially more difficult . . . This approach is significantly more
difficult from a computational perspective.”

Similarly, Choi et al. [8] state:

“All indices [VI and HI] are computationally intensive for even moderately large
data sets.”

The goal of the current paper is to give a theoretical foundation for these practical
observations and to strengthen the existing results. As far as we are aware, explicit com-
plexity results are known only for index HI. More specifically, Houtman and Maks establish
a link between their index for SARP and feedback vertex set on a digraph, which implies
NP-Hardness. Next, Dean and Martin [11] state that HI for GARP is also NP-HARD.

We define the computational complexity for every combination of the three goodness
of fit measures (AI, VI and HI) and the four revealed preference axioms (GARP, SARP,
WARP and HARP) mentioned above. We will refer to these problems as {A, V,H}I-
{G,S,W,H}ARP, where choosing a symbol from the set {A, V,H} and a symbol from
the set {G,S,W,H} identifies a particular problem. For example, AI-GARP is the problem
of computing the maximum index AI such that the data set satisfies a relaxation of GARP.

1Because of the difficulty to exactly calculate VI, some authors have focused on designing approximate
heuristics. See, for example, Varian [28] and Alcantud et al. [3].
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Our main results are summarized in Table 1, where a column corresponds to a specific axiom
and a row to a specific measure and where n stands for the number of observations.2

WARP SARP GARP HARP
AI (sec 6) n2 log n n2 log n n2.376 log n n3

VI (sec 4) NP-HARD NP-HARD NP-HARD NP-HARD
HI (sec 5) Inapproximable Inapproximable Inapproximable Inapproximable

Table 1: Overview of Results

The rest of this paper unfolds as follows. The next section sets the stage by introducing
the basic revealed preference concepts that we will use throughout. Section 3 provides a
statement of the computational problems we focus on. Sections 4 and 5 then presents our
results on computational complexity for the indices VI and HI. Section 6 does the same for
the index AI. Here, we also give exact polynomial time algorithms for computing this index
in practical applications. Section 7 concludes.

2 Revealed preference concepts

We start by stating the 4 revealed preference axioms that we will consider. Subsequently,
we present the different goodness of fit measures.

2.1 Axioms of Revealed Preference

Our analysis starts from a data set S = {(pi, qi)| i = 1, . . . , n}, where pi (qi) is an N -
dimensional vector of prices (quantities) corresponding to observation i = 1, . . . , n. Without
loss of generality, we will assume that prices are normalized such that piqi = 1 for every
observation i.

To define the concept of revealed preferences we consider two observations i and j. If
(piqi =) 1 ≥ piqj , we say that bundle qi is directly revealed preferred to bundle qj . This
is expressed by writing qiR0qj , where R0 captures the direct revealed preference relation.
The transitive closure of R0 is denoted by R and is called the indirect revealed preference
relation. If 1 > piqj , we say that bundle qi is strictly directly revealed preferred to bundle
qj , which is denoted by qiP0qj . Finally, P stands for the transitive closure of P0.

We can then state the four revealed preference axioms that we consider in this paper.

Definition 1. (WARP) A data set S satisfies WARP if for each pair of bundles, qi, qj
(i, j = 1, . . . , n with i 6= j), the following holds: if qiR0qj then it is not the case that qjR0qi.

Definition 2. (SARP) A data set S satisfies SARP if for each pair of bundles, qi, qj,
(i, j = 1, . . . , n with i 6= j), the following holds: if qiRqj then it is not the case that qjR0qi.

Definition 3. (GARP): A data set S satisfies GARP if for each pair of bundles, qi, qj,
(i, j = 1, . . . , n with i 6= j), the following holds: if qiRqj then it is not the case that qjP0qi.

Definition 4. (HARP): A data set S satisfies HARP if for every sequence of observations,
i, j, k, . . . , l(= 1, . . . , n), the following holds: log(piqj) + log(pjqk) + . . .+ log(plqi) ≥ 0.

In words, the main differences between the alternative axioms can be summarized as
follows (see Varian [29] for a more extensive discussion on the meaning of the axioms).
Data consistency with WARP is a necessary condition for data consistency with SARP;

2‘inapproximable’ stands for: no polynomial-time algorithm can achieve a constant-factor approximation
unless P = NP .
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the essential difference is that WARP (in contrast to SARP) does not require transitivity
of preferences. Next, data consistency with SARP means that consumption behavior can
be described as maximizing a utility function that generates single-valued demand. Sim-
ilarly, data consistency with GARP means that consumption behavior can be described
as maximizing a utility function that generates multi-valued demand. As such, GARP is
a generalization of SARP. Finally, data consistency with HARP means that consumption
behavior can be described as maximizing a utility function that is homothetic. This implies
that GARP is a necessary condition for HARP.

2.2 Goodness of fit measures

In practice, direct application of any of the above revealed preference axioms to some given
data set effectively obtains a ‘sharp’ test: a data set either satisfies the axiom or it does not.
In words, such a test allows us to conclude whether or not observed behavior is ‘exactly’
consistent with the hypothesis of utility maximization (of a particular form, depending on
whether we consider WARP, SARP, GARP or HARP). However, a data set that is not
exactly consistent may actually be very close to consistency. For example, there may be
only a limited number of observations that cause the observed violations of the axiom that is
subject to testing. Or, the violations may be very insignificant in that small adjustments of
the observations’ expenditures (i.e. prices times quantities) may suffice to obtain consistency.
Generally, it is interesting to quantify the degree to which a given data set is close to
consistency (see [27] for extensive motivation).

To account for these considerations, a number of goodness of fit measures have been
described in the literature. Three often used measures are Afriat’s efficiency index (AI),
Varian’s efficiency vector index (VI) and the Houtman and Maks index (HI). Essentially,
the indices AI and VI look for minimal expenditure perturbations to obtain consistency
with the revealed preference axiom under evaluation: the AI index applies a common per-
turbation to all observations, while the VI index allows a different perturbation for each
individual observation. Next, the index HI identifies the largest subset of observations that
are consistent with the axiom. Essentially, this quantifies the degree of violation in terms
of the number of observations that are involved in a violation of the revealed preference
axiom that is tested. We refer to Varian [29] for a more detailed discussion of the different
goodness of fit measures we evaluate.

To formally introduce our goodness of fit measures, we make use of the vector e =
(e1, e2, . . . , en), with 0 ≤ ei ≤ 1. This vector introduces an index ei for each observation i,
which relaxes the revealed preference relations R0 and P0 as follows:

if ei(= eipiqi) ≥ piqj then qiR0(e)qj ,

if ei(= eipiqi) > piqj then qiP0(e)qj .

Analogous to before, R(e) and P (e) represent the transtive closures of R0(e) and P0(e).
These newly defined relations R0(e), P0(e), R(e) and P (e) give rise to relaxed versions of
the earlier axioms of revealed preference, which are defined for a given vector e. Clearly
these axioms comply with the original versions of WARP, SARP, GARP and HARP as soon
as ei = 1 for all i.

Definition 5. (WARP(e)) A data set S satisfies WARP(e) if for each pair of bundles,
(i, j = 1, . . . , n with i 6= j), the following holds: if qiR0(e)qj then it is not the case that
qjR0(e)qi.

Definition 6. (SARP(e)) A data set S satisfies SARP(e) if for each pair of bundles,
qi, qj, (i, j = 1, . . . , n with i 6= j), the following holds: if qiR(e)qj then it is not the case that
qjR0(e)qi.
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Definition 7. (GARP(e)) A data set S satisfies GARP(e) if for each pair of bundles,
qi, qj, (i, j = 1, . . . , n with i 6= j), the following holds: if qiR(e)qj then it is not the case that
qjP0(e)qi.

Definition 8. (HARP(e)) A data set S satisfies HARP(e) if for every sequence of obser-
vations i, j, k, . . . , l(= 1, . . . , n),, the following holds: log(piqj) + log(pjqk) + . . .+ log(plqi) ≥
log(ei) + log(ej) + . . .+ log(el).

To define the Afriat Index (AI), we assume that e1 = · · · = en, which does indeed comply
with a common perturbation for all observations. The index AI equals the highest value
for which the data is consistent with the tested revealed preference axiom. More precisely,
if AI = 1, then the data is consistent with the tested axiom. While if AI < 1, then
this indicates that we need to pertubate the data to make it consistent with the revealed
preference axiom under study. The smaller the number AI is, the higher the perturbation
or, alternatively, the more severe the rejection of the axiom. Finally, we note that AI is
well-defined. If for a given e the data is consistent with, for example, WARP(e), then the
same holds for all e′ < e. Indeed, by construction we have that the revealed preference
relations in terms of e′ are always a subset of the ones in terms of e (e.g. R0(e′) ⊆ R0(e)).

The Varian Index (VI) differs from the index AI by allowing for observation specific
perturbations. The index VI equals the vector e that is closest to one, for some given norm,
such that the data satisfies the revealed preference axiom under study. For example, if
we use the quadratic norm, then VI should minimize

∑
i(1 − ei)2 such that, for example,

WARP(e) is satisfied. Further, the index VI is subject to the same qualifications as the
index AI.

Finally, the Houtman and Maks index (HI) equals the size of the largest subset of
observations which satisfy the axioms of revealed preference. Formally, this complies with
restricting the possible values of ei so that ei ∈ {0, 1}.

3 Problem statement

In this section we introuduce the tools that we need to prove the results announced in Table
1. In particular, in Section 3.1 we show how to reformulate the goodness-of-fit measures
using graph theory and in Section 3.2 we state the corresponding optimization problems.

3.1 Graph representation

In order to verify whether a data set actually satisfies some revealed preference axiom, it is
natural to construct a graph (see Koo [19]). We now extend this procedure by taking into
account a given vector e = (e1, . . . , en). For some data set S, we construct the associated
graph Ge(S). In this graph, there is a node for every observation. Next, for each pair of
observations (i, j) (i 6= j), there is an arc from node i to node j when ei ≥ piqj . The length
of this arc is equal to piqj − ei.

The graph Ge(S) will be used to test WARP, SARP and GARP. To test HARP, we make
use of another graph G′e(S). The nodes and arcs of this alternative graph are defined in the
same way as for the graph Ge(S), but now the length of the arc is given by log(piqj)−log(ei).

The axioms of revealed preference can then be formulated as follows:

Definition 9. (WARP(e)) The data set S satisfies WARP(e) if and only if the graph
Ge(S) does not contain any cycle consisting of two arcs.

Definition 10. (SARP(e)) The data set S satisfies SARP(e) if and only if the graph
Ge(S) is acyclic.
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Definition 11. (GARP(e)) The data set S satisfies GARP(e) if and only if the graph
Ge(S) does not contain any cycles of negative length.

Definition 12. (HARP(e)) The data set S satisfies HARP(e) if and only if the graph
G′e(S) does not contain any cycles of negative length.

3.2 Problem descriptions

We are now in a position to define an optimization problem that measures how close a given
data set is to satisfying a particular axiom of revealed preference. This leads to twelve
different problems. For example, for SARP(e) we obtain the problems AI-SARP, VI-SARP
and HI-SARP, each corresponding to a specific index. Straightforward adaptations define
the problems AI-{S,G,H}ARP, VI-{S,G,H}ARP and HI-{S,G,H}ARP. For compactness,
we only state the optimization problems with respect to SARP; the optimization problems
corresponding to {W,G,H}-ARP are defined analogously.

Problem 1. (VI-SARP) Given a data set S, for what values ei, with 0 ≤ ei ≤ 1 for each
i, is

∑n
i=1 ei maximized, while S satisfies SARP(e)?

Clearly, other objective functions are possible, We will give results and come back to
this issue in Section 4.

Problem 2. (HI-SARP) Given a data set S, what is the largest subset of observations
Q ⊆ {1, . . . , n} such that Q satisfies SARP?

Results concerning this problem will be given in Section 5.

Problem 3. (AI-SARP) Given a data set S, for what value e1, with 0 ≤ e1 ≤ 1, is e1
maximized while S satisfies SARP(e), with e = (e1, . . . , e1)?.

4 The complexity of Varian’s Index

Clearly, when given a vector e = (e1, . . . , en), there are different ways to specify an objec-
tive function measuring the quality of e. Obvious candidates are minimize

∑n
i=1 (1− ei),

minimize
∑n
i=1 (1− ei)2 or minimize maxi (1 − ei). In fact, all these objective functions

can be captured by considering minimize (
∑n
i=1 (1− ei)ρ)1/ρ for ρ ≥ 1. Observe that,

since limρ→∞(
∑n
i=1 (1− ei)ρ)1/ρ = maxi (1 − ei), the Afriat index arises when ρ → ∞.

The results in this section are phrased for ρ = 1, i.e., for the case where we minimize∑n
i=1 (1− ei) or equivalently maximize

∑n
i=1 ei. At the end of the section we point out

that the reduction remains valid for every fixed ρ ≥ 1.

Let us now consider the following decision problem associated with VI-SARP:

Input: A data set S = {pi, qi |i = 1, . . . , n} and a number Z.
Question: Do there exist n numbers ei, with 0 ≤ ei ≤ 1, such that

(i) The data set S satisfies SARP(e), and

(ii)
∑n
i=1 ei ≥ Z?

Theorem 1. VI-SARP is NP-Hard.

Proof. We prove that VI-SARP is NP-Hard by a reduction from the well-known NP-Hard
independent set problem [16], which is formulated as follows:
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Input: A graph G = (V,E) and a number k.
Question: Does there exist a subset V ′ ⊆ V of at least k vertices, such that for every pair
of vertices i, j ∈ V ′, the edge (i, j) is not in E?

Given an instance of IS we now construct the following instance of VI-SARP. For
every node i ∈ V , there is an observation in VI-SARP: n := |V |. The vectors
pi = (p1i , . . . , p

N
i ), qi = (q1i , . . . , q

N
i ) are created as follows. We set, for i = 1, . . . , n, qii := 1,

all remaining qji := 0. Further, we set pii := 1, for i = 1, . . . , n. If there is an edge between

node i and node j in G, i.e., if {i, j} ∈ E, then pji := ε (for some 0 < ε < 1
n ), otherwise

pji := 2. Finally, we set Z := k. This completes the description of the instance of VI-SARP.
Notice that this construction implies that if an edge exists between i and j in G, then
piqj = pjqi = ε, else piqj = pjqi = 2.

We now argue the equivalence between IS and VI-SARP. Suppose the instance of inde-
pendent set is a yes-instance, i.e., an independent set of size at least k exists. For every
vertex in that independent set, set ei = 1 and for every other vertex set ei = 0. It is
clear that

∑
ei ≥ Z. Consider the graph Ge(S), and recall that an arc is present from i

to j if and only if piqj ≤ ei. We claim that the graph Ge(S) is acyclic. Indeed, notice
that vertices outside the independent set will not have any outgoing arcs in Ge(S) since for
each such vertex i: piqj − ei = piqj > 0. Also note that no arc connects two observations
corresponding to nodes in the independent set, since for a pair of such observations i, j we
have piqj − ei = pjqi − ej = 2− 1 > 0. Thus, arcs in Ge(S) only exist from vertices in the
independent set to vertices outside the independent set. It follows that the graph is acyclic.

Now, suppose that the instance of VI-SARP is a yes-instance, so
∑
ei ≥ Z = k. Then

for at least k observations ei > ε; if not, at most k − 1 ei-values exceed ε; since ei ≤ 1,∑
ei is then bounded by k − 1 + (n − k − 1)ε < k − 1 + 1 = k, which contradicts with

the requirements for a yes-instance. We will call such an ei value large. We claim that
the vertices with large ei-values constitute an independent set in G. Indeed, consider two
vertices i and j with a large ei value. If i and j are connected in G, then piqj = pjqi = ε,
implying that there is an arc in the graph Ge(S) from i to j and from j to i, which is a
cycle. Therefore i and j are not connected in G. Thus the set of vertices with large ei is an
independent set of size at least k.

We now proceed with the closely related problems VI-GARP, VI-WARP and VI-HARP:

Input: A data set S = {pi, qi |i = 1, . . . , n} and a number Z.
Question: Do there exist n numbers ei, with 0 ≤ ei ≤ 1, such that

(i) The data set S satisfies the appropriate axiom, GARP(e), WARP(e) or HARP(e), and

(ii)
∑n
i=1 ei ≥ Z?

Theorem 2. VI-GARP is NP-Hard.

Theorem 3. VI-WARP is NP-Hard.

Theorem 4. VI-HARP is NP-Hard.

Instances of these problems are built as in the proof of Theorem 1. The proofs of
equivalence are relatively straightforward.

Let us now return to the general objective function
∑n
i=1 (1− ei)ρ (with ρ ≥ 1) given

at the start of this section. We now consider the following problem:
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Input: A data set S = {pi, qi |i = 1, . . . , n} and a number Z.
Question: Do there exist n numbers ei, with 0 ≤ ei ≤ 1, such that

(i) The data set S satisfies SARP(e), and

(ii)
∑n
i=1 (1− ei)ρ ≤ Z?

Corollary 1. Varian’s Index is NP-HARD for objective functions of the form minimize
(
∑n
i=1 (1− ei)ρ)1/ρ, for any fixed ρ ≥ 1.

Proof. Given an instance of Independent Set, create an instance of VI-{W,S,G,H}ARP as
in the proof of their respective theorems with the following differences. Set Z := n− k and

let 0 < ε < 1− (n−k)
(n−k+1)(1/ρ)

. It can be easily checked that the equivalences hold.

5 The index HI

In this section, we consider the problems HI-{W,S,G,H}ARP. We give the problem HI-
SARP, all other problems are analogous, differing only in the axiom of revealed preference
to be satisfied. Notice that, in their original paper, Houtman and Maks already showed a
relation between HI and feedback vertex set, see also [11]

Input: A data set S = {pi, qi |i = 1, . . . , n} and a number Z.
Question: Do there exist n numbers ei, with ei ∈ {0, 1}, such that

(i) The data set S satisfies SARP(e), and

(ii)
∑n
i=1 ei ≥ Z?

Theorem 5. HI-{W,S,G,H}ARP is NP-Hard.

Proof. The proof of NP-hardness for maximizing the sum of the elements of VI is easily
extended to HI. As the choice of ei is now limited to either zero or one it is clear that every
large ei = 1 and every other ej = 0.

Theorem 6. No polynomial time ρ-approximation algorithm exists for HI-
{W,S,G,H}ARP, unless P = NP.

Proof. Consider an instance of Independent Set, and the corresponding instance of HI-SARP
as constructed in Theorem 1. Now consider that the optimum of the HI-SARP instance is
z, then the optimum for IS is also z. If not, then for we could find an independent set of
size z + 1 and by the previous reduction we could find e so that

∑
ei ≥ z + 1.

Now consider we have a ρ-approximation for HI-SARP, then we could find a vector-
index so that

∑
ei ≥ z × ρ in polynomial time. Given this vector-index we could find an

independent set of size z × ρ as follows, for every i for which ei = 1 add the vertex i to
the independent set. This would give us a ρ-approximation for IS in polynomial time. This
implies that P = NP.

6 Afriat’s index (AI)

6.1 Introductory observations

As with the previous indices, it is our goal to find the maximum value of e
(e1 = e2 = . . . = eT = e), such that a given data set still passes {W,S,G,H}ARP.
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However, such a maximum value frequently does not exist. For example, consider the
following matrix of the values piqj (for two observations)

(
1 0.50

0.60 1

)

As long as e ∈ [0; 0.6[, all axioms of revealed preference will be satisfied, but for e ≥ 0.6 a
cycle of negative length between the two vertices exists in both Ge(S) and G′e(S) and, thus,
the axioms are violated. Since there is no maximum feasible value for e, we look for the value
e∗ that is the supremum of the values of e for which the axioms of revealed preference are
satisfied. Varian [27] describes an approximation algorithm which approximates e∗ to within
(1/2)t by testing the axiom under e t times. In an overview paper, Varian [29] mentions
that it is also easy to calculate e∗ exactly and exact values are calculated for AI-GARP in
a number of papers, see for instance Choi et al. [7]. However, to the best of our knowledge,
no exact polynomial algorithm has been published in the literature. In the next section
we provide such a polynomial time exact algorithm for AI-{W,S,G}ARP and a separate
algorithm for AI-HARP.

6.2 Complexity results

Theorem 7. AI-WARP can be solved in O(n2 log(n)).

Proof. We first argue that Algorithm 1 is correct. Clearly, if the dataset satisfies WARP(e),
then it satisfies WARP(e’) for all e′ ≤ e. Moreover, the dataset satisfies WARP(0). Thus,
for an increasing e, WARP(e) becomes infeasible at some value e∗. This can only happen
when an arc, completing a cycle consisting of two arcs, is added to the graph Ge(S), i.e.,
at some value piqj . It follows that Algorithm 1 is correct.

Next we analyse the complexity of this algorithm. To construct A, piqj must be calcu-
lated for all pairs of observations, which takes O(n2) time. In the worst case, this array
is of size O(n2), so sorting is done in O(n2 log(n)). In the second step of the algorithm,
WARP(e) is tested for different values of e. As the array is halved in each iteration, at most
O(log(n2)) such tests are needed and each such test can be done in O(n2), by checking each
pair of nodes for violations of WARP(e). This gives a total time complexity for the second
step of O(n2 log(n)). The total time complexity is thus determined by the sorting of the
array and the second step and is O(n2 log(n)).

Algorithm 1 AI-WARP

1: Initialization: Construct an array A of all values piqj ≤ 1, i 6= j. Sort these values in
ascending order.

2: Let x be the median value in A. Test WARP(x), if WARP(e) is satisfied, remove all
values lower than or equal to x from A, otherwise remove all higher values.

3: If more than one element remains in the array, repeat step 2, otherwise let x be the
remaining value in A, then e∗ = x

Theorem 8. AI-SARP can be solved in O(n2 log(n)).

Proof. For AI-SARP we consider algorithm 1, with the adjustment that SARP(e) is tested
instead of WARP(e). SARP(e) can also be tested in O(n2), for example by a topological
ordering algorithm [2], leading to the same time complexity.
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Theorem 9. AI-GARP can be solved in O(n2.376 log(n)).

Proof. We first note that the value e∗ can be feasible for GARP(e), if for that value a cycle
of length 0 exists in the graph G(S). Therefore, we consider a variant of the algorithm,
which does not discard the highest known feasible value of e.

The time complexity of this algorithm is similar to that for AI-WARP and AI-SARP, but
differs in that testing GARP(e) takes O(n2.376). This test is done by finding the transitive
closure by way of matrix multiplication [9].

Finally, we provide a polynomial time algorithm for AI-HARP.

Algorithm 2 AI-HARP

1: Input: A set of observations pt = (p1t , . . . , p
N
t ), qt = (q1t , . . . , q

N
t ) for t = 1, . . . , T

2: Initialization: Construct the graph G′1(S)
3: Calculate the minimum cycle mean (MCM), which is the shortest average length of the

arcs in any cycle in the graph G′1(S).
4: Calculate e∗ as follows: e∗ = exp (MCM).

Theorem 10. AI-HARP can be solved in time proportional to O(n3).

Proof. We will show that computing the minimum cycle mean (MCM) of G′1(S) is sufficient
to find e∗. HARP(e) is satisfied if there are no cycles of negative length in G′e(S). Thus, if
such a cycle exists, we need to remove it by lowering e. A decrease in e will lengthen every
arc in the graph by the same amount, as the length of an arc is log(piqj) − log(e). It is
clear that the if we set the value of e∗ so that the cycle with the shortest average arc length
has a length of zero, the average arc length of every other cycle will be non-negative and
no cycles of negative length will remain. Indeed, by setting e∗ := exp(MCM), the length of
each arc becomes log(piqj)− log(exp(MCM)) = log(piqj)− MCM.

The time complexity of this algorithm is polynomial as there exist algorithms for finding
the MCM in O(nm) time [17], with m being the number of arcs in the graph. In G′1(S)
there will be n2 arcs. The building of the graph takes O(n2) time. The overall time bound
of the algorithm is thus O(n2 log(n) + n3) = O(n3) time.

7 Conclusion

Motivated by the increasing availability of large scale consumption data sets, we have in-
vestigated the computational complexity of testing the utility maximization hypothesis in
revealed preference terms. In particular, we have focused on three goodness of fit measures
for four different revealed preference axioms (i.e. WARP, SARP, GARP and HARP). We
have demonstrated that, for all four axioms, the Houtman and Maks index is inapproximable
and that computing Varian’s index is NP-Hard. Next, we have shown that these conclu-
sions do not apply to Afriat’s index, and we have presented exact polynomial algorithms for
computing this index (for every revealed preference axiom that we considered).
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Université libre de Bruxelles
Av. F.D. Roosevelt 50
1050 Brussels, Belgium
Email: bderock@ulb.ac.be

Bart Smeulders
Faculty of Business and Economics - ORSTAT
KU Leuven
Naamsestraat 69
3000 Leuven, Belgium
Email: bart.smeulders@econ.kuleuven.be

Frits C.R. Spieksma
Faculty of Business and Economics - ORSTAT
KU Leuven
Naamsestraat 69
3000 Leuven, Belgium
Email: frits.spieksma@econ.kuleuven.be

418



Analysis and Optimization of

Multi-dimensional Percentile Mechanisms

Xin Sui and Craig Boutilier and Tuomas Sandholm

Abstract

We consider the mechanism design problem for agents with single-peaked preferences
over multi-dimensional domains when multiple alternatives can be chosen. Facility
location and committee selection are classic embodiments of this problem. We pro-
pose a class of percentile mechanisms, a form of generalized median mechanisms,
that are (group) strategy-proof, and derive worst-case approximation ratios for so-
cial cost and maximum load for L1 and L2 cost models. More importantly, we
propose a sample-based framework for optimizing the choice of percentiles relative
to any prior distribution over preferences, while maintaining strategy-proofness. Our
empirical investigations, using social cost and maximum load as objectives, demon-
strate the viability of this approach and the value of such optimized mechanisms
vis-à-vis mechanisms derived through worst-case analysis.

1 Introduction

Mechanism design deals with design of protocols to elicit the preferences of self-interested
agents so as to achieve a certain social objective. An important property of mechanisms
is strategy-proofness, which requires that agents have no incentive to misreport their pref-
erences to the mechanism. While payments are often used to ensure that mechanisms are
strategy-proof [23, 6, 11], in many settings payments are infeasible and restrictions on pref-
erences are required. The simple but elegant class of single-peaked preferences is one such
example: roughly speaking, each agent has a single, most-preferred point in the alternative
space and alternatives become less preferred as they are moved away from that point. In
such settings, choosing a single alternative can be accomplished in a strategy-proof fashion
using the famous median mechanism [4] and its generalizations [18, 1]. Such models are
used frequently for modeling political choice, facility location, and other problems. They
also have potential applications in areas such as in the design of a family of products,
customer segmentation, and related tasks, as we discuss below.

Unfortunately, such mechanisms are efficient (e.g., w.r.t. social cost) only in very limited
circumstances. Furthermore, allowing the choice of multiple alternatives (e.g., multiple
facilities) generally causes even these limited guarantees to evaporate. In response, authors
have begun to address the question of approximate mechanism design without money [19],
which focuses on the design of strategy-proof mechanisms for problems such as multi-facility
location that are approximately efficient (i.e., have good approximation ratios) [19, 15, 10].
This work provides some positive results, but is generally restricted to settings involving
two facilities (alternatives) and L2 (Euclidean) preferences.

In this paper, we propose percentile mechanisms—a special case of generalized median
mechanisms [2, 1], but in a more general fashion. Specifically: (a) we consider selection of
multiple alternatives (e.g., multi-facility location) in a multi-dimensional alternative space;
(b) we address both social cost and maximum load as performance metrics; and (c) we
analyze our mechanisms relative to L1 (Manhattan) and L2 (Euclidean) preferences. Our
first contribution is the analysis of the approximation ratios of various percentile mechanisms
under various assumptions. The performance guarantees of such mechanisms under worst-
case assumptions are quite discouraging (much like previous results above).
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Indeed, designing mechanisms that have the best possible worst-case guarantees may
lead to poor performance in practice. Our second contribution is the development of a
sample-based empirical framework for the optimization of percentile mechanisms relative to
a known preference distribution. In most realistic applications of mechanism design, such as
facility location, product design, and many others, the designer will have some knowledge
of the preferences of participating agents. Assuming this takes the form of a distribution
over preference profiles, we use profiles sampled from this distribution to optimize the choice
of percentiles. Since the result is a percentile mechanism, strategy-proofness is maintained.
Our empirical results demonstrate that, by exploiting probabilistic domain knowledge, we
obtain strategy-proof mechanisms that outperform mechanisms designed to guard against
worst-case profiles. Our framework can be viewed, conceptually, as a form of automated
mechanism design (AMD), which advocates the use of preference (or type) distributions to
optimize mechanisms [7, 20].

2 Preliminaries

In this section, we introduce our model along with required concepts, notation, and moti-
vation, and then briefly discuss a selection of related work.

2.1 The Social Choice Problem

In a standard social choice setting, we must select an outcome o from an outcome set O,
where each of agents i ∈ N = {1, 2, . . . , n} has a preference over O. Agent preferences are
represented by (weak) total order over O, or in a more precise way by a utility function. In
our setting, we focus on the m-dimensional, q-facility location problem (or (m, q)-problems):
we must choose q points or locations in an m-dimensional space Rm (or some bounded
subspace thereof) to place facilities. Outcomes are then location vectors of the form x =
(x1, . . . , xq), with xj ∈ Rm (for j ≤ q). Each agent i has a type ti denoting the cost
associated with any location x ∈ Rm: we write ci(x, ti) to denote this real-valued cost. Given
an outcome x, i will use the location that has least cost, hence ci(x, ti) = minj≤q ci(xj , ti).

Facility location can be interpreted literally, and naturally models the placement of q
facilities (e.g., warehouses in a supply chain, public facilities such as parks, etc.) in some
geographic space. Agents will then use the least cost (or “closest”) facility. However,
many other choice problems fit within this class. Voting is one example [4, 1]: we can
think of political candidates as being ordered along several dimensions (e.g., stance on the
environment, health care, fiscal policy)—voters have preferences over points in this space—
and one must elect q representatives to a committee or legislative body. In product design,
a vendor may launch a family q new, related products, each described by an m-dimensional
feature vector, with consumer preferences over these options leading them to select their
most preferred. This also can serve as a form of customer segmentation.

In facility location problems and the other settings discussed above, it is natural to
assume agent preferences are single-peaked. Intuitively, this means the agent has a single
“ideal” location, and its cost for any chosen location increases as it “moves away from”
this ideal. Formally, we don’t need a distance metric, only a strict ordering on alternatives
in each dimension, which is used to define a betweenness relation. Let || · ||1 denote the
L1-norm.

Definition 1 [2] An agent i’s preference on m-dimensional space Rm is single-peaked if
there exists a most preferred alternative τ(ti) such that, ∀α, β ∈ Rm satisfying ||τ(ti)−β||1 =
||τ(ti)− α||1 + ||α− β||1, we have ci(α, ti) ≤ ci(β, ti).
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Single-peaked preferences require that if a point α lies within the “bounding box” of
τ(ti) and β, then α is at least as preferred as β. Intuitively, as we move farther away from
i’s ideal location τ(ti) we can reach α via some path before we reach β. Note that this
requirement does not restrict i’s relative preference for α and β if neither lies within the
other’s bounding box (w.r.t. τ(ti)).

An agent’s ideal location τ(ti) does not fully determine its preference, even if it is single-
peaked. Despite this, we will equate an agent’s type ti with its ideal location (for reasons
that become clear below). However, within the class of single-peaked preferences, we can
adopt specific cost functions that are fully determined by the ideal location ti. Often distance
metrics are used, and we consider both L1 (Manhattan) and L2 (Euclidean) distances below.
Specifically, we define distance-based cost functions for i as follows:

cpi (x, ti) = min
j≤q
||ti − xj ||p (1)

where p ∈ {1, 2} reflects either L1 or L2 distance from i’s nearest facility. We use xp[i; x] to
denote i’s closest facility in the location vector x under the Lp-norm.

The aim in facility location is to select a set of q facilities that minimize some social
objective. One natural objective is to minimize social cost (SC) given type profile t, where
social cost (relative to some norm p) is given by:

SCp(x, t) =
∑

i

cpi (x, ti) (2)

Alternatively, we could try to balance the load by ensuring no facility is used by too many
agents. Define the load on facility j given outcome x and type profile t as lpj (x, t) =
|{i|xp[i; x] = j}|. We wish to minimize the maximum load (ML), which is defined as:

MLp(x, t) = max
j
lpj (x, t). (3)

This objective makes sense, for instance, when a product designer launches a family of q
new products, consumers purchase the product closest to their ideal product, but costs are
minimized by balancing production; or when facility management costs increase superlin-
early with load. Many other fundamental social objectives, such as fairness (e.g., maximum
agent distance), and combinations thereof can be adopted depending on one’s design goals.

2.2 Mechanisms

The goal of mechanism design is to construct mechanisms that (possibly indirectly) elicit
information about agent preferences so that an outcome choice can be made that achieves
some social objective. We consider direct mechanisms in which agents are asked to reveal
their types, and an outcome is chosen based on the revealed types. In the facility location
with single-peaked preferences, we consider mechanisms that ask agents to declare their
ideal locations, then select an outcome x: that is, a mechanism M is a function f that maps
a declared type profile t into an outcome f(t) ∈ (Rm)q (i.e., q m-dimensional alternatives).

A mechanism f is strategy-proof (or truthful) if:1

ci(f(ti, t−i), ti) ≤ ci(f(t′i, t−i), ti), ∀i, ti, t′i, t−i

In other words, f is strategy-proof if no agent can obtain a better outcome by misreporting
its true type (ideal location). Group strategy-proofness is defined similarly, but requires that

1We use strategy-proof to refer to dominant strategy incentive compatibility (participation is assured in
our settings).
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no group of agents S ⊆ N can misreport their types, in a coordinated fashion, so that the
outcome is better for at least one i ∈ S, and no worse for any i ∈ S.

While the ideal is to design strategy-proof mechanisms that achieve some social objective,
such as minimizing social cost, this is not always feasible. In (1, 1)-facility location problems,
if agent preferences are single-peaked, the median mechanism, which selects the median of all
reported ideal locations, is (group) strategy-proof [4, 18] and minimizes social cost if agent
preferences are all determined under a suitable distance metric (such as L1). However, when
one moves to even just two facilities, strategy-proofness and efficiency are incompatible, as
demonstrated by Procaccia and Tennenholtz [19]. They propose the study of approximate
mechanisms to handle such situations: mechanisms that are strategy-proof and come as
close as possible to achieving the social objective (e.g., minimizing social cost). Formally:

Definition 2 A mechanism f has an approximation ratio ε w.r.t. social objective C if:

C(f(t), t) ≤ ε ·min
x
C(x, t).

We refer to such a mechanism as ε-optimal w.r.t. objective C (or ε-efficient when considering
social cost/welfare). When minimizing social cost, we assume the number of agents is greater
than the number of facilities (otherwise, we can trivially locate facilities at each agent’s ideal
to obtain a (group) strategy-proof, efficient mechanism). Notice that our mechanisms are
non-imposing : once facilities are selected, agents are free to choose their favourite (otherwise,
one can trivially minimize ML by assigning agents to facilities in an arbitrary balanced way).

2.3 Related Work

Black [4] first proposed the median mechanism for (1, 1)-facility location, showing it to be
strategy-proof for single-peaked preferences. Moulin [18] proposed a generalized median
scheme (allowing phantom peaks) that he proved to be the unique class of (anonymous)
strategy-proof mechanisms for such preferences. Barberà et al. [2] later generalized this
class of mechanisms further using coalitional systems and provided a characterization result
for (m, 1)-problems. We refer to this class as m-dimensional generalized median schemes.
These schemes select a location by choosing its coordinates in each dimension independently
(in a “median-like” fashion).

Some work considers strategy-proof mechanisms with even more restricted preferences
and domain assumptions. Border and Jordan [5] characterize strategy-proof mechanisms in
m-dimensional spaces assuming separable star-shaped preferences (which include quadratic
preferences). As in [2], location coordinates are chosen in each dimension separately. Massó
and Moreno de Barreda [17] consider symmetric, single-peaked preferences (of which L1 and
L2 are instances), and show that a mechanism is strategy-proof iff it is a disturbed generalized
median voter schemes (which allows discontinuities). Schummer and Vohra [21] consider the
problem of choosing a location on a graph (e.g., a network) relative to an extended notion of
single-peakedness, obtaining positive results for trees, and negative results for cyclic graphs.

Recent attention has been focused on algorithmic aspects and approximation in strategy-
proof facility location when agents have L2 preferences. Procaccia and Tennenholtz [19]
study the one-dimensional problems, and provide upper and lower bounds on the approx-
imation ratio for social cost. Of interest here is their deterministic left-right mechanism,
which is (n − 1)-efficient for (1, 2)-problems. Lu et al. [15] define the (randomized) pro-
portional mechanism with an approximation ratio of 4 for general distance metrics, but
it cannot be applied for more than two facilities. Fotakis and Tzamos [10] show that a
winner-imposing variant of the proportional mechanism is strategy-proof for any number of
facilities, with an approximation ratio of 4q. Escoffier et al. [8] define the first mechanism
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Figure 1: The (0.25, 0.75)-percentile mechanism for n = 9.

for general multi-dimensional location problems, a randomized mechanism with an approx-
imation ratio of n/2, but only in the very restrictive setting where the number of agents is
exactly one more than the number of facilities.

Work on load balancing games is somewhat related, but differs in that cost functions
reflect the externalities agents impose on one another (by sharing a facility or some other
resource). Considerable research has developed price of anarchy [12, 3] and related results.
However, externalities give those models a very different character than ours.

3 Percentile Mechanisms

In this section, we introduce and analyze the class of percentile mechanisms, a special case
of m-dimensional generalized median mechanisms [2, 1].

3.1 One-dimensional Percentile Mechanisms

We begin with one-dimensional facility location problems to develop intuitions. We wish to
place q facilities, with each agent i having a single ideal location ti and single-peaked prefer-
ences. Without loss of generality, we rename the agents so their ideal locations are ordered:
t1 ≤ t2 ≤ . . . ≤ tn. A percentile mechanism is specified by a vector p = (p1, p2, . . . , pq),
where 0 ≤ p1 ≤ p2 . . . ≤ pq ≤ 1: the p-percentile mechanism locates the jth facility at the
pjth percentile of the reported ideal locations. In other words, the jth location is placed at
xj = tij , where ij = b(n− 1) · pjc+ 1.2 Intuitively, we can decompose the mechanism into
q independent rules, each locating one facility.

Example 1 We illustrate the (0.25, 0.75)-percentile mechanism for a two-facility problem
with n = 9 agents in Fig. 1. Ordering reported locations so that t1 ≤ . . . ≤ t9, the mechanism
locates the first facility at x1 = t3 (since b8 · 0.25c+ 1 = 3) and the second at x2 = t7.

The following theorem shows an important property of the mechanism:

Theorem 1 The p-percentile mechanism is (group) strategyproof for any p.

Proof: We prove the theorem for the case of q = 2 (proofs for other cases are similar).
Let S ⊆ N be a coalition of agents, x = (x1, x2) be the location vector if agents truthfully

report their ideals, and x′ = (x′1, x
′
2) be the location vector if agents in S jointly deviate

from their peaks. In addition, let ∆1 = x1−x′1 and ∆2 = x′2−x2. An important observation
is that, according to our mechanism, if either of ∆1 or ∆2 is greater or less than 0, some
agent in S must be strictly worse off. We consider four cases:

I. ∆1 ≥ 0 and ∆2 ≥ 0. Note that we can ignore the case where both ∆1 and ∆2 are 0,
since no agent in S gains by misreporting if neither facility moves. Assume, w.l.o.g.,
that ∆1 > 0 and ∆2 ≥ 0. Recall that x1 is the p1th percentile among all reported

2We could equivalently use order statistics; but the percentile formulation removes dependence on the
number of the agents in the mechanism’s specification. It is well-known that, for any fixed n, Moulin’s
phantom peaks can easily be arranged to implement any order statistic.
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peaks. Hence ∆1 > 0 implies that some agent i ∈ S, with ti ≥ x1, reports a new ideal
to the left of x1. Agent i’s cost is now:

ci(x
′, ti) = min{ti − x′1, x′2 − ti} ≥ min{ti − x1, x2 − ti} = ci(x, ti)

II. ∆1 ≥ 0 and ∆2 < 0. In this case, there must be an i ∈ S, with ti ≥ x2, that reports
a new ideal to the left of x2; it’s cost is:

ci(x
′, ti) = ti − x′2 ≥ ti − x2 = ci(x, ti)

III. ∆1 < 0 and ∆2 ≥ 0. This case is completely symmetric to Case II.

IV. ∆1 < 0 and ∆2 < 0. The case is similar to Case II: There must be an i ∈ S whose
ideal is to the right of x2 but misreports to the left of x2, increasing its cost.

We conclude that our percentile mechanism is (group) strategy-proof.
Since any percentile mechanism is strategy-proof for any class of single-peaked pref-

erences, it prevents strategic manipulation even when applied to specific cost/preference
functions. Unfortunately, percentile mechanisms can give rise to poor approximation ratios
when we consider specific cost functions, specifically, L2 or L1 costs.3

Theorem 2 Let agents have L2 (equivalently, L1) preferences. Let p = (p1, p2, . . . , pq)
define a percentile mechanism M . If q ≥ 3, the approximation ratio of M w.r.t. social cost is
unbounded. The approximation ratio w.r.t maximum load is q·z, where z = max1≤j≤q(pj+1−
pj−1) (defining p0 = 0 and pq+1 = 1).

The proof is provided in a longer version of the paper, but we sketch the intuitions here
for the case of social cost.4 The key point is that for any percentile vector, we can construct
an ideal location profile in which the number of different peaks is exactly one more than the
number of facilities, and two of the peaks are arbitrarily close. The percentile mechanism
can locate one facility at each of the “close peaks,” while the optimal solution will select only
one of them. Since optimal social cost is arbitrarily small, an unbounded approximation
ratio results.

Notice that the theorem does not hold for social cost with q = 2 facilities: the left-right
mechanism, which in our terminology is the (0, 1)-percentile mechanism, has a bounded
approximation ratio of n − 1 for social cost [19]. Indeed, it is not hard to show the (0, 1)-
percentile mechanism is the only mechanism within the percentile family that has a bounded
approximation ratio. We conjecture there is no other deterministic mechanism (even outside
the percentile family) that has a bounded approximation ratio. This gives further motivation
to the use of probabilistic priors to optimize the choice of percentiles (see Sec. 4).

With respect to maximum load, it is natural to ask which percentile vector p minimizes z
in Thm. 2. We can show that the percentile mechanism that “evenly distributes” facilities is
approximately optimal, and that it has the smallest approximation ratio within the family.

Proposition 1 Let agents have L2 (equiv. L1) preferences. If q is odd, then the percentile
mechanism with pj = j

q+1 , ∀1 ≤ j ≤ q, is 2q
q+1 -optimal w.r.t. maximum load. If q is even,

then the percentile mechanism with pj = pj+1 = j+1
q+2 , ∀j = 2j′ − 1, 1 ≤ j′ ≤ q/2, is 2q

q+2 -

optimal w.r.t. maximum load.5 In each case, the mechanism has the smallest approximation
ratio within the percentile family.

3Of course, other mechanisms, beyond simple generalized medians, depending on the preference class
(e.g., disturbed median mechanisms for symmetric costs [17] like L1 and L2).

4Any omitted proofs of our main results can be found in the appendix of a longer version of this paper;
see: http://www.cs.toronto.edu/∼cebly/papers.html.

5For even q, the mechanism is partially imposing. We locate two facilities at each selected location, and
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Figure 2: A percentile mechanism for a (2, 2)-problem when n = 11.

3.2 Multi-dimensional Percentile Mechanisms

As discussed above, many social choice problems can be interpreted as “facility location”
problems when viewed as choice in a higher dimensional space, such as selection of politi-
cal/committee representatives, product design, and the like. We now analyze a generaliza-
tion of the percentile mechanism to multi-dimensional spaces.

As above, we assume that agents have single-peaked preferences (see Defn. 1). Reported
types ti are now points in Rm. For any type profile t, let tk1 ≤ tk2 ≤ . . . ≤ tkn be the
ordered projection of t in the kth dimension (for k ≤ m). In other words, we simply order
the reported coordinates in each dimension independently. An m-dimensional percentile
mechanism is specified by a q ×m matrix P = (p1; p2; . . . ; pq), where each pj ∈ [0, 1]m is
an m-vector in the m-dimensional unit cube, with pj = (p1j , p

2
j , . . . , p

m
j ). Given a reported

profile t, the P-percentile mechanism locates the jth facility by selecting, for each dimension
k ≤ m, the pkj th percentile of the ordered projection of t in the kth dimension as the
coordinate of facility j in that dimension. In other words:

xj = (t1b(n−1)·p1jc+1, t
2
b(n−1)·p2jc+1, . . . , t

m
b(n−1)·pmj c+1).

Example 2 Fig. 2 illustrates a 2-D, two facility problem with 11 agents. With P =
(0.2, 0.7; 0.8, 0.3), the P-percentile mechanism locates the first facility at the x-coordinate
of t3 (since b10 · 0.2c+ 1 = 3) and at the y-coordinate of t8; and the second facility is placed
at the x-coordinate of t9 and and the y-coordinate of t4. Notice facilities need not be located
at the ideal point of any agent.

The following results generalize the corresponding one-dimensional results above.

Theorem 3 The m-dimensional P-percentile mechanism is (group) strategy-proof for any
P.

Theorem 4 Let agents have L1 or L2 preferences, and P define a percentile mechanism
M for an (m, q)-facility location problem with m > 1. The approximation ratio of M is
unbounded w.r.t. social cost for any P. The approximation ratio of M is q ·z w.r.t. maximum
load, where z =

∏m
k=1 max1≤j≤q(pkj+1 − pkj−1) (where we define pk0 = 1 and pkq+1 = 1).

balance the agents choosing that location. Agents are indifferent to the “imposed” assignment, so this is
unlike truly imposing mechanisms that remove choice from agents’ hands [10]. We use this mechanism for
convenience—one can define a strictly non-imposing mechanism with the same approximation ratio.
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Notice that this result differs from the one-dimensional case, where the (0, 1)-percentile (i.e.,
left-right) mechanism has a bounded approximation ratio for social cost. When m > 1, no
percentile mechanism has this property—this holds because the mechanism may place no
facility at the ideal location of any agent. As above, however, we can optimize the percentiles
for maximum load, when q = q̃m for some q̃ by exploiting Prop. 1 in each dimension:

Proposition 2 Let q = q̃m. If q̃ is odd, the mechanism that locates one facility at each

percentile of the form 1
q̃+1 in each dimension is

(
2q̃
q̃+1

)m
-optimal w.r.t. maximum load. If

q̃ is even, the mechanism that locates two facilities at each percentile of the form
(

2
q̃+2

)
in

each dimension is
(

2q̃
q̃+2

)m
-optimal w.r.t. maximum load. Moreover, these are the smallest

approximation ratios possible within the family of percentile mechanisms.

4 Optimizing Percentile Mechanisms

We’ve seen that percentile mechanisms are (group) strategy-proof for general (m, q)-facility
location problems, and can offer bounded approximation ratios for L1 and L2 preferences
(though only under restricted circumstances for social cost). Unfortunately, these guarantees
require optimizing the choice of percentiles w.r.t. worst-case profiles, which can sometimes
lead to poor performance in practice. For example, in a (1, 2)-problem, decent approxima-
tion guarantees for social cost require using the (0, 1)-percentile mechanism; but if agent
preferences are uniformly distributed in one dimension, this will, in fact, perform quite
poorly. Intuitively, the (0.25, 0.75)-percentile mechanism should have lower expected social
cost by the (probabilistically) “suitable” placement of two facilities, each for use by half of
the agents.

We consider a framework for empirical optimization of percentiles within the family
of percentile mechanisms that should admit much better performance in practice. As in
automated mechanism design [7, 20], we assume a prior distribution D over agent preference
profiles. Hence agent preferences can be correlated in our model. One will often assume
a prior model D (e.g., learned from observation) that renders individual agent preferences
independent given that model, but this is not required. In many practical settings, such
as facility location or product design, such distributional information will in fact be readily
available. We sample preference profiles from this distribution, and use them to optimize
the percentiles in the P matrix to ensure the best possible expected performance w.r.t. our
social objective.

Unlike classic AMD, we restrict ourselves to the specific family of percentile mechanisms.
While this limits the space of mechanisms, we do this for several reasons. First, it provides
a much more compact mechanism parameterization over which to optimize than in typical
AMD settings.6 Second, since the resulting mechanism is (group) strategy-proof no matter
which percentiles are chosen, the optimization need not account for incentive constraints
(unlike standard AMD). Of course, when considering specific classes of single-peaked prefer-
ences, such as L1 or L2 costs as we do here, a wider class of strategy-proof mechanisms could
be used (e.g., disturbed median mechanisms [17]); but these have more parameters, and as
we will see below empirically, they are unlikely to offer any better performance—since our
optimized percentile mechanisms achieve near-optimal social cost. In addition, errors due
to sampling, or even misestimation of the prior D, have no impact on the strategyproof-
ness of the mechanism. Third, unlike Bayesian optimization—in other words, methods that
choose optimal facility placement relative to the prior with no elicitation of ideal locations—
optimized percentile mechanisms are responsive to the specific preferences of the agents.

6AMD has been explored in a parameterized mechanism space, e.g., in combinatorial auctions [13, 14].
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Distribution q = 2 q = 3 q = 4

Du
SC (0.25, 0.75) (0.16, 0.5, 0.84) (0.12, 0.37, 0.63, 0.88)
ML (0.49, 0.50)(0.33, 0.35, 0.98)(0.25, 0.26, 0.74, 0.75)

Dg
SC (0.25, 0.75) (0.15, 0.5, 0.85) (0.1, 0.35, 0.65, 0.9)
ML (0.49, 0.50) (0.33, 0.35, 0.9) (0.25, 0.26, 0.74, 0.75)

Dgm
SC (0.17, 0.68)(0.16, 0.59, 0.93)(0.12, 0.37, 0.68, 0.94)
ML (0.49, 0.50)(0.14, 0.65, 0.66)(0.17, 0.34, 0.73, 0.74)

Table 1: Optimal percentiles for different distributions, objectives, and numbers of facilities.

Let agent type profiles t = (t1, t2, . . . , tn) be drawn from distribution D. Given a P-
percentile mechanism, let fP(t) denote the chosen locations when the agent type profile is
t. The goal is to select P to minimize the expected social cost or maximum load:

min
P

ED [SCp(fP(t), t)] ; or min
P

ED [MLp(fP(t), t)]

Naturally, other objectives can be modelled in this way too.
Given Y sampled preference profiles, we optimize percentile selection relative to the Y

sampled profiles. In our experiments below, we use simple numerical optimization for this
purpose. Specifically, we consider all possible values for the percentile matrix P. For each
of them, we compute the average social cost (maximum load) over Y sample profiles, and
select the one that has the minimum objective value. Alternatively, one can formulate the
minimization problem as a mixed integer programming (MIP) for L1 costs, or a mixed integer
quadratically constained program (MIQCP) for L2 costs, and use standard optimization
tools, e.g., CPLEX, to solve the problem. However, determining concise formulations is
non-trivial and effective use of these formulations is left to future research.7

In the following experiments, we consider problems with n = 101 agents, with agent
preferences drawn independently from three classes of distributions: uniform Du, Gaussian
Dg and mixture of Gaussians Dgm with 2 or 3 components. Each distribution reflects
rather different assumptions about agent preferences: that they are spread evenly (Du);
that they are biased toward one specific location (Dg); or that they partitioned into 2 or 3
loose clusters (Dgm). In all cases, T = 500 sampled profiles are used for optimization. We
examine results for both social cost and maximum load.

One-dimensional mechanisms

We begin with simple one-dimensional problems with q = 2, 3 or 4. Table 1 shows the per-
centiles resulting from our optimization for both SC and ML under each of the three distri-
butions.8 For example, when agent ideal locations are uniformly distributed, the (0.25, 0.75)-
percentile mechanism minimizes the expected social cost for two facilities. This is expected,
since the uniform (and Gaussian) distribution partitions agents into two groups of roughly
equal size, and facilities should be located at the median positions of each group.

The performance of the optimized percentile mechanisms is extremely good. Fig. 3 com-
pares the expected social cost and maximum load of our mechanisms with those given by
optimal placement of facilities (results for q = 3 are shown, but others are similar). Recog-
nize however that optimal placement is not realizable with any strategy-proof mechanism.
Despite this, optimized percentile mechanisms perform nearly as well in expectation in all
three cases. Contrast this with the performance of the mechanisms with provable approx-
imation ratios. When q = 2, the (0, 1)-percentile mechanism has an average social cost

7We describe preliminary formulations of the MIP and MIQCP, which do not scale well, in the appendix
of a longer version of this paper; see: http://www.cs.toronto.edu/∼cebly/papers.html.

8Du is uniform on [0, 10]. Dg is Gaussian N (0, 2) with µ = 0, σ2 = 2. Dgm is a Gaussian mixture with
3 components: N (−4, 4) (weight 0.4), N (0, 1) (weight 0.45), and N (5, 2) (weight 0.15).
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Figure 3: Comparison of optimized percentile mechanism and optimal value (q = 3).

0 2 4 6 8 10
0

2

4

6

8

10

 

 

Social Cost Maximum Load

0 1 2 3 4 5 6
-1

0

1

2

3

4

5

 

 

Social Cost Maximum Load

-4 -2 0 2
-4

-2

0

2

4

6

8

 

 

Social Cost Maximum Load

Figure 4: Optimized Percentiles for (a) 2D: Uniform, (b) 2D: Gaussian, (c) 2D: Gaussian
mixture, and (d) 4D.

of 242.4, 340.9 and 523.2 for Du, Dg and Dgm, respectively; but the social cost of our
mechanisms are only 123.7, 76.5, and 165.1, respectively. When q = 3, the (0.25, 0.5, 0.75)-
percentile mechanism has the best approximation ratio for ML (see Prop. 1). Its average
maximum loads are 39.5, 38.7 and 38.3, which are close to (but not as good as) the loads
of the optimized percentile mechanisms (36.5, 36.5, and 36.2).

Multi-dimensional mechanisms

We also experimented with two additional problems. 2D is a (2, 3)-problem where agents
have L2 preferences, capturing, say, the placement of three public projects like libraries, or
warehouses. 4D is a (4, 2)-problem with L1 preferences, which might model the selection of
2 products for launch, each with four attributes that predict consumer demand.9

For the problem 2D we show the expected placement of facilities given the selected
percentiles in Fig. 4(a)-(c), for both SC and ML, for each of the three distributions. (Actual
facility placement will shift to match the reported type profile in each instance.) Placement
for SC tends to be distributed appropriately, while ML places two facilities adjacent to
one another. For 4D, we measure performances rather than visualizing locations. Fig. 4(d)
compares expected SC and ML of our optimized percentile mechanisms to those using true
optimal facility placements: the percentile mechanisms are always optimal for ML;10 and for
SC, non-strategy-proof optimal placements are only 1.75%-4.45% better than placements
using our optimized, strategy-proof mechanisms.11 This strongly suggests that percentile
mechanisms, optimized using priors over preferences, are well-suited to multi-dimensional,
single-peaked domains.

9For 2D, Du is uniform over [0, 10] in each dimension. Dg is normal with mean µ = [3, 2] and covariance
Σ = [2, 1]I. Dgm is a 2 component mixture: N ([−2,−1], [2, 1]I) (weight 0.3) and N ([0, 2], [1, 3]I) (weight
0.7). For 4D, Du is uniform over [0, 10] in each dimension. Dg is N ([3, 2, 1, 2], [2, 3, 4, 1]I). Dgm is a 2
component mixture: N ([2, 1, 0, 1], [4, 6, 8, 5]I) (weight 0.4) and N ([1, 2, 1, 0], [7, 4, 5, 8]I) (weight 0.6).

10This comes from the fact that the mechanism always locates two facilities at almost the same position,
and achieves optimal maximum load. However, this is not always possible for more than two facilities.

11Computing the optimal solution in the multi-dimensional problem is NP-hard, so we use K-means
clustering algorithms as approximations.
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5 Conclusion and Future Research

We proposed a family of percentile mechanisms for multi-dimensional, multi-facility location
problems, designed to be (group) strategy-proof when preferences are single-peaked. Using
different costs measures, we derived several approximation ratios. We also developed a
sample-based framework for optimizing percentile mechanisms that, much like automated
mechanism design, exploits priors over preferences. Our empirical results demonstrate the
power of this approach, showing social objectives can be optimized much more effectively
than is possible using mechanisms with tight worst-case performance guarantees (indeed,
our mechanisms provide close to optimal results in practice).

This work is a starting point for the design of optimized mechanisms for single-peaked
domains, and can be extended in a number of ways. Obviously one can consider mech-
anisms for other classes of (single-peaked) preferences (e.g., quadratic [5] or symmetric
single-peaked [17]). Other social objectives should be explored, including those that com-
bine various desiderata (such as SC and ML), and those that trade off facility cost with
benefit (e.g., additional facilities decrease social cost, but the expense must be factored
in as well [16]). Additional development of the optimization models needed for percentile
mechanisms (e.g., our MIP or MIQCP formulations) are needed to make our approach more
practical; preliminary experiments suggest that local search techniques may be very promis-
ing in this respect. Sample complexity results are also of interest. Finally, incremental (or
multi-stage) mechanisms that trade off social cost, communication costs, and agent privacy
[9, 22] would be extremely valuable in our setting.
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Empirical Aspects of Plurality Election

Equilibria

David R. M. Thompson, Omer Lev, Kevin Leyton-Brown
and Jeffrey S. Rosenschein

Abstract

Social choice functions aggregate the different preferences of agents, choosing from
a set of alternatives. Most research on manipulation of voting methods studies
(1) limited solution concepts, (2) limited preferences, or (3) scenarios with a few
manipulators that have a common goal. In contrast, we study voting in plural-
ity elections through the lens of Nash equilibrium, which allows for the possibility
that any number of agents, with arbitrary different goals, could all be manipula-
tors. We do this through a computational analysis, leveraging recent advances in
(Bayes-)Nash equilibrium computation for large games. Although plurality has ex-
ponentially many pure-strategy Nash equilibria, we demonstrate how a simple equi-
librium refinement—assuming that agents very weakly prefer to vote truthfully—
dramatically reduces this set. We also use symmetric Bayes-Nash equilibria to in-
vestigate the case where voters are uncertain of each others’ preferences. Although
our refinement does not completely eliminate the problem of multiple equilibria, it
tends to predict an increased probability that a good candidate will be selected (e.g.,
the candidate that would win if voters were truthful, or a Condorcet winner).

1 Introduction

When multiple agents have differing preferences, voting mechanisms are often used to decide
among the alternatives. One desirable property for a voting mechanism is strategy-proofness,
i.e., that it is optimal for agents to truthfully report their preferences. However, the Gibbard-
Satterthwaite theorem [12; 27] shows that no non-dictatorial strategy-proof mechanism can
exist. Whatever other desirable properties a voting mechanism may have, there will always
be the possibility that some participant can gain by voting strategically.

Since voters may vote strategically (i.e., manipulate or counter-manipulate) to influence
an election’s results, according to their knowledge or perceptions of others’ preferences,
much research has considered ways of limiting manipulation. This can be done by exploit-
ing the computability limits of manipulations (e.g., finding voting mechanisms for which
computing a beneficial manipulation is NP-hard [2; 1; 30]), by limiting the range of prefer-
ences (e.g., if preferences are single-peaked, there exist non-manipulable mechanisms [10]),
randomization [13; 25], etc.

When studying the problem of vote manipulation, nearly all research falls into two cat-
egories: coalitional manipulation and equilibrium analysis. Much research into coalitional
manipulation considers models in which a group of truthful voters faces a group of ma-
nipulators who share a common goal. Less attention has been given to Nash equilibrium
analysis which models the (arguably more realistic) situation where all voters are potential
manipulators. One reason is that it is difficult to make crisp statements about this problem:
strategic voting scenarios give rise to a multitude of Nash equilibria, many of which involve
implausible outcomes. For example, even a candidate who is ranked last by all voters can be
unanimously elected in a Nash equilibrium—observe that when facing this strategy profile,
no voter gains from changing his vote.

Despite these difficulties, this paper considers the Nash (and subsequently, Bayes-Nash)
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equilibria of voting games. We focus on plurality, as it is by far the most common voting
mechanism used in practice. We refine the set of equilibria by adding a small additional
assumption: that agents realize a very small gain in utility from voting truthfully; we call
this restriction a truthfulness incentive. We ensure that this incentive is small enough that
it is always overwhelmed by the opportunity to be pivotal between any two candidates: that
is, a voter always has a greater preference for swinging an election in the direction of his
preference than for voting truthfully. All the same, this restriction is powerful enough to
rule out the bad equilibrium described above, as well as being, in our view, a good model
of reality, as voters often express a preference for voting truthfully.

Dutta and Laslier [7] studied a somewhat similar model, where voters have a lexigraphic
preference for truthfulness. They demonstrated that for some voting mechanism, a small
preference for truthfulness can eliminate all pure-strategy Nash equilibria. We observed
a similar occurrence in our results with plurality (which is problematic voting methods
designed to reach an equilibrium by an iterative process, e.g., [21; 19]).

We take a computational approach to the problem of characterizing the Nash equi-
libria of voting games. This has not previously been done in the literature, because the
resulting normal-form games are enormous. For example, representing our games (10
players and 5 candidates) in the normal form would require about a hundred million
payoffs. Unsurprisingly, these games are intractable for current equilibrium-finding algo-
rithms, which have worst-case runtimes exponential in the size of their inputs. We over-
came this obstacle by leveraging recent advances in compact game representations and effi-
cient algorithms for computing equilibria of such games, specifically action-graph games [15;
14] and the support-enumeration method [28].

Our first contribution is an equilibrium analysis of full-information models of plurality
elections. We analyze how many Nash equilibria exist when truthfulness incentives are
present. We also examine the winners, asking questions like how often they also win the
election in which all voters vote truthfully, or how often they are also Condorcet winners.
We also investigate the social welfare of equilibria; for example, we find that it is very
uncommon for the worst-case result to occur in equilibrium.

Our second contribution involves the possibly more realistic scenario in which the infor-
mation available to voters is incomplete. We assume that voters know only a probability
distribution over the preference orders of others, and hence identify Bayes-Nash equilibria.
We found that although the truthfulness incentive eliminates the most implausible equilibria
(i.e., where the vote is unanimous and completely independent of the voters preferences),
many other equilibria remain. Similarly to Duverger’s law (which claims that plurality elec-
tion systems favor a two-party result [9], but does not directly apply to our setting), we
found that a close race between almost any pair of candidates was possible in equilibrium.
Equilibria supporting three or more candidates were possible, but less common.

1.1 Related Work

Analyzing equilibria in voting scenarios has been the subject of much work, with many
researchers proposing various frameworks with limits and presumptions to deal with both
the sheer number of equilibria, and to deal with more real-life situations, where there is
limited information. Early work in this area, by McKelvey and Wendell [20], allowed for
abstention, and defined an equilibrium as one with a Condorcet winner. As this is a very
strong requirement, such an equilibrium does not always exist, but they established some
criteria for this equilibrium that depends on voters’ utilities.

Myerson and Weber [23] wrote an influential article dealing with the Nash equilibria
of voting games. Their model assumes that players only know the probability of a tie
occurring between each pair of players, and that players may abstain (for which they have
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a slight preference). They show that multiple equilibria exist, and note problems with
Nash equilibrium as a solution concept in this setting. The model was further studied and
expanded in subsequent research [4; 16]. Assuming a slightly different model, Messner and
Polborn [22], dealing with perturbations (i.e., the possibility that the recorded vote will be
different than intended), showed that equilibria only includes two candidates (“Duverger’s
law”). Our results, using a different model of partial information (Bayes-Nash), show that
with the truthfulness incentive, there is a certain predilection towards such equilibria, but
it is far from universal.

Looking at iterative processes makes handling the complexity of considering all players
as manipulators simpler. Dhillon and Lockwood [6] dealt with the large number of equilibria
by using an iterative process that eliminates weakly dominated strategies (a requirement
also in Feddersen and Pesendorfer’s definition of equilibrium [11]), and showed criteria for
an election to result in a single winner via this process. Using a different process, Meir et
al. [21] and Lev and Rosenschein [19] used an iterative process to reach a Nash equilibrium,
allowing players to change their strategies after an initial vote with the aim of myopically
maximizing utility at each stage.

Dealing more specifically with the case of abstentions, Desmedt and Elkind [5] examined
both a Nash equilibrium (with complete information of others’ preferences) and an iterative
voting protocol, in which every voter is aware of the behavior of previous voters (a model
somewhat similar to that considered by Xia and Contizer [29]). Their model assumes that
voting has a positive cost, which encourages voters to abstain; this is similar in spirit to our
model’s incentive for voting truthfully, although in this case voters are driven to withdraw
from the mechanism rather than to participate. However, their results in the simultaneous
vote are sensitive to their specific model’s properties.

Rewarding truthfulness with a small utility has been used in some research, though not
in our settings. Laslier and Weibull [18] encouraged truthfulness by inserting a small amount
of randomness to jury-type games, resulting in a unique truthful equilibrium. Dutta and
Laslier [7] attempted to inject truthfulness directly into a voting rule combined of approval
voting and veto, but only found a few existence results that show truthful equilibria exist in
that case. A more general result has been shown in Dutta and Sen [8], where they included
a subset of participants which, as in our model, would vote truthfully if it would not change
the result. They show that in such cases, many social choice functions (those that satisfy
the No Veto Power) are Nash-implementable, i.e., there exists a mechanism in which Nash
equilibria correspond to the voting rule. However, as they acknowledge, the mechanism is
highly synthetic, and, in general, implementability does not help us understand voting and
elections, as we have a predetermined mechanism.

2 Definitions

Before detailing our specific scenario, we first define elections, and how winners are deter-
mined.

Elections are made up of candidates, voters, and a mechanism to decide upon a winner:

Definition 1. Let C be a set of m candidates, and let A be the set of all possible preference
orders over C. Let V be a set of n voters, and every voter vi ∈ V has some element in A
which is his true, “real” value (which we shall mark as ai), and some element of A which
he announces as his value, which we shall denote as ãi.

Note that our definition of a voter incorporates the possibility of him announcing a value
different than his true value (strategic voting).

Definition 2. A voting rule is a function f : An → 2C \ ∅.
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In this paper, we restrict our attention to plurality, where a point is given to each voter’s
most-preferred candidate, and the candidates with the highest score win.

Our definition of voting rules allows for multiple winners. However, in many cases what
is desired is a single winner; in these cases, a tie-breaking rule is required.

Definition 3. A tie-breaking rule is a function t : 2C → C that, given a set of elements in
C, chooses one of them as a (unique) winner.

There can be many types of tie-breaking rules, such as random or deterministic, lexical
or arbitrary. In this work, we use a lexical tie-breaking rule.

Another important concept is that of a Condorcet winner.

Definition 4. A Condorcet winner is a candidate c ∈ C such that for every other candidate
d ∈ C (d 6= c) the number of voters that rank c over d is at least dn2 e.

Condorcet winners do not exist in every voting scenario, and many voting rules—
including plurality—are not Condorcet-consistent (i.e., even when there is a Condorcet
winner, that candidate may lose). Note that our definition allows for the possibility of
multiple Condorcet winners in a single election, in cases where n is even. Conversely, a
Condorcet loser is ranked below any other candidate by a majority of voters.

To reason about the equilibria of voting systems, we need to formally describe them as
games, and hence to map agents’ preference relations to utility functions. More formally,
each agent i must have a utility function ui : An 7→ R, where ui(aV ) > ui(a

′
V ) indicates

that i prefers the outcome where all the agents have voted aV over the outcome where the
agents vote a′V . Representing preferences as utilities rather than explicit rankings allows
for the case where i is uncertain what outcome will occur. This can arise either because he
is uncertain about the outcome given the agents’ actions (because of random tie-breaking
rules), or because he is uncertain about the actions the other agents will take (either because
they are behaving randomly, or because they have committed to a strategy that agent i does
not observe). In this paper, we assume that an agent’s utility only depends on the candidate
that gets elected and on his own actions (e.g., an agent can strictly prefer to abstain when his
vote is not pivotal, as in [5], or to vote truthfully). Thus, we obtain simpler utility functions
ui : C ×A 7→ R, with an agent i’s preference for outcome aV denoted ui(t(f(aV )), ãi).

In this paper, we consider two models of games, full-information games and symmetric
Bayesian games. In both models, each agent must choose an action ãi without condi-
tioning on any information revealed by the voting method or by the other agents. In a
full-information game, each agent has a fixed utility function which is common knowledge
to all the others. In a symmetric Bayesian game, each agent’s utility function (or “type”) is
an i.i.d. draw from a commonly known distribution of the space of possible utility functions,
and each agent must choose an action without knowing the types of the other agents, while
seeking to maximize his expected utility.

We consider a plurality voting setting with 10 voters and 5 candidates (numbers chosen
to give a setting both computable and with a range of candidates), and with the voters’
preferences chosen randomly. Suppose voter i has a preference order of a5 � a4 � . . . � a1,
and the winner when voters voted aV is aj . We then define i’s utility function as

ui(f(t(aV )), ãi) = ui(a
j , ãi) =

{
j ai 6= ãi

j + ε ai = ãi,

with ε = 10−6.
In the incomplete-information case, we model agents as having one of six possible types

(to make the problem more easily computable), each corresponding to a different (randomly
selected) preference ordering. The agent’s type draws are i.i.d. but the probability of each
type is not necessarily uniform. Instead, the probability of each type is drawn from a uniform
distribution, and then normalized; thus, the probabilities ranged from 0.0002 to 0.55.
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Figure 1: An action graph game encoding of a simple two-candidate plurality vote. Each
round node represents an action that a voter can choose. Dashed-line boxes define which
actions are open to a voter given his preferences; in a Bayesian AGG, an agent’s type
determines the box from which he is allowed to choose his actions. Each square node is an
adder, tallying the number of votes a candidate received.

3 Method

Before we can use any Nash-equilibrium-finding algorithm, we need to represent our games in
a form that the algorithm can use. Because normal form games require space exponential in
the number of players, they are not practical for games with more than a few players. The
literature contains many “compact” game representations that require exponentially less
space to store games of interest, such as congestion [26], graphical [17], and action-graph
games [15]. Action-graph games (AGGs) are the most useful for our purposes, because
they are very compactly expressive (i.e., if the other representations can encode a game in
polynomial-space then AGGs can as well), and fast tools have been implemented for working
with them.

Action-graph games achieve compactness by exploiting two kinds of structure in a game’s
payoffs: anonymity and context-specific independence. Anonymity means that an agent’s
payoff depends only on his own action and the number of agents who played each action.
Context-specific independence means that an agent’s payoff depends only on a simple suffi-
cient statistic that summarizes the joint actions of the other players. Both properties apply
to our games: plurality treats voters anonymously, and selects candidates based on simple
ballot counts.

Encoding our voting games as action-graph games is relatively straightforward. For
each set of voters with identical preferences, we create one action node for each possible way
of voting. For each candidate, we create an adder node that counts how many votes the
candidate receives. Directed edges encode which vote actions contribute to a candidate’s
score, and that every action’s payoff can depend on the scores of all the candidates (see
Figure 1).

A variety of Nash-equilibrium-finding algorithms exist for action-graph games [15;
3]. In this work, we used the support enumeration method [24; 28] exclusively because it
allows Nash equilibrium enumeration. This algorithm works by iterating over possible sup-
ports, testing each for the existence of a Nash equilibrium. In the worst case, this requires
exponential time, but in practice SEM’s heuristics (exploiting symmetry and conditional
dominance) enable it to find all the pure-strategy Nash equilibria of a game quickly.

We represented our symmetric Bayesian games using a Bayesian game extension to
action-graph games [14]. Because we were concerned only with symmetric pure Bayes-Nash
equilibria, it remained feasible to search for every equilibrium with SEM.
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4 Pure-Strategy Nash Equilibrium Results

To examine pure strategies, we ran 1, 000 voting experiments using plurality with 10 vot-
ers and 5 candidates. Such a game might ordinarily have hundreds of thousands of Nash
equilibria. However, adding a small truthfulness incentive (ε = 10−6) lowers these numbers
significantly. Not counting permutations of voters with the same preferences, every game
had 25 or fewer equilibria; counting permutations, the maximum number of equilibria was
still only 146. Indeed, an overwhelming number of these games (96.2%) had fewer than 10
equilibria (27 with permutations). More surprisingly, a few (1.1%) had no pure Nash equi-
libria at all.1 To gauge the impact of the truthfulness incentive, we also ran 50 experiments
without it; every one of these games had over a hundred thousand equilibria, without even
considering permutations.
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Figure 3: Empirical CDF of social welfare

3 Social Welfare Results

Without the ✏ preference for truthful voting, every outcome is always possible
in some PSNE. (This implies that the price of anarchy is unbounded, while
the price of stability is one.) With it, the worst case-outcome is almost always
impossible in PSNE (92.8%). Sometimes (29.7%) the best case outcome is also
impossible (29.7%). The gap between best and worst PSNEs can be very large,
though both can lead to the worst-case outcome. (Thus, the price of anarchy and
price of stability are unbounded if I normalize social welfare from worst to best
outcome. I think I need a new way of normalizing.) In the majority of games
(59%), truthful voting will lead to the best possible outcome. Nevertheless, the
best-case PSNE still stochastically dominates truthful voting.

In games where truthfulness is a PSNE, truthfulness is closer to the best-
case PSNE, but still stochastically dominated. In games where truthfulness is
not a PSNE, the equilibrium outcomes and truthful outcomes tend to be worst
than went it is.

Note: for welfare results I omit the games with no PSNEs.

4 Condorcet Winners

Of the 1000 games tested, 931 games had a Condorcet winner. In fact, 204
games had multiple Condorcet winners. (See Figure 5.) As with social welfare,
when comparing the relative probability of having a Condorcet winner win the
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Figure 2: Equilibria and social welfare in Plurality

We shall examine two aspects of the results: the preponderance of equilibria with victors
being the voting method’s winners,2 and Condorcet winners. Then, moving to the wider
concept of social welfare of the equilibria (possible due to the existence of utility functions),
we examine both the social welfare of the truthful voting rule vs. best and worse possible
Nash equilibria, as well as the average rank of the winners in the various equilibria.

1This is especially relevant to voting procedures relying on the existence of pure Nash equilibrium, and
seeking to “find” one, such as the one proposed in [21].

2This, when expanded to more voting rules, may be an interesting comparative criterion between voting
mechanisms.
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For 63.3% of the games, the truthful preferences were a Nash equilibrium, but more
interestingly, many of the Nash equilibria reached, in fact, the same result as the truthful
preferences: 80.4% of the games had at least one equilibrium with the truthful result, and
looking at the multitudes of equilibria, the average share of truthful equilibrium (i.e., result
was the same as with truthful vote) was 41.56% (out of games with a truthful result as an
equilibrium, the share was 51.69%). Without the truthfulness incentive, the average share
of truthful equilibrium was 21.77%.

Looking at Condorcet winners, 92.3% of games had Condorcet winners, but they were
truthful winners only in 44.7% of the games (not a surprising result, as plurality is far
from being Condorcet consistent). However, out of all the equilibria, the average share of
equilibria with a victorious Condorcet winner was 40.14% (of games which had a Condorcet
winner the average share is 43.49%; when the Condorcet winner was also the truthful winner,
its average share of equilibria is 56.96%).

Looking at the wider picture (see Figure 2c), the addition of the truthful incentive made
possible games with very few Nash equilibria. They, very often, resulted in the truthful
winner. As the number of equilibria grows, the truthful winner part becomes smaller, as
the Condorcet winner part increases.

Turning to look at the social welfare of equilibria, once again, the existence of the
truthfulness incentive enables us to reach “better” equilibria. In 92.8% of the cases, the
worst-case outcome was not possible at all (recall that without the truthfulness incentive,
every result is possible in some Nash equilibrium), while only in 29.7% of cases, the best
outcome was not possible. We note that while truthful voting led to the best possible
outcome in 59% of cases, it is still stochastically dominated by best-case Nash equilibrium
(see Figure 2b).

When looking at the distribution of welfare throughout the multitudes of equilibria,
one can see that the concentration of the equilibria is around high-ranking candidates, as
the average share of equilibria by candidates with an average ranking (across all voters in
the election) of less than 1 was 56.38%. Even if we exclude Condorcet winners (as they,
on many occasions, are highly ranked), the average ranking of less than 1 was 46.56%
(excluding truthful winners resulted in 27.48% with average ranking less than 1). Fully
71.65%, on average, of the winners in every experiment had above (or equal) the median
rank, and in more than half the experiments (52.3%) all equilibria winners had a larger score
than the median. As a comparison, the numbers from experiments without the truthfulness
incentive, are quite different: candidates—whatever their average rank—won, with minor
fluctuations, about the same number of equilibria (57% of winners, were, on average, above
or equal to the median rank).

5 Bayes-Nash Equilibria Results

Moving beyond the full-information assumption, we considered plurality votes where the
agents have incomplete information about each other’s preferences. In particular, we as-
sumed that the agents have i.i.d. (but not necessarily uniformly distributed) preferences, and
that each agent knows only his own preferences and the commonly-known prior distribu-
tion. Again, we considered the case of 10 voters and 5 candidates, but now also introduced
6 possible types for each voter. For each of 50 games, we computed the set of all symmetric
pure-strategy Bayes-Nash equilibria, both with and without the ε-truthfulness incentive.

Our first concern was studying how many equilibria each game had and how the truth-
fulness incentive affected the number of equilibria. The set of equilibria was small (< 28 in
every game) when the truthfulness incentive was present. Surprisingly, only a few equilibria
were added when the incentive was relaxed. In fact, in the majority of games (76%), there

437



0	  

0.1	  

0.2	  

0.3	  

0.4	  

0.5	  

0.6	  

1	   2	   3	   4	   5	  

Av
er
ag
e  
pe

rc
en

ta
ge
  o
f  e

qu
ili
br
ai


Average  ranking  (upper  value)

All	  Games	  (with	  
truthfulness-‐
incen<ve)	  

Ignoring	  
Condorcet	  
winners	  

Ignoring	  truthful	  
winners	  

Without	  
truthfulness	  
incen<ve	  

Figure 3: The average proportion of equilibria won by candidates with average rank of 0–1,
1–2, etc.

Figure 4: The number of symmetric pure-strategy Bayes-Nash equilibria in plurality votes
with and without the ε-truthfulness incentive

were exactly five new equilibria: one for each strategy profile where all types vote for a
single candidate (see Figure 4).

Looking into the structure of these equilibria, we found two interesting, and seemingly
contradictory, properties: most equilibria (95.2%) only involved two or three candidates
(i.e., voters only voted for a limited set of candidates), but every candidate was involved
in some equilibrium. Thus, we can identify an equilibrium by the number of candidates it
involves (see Figure 5). Notably, most equilibria involved only two candidates, with each
type voting for their most preferred candidate of the pair. Further, most games had 10 such
equilibria, one for every possible pair. There were two reasons why some pairs of candidates
did not have corresponding equilibria in some games. First, sometimes one candidate Pareto-
dominated the other (i.e., was preferred by every type). Second, sometimes the types that
liked one candidate were so unlikely to be sampled that close races were extremely low
probability (relative to ε); in such cases, agents preferred to be deterministically truthful
than pivotal with very small probability.3 This observation allowed us to derive a theoretical

3There were two outlier games where one of the types had a very low probability (< 0.001). Because
of this, the probability of a realization where half the agents had this type approached machine-ε. Thus,
any pure strategy profile where this type votes one way and all the other types vote another way will result
in a 2-candidate equilibrium (20 such 2-candidate combinations exist, so these games had 20 additional
two-candidate equilibria.)
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Figure 5: Every instance had many equilibria, most of which only involved a few candidates.

result about when a 2-candidate equilibrium will exist.
Let ` be the minimal difference between the utility of 2 different candidates, across all

voters (in our scenarios, this minimal difference is 1).

Proposition 5. In a plurality election with a truthfulness incentive of ε, as long as
( 1
n )b

n
2 c` ≥ ε, for every c1, c2 ∈ C, either c1 Pareto dominates c2 (i.e., all voters rank

c1 higher than c2), or there exists a pure Bayes-Nash equilibrium in which each voter votes
for his most preferred among these two candidates.

Due to space constraints, we provide only proof sketch.

Proof sketch. Let us define a strategy as follows: every voter that prefers c1 over c2 votes for
c1; otherwise, he votes for c2. Obviously, if c2 is Pareto dominated, every individual voter
believes that he will be better off voting truthfully, and this may not be an equilibrium.
However, if c2 is not Pareto dominated, then there is a probability larger than (or equal to)
1
n that there is a voter who prefers c2 to c1. Hence, the probability that a voter who prefers

c1 to c2 will be pivotal is at least ( 1
n )b

n
2 c. If the benefit to all voters from being pivotal in

this way is larger than ε, the value of the truthfulness incentive, the voter will not deviate
from that strategy. Thus, when ( 1

n )b
n
2 c` ≥ ε they do not deviate.

These two-candidate equilibria have some interesting properties. Because they can in-
clude any two candidates that do not Pareto-dominate each other, it is possible for them
to exclude a third candidate that Pareto-dominates both. In this way, it is possible for
two-candidate equilibria to fail to elect a Condorcet winner. However, because every two-
candidate equilibrium is effectively a pairwise runoff, it is impossible for a two-candidate
equilibrium to elect a Condorcet loser.

Equilibria supporting three or more candidates are less straightforward. Which 3-
candidate combinations are possible in equilibrium (even without ε-truthful incentives) can
depend on the specific type distribution and the agents’ particular utilities. Also, in these
equilibria, agents do not always vote for their most preferred of the three alternatives (again,
depending on relative probabilities and utilities). Finally, 3-candidate equilibria can elect a
Condorcet loser with non-zero probability.

6 Discussion and Future Work

Our work approaches the issues of voting manipulation by combining two less-common
approaches: assuming all voters are manipulators, rather than just a subset with a shared
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goal, and looking at Nash equilibria as a whole, rather than searching for other solution
concepts or a specific equilibrium. We utilized only a small and realistic assumption—that
users attach a small value to voting their truthful preferences. Using the AGG framework
to analyze the Nash equilibria and symmetric Bayes-Nash equilibria of plurality, we can
extrapolate from the data and reveal properties of such voting games.

We saw several interesting results, beyond a reduction in the number of equilibria, due
to our truthfulness incentive. One of the most significant was the “clustering” of many
equilibria around candidates that can be viewed as resembling the voters’ intention. A very
large share of each game’s equilibria resulted in winners that were either truthful winners
(according to plurality) or Condorcet winners. Truthful winners were selected in a larger
fraction of equilibria when the total number of equilibria was fairly small (as was the case in
a large majority of our experiments), and their share decreased as the number of equilibria
increased (where we saw, in cases where there were Condorcet winners, that those equilibria
took a fairly large share of the total).

Looking at social welfare enabled us to compare equilibrium outcomes to all other pos-
sible outcomes. We observed that plurality achieved nearly the best social welfare possible
(a result that did not rely on our truthfulness incentive). While another metric showed the
same “clustering” we noted above, most equilibrium results concentrated around candidates
that were ranked, on average, very high (on average, more than 50% of winners in every ex-
periment had a rank less than 1). This, in a sense, raises the issue of the rationale of seeking
to minimize the amount of manipulation, as we found that manipulation by all voters very
often results in socially beneficial results.

In the Bayes-Nash results, we saw that lack of information generally pushed equilibria
to be a “battle” between a subset of the candidates—usually two candidates (as Duverger’s
law would indicate), but occasionally more.

There is much more work to be done in the vein we have introduced in this paper. This
includes examining the effects of varying the number of voters and candidates, changing
utility functions, as well as looking at more voting rules and determining properties of
their equilibria. Voting rules can be ranked according to their level of clustering, how
good, socially, their truthful results are, and other similar criteria. Furthermore, it would
be worthwhile to examine other distributions of preferences and preference rules, such as
single-peaked preferences. Computational tools can also be useful to assess the usefulness of
various strategies available to candidates (e.g., it might be more productive for a candidate
to attack a weak candidate to alter the distribution).
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How Many Vote Operations Are Needed
to Manipulate A Voting System?

Lirong Xia

Abstract

In this paper, we propose a framework to study a general class of strategic behavior in voting,
which we call vote operations. Our main theorem is the following: if we fix the number of
alternatives, generate n votes i.i.d. according to a distribution π, and let n go to infinity, then,
for any ε > 0, with probability at least 1 − ε, the minimum number of operations that are
necessary for the strategic individual to achieve her goal falls into one of the following four
categories: (1) 0, (2) Θ(

√
n), (3) Θ(n), and (4) ∞. This theorem holds for any set of vote

operations, any individual vote distribution π, and any integer generalized scoring rule, which
includes (but is not limited to) most commonly studied voting rules, e.g., approval voting, all
positional scoring rules (including Borda, plurality, and veto), plurality with runoff, Bucklin,
Copeland, maximin, STV, and ranked pairs.
We also show that many well-studied types of strategic behavior fall under our framework,
including (but not limited to) constructive/destructive manipulation, bribery, and control by
adding/deleting votes, margin of victory, and minimum manipulation coalition size. Therefore,
our main theorem naturally applies to these problems.

1 Introduction
Voting is a popular method used to aggregate voters’ preferences to make a joint decision. One
of the most desired properties for voting rules is strategy-proofness, that is, no voter has incentive
to misreport her preferences to obtain a better outcome of the election. Unfortunately, strategy-
proofness is not compatible with some other natural desired properties, due to the celebrated
Gibbard-Satterthwaite theorem [14, 22], which states that when there are at least three alternatives,
no strategy-proof voting rule satisfies the following two natural properties: non-imposition (every al-
ternative can win) and non-dictatorship (no voter is a dictator whose top ranked alternative is always
the winner).

Even though manipulation is inevitable, researchers have set out to investigate whether com-
putational complexity can serve as a barrier against various types of strategic behavior, including
manipulation. The idea is, if we can prove that it is computationally too costly for a strategic in-
dividual to find a beneficial operation, she may give up doing so. Initiated by Bartholdi, Tovey,
and Trick [2], a fair amount of work has been done in the computational social choice community
to characterize the computational complexity of various types of strategic behavior, including the
following. See [10, 12, 21] for recent surveys.
• Manipulation: a voter or a coalition of voters cast false vote(s) to change the winner (and the

new winner is more preferred).
• Bribery: a strategic individual changes some votes by bribing the voters to make the winner

preferable to her [9]. The bribery problem is closely related to the problem of computing the margin
of victory [5, 16, 31].
• Control: a strategic individual adds or deletes votes to make the winner more preferable to

her [3]. Control by adding votes is equivalent to false-name manipulation [6].
Most previous results in “using computational complexity as a barrier against strategic behav-

ior” are worst-case analyses of computational complexity. Recently, an increasing number of results
show that manipulation, as a particular type of strategic behavior, is typically not hard to compute.
One direction, mainly pursued in the theoretical computer science community, is to obtain a quan-
titative version of the Gibbard-Satterthwaite theorem, showing that for any given voting rule that
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is “far” enough from any dictatorships, an instance of manipulation can be found easily with high
probability. This line of research was initiated by Friedgut, Kalai, and Nisan [13], where they proved
the theorem for 3 alternatives and neutral voting rules. The theorem was extended to an arbitrary
number of alternatives by Isaksson, Kindler, and Mossel [15], and finally, the neutrality constraint
was removed by Mossel and Racz [17]. Other extensions include Dobzinski and Procaccia [8] and
Xia and Conitzer [33].

Another line of research is to characterize the “frequency of manipulability”, defined as the prob-
ability for a randomly generated preference-profile to be manipulable by a group of manipulators,
where the non-manipulators’ votes are generated i.i.d. according to some distribution (for example,
the uniform distribution over all possible types of preferences). Peleg [18], Baharad and Neeman [1],
and Slinko [23, 24] studied the asymptotic value of the frequency of manipulability for positional
scoring rules when the non-manipulators’ votes are drawn i.i.d. uniformly at random. Procaccia
and Rosenschein [20] showed that for positional scoring rules, when the non-manipulators votes are
drawn i.i.d. according to any distribution that satisfies some natural conditions, if the number of
manipulators is o(

√
n), where n is the number of non-manipulators, then the probability that the

manipulators can succeed goes to 0 as n goes to infinity; if the number of manipulator is ω(n), then
the probability that the manipulators can succeed goes to 1.

This dichotomy theorem was generalized to a class of voting rules called generalized scoring
rules (GSRs) by Xia and Conitzer [32]. A GSR is defined by two functions f, g, where f maps each
vote to a vector in multidimensional space, called a generalized scoring vector (the dimensionality
of the space is not necessarily the same as the number of alternatives). Given a profile P , let total
generalized scoring vector be the sum of f(V ) for each vote V in P . Then, g selects the winner
based on the total preorder of the components of the total generalized scoring vector. We call a GSR
a integer GSR, if the components of all generalized scoring vectors are integers. (Integer) GSRs are
a general class of voting rules. One evidence is: many commonly studied voting rules are integer
GSRs, including (but not limited to) approval voting, all positional scoring rules (which include
Borda, plurality, and veto), plurality with runoff, Bucklin, Copeland, maximin, STV, and ranked
pairs. 1 As another evidence, GSRs admit a natural axiomatic characterization [34].

While most of the aforementioned results are about manipulation, in this paper, we focus the
optimization variants of various types of strategic behavior, including manipulation, bribery, and
control. Despite being natural, to the best of our knowledge, such optimization variants have been
investigated for only three types of strategic behavior. The first is the unweighted coalitional op-
timization (UCO) problem, where we are asked to compute the minimum number of manipulators
who can make a given alternative win [37]. Approximation algorithms have been proposed for UCO
for specific voting systems, including positional scoring rules and maximin [35–37]. The second is
the margin of victory problem, where we are asked to compute the smallest number of voters who
can change their votes to change the winner [5, 16, 31]. The third is the minimum manipulation
coalition size problem, which is similar to the margin of victory, except that all voters who change
their votes must prefer the new winner to the old winner [19].

1.1 Our Contributions
In this paper, we introduce a unified framework to study a class of strategic behavior for generalized
scoring rules, which we call vote operations. In our framework, a strategic individual seeks to
change the winner by applying some operations, which are modeled as vectors in a multidimensional
space. We study three goals of the strategic individual: (1) making a favored alternative win, called
constructive vote operation (CVO), (2) making a disfavored alternative lose, called destructive vote
operation (DVO), and (3) change the winner of the election, called change-winner vote operation

1The definition of these commonly studied voting rules can be found in, e.g., [32]. In this paper, we define GSRs as
voting rules where the inputs are profiles of linear orders. GSRs can be easily generalized to include other types of voting
rules where the inputs are not necessarily linear orders, for example, approval voting.
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(CWVO). The framework will be formally defined in Section 3. This is our main conceptual
contribution.

Our main technical contribution is the following asymptotical characterization of the number of
operations that are necessary for the strategic individual to achieve her goal.
Theorem 1 (informally put) Fix the number of alternatives and the set of vote operations. For any
integer generalized scoring rule and any distribution π over votes, we generate n votes i.i.d. accord-
ing to π and let n go to infinity. Then, for any VO ∈ {CVO,DVO,CWVO} and any ε > 0, with
probability at least 1 − ε, the minimum number of operations that are necessary for the strategic
individual to achieve VO is one of the following: (1) 0, (2) Θ(

√
n), (3) Θ(n), and (4)∞.

More informally, Theorem 1 states that in large elections, to achieve a specific goal (one of the
three goals described above), with probability that can be infinitely close to 1 the strategic individual
needs to either do nothing (the goal is already achieved), apply Θ(

√
n) vote operations, apply Θ(n)

vote operations, or the goal cannot be achieve no matter how many vote operations are applied. This
characterization holds for any integer generalized scoring rule, any set of vote operations, and any
distribution π for individual votes.

The proof of Theorem 1 is based on the Central Limit Theorem and on sensitivity analyses for
the integer linear programmings (ILPs). It works as follows. We will formulate each of the strategic
individual’s three goals as a set of ILPs in Section 4. By applying Central Limit Theorem, we
show that with probability that goes to 1 the random generated preference-profile satisfies a desired
property. Then, for each such preference-profile we apply the sensitivity analyses in [7] to show that
with high probability the number of operations that are necessary is either 0, Θ(

√
n), Θ(n), or∞.

While Theorem 1 looks quite abstract, we show later in the paper that many well-studied types
of strategic behavior fall under our vote operation framework, including constructive/destructive
manipulation, bribery, and control by adding/deleting votes, margin of victory, and minimum ma-
nipulation coalition size.2 Therefore, we naturally obtain corollaries of Theorem 1 for these types of
strategic behavior. Of course our theorem applies to other types of strategic behavior, for example
the mixture of any types mentioned above, which is known as multimode control attacks [11].

1.2 Related Work and Discussion
To the best of our knowledge, we are the first to do the following in the voting setting: (1) study
manipulation, bribery, and control under a unified framework and (2) in this unified framework,
model the strategic individual’s goals as ILPs and conduct sensitivity analyses. Our main theorem
applies to any integer generalized scoring rule for destructive manipulation, constructive and de-
structive bribery and control by adding/deleting votes, where no similar results were obtained even
for specific voting rules. Three previous papers obtained similar results for specific types of strate-
gic behavior. The applications of our main theorem to these types of strategic behavior are slightly
weaker, but we stress that our main theorem is significantly more general.

Three related papers. First, the dichotomy theorem in [32] implies that, (informally) when the
votes are drawn i.i.d. from some distribution, with probability that goes to 1 the solution to construc-
tive and destructive UCO is either 0 or approximately

√
n for some favored alternatives. However,

this result only works for the UCO problem and some distributions over the votes.
Second, it was proved in [31] that for any non-redundant generalized scoring rules that satisfy a

continuity condition, when the votes are drawn i.i.d. and we let the number of voters n go to infinity,
either with probability that can be arbitrarily close to 1 the margin of victory is Θ(

√
n), or with

probability that can be arbitrarily close to 1 the margin of victory is Θ(n). It is easy to show that for
non-redundant voting rules, the margin of victory is never 0 or∞. Though it was shown in [31] that
many commonly studied voting rules are GSRs that satisfy such continuity condition, in general it

2We defer the definition of these types of strategic behavior to Section 6.
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is not clear how restrictive the continuity condition is. More importantly, the result only works for
the margin of victory problem.

Third, in [19], the authors investigated the distribution over the minimum manipulation coali-
tion size for positional scoring rules when the votes are drawn i.i.d. from the uniform distribution.
However, it is not clear how their techniques can be extended beyond the uniform distributions and
positional scoring rules, which are a very special case of generalized scoring rules. Moreover, the
paper only focused on the minimum manipulation coalition size problem.

Our results has both negative and positive implications. On the negative side, our results provide
yet another evidence that computational complexity is not a strong barrier against strategic behavior,
because the strategic individual now has some information about the number of operations that are
needed, without spending any computational cost or even without looking at the input instance.
Although the estimation of our theorem may not be very precise (because we do not know which of
the four cases a given instance belongs to), such estimation may be explored to designing effective
algorithms that facilitate strategic behavior. On the positive side, this easiness of computation is not
always a bad thing: sometimes we want to do such computation in order to test how robust a given
preference-profile is. For example, computing the margin of victory is an important component in
designing novel risk-limiting audit methods [5, 16, 25–29, 31].

While being quite general, our results have two main limitations. First, they are asymptotical
results, where we fix the number of alternatives and let the number of voters go to infinity. We do
not know the convergence rate, or equivalently, how many voters are needed for the observation
to hold. In fact, this is a standard setting in previous work, especially in the studies of “frequency
of manipulability”. We feel that our results work well in settings where there are small number of
alternatives and large number of voters, e.g., political elections. Second, our results show that with
high probability one of the four cases holds (0, Θ(

√
n), Θ(n),∞), but we do not know which case

holds more often. It is possible to refine our study for specific voting rules and specific types of
strategic behavior that fall under our framework, which we leave as future work.

2 Preliminaries
Let C denote the set of alternatives, |C| = m. We assume strict preference orders. That is, a vote is
a linear order over C. The set of all linear orders over C is denoted by L(C). A preference-profile P
is a collection of n votes for some n ∈ N, that is, P ∈ L(C)n. Let L(C)∗ =

⋃∞
n=1 L(C)n. A voting

rule r is a mapping that assigns to each preference-profile a single winner. That is, r : L(C)∗ → C.
Throughout the paper, we let n denote the number of votes andm denote the number of alternatives.

We now recall the definition of generalized scoring rules (GSRs) [32]. For anyK ∈ N, letOK =
{o1, . . . , oK}. A total preorder (preorder for short) is a reflexive, transitive, and total relation. Let
Pre(Ok) denote the set of all preorders overOK . For any ~p ∈ RK , we let Ord(~p) denote the preorder
D over OK where ok1 D ok2 if and only if pk1 ≥ pk2 . That is, the k1-th component of ~p is as large
as the k2-th component of ~p. For any preorder D, if o D o′ and o′ D o, then we write o =D o′. Each
preorderD naturally induces a (partial) strict orderB, where o B o′ if and only if o D o′ and o′ 4 o.

Definition 1 Let K ∈ N, f : L(C)→ RK and g : Pre(OK)→ C. f and g determine a generalized
scoring rule (GSR) GS(f, g) as follows. For any preference-profile P = (V1, . . . , Vn) ∈ L(C)n,
abusing the notation we let f(P ) =

∑n
i=1 f(Vi), and let GS(f, g)(P ) = g(Ord(f(P ))). We say

that GS(f, g) is of order K.
When for all V ∈ L(C), f(V ) ∈ ZK , we call GS(f, g) an integer GSR.

For any V ∈ L(C), f(V ) is called a generalized scoring vector, f(P ) is called a total generalized
scoring vector, and Ord(f(P )) is called the induced preorder of P . The class of integer GSRs is
equivalent to the class of rational GSRs, where the components of each generalized scoring vector
is in Q, because for any l > 0, GS(f, g) = GS(l · f, g).
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Most commonly studied voting rules are generalized scoring rules, including (but not limited
to) approval voting, Bucklin, Copeland, maximin, plurality with runoff, ranked pairs, and multi-
stage voting rules that use GSRs in each stage to eliminate alternatives (including Nanson’s and
Baldwin’s rule). As an example, we recall the proof from [32] that the single transferable vote
(STV) rule (a.k.a. instant-runoff voting or alternative vote for single-winner elections) is an integer
generalized scoring rule.

Example 1 STV selects the winner in m rounds. In each round, the alternative that gets the lowest
plurality score (the number of times that the alternative is ranked in the top position) drops out, and
is removed from all of the votes (so that votes for this alternative transfer to another alternative in
the next round). Ties are broken alphabetically. The last-remaining alternative is the winner.

To see that STV is an integer GSR, we will use generalized scoring vectors with many compo-
nents. For every proper subset S of alternatives, for every alternative c outside of S, there is a
component in the vector that contains the number of times that c is ranked first if all of the alterna-
tives in S are removed. Let
• KSTV =

∑m−1
i=0

(
m
i

)
(m − i); the components are indexed by (S, j), where S is a proper subset

of C and j ≤ m, cj /∈ S.
• (fSTV (V ))(S,j) = 1, if after removing S from V , cj is at the top; otherwise (fSTV (V ))(S,j) = 0.
• gSTV selects the winners based on D as follows. In the first round, let j1 be the index such that
o(∅,j1) is ranked the lowest in D among all o(∅,j) (if there are multiple such j’s, then we break ties
alphabetically to select the least-preferred one). Let S1 = {cj1}. Then, for any 2 ≤ i ≤ m − 1,
define Si recursively as follows: Si = Si−1∪{ji}, where ji is the index such that o(Si−1,ji) is ranked
the lowest in D among all o(Si−1,j); finally, the winner is the unique alternative in (C \ Sm−1).

Another evidence on the generality of GSRs is that GSRs admit a natural axiomatic character-
ization [34]. That is, GSRs are the class of voting rules that satisfy anonymity, homogeneity, and
finite local consistency. Anonymity says that the winner does not depend on the name of the voters,
homogeneity says that if we duplicate the preference-profile multiple times, the winner does not
change, and finite local consistency is an approximation to the well-studied consistency axiom. Not
all voting rules are GSRs, for example, Dodgson’s rule is not a GSR because it does not satisfy
homogeneity [4], and the following skewed majority rule is also not a GSR because it also violates
homogeneity.

Example 2 For any 0 < γ < 1, the γ-majority rule is defined for two alternatives {a, b} as follows:
b is the winner if and only if the number of voters who prefer b is more than the number of voters
who prefer a by at least nγ .

Admittedly, these γ-majority rules are quite artificial. Later in this paper we will see that the obser-
vation made for GSRs in our main theorem (Theorem 1) does not hold for γ-majority rules for any
γ 6= 1/2.

3 The Unified Framework
All types of strategic behavior mentioned in the introduction have the following characteristics in
common. The strategic individual (who can be a group of manipulators, a briber, or a controller,
etc.) changes the winner by changing the votes in the preference-profile. Therefore, for generalized
scoring rules, any such an operation is uniquely represented by changes in the total generalized
scoring vector. This is in contrast to some other types of strategic behavior where the strategic
individual changes the set of alternatives or the voting rule [3, 30]. In this section, we first define
the set of operations the strategic individual can apply, then define her goals. Given a generalized
scoring rule of order K, we model the strategic behavior, called vote operations, as a set of vectors,
each of which hasK elements, representing the changes made to the total generalized scoring vector
if the strategic individual applies this operation. We focus on integer vectors in this paper.
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Definition 2 Given a GSR GS(f, g) of order K, let ∆ = [~δ1 · · ·~δT ] denote the vote operations,
where for each i ≤ T , ~δi ∈ ZK represents the changes made to the generalized scoring vector by
applying the i-th vote operation. For each l ≤ K, let ∆l denote the l-th row of ∆.

We will show examples of these vote operations for some well-studied types of strategic be-
havior in Section 6. Given the set of available operations ∆, the strategic individual’s behavior is
characterized by a vector ~v ∈ NT≥0, where ~v is a row vector and for each i ≤ T , vi represents the
number of i-th operation (corresponding to ~δi) that she applies. Let (~v)′ denote the transpose of ~v
and let ‖~v‖1 =

∑T
i=1 vi denote the total number of operations in ~v, which is the L1-norm of ~v. It

follows that ∆ · (~v)′ is the change in the total generalized scoring vector introduced by the strategic
individual, where for any l ≤ K, ∆l · (~v)′ is the change in the l-th component.

Next, we give definitions of the strategic individual’s three goals and the corresponding compu-
tational problems studied in this paper.

Definition 3 In the CONSTRUCTIVE VOTE OPERATION (CVO) problem, we are given a generalized
scoring rule GS(f, g), a preference-profile P , a favored alternative c, and a set of vote operations
∆ = [~δ1 · · ·~δT ], and we are asked to compute the smallest number k, denoted by CVO(P, c), such
that there exists a vector ~v ∈ NT≥0 with ‖~v‖1 = k and g (Ord(f(P ) + ∆ · (~v)′)) = c. If such ~v does
not exist, then we denote CVO(P, c) =∞.

The DESTRUCTIVE VOTE OPERATION (DVO) problem is defined similarly, where c is the disfa-
vored alternative, and we are asked to compute the smallest number k, denoted by DVO(P, c), such
that there exists a vector ~v ∈ NT≥0 with ‖~v‖1 = k and g (Ord(f(P ) + ∆ · (~v)′)) 6= c.

In the CHANGE-WINNER VOTE OPERATION (CWVO) problem, we are not given c and we are
asked to compute DVO(P,GS(f, g)(P )), denoted by CWVO(P ).

In CVO, the strategic individual seeks to make c win; in DVO, the strategic individual seeks to
make c lose; and in CWVO, the strategic individual seeks to change the current winner.

For a given instance (P, r), CWVO is a special case of DVO, where c = GS(f, g)(P ). We
distinguish these two problems because in this paper, the input preference-profiles are generated
randomly, so the winners of these preference-profiles might be different. Therefore, when the
preference-profiles are randomly generated, the distribution for the solution to DVO does not im-
mediately give us a distribution for the solution to CWVO.

4 The ILP Formulation
Let us first put aside the strategic individual’s goal for the moment (i.e., making a favored alterna-
tive win, making a disfavored alternative lose, or changing the winner) and focus on the following
question: given a preference-profile P and a preorder D over the K components of the generalized
scoring vector, that is, D∈ Pre(OK), how many vote manipulations are needed to change the order
of the total generalized scoring vector to D? Formally, given a GS(f, g), a preference-profile P and
D∈ Pre(OK), we are interested in min{‖~v‖1 : ~v ∈ NK≥0,Ord(f(P ) + ∆ · (~v)′) =D}.

This can be computed by the following integer linear programming ILPD, where vi represents
the ith component in ~v, which must be a nonnegative integer. We recall that ∆l denotes the l-th row
vector of ∆.

min ‖~v‖1
s.t. ∀oi =D oj : (∆i −∆j) · (~v)′ = [f(P )]j − [f(P )]i

∀oi B oj : (∆i −∆j) · (~v)′ ≥ [f(P )]j − [f(P )]i + 1
∀i : vi ≥ 0

(LPD)

Now, we take the strategic individual’s goal into account. We immediately have the following lemma
as a warmup, whose proofs are straightforward and are thus omitted.
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Lemma 1 Given a GSR GS(f, g), an alternative c, and a preference-profile P ,
• CVO(P, c) < ∞ if and only if there exists D such that g(D) = c and LPD has an integer

solution;
• DVO(P, c) < ∞ if and only if there exists D such that g(D) 6= c and LPD has an integer

solution;
• CWVO(P ) <∞ if and only if there exists D such that g(D) 6= GS(f, g)(P ) and LPD has an

integer solution. (We do not need the input c for this problem.)

Moreover, the solution to each of the three problems is the minimum objective value in all LPs
corresponding to the problem. For example, if CVO(P, c) <∞, then

CVO(P, c) = min‖~v‖1{~v is the solution to some LPD where g(D) = c}

5 The Main Theorem
In this section we prove the main theorem, which states that for a fixed m, for any generalized scor-
ing rules and any set of vote operations ∆, if n votes are generated i.i.d., then for CVO (respectively,
DVO, CWVO), with probability that can be infinitely close to 1, the solution is either 0, Θ(

√
n),

Θ(n), or∞.

Theorem 1 Let GS(f, g) be an integer generalized scoring rule, let π be a distribution over all
linear orders, and let ∆ be a set of vote operations. Suppose we fix the number of alternatives,
generate n votes i.i.d. according to π, and let Pn denote the preference-profile. Then, for any
alternative c, VO ∈ {CVO,DVO,CWVO3}, and any ε > 0, there exists β∗ > 1 such that as
n goes to infinity, the total probability for the following four events sum up to more than 1 − ε:
(1) VO(Pn, c) = 0, (2) 1

β∗
√
n < VO(Pn, c) < β∗

√
n, (3) 1

β∗n < VO(Pn, c) < β∗n, and (4)
VO(Pn, c) =∞.

Proof of Theorem 1: Let f(Pπ) =
∑
V ∈L(C) π(V ) · f(V ), and Dπ= Ord(f(Pπ)). We first prove

the theorem for CVO, and then show how to adjust the proof for DVO and CWVO. The theorem
is proved in the following two steps. Step 1: we show that as n goes to infinity, with probability that
goes to one we have the following: in a randomly generated Pn, the difference between any pair
of components in f(Pn) is either Θ(

√
n) or Θ(n). Step 2: we apply sensitivity analyses to ILPs

that are similar to the ILP given in Section 4 to prove that for any such preference-profile and any
VO ∈ {CVO,DVO,CWVO}, VO(Pn, c) is either 0, Θ(

√
n), Θ(n), or∞. The idea behind Step 2

is, for any preference-profile Pn, if the difference between a pair of components in f(Pn) is Θ(
√
n),

then we consider this pair of components (not alternatives) to be “almost tied”; if the difference is
Θ(n), then we consider them to be “far away”. Take CVO as an example, we can easily identify the
cases where CVO(Pn, c) is either 0 (when GS(f, g) = c) or∞ (by Lemma 1). Then, we will first try
to break these “almost tied” pairs by using LPs that are similar to LPD introduced in Section 4, and
show that if there exists an integer solution ~v, then the objective value ‖~v‖1 is Θ(

√
n). Otherwise,

we have to change the orders between some “far away” pairs by using LPD’s, and show that if there
exists an integer solution to some LPD with g(D) = c, then the objective value is Θ(n).

Formally, given n ∈ N and β > 1, let Pβ denote the set of all n-vote preference-profiles P that
satisfy the following two conditions (we recall that f(Pπ) =

∑
V ∈L(C) π(V ) · f(V )): for any pair

i, j ≤ K,
1. if [f(Pπ)]i = [f(Pπ)]j then 1

β

√
n < |[f(P )]i − [f(P )]j | < β

√
n;

2. if [f(Pπ)]i 6= [f(Pπ)]j then 1
βn < |[f(P )]i − [f(P )]j | < βn.

The following lemma was proved in [31], which follows from the Central Limit Theorem.

Lemma 2 For any ε > 0, there exists β such that limn→∞ Pr (Pn ∈ Pβ) > 1− ε.
3When VO = CWVO, we let VO(Pn, c) denote CWVO(Pn).
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For any given ε, in the rest of the proof we fix β to be a constant guaranteed by Lemma 2. The
next lemma (whose proof can be found on the author’s homepage) will be frequently used in the rest
of the proof.

Lemma 3 Fix an integer matrix A. There exists a constant βA that only depends on A, such that if
the following LP has an integer solution, then the solution is no more than βA · ‖~b‖∞.

min ‖~x‖1, s.t. A · ~x ≥ ~b

To prove that with high probability CVO(Pn, c) is either 0, Θ(
√
n), Θ(n), or∞, we introduce

the following notation. A preorder D′ is a refinement of another preorder D, if B′ extends B. That
is, B⊆B′. We note that D is a refinement of itself. Let D′ 	 D denote the strict orders that are in
B′ but not in B. That is, (oi, oj) ∈ (D′ 	 D) if and only if oi B′ oj and oi =D oj . We define the
following LP that is similar to LPD defined in Section 4, which will be used to check whether there
is a way to break “almost tied” pairs of components to make c win. For any preorder D and any of
its refinement D′, we define LPD′	D as follows.

min ‖~v‖1
s.t. ∀oi =D′ oj : (∆i −∆j) · (~v)′ = [f(P )]j − [f(P )]i

∀(oi, oj) ∈ (D′ 	 D) : (∆i −∆j) · (~v)′ ≥ [f(P )]j − [f(P )]i + 1
∀i : vi ≥ 0

(LPD′	D)

LPD′	D is defined with a little abuse of notation because some of its constraints depend on D
(not only the pairwise comparisons in (D′ 	 D)). This will not cause confusion because we will
always indicate D in the subscript. We note that there is a constraint in LPD′	D for each pair of
components oi, oj with oi =D oj . Therefore, LPD′	D is used to find a solution that breaks ties inD.
It follows that LPD′	D has an integer solution ~v if and only if the strategic individual can make the
order between any pairs of oi, oj with oi =D oj to be the one in D′ by applying the i-th operation
vi times, and the total number of vote operations is ‖~v‖1.

The following two claims identify the preference-profiles in Pβ for which CVO is Θ(
√
n) and

Θ(n), respectively, whose proofs can be found on the author’s homepage.

Claim 1 There exists N ∈ N and β′ > 1 such that for any n ≥ N , any P ∈ Pβ , if (1) c is not the
winner for P , and (2) there exists a refinement D∗ of Dπ= Ord(f(Pπ)) such that g(D∗) = c and
LPD∗	Dπ has an integer solution, then 1

β′
√
n < CVO(P, c) < β′

√
n.

Claim 2 There exists β′ > 1 such that for any P ∈ Pβ , if (1) c is not the winner for P , (2) there does
not exist a refinement D∗ of Dπ= Ord(f(Pπ)) such that LPD∗	Dπ has an integer solution, and (3)
there exists D such that g(D) = c and LPD has an integer solution, then 1

β′n < CVO(P, c) < β′n.

Lastly, for any P ∈ Pβ such that GS(f, g)(P ) 6= c, the only case not covered by Claim 1 and
Claim 2 is that there does not exist D with GS(f, g)(D) = c such that LPD has an integer solution.
It follows from Lemma 1 that in this case CVO(P, c) =∞. We note that β′ in Claim 1 and Claim 2
does not depend on n. Let β∗ be an arbitrary number that is larger than the two β′s. This proves the
theorem for CVO.

For DVO, we only need to change g(D∗) = c to g(D∗) 6= c in Claim 1, and change g(D) = c to
g(D) 6= c in Claim 2. For CWVO, CWVO(P ) is never 0 and we only need to change g(D∗) = c
to g(D∗) 6= GS(f, g)(P ) in Claim 1, and change g(D) = c to g(D) 6= GS(f, g)(P ) in Claim 2. �
Remark. The intuition in Lemma 2 is quite straightforward and naturally corresponds to a random
walk in multidimensional space. However, we did not find an obvious connection between random
walk theory and observation made in Theorem 1 for general voting rules. We believe that it is
unlikely that an obvious connection exists. One evidence is that the observation made in Theorem 1
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does not hold for some voting rules. For example, consider the γ-majority rule defined in Example 2.
It is not hard to see that as n goes to infinity, with probability that goes to 1 we have CVO(Pn, b) =
DVO(Pn, a) = CWVO(Pn) = nγ/2, which is not any of the four cases described in Theorem 1 if
γ 6= 1/2. (This means that for any γ 6= 1/2, γ-majority is not a generalized scoring rule, which we
already know because they do not satisfy homogeneity.)

The main difficulty in proving Theorem 1 is, for generalized scoring rules we have to handle
the cases where some components of the total generalized scoring vector are equivalent. This only
happens with negligible probability for the randomly generated preference-profile Pn, but it is not
clear how often the strategic individual can make some components equivalent in order to achieve
her goal. This is the main reason for us to convert the vote manipulation problem to multiple ILPs
and conduct sensitivity analyses.

6 Applications of The Main Theorem
In this section we show how to apply Theorem 1 to some well-studied types of strategic behavior,
including constructive and destructive unweighted coalitional optimization, bribery and control, and
margin of victory and minimum manipulation coalition size. In the sequel, we will use each subsec-
tion to define these problems and describe how they fit in our vote operation framework, and how
Theorem 1 applies. In the end of the section we present a unified corollary for all these types of
strategic behavior.

6.1 Unweighted Coalitional Optimization
Definition 4 In a constructive (respectively, destructive) UNWEIGHTED COALITIONAL OPTIMIZA-
TION (UCO) problem, we are given a voting rule r, a preference-profile PNM of the non-
manipulators, and a (dis)favored alternative c ∈ C. We are asked to compute the smallest
number of manipulators who can cast votes PM such that c = r(PNM ∪ PM ) (respectively,
c 6= r(PNM ∪ PM )).

To see how UCO fits in the vote operation model, we view the group of manipulators as the
strategic individual, and each vote cast by a manipulator is a vote operation. Therefore, the set
of operations is exactly the set of all generalized scoring vectors {f(V ) : V ∈ L(C)}. To apply
Theorem 1, for constructive UCO we let VO = CVO and for destructive UCO we let VO = DVO.

6.2 Bribery
In this paper we are interested in the optimization variant of the bribery problem [9].

Definition 5 In a constructive (respectively, destructive) OPT-BRIBERY problem, we are given a
preference-profile P and a (dis)favored alternative c ∈ C. We are asked to compute the smallest
number k such that the strategic individual can change no more than k votes such that c is the
winner (respectively, c is not the winner).

To see how OPT-BRIBERY falls under the vote operation framework, we view each action of
“changing a vote” as a vote operation. Since the strategic individual can only change existing votes
in the preference-profile, we define the set of operations to be the difference between the generalized
scoring vectors of all votes and the generalized scoring vectors of votes in the support of π, that is,
{f(V )−f(W ) : V,W ∈ L(C) s.t. π(W ) > 0}. Then, similarly the constructive variant corresponds
to CVO and the destructive variant corresponds to DVO. In both cases Theorem 1 cannot be directly
applied, because in the ILPs we did not limit the total number of each type of vote operations that
can be used by the strategic individual. Nevertheless, we can still prove a similar proposition by
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taking a closer look at the relationship between CVO (DVO) and OPT-BRIBERY as follows: For
any preference-profile, the solution to CVO (respectively, DVO) is a lower bound on the solution
to constructive (respectively, destructive) OPT-BRIBERY, because in CVO and DVO there are no
constraints on the number of each type of vote operations. We have the following four cases.

1. If the solution to CVO (DVO) is 0, then the solution to constructive (destructive) OPT-
BRIBERY is also 0.

2. If the solution to CVO (DVO) is Θ(
√
n), as n become large enough, with probability that

goes to 1 each type of votes in the support of π will appear Θ(n), which is > Θ(
√
n), times in the

randomly generated preference-profile, which means that there are enough votes of each type for the
strategic individual to change.

3. If the solution to CVO (DVO) is Θ(n), then the solution to constructive (destructive) OPT-
BRIBERY is either Θ(n) (when the strategic individual can change all votes to achieve her goal), or
∞.

4. If the solution to CVO (DVO) is ∞, then the solution to constructive (destructive) OPT-
BRIBERY is also∞.

It follows that the observation made in Theorem 1 holds for OPT-BRIBERY.

6.3 Margin of Victory (MoV)
Definition 6 Given a voting rule r and a preference-profile P , the margin of victory (MoV) of P is
the smallest number k such that the winner can be changed by changing k votes in P . In the MOV
problem, we are given r and P , and are asked to compute the margin of victory.

For a given instance (P, r), MOV is equivalent to destructive OPT-BRIBERY, where c = r(P ).
However, when the input preference-profiles are generated randomly, the winners in these profiles
might be different. Therefore, the corollary of Theorem 1 for OPT-BRIBERY does not directly imply
a similar corollary for MOV. This relationship is similar to the relationship between DVO and
CWVO.

Despite this difference, the formulation of MOV in the vote operation framework is very similar
to that of OPT-BRIBERY: The set of all operations and the argument to apply Theorem 1 are the same.
The only difference is that for MOV, we obtain the corollary from the CWVO part of Theorem 1,
while the corollary for OPT-BRIBERY is obtained from the CVO and DVO parts of Theorem 1.

6.4 Minimum Manipulation Coalition Size (MMCS)
The MINIMUM MANIPULATION COALITION SIZE (MMCS) problem is similar to MOV, except that
in MMCS the winner must be improved for all voters who change their votes [19].

Definition 7 In an MMCS problem, we are given a voting rule r and a preference-profile P . We
are asked to compute the smallest number k such that a coalition of k voters can change their votes
to change the winner, and all of them prefer the new winner to r(P ).

Unlike MOV, MMCS falls under the vote operation framework in the following dynamic way.
For each preference-profile, suppose c is the current winner. For each adversarial d 6= c, we use
{f(V ) − f(W ) : V,W ∈ L(C) s.t. d �W c and π(W ) > 0} as the set of operations. That is, we
only allow voters who prefer d to c to participate in the manipulative coalition. We also replace each
of LPD and LPD∗	Dπ by multiple LPs, each of which is indexed by a pair of alternatives (d, c) and
the constraints are generated by using the corresponding set of operations. Then, the corollary for
MMCS follows after a similar argument to that of CVO in Theorem 1.
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6.5 Control by Adding/Deleting Votes (CAV/CDV)
Definition 8 In a constructive (respectively, destructive) OPTIMAL CONTROL BY ADDING VOTES
(OPT-CAV) problem, we are given a preference-profile P , a (dis)favored alternative c ∈ C, and a
set N ′ of additional votes. We are asked to compute the smallest number k such that the strategic
individual can add k votes in N ′ such that c is the winner (respectively, c is not the winner).

For simplicity, we assume that |N ′| = n and the votes in N ′ are drawn i.i.d. from a distribution
π′. To show how OPT-CAV falls under the vote operation model, we let the set of operations to
be the generalized scoring vectors of all votes that are in the support of π′, that is, {f(V ) : V ∈
L(C) and π′(V ) > 0}. Then, the corollary follows from the CVO and DVO parts of Theorem 1 via
a similar argument to the argument for OPT-BRIBERY.

Definition 9 In a constructive (respectively, destructive) OPTIMAL CONTROL BY DELETING VOTES
(OPT-CDV) problem, we are given a preference-profile P and a (dis)favored alternative c ∈ C. We
are asked to compute the smallest number k such that the strategic individual can delete k votes in
P such that c is the winner (respectively, c is not the winner).

To show how OPT-CDV falls under the vote operation framework, we let the set of operations to
be the negation of generalized scoring vectors of votes in the support of π′, that is, {−f(V ) : V ∈
L(C) and π′(V ) > 0}. Then, the corollary follows from the CVO and DVO parts of Theorem 1 via
a similar argument to the argument for OPT-BRIBERY.

6.6 A Unified Corollary
The next corollary of Theorem 1 summarizes the results obtained for all types of strategic behavior
studied in this section.

Corollary 1 For any integer generalized scoring rule, any distribution π over votes, and any X ∈(
{constructive, destructive}×{UCO, OPT-BRIBERY, OPT-CAV, OPT-CDV}

)
∪{MOV, MMCS},

suppose the input preference-profiles are generated i.i.d. from π.4 Then, for any alternative c and
any ε > 0, there exists β∗ > 1 such that the total probability for the solution to X to be one of the
following four cases is more than 1 − ε as n goes to infinity: (1) 0, (2) between 1

β∗
√
n and β∗

√
n,

(3) between 1
β∗n and β∗n, and (4)∞.
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