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m Tournaments are oriented complete graphs
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Overview

Tournament solutions

Retentiveness and Schwartz’s Tournament Equilibrium Set (TEQ)
Properties of minimal retentive sets

‘Approximating’ TEQ

A new tournament solution
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Tournament Solutions 2ralrs

m A tournament T = (A, >) consists of:
o afinite set A of alternatives
e a complete and asymmetric relation > on A

m A tournament solution S maps each tournament T = (A,>) to a set S(T)
such that @ # S(T) € A and S(T) contains the Condorcet winner if it exists

e Sis called proper if a Condordet winner is always selected as only alternative

m Examples: Trivial Solution (TRIV), Top Cycle (TC), Uncovered Set, Slater
Set, Copeland Set, Banks Set, Minimal Covering Set (MC), Tournament
Equilibrium Set (TEQ), . ..
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Basic Properties of Tournament Solutions

m Monotonicity (MON)
m Weak Superset Property (WSP)
m Strong Superset Property (SSP)

m Independence of Unchosen Alternatives
(IUA)

Note: 0\9

m SSP is equivalent to & (see Felix’s lecture)
m (SSP A MON) implies WSP and IUA

BAWE
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Examples e

Definition: TRIV returns the set A for each tournament T = (A, >)

Definition: TC returns the smallest dominating set, i.e. the smallest set B C A
withB> A\ B

e Intuition: No winner should be dominated by a loser

e Define D(b) ={ac A:a>b)

e TC is the smallest set B satisfying D(b) C Bforall b € B

Both TRIV and TC satisfy all four basic properties
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e No winner should be “properly” dominated by a loser

Thomas Schwartz
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Retentiveness AN

Definition: B is S-retentive if B # 0 and S(D(b)) < B for
allbeB

Thomas Schwartz

Definition: S returns the union of all minimal S-retentive sets

e Call§ unique if there always exists a unique minimal S-retentive set
e Minimal S-retentive sets exist for each tournament

o Sis unique if and only if there do not exist two disjoint S-retentive sets
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Example

Proposition: TRIV = TC

Proof: A setis TRIV-retentive if and only if it is dominating

TRIV(D(b)) = D(b)

Bhag
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The Tournament Equilibrium Set

The tournament equilibrium set (TEQ) is defined recursively as TEQ = TEQ

o well-defined because |5(a)| <|A|foreachac A

LV
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D(x)

Example
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x  D(x) TEQ(D(x))
a |c} {c}

b {a, e} {a}

c {b, d} {b}

d {a,b {a}

e {a,c,d} {a,c,d}
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Example

TEQ-retentive sets:

WS
x  D(x) TEQ(D(x))

a |c} {c}

b {a, e} {a}

c {b, d} {b}

d {a, b} {a}

e {a,c,d} {a,c,d}

{a.b,c,d,e}, {a,b,c,d}, {a,b,c}
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Example Brarg
x  D(x) TEQ(D(x))
a |c} {c}
b {a, e} {a}
c {b, d} {b}
d {a, b} {a}
e {a,c,d} {a,c,d}

TEQ-retentive sets: {a,b,c,d, e}, {a,b,c,d}, {a,b, c}

TEQ(T) ={a,b,c}
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The Tournament Equilibrium Set = ANV

The tournament equilibrium set (TEQ) is defined recursively as TEQ = TEQ

o well-defined because |5(a)| <|A|foreachac A

Schwartz’s Conjecture: TEQ is unique, i.e., each tournament admits a unique
minimal TEQ-retentive set.

Theorem (Laffond et al., 1993, Houy, 2009): TEQ is unique if and only if TEQ
satisfies any of MON, WSP, SSP, and IUA.
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Inheritance of Basic Properties

Recall: & returns the union of all minimal S-retentive sets
Theorem: If § satisfies MON, WSP, SSP, or IUA, so does S.

Theorem: If S satisfies (MON A SSP), WSP, SSP, or IUA, so does §
if § is unique.

TNV
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Convergence ANy

Define S© = S and S*+1) = §®)_ Thus, we obtain sequences like:

TRIV,TC,TC,TC®,TC®, . ..
MC, Mc, MCc® mc®, mc®W, ...

Definition: S convergesto S’ if for each T there is some kr € N such that

S(T) = 8"(T) = 8'(T) foralln>kr

Theorem: Every tournament solution converges to TEQ.
Proof:  S(")(T) = TEQ(T) for all tournaments T of order < n
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‘Approximating’ TEQ 2HolsS

Theorem (Brandt et al. 2008): Computing TEQ is NP-hard.

Theorem: $is efficiently computable if and only if S is.

S, 8,8®, 80 . TEQ

We would like to have ‘nice’ convergence...

Theorem: If$C S, TEQ c S and TEQ is unique, then TEQ ¢ S*+1) ¢ S for
all k > 0.

In particular,
TRIV2TC2TC2TC® >...2 TEQ.

Thus, TEQ can be ‘approximated’ by an anytime algorithm.

As uniqueness of TC*) implies uniqueness of TC*~"), we have an infinite
sequence of increasingly difficult conjectures.
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The Minimal Top Cycle Retentive Set e

TRIV,TC,TC,TC®, TC®), ... TEQ

Theorem: TC is unique.

Consequence:
m TC satisfies MON, SSP, WSP, and IUA
m 7TC lies between TC and TEQ
m TC is efficiently computable
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Retentiveness as an operation on tournament solutions
Inheritance of basic properties by minimal retentive sets
Convergence and ‘approximating’ TEQ

TC first new concept in sequence with desirable properties

Future work: Prove (or disprove) uniqueness of TC®, MC, ..., TEQ



Conclusion =

Retentiveness as an operation on tournament solutions
Inheritance of basic properties by minimal retentive sets
Convergence and ‘approximating’ TEQ

TC first new concept in sequence with desirable properties

Future work: Prove (or disprove) uniqueness of TC®, MC, ..., TEQ

Thank you!



