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Abstract

In this study, we consider a task allocation model
with interdependent tasks, where tasks are assigned
based on what agents report about their privately
known capabilities and costs. Since selfish agents
may strategically misreport their private informa-
tion in order to increase their payments, mechanism
design is used to determine a payment schema that
guarantees truthful reporting. Misreported infor-
mation may cause execution failures, creating inter-
dependencies between the agents’ valuations. For
this problem, efficient and strategy-proof mecha-
nisms have not been proposed yet. In this study,
we show that such mechanisms exist if the failing
tasks are reassigned, in addition, individual ratio-
nality and center rationality are obtained. Then, we
extend the model to consider agents who have lim-
ited resources, and show that the center rationality
property is lost.

1 Introduction
Task allocation is an important and challenging problem

that occurs in various real-life applications, ranging from
construction, service providing, to computing and research
projects. Adopting a general model, a center wants to as-
sign some tasks to a number of self-interested agents, where
each agent has its own private information (i.e., type) that
describes its abilities and costs for executing tasks. Given
that the center aims for an efficient assignment (i.e., one that
maximizes the social welfare) and provides payments to the
agents, agents may strategically misreport their types in order
to increase their payments. Thus, mechanism design is used
to determine the payments that guarantee truthful reporting.

In this study, we consider the interdependent task alloca-
tion (ITA) problem, where tasks may fail during the execution
because of the agents’ strategically misreported information
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(i.e., agents claim the ability to perform tasks that they can-
not perform). This model of failures is suitable when assum-
ing selfish agents, and for mimicking the one-shot interac-
tion situations in which agents don’t care much about future
implications (e.g., reputation, future opportunities). Given
the interdependencies between tasks, an agent may not be
able to execute its assigned tasks if their predecessor tasks
have failed. This implies that an agent’s actual value of its
assigned tasks may depend on other agents’ actual types,
and that agents in such settings have interdependent valua-
tions. When valuations are interdependent, mechanisms that
achieve the strongest and most preferable form of truthful-
ness in dominant strategy (i.e., strategy-proof) have not been
proposed yet for any domain (see Section 5).

In this study, we prove that it is impossible for an efficient
mechanism to achieve strategy-proofness using a single allo-
cation round, even if agents have sufficient resources. Then,
we contribute a novel efficient mechanism that achieves
strategy-proofness by using multiple allocation rounds (i.e.,
reassign the failing tasks). Finally, we extend the ITA model
to consider agents with limited resources, and prove that the
center rationality property is lost. In the next section, we for-
mulate the task allocation problem as a mechanism design
problem. In Sections 3 and 4, we propose the reassignment
mechanism and discuss limited resources. Section 5 dis-
cusses related work, and finally, we conclude the study and
discuss future work in Section 6.

2 Task Allocation and Preliminary Concepts
Basic Model. Assume a center that has a set T =

{t1, . . . , tm} of m tasks. There are predefined interdepen-
dencies (i.e., an ordering) between these tasks, where some
tasks can’t be executed unless their predecessor tasks were
executed successfully. Thus, each task t may have a set of
successor tasks t≻ and a set of predecessor tasks t≺. The
center gains a reward R(t) (e.g., a market value) for each
successful task t. The center wants to allocate the tasks to
a set α of n self-interested agents, where each agent has its
own private information (i.e., type) and knows nothing about
other agents’ types. The type θi = ⟨Ti;Ci(t),∀t ∈ Ti⟩ of
agent i consists of: 1. the set of tasks Ti ⊆ T that the agent
can perform, and 2. the cost Ci(t) for which the agent can
execute each task t ∈ Ti.

Outcome. The center wants to determine an assignment



(i.e., outcome) o = {(t1, i), (t2, j), . . .}, where each pair in-
dicates the agent who is assigned a certain task, e.g., (t1, i)
means that agent i is assigned t1. Under an outcome o, agent
i is assigned the tasks in Ti(o) = {tk|(tk, i) ∈ o}, and
TA(o) =

∪
i∈α Ti(o) is the set of assigned tasks. An assign-

ment may not contain all the offered tasks by the center in T ,
i.e., a task t and its successor tasks t≻ will not be assigned if
no agent reported the ability to perform task t.

Tentative Values and Efficiency. The tentative value of
agent i of an outcome o is vi(o, θi) = −

∑
t∈Ti(o)

Ci(t).
The center’s tentative value of an outcome o is V (o) =∑

t∈TA(o) R(t). Given an outcome o, its social welfare - con-
sidering the center and the agents - is SW (o) = V (o) +∑

i∈α vi(o, θi). Alternatively, the social welfare SW (o) can
be viewed as the summation of the social welfare of each
assigned task in o, i.e., SW (o) =

∑
t∈TA(o) SW (t), where

SW (t) = R(t) − Ci(t) is the social welfare from assigning
task t to agent i. Based on the vector θ = (θ1, . . . , θn) of the
agents’ reported types, the center will determine an efficient
outcome od ≡ od(θ) from the set O of all possible outcomes.

Definition 1. The determined outcome od is efficient if od
maximizes the social welfare, i.e., od = argmaxo∈OSW (o),
and SW (od) ≥ 0.

Under od, each task t is simply assigned to agent i who can
perform it for the cheapest cost (i.e., highest SW (t)), given
that the predecessor tasks t≺ of t are assigned.

Utilities and Mechanism Design. Given the determined
efficient outcome od, the center pays each agent i a payment
pi(od) for its contributions in od. Assuming quasi-linear util-
ities, the utility of agent i is ui(od, θi) = vi(od, θi) + pi(od),
while the center’s utility is U(od, θ) = V (od)−

∑
i∈α pi(od).

To guarantee the efficiency of od, the center must propose a
payment schema pi(od) for each agent i that guarantees that
the agent reports its private type truthfully. Clearly, this is
a mechanism design problem [Mas-Colell et al., 1995]. We
will focus our attention here on direct revelation (DR) mech-
anisms, where an agent reports all its private information
to the center that determines od and organizes payments to
the agents. The revelation principle states that the proper-
ties of any mechanism can be replicated by a DR mechanism,
and thus, any obtained results here immediately generalize to
other indirect mechanisms. The mechanism needs primarily
to establish truthfulness under some solution concept (Defini-
tion 2), either in dominant strategies (i.e., strategy-proof ) or
in ex-post incentive compatibility. Dominant strategy imple-
mentation is the strongest and most preferable solution con-
cept, as it ensures that an agent reports truthfully irrespective
of other agents’ behavior.

Definition 2. Given a true type θi of agent i, a strate-
gically misreported type θ

′

i of agent i, a vector of reported
types θ−i = (θ1, . . . , θi−1, θi+1, . . . , θn) of other agents ex-
cept agent i, an outcome od that is determined if agent i re-
ports θi, and an outcome o

′

d that is determined if agent i re-
ports θ

′

i, a DR mechanism achieves truthfulness in
Dominant Strategy: For any agent i, reporting truthfully is

always an optimal strategy regardless of whether other agents
are reporting truthfully or not, i.e., ∀i ∈ α, ui(od, θi) ≥

ui(o
′

d, θi) for any reported θ−i.
Ex-Post Incentive Compatibility: For any agent i, report-

ing truthfully is always an optimal strategy given that other
agents are reporting truthfully, i.e., ∀i ∈ α, ui(od, θi) ≥
ui(o

′

d, θi) given that θ−i holds the true types of other agents.
DR mechanisms are preferred to possess other properties

such as individual rationality and center rationality.
Definition 3. A DR mechanism is individually rational if

for every truthful agent i, its participation guarantees it a
non-negative utility (i.e., ui(od, θi) ≥ 0) given any od ∈ O.

Definition 4. A DR mechanism is center rational if in the
truth-telling equilibrium, the center has a non-negative utility
(i.e., U(od, θ) ≥ 0) given any outcome od ∈ O.

Strategic Misreporting. Recalling the type θi =
⟨Ti;Ci(t),∀t ∈ Ti⟩ of agent i, agent i may increase its util-
ity by strategically misreporting its type to the center in the
following three ways: 1. over-report its ability to perform
more tasks than its actual ability (i.e., over-report T

′

i ⊃ Ti),
this implies a larger set of outcomes O

′ ⊃ O from which the
center will determine the problem’s outcome; 2. under-report
its ability to perform tasks than its can actually perform (i.e.,
under-report T

′

i ⊂ Ti), this implies a smaller set of outcomes
O

′ ⊂ O; and 3. misreport different costs for performing tasks
than the actual costs (i.e., misreport cost C

′

i(t) ̸= Ci(t) for
any task t ∈ T ), this implies that the same assignments in O

′

and O may correspond to different social welfare.
Failures, Executed Outcome and Actual Values. Given

the possibility that agents may over-report, we define a failure
point as a task that wasn’t executed successfully. Given any
possible failing task, all its successor tasks will not be exe-
cuted. We denote oe as the part of the determined outcome od
that was successfully executed, T (oe) as the set of success-
ful tasks, and Ti(oe) as the set of successful tasks executed
by agent i. Given the possibility that the unexecuted tasks
may include tasks that belong to agent i, the actual value of
agent i is vi(oe, θi) = −

∑
t∈Ti(oe)

Ci(t), which may differ
from its tentative value vi(od, θi) = −

∑
t∈Ti(od)

Ci(t). We
define Tf (od) as the set of tasks that weren’t executed suc-
cessfully (i.e., Tf (od) = TA(od) − T (oe)), which includes
all failure points and their successor tasks, and we define
T i
f (od) ⊆ Tf (od) as the set of tasks that were assigned to

agent i and weren’t executed because of preceding failures.
Interdependent Valuations and Center rationality. Our

problem differs from a classical mechanism design prob-
lem in two main aspects. First, interdependent valuations.
Classical mechanism design normally assumes that the value
vi(od, θi) of an agent i of od depends only on its type θi (i.e.,
independent valuations). But here valuations are interdepen-
dent, as the actual value vi(oe, θi) of agent i clearly depends
on its type, and the actual types of other agents who may
cause execution failures (i.e., od ̸= oe). Second, center ra-
tionality. Classical mechanism design usually assumes that
the central authority that determines the problem’s outcome
is an unbiased party that has no self-interests, as it solves
a social choice problem that involves only the agents. And
thus, it is not preferred that this authority ends up with any
left-over from the agents’ payments (i.e., happens if a weakly



budget balanced mechanism is used), and redistributing the
left-over using redistribution mechanisms is required. Here,
we assume a commercial ITA model, where the center has
its value of the determined outcome, and if center rational-
ity holds, any left-over contributes toward the center’s utility
(i.e., profit). Thus, we follow Porter et al. [2008] in denoting
budget balance as center rationality to point out this issue.

Investment Example. An investment company wants to
improve the suitability of a piece of land for construction in
order to sell it for a higher price. Possible interdependent
tasks for the land improvement are site clearing, removal of
trees, general excavation, installation of sewer lines, etc. As-
sume that the company decided on seven tasks that have the
interdependencies t1 ≺ t2 ≺ . . . ≺ t7. The company gets a
reward of 10 from each completed task (i.e., the land’s price
increases by 10 after each task), and wants to assign the tasks
to two contactors i and j.

Table 1: Investment Example
t1 t2 t3 t4 t5 t6 t7

θi 3 6 6 7 4 ∞ 6
θj ∞ 4 ∞ 5 8 ∞ 3
θ
′
j 5 4 5 5 8 ∞ 3

θ
′′
j 15 4 5 5 8 7 3

Table 1 includes the contractors’ true types θi and θj , and
two misreported types θ

′

j and θ
′′

j for contractor j. We use ∞
to denote the inability to perform a task. If θ

′

j was reported,
then od = {(t1, i), (t2, j), (t3, j), (t4, j), (t5, i)}, where t3
is assigned to contractor j instead of contractor i if θj was
reported. Based on od, TA(od) = {t1, . . . , t5}. od will
fail at task t3 (because agent j can’t execute it), and thus,
T (oe) = {t1, t2}, Ti(oe) = {t1}, Tf (od) = {t3, t4, t5}, and
T i
f (od) = {t5}.
Non-Negative ITA Model. In this study, we consider a

non-negative ITA (NN-ITA) model, where each assigned task
must incur a non-negative social welfare (Assumption II). We
define our assumptions as follows.

Assumption I. Failure-Detection: If any task t failed, this
failure is detected and the responsible agent is identified.

This assumption provides a task-by-task monitoring, and is
very reasonable when the outcome of a problem is executable.
This assumption was used by all similar studies (discussed in
Section 5) that deal with outcome failures.

Assumption II. Non-Negative SW (t): The center will as-
sign a task t ∈ T only if it incurs a non-negative social wel-
fare, i.e., SW (t) ≥ 0.

This assumption narrows down the situations where an ef-
ficient outcome is determined, but it is crucial for maintaining
the center rationality property. In the general case, the center
should assign a task t for a negative social welfare if this will
allow assigning its successor tasks, and these successor tasks
have a positive social welfare that compensates the negative
social welfare of t. This is exactly the same as assuming that
the center has combinatorial rewards for the tasks (e.g., gets
a single reward of 10 from both t1 and t2), and it is proved
that achieving center rationality is impossible for combinato-
rial rewards, even if there are no interdependencies between
tasks [Porter et al., 2008, Theorem 4.2].

3 Execution Failures and Sufficient Resources
In this section, we deal only with execution failures as-

suming that agents have sufficient resources. In other words,
given the set of tasks Ti that agent i can perform, the agent
has sufficient resources to execute all the tasks assigned for it
from Ti. We present this impossibility result.

Theorem 1. There is no efficient mechanism that achieves
strategy-proofness for NN-ITA by using a single allocation
round, even if agents have sufficient resources.

Proof outline. If agent i reported its true type θi, then the
outcome od may: A. have a successful execution, or B. fail
by another agent j ̸= i. If agent i reported θ

′

i ̸= θi, then the
outcome o

′

d may: 1. have a successful execution, 2. fail by
agent i, or 3. fail by another agent j ̸= i. To prove strategy-
proofness (Definition 2), we need to show that ui(od, θi) ≥
ui(o

′

d, θi) holds in the six possible combinations of A and B
respectively with 1, 2 and 3: Case A1. Both od and o

′

d are
successful, Case A2. od is successful and o

′

d fails by agent i,
Case A3. od is successful and o

′

d fails by another agent j ̸= i,
Case B1. od fails by another agent j ̸= i and o

′

d is successful,
Case B2. od fails by another agent j ̸= i and o

′

d fails by agent
i, and Case B3. Both od and o

′

d fail by another agent j ̸= i. To
prove Theorem 1, we prove that there is no payment schema
that can cover cases A3 and B1 simultaneously. Let o

′

e and
o
′

f be the executed and unexecuted parts of o
′

d, respectively.
Proof. Given that the actual value vi(oe, θi) =

−
∑

t∈Ti(oe)
Ci(t) of agent i, the agent’s payment pi(oe)

must increase with each task executed by agent i to com-
pensate the decrease in the agent’s value. Any payment
schema either pays agent i based on only the executed tasks
(i.e., pi(oe)), or will also include payments for the unexe-
cuted tasks T (of ) (i.e., pi(oe, of )). For pi(oe), ui(od, θi) ≥
ui(o

′

d, θi) will not hold for case B1. This is because agent i
may incur some extra costs and prevent the failure 1, which
increases the number of executed tasks (i.e., oe ⊂ o

′

e), and
thus, its payment. Agent i has incentive to do so if its utility
with payment pi(o

′

e) will be greater than its utility with pay-
ment pi(oe). For pi(oe, of ), we want to stress that agent i can
by strategic misreporting: 1. make tasks from of under od
belong to o

′

e under o
′

d (e.g., as in case B1). The agent will do
this if the increase in its utility from executed tasks is more
than from unexecuted tasks; or 2. make tasks from oe under
od belong to o

′

f under o
′

d (e.g., as 2 in case A3). The agent
will do this if the increase in its utility from unexecuted tasks
is more than from executed tasks. For ui(od, θi) ≥ ui(o

′

d, θi)

1In the investment example, θi and θ
′
j were reported, and od will

fail by contractor j at t3. Contractor i can claim t3 under o
′
d by

reporting θ
′
i that misreports the cost of t3 to be 4. Here, o

′
d will not

fail at t3, because contractor i can perform t3, however, for a higher
cost than reported.

2In the investment example, θi and θ
′
j were reported. od will fail

by contractor j at t3. Contractor i can report θ
′
i that misreports the

cost of t1 to be 6, and makes t1 assigned to contractor j under o
′
d,

and o
′
d will fail at t1 because contractor j can’t perform it.



to hold for both cases A3 and B1, the increase in the utility of
agent i from executed tasks or unexecuted tasks must be the
same. To achieve this, pi(oe, of ) must depend directly on the
agent’s privately known costs for the unexecuted tasks, which
can be misreported. �

Reassignment Mechanism. One way to overcome this
impossibility result is to design mechanisms that reassign
failing tasks, i.e., if task t failed, then the center will reas-
sign only task t to the agent who reported the second cheap-
est cost, and then, the execution can start again. The reas-
signment may happen several time for the same task (e.g.,
task t failed due to agent i, then reassigned to agent j and
failed, then reassigned to agent k and succeeded), and may
happen to more than one task. The reassignment will end
if all the tasks in od were executed successfully, or if there
is a permanent failure (i.e., a task that failed and can’t be
reassigned). We define a temporary failure as a task that
failed and then was executed successfully after reassignment.
Using reassignment is very reasonable and common in real-
life applications, where the center needs the tasks to be exe-
cuted. We will now propose a reassignment NN-ITA mech-
anism, and prove its properties. We denote α−i as the set
of agents without agent i, and we denote ore as the exe-
cuted outcome after the reassignment process. Given the ex-
ecuted outcome ore, we define SW−i(ore) as the social wel-
fare of ore without the social welfare of the executed tasks
by agent i, i.e., SW−i(ore) =

∑
j∈α−i

∑
t∈Tj(ore)

SW (t).
As well, we define SW (o−i(ore)) as the social welfare of
a virtual outcome o−i(ore), where o−i(ore) is the assign-
ment that maximizes the social welfare given the types of
other agents j ̸= i from the successfully executed tasks
in ore (i.e., T (ore)), while considering Assumption II, ne-
glecting the reported information by agent j ̸= i regarding
a certain task t if the agent caused its failure, and neglect-
ing the dependencies between the tasks in T (ore). For in-
stance, if θi and θ

′′

j are reported in the investment example,
od = {(t1, i), (t2, j), (t3, j), (t4, j), (t5, i), (t6, j), (t7, j)}.
od will fail at t3, which will be reassigned to contrac-
tor i. Then, od will fail again at t6 which is a per-
manent failure because it can’t be reassigned to contrac-
tor i. Thus, ore = {(t1, i), (t2, j), (t3, i), (t4, j), (t5, i)},
and SW−i(ore) = SW (t2) + SW (t4) = 6 + 5 = 11.
SW (o−i(ore)) = SW (t2) + SW (t4) + SW (t5) = 6 + 5 +
2 = 13, because T (ore) = {t1, t2, t3, t4, t5} and when as-
signing them to contractor j, t1 is not assigned because of its
negative social welfare, t3 is not assigned because it failed
due to contractor j, and t2, t4, t5 are assigned because we
neglected their dependency on t1 and t3.

Definition 5. A reassignment NN-ITA mechanism is de-
fined as follows.

1. The center announces the set of the offered tasks T .
Then, agents report their types θ = (θ1, . . . , θn) to the
center that will determine an efficient outcome od (Defi-
nition 1 under Assumption II).

2. The outcome od then will be executed resulting in ore af-
ter reassignments. Each agent i will be paid as follows.
a. If agent i caused any temporary or permanent failure,

then agent i will get no payment, i.e., pi(ore) = 0.
b. If the outcome was executed successfully (possibly af-
ter reassignment) or permanently failed because of an-
other agent j ̸= i, then agent i will be paid pi(ore) =∑

t∈Ti(ore)
R(t) + SW−i(ore)− SW (o−i(ore)).

Theorem 2. The reassignment NN-ITA mechanism is indi-
vidually rational for every truthful agent.

Proof. If agent i caused temporary or permanent failure,
then its utility will be

ui(od, θi) = −
∑

t∈Ti(ore)
Ci(t), (1)

which is negative or 0 if agent i didn’t execute any tasks (i.e.,
Ti(ore) = ∅). If the execution was successful (possibly after
reassignment) or permanently failed due to another agent j ̸=
i, then the utility of agent i will be

ui(od, θi) =
∑

t∈Ti(ore)
R(t)−

∑
t∈Ti(ore)

Ci(t) (2)

+SW−i(ore)− SW (o−i(ore)).

For every truthful agent i, its utility is Eq. 2, which
can be re-written as ui(od, θi) =

∑
t∈Ti(ore)

SW (t) +

SW−i(ore)−SW (o−i(ore)) = SW (ore)−SW (o−i(ore)).
Given that o−i(ore) is determined by assigning the executed
tasks T (ore), then SW (ore) ≥ SW (o−i(ore)) holds. This
is because agent i executes its tasks in ore for the cheapest
possible cost (i.e., highest social welfare), but these tasks are
assigned in o−i(ore) to other agents for higher costs. �

Theorem 3. The reassignment NN-ITA mechanism is
strategy-proof and efficient.

Proof outline. Considering reassignment, we re-write the
six cases in the proof outline of Theorem 1 as follows: Case
A1. Both od and o

′

d are successful (possibly after reassign-
ment), Case A2. od is successful (possibly after reassign-
ment) and any task in o

′

d fails temporary or permanently by
agent i, Case A3. od is successful (possibly after reassign-
ment) and o

′

d fails permanently by another agent j ̸= i, Case
B1. od fails permanently by another agent j ̸= i and o

′

d is
successful (possibly after reassignment), Case B2. od fails
permanently by another agent j ̸= i and any task in o

′

d fails
temporary or permanently by agent i, and Case B3. Both od
and o

′

d fail permanently by another agent j ̸= i. To prove
strategy-proofness based on Definition 2, we will prove that
ui(od, θi) ≥ ui(o

′

d, θi) holds in these six cases for any θ−i,
given that agent i may practise each type of strategic misre-
porting (i.e., over-reporting, under-reporting and misreport-
ing costs) separately. By showing that practicing each lying
type separately decreases the agent’s utility under o

′

d, then
we will have shown any combined strategic misreporting that
involves more than one lying type may further decrease the
agent’s utility under o

′

d. We stress that the payment applies
for all the agents who reported their information, and we
don’t assume that each agent is necessarily assigned tasks
under od. Once strategy-proofness is established, efficiency
follows from step 1 in Definition 5.

Proof. Cases A2 and B2. Under the outcome o
′

d,
the utility of agent i will be negative or 0 (expressed by
Eq. 1). However, under the outcome od, the agent has



a non-negative utility expressed by Eq. 2 (established in
Theorem 2). And thus, ui(od, θi, θ−i) ≥ ui(o

′

d, θi, θ−i)
holds. Cases A1, A3, B1 and B3. In all the four cases,
the utility of agent i under od or o

′

d is expressed by Eq. 2,
and we want to prove that ui(od, θi) =

∑
t∈Ti(ore)

R(t) −∑
t∈Ti(ore)

Ci(t) + SW−i(ore) − SW (o−i(ore)) ≥
ui(o

′

d, θi) =
∑

t∈Ti(o
′
re)

R(t) −
∑

t∈Ti(o
′
re)

Ci(t) +

SW−i(o
′

re) − SW (o−i(o
′

re)) holds. Over-reporting: Given
that o

′

d is successful (possibly after reassignment) in cases
A1 and B1, any over-reported tasks in θ

′

i weren’t assigned
to agent i. Given that o

′

d fails permanently by another agent
j ̸= i in cases A3 and B3, any over-reported tasks in θ

′

i
before the permanent failure point weren’t assigned to agent
i. Given the previous and that Eq. 2 has no terms related
to unexecuted tasks, over-reporting has no effect on the
agent’s utility. Under-reporting: If agent i was the only
one capable of performing the task t that it under-reported
or report a cost that is higher than the task’s reward, then t
will not be assigned (no agent can perform it or because of
Assumption II) and its successor tasks will not be assigned
under o

′

d. This may decrease the payment that agent i pays
the center (i.e., SW (o−i(o

′

re)) < SW (o−i(ore))) if the
unassigned tasks under o

′

d contain tasks that were assigned
to other agents j ∈ α−i under od. However, this decrease
corresponds to an equal decrease in the agent’s received pay-
ment from the center (i.e., SW−i(ore) < SW−i(o

′

re)).
As well,

∑
t∈Ti(ore)

R(t) −
∑

t∈Ti(ore)
Ci(t) >∑

t∈Ti(o
′
re)

R(t) −
∑

t∈Ti(o
′
re)

Ci(t) may hold if the

unassigned tasks under o
′

d contain tasks that were assigned to
agent i under od, as any executed task by agent i corresponds
to non-negative increase in its utility under Assumption II.
Misreporting costs: By using reassignment, we stress that
agent i doesn’t need to misreport costs to prevent failures
(as in footnote 1), as any failing tasks will be reassigned to
agent i or any other agent j ̸= i who can execute them suc-
cessfully. And thus, we can assume that misreporting costs
doesn’t affect the execution horizon (i.e., T (ore) = T (o

′

re)),
which implies SW (o−i(o

′

re)) = SW (o−i(ore)). Given
that ui(od, θi) =

∑
t∈Ti(ore)

R(t) −
∑

t∈Ti(ore)
Ci(t) +

SW−i(ore) = SW (ore), and ui(o
′

d, θi) =
∑

t∈Ti(o
′
re)

R(t)

−
∑

t∈Ti(o
′
re)

Ci(t) + SW−i(o
′

re) = SW (o
′

re),

SW (ore) ≥ SW (o
′

re) holds because the center ini-
tially determines an efficient outcome that maximizes the
social welfare, and reassigning failing tasks happens in a
manner that maximizes the social welfare (i.e., reassign to
the agent who reported the second cheapest cost). �

Theorem 4. The reassignment NN-ITA mechanism is cen-
ter rational, and provides profit for the center.

Proof. In the truth-telling equilibrium, the center pays
pi(ore) =

∑
t∈Ti(ore)

R(t) + SW−i(ore) − SW (o−i(ore))

for each agent i. The center’s utility of the executed outcome
is U(ore, θ) = V (ore)−

∑
i∈α pi(ore) =

∑
t∈T (ore)

R(t)−∑
i∈α pi(ore), and we need to show that U(ore, θ) ≥ 0

holds. The term
∑

i∈α

∑
t∈Ti(ore)

R(t) offsets the first term∑
t∈Ti(ore)

R(t) of each payment pi(ore). Thus, we can
represent the center’s utility by the remaining terms of each
pi(oe), i.e., U(ore, θ) =

∑
i∈α SW (o−i(ore))−SW−i(ore),

and we need to prove that SW (o−i(ore)) ≥ SW−i(ore)
holds for each agent i. Recalling that if a task was assigned
to agent i, then agent i has the cheapest cost for performing
it, and thus, the best social welfare SW (t). Let SW

′
(t) be

the second best social welfare, i.e., assign t to the agent who
has the second cheapest cost. SW (o−i(ore)) ≥ SW−i(ore)
holds because SW (o−i(ore)) contains SW−i(ore), in addi-
tion to the second best social welfare SW

′
(t) from each task

t that was executed by agent i in ore. This guarantees center
rationality, and guarantees that the center gets a lower-bound
profit of SW

′
(t) for each successfully executed task t, given

that a second cheapest cost exists. �

4 NN-ITA with Limited Resources
In this section, we assume agents with limited resources,

which is adequate for scenarios where acquiring additional
resources is not possible. For representing resources, we
assume that each agent i has a set of NAND (i.e., negated
conjunctions) constraints T rc

i defined over Ti to express the
agent’s resource constraints (e.g., t1, t2 ∈ Ti and ¬(t1 ∧ t2)
mean that agent i can’t execute both t1 and t2 because of lim-
ited resources, so the agent may be assigned only t1, only t2,
or none of them). This representation is suitable because we
defined T as a set of tasks, which - by definition - doesn’t
allow the repetition of tasks (e.g., if task t1 is required to be
executed twice, then the second copy must appear under a
different notation t

′

1). Under outcome od, the assigned tasks
to agent i (i.e., Ti(o)) must satisfy the agent’s resource con-
straints (i.e., all constraints in T rc

i must be true). Given that
the resource constraints are privately known for agent i, these
constraints can be under-reported or over-reported. In limited
resources ITA, it is possible to achieve truthfulness in ex-post
incentive compatible, but we will not present this result be-
cause center rationality is lost and due to space limits as well.

Theorem 5. There is no mechanism that can achieve cen-
ter rationality for limited resources NN-ITA, even under ex-
post incentive compatible.

Proof. Assume the following example: 1. T =
{t1, t2, t3, t4} with interdependencies between tasks t1 ≺ t2
and t3 ≺ t4, and each task has a reward of 10; 2. Two agents
i and j; 3. Agent i is the only agent who can perform t1
for Ci(t1) = 4 and t3 for Ci(t3) = 2, but has a resource
constraint ¬(t1 ∧ t3); 4. Agent j is the only agent who can
perform t2 for Cj(t2) = 1 and t4 for Cj(t4) = 7, but has a
resource constraint ¬(t2 ∧ t4); and 5. Agent j reports truth-
fully (i.e., ex-post incentive compatibility). The center can
assign either o1d = {(t1, i), (t2, j)}, or o2d = {(t3, i), (t4, j)}.
Given that this example assumes no second cheapest cost for
tasks (i.e., only one agent who can perform each task), any
mechanism that guarantees truthfulness in ex-post incentive
compatibility must pay each agent the whole reward of the
task it executed. If agent i reported truthfully, then the center
will choose o1d (i.e., SW (o1d) = 15 > SW (o2d) = 11), and



the utility of agent i will be 10 − 4 = 6. Here, agent i can
under-report the ability to perform t1 (i.e., excludes o1d). This
makes the center chooses the only remaining outcome o2d, and
the utility of agent i will be 10− 2 = 8. To prevent that from
happening, the center must pay agent i an amount more than
the reward of t1, and given that the center pays agent j the
whole reward for t2, then center-rationality is lost. �

This impossibility result finalizes our study, as center ra-
tionality is a crucial property for mechanisms proposed for
commercial use. Maintaining center rationality as well as
achieving truthfulness in dominant strategy for limited re-
sources NN-ITA is possible by imposing assumptions (e.g.,
cost verification as in [Porter et al., 2008]).

5 Discussion and Related Work
Interdependent Valuations. We stress that outcome fail-

ure problems (e.g., task allocation, multiagent planning) are
not the only type of problem that involves interdependent
valuations (see [Mezzetti, 2004] for other examples), and if
tasks are not interdependent (i.e., independent valuations),
strategy-proof mechanisms already exist (e.g., [Nisan and Ro-
nen, 2001]). When valuations are interdependent, a Groves
mechanism [Groves, 1973] loses its strategy-proofness, be-
cause its payment depends on the agents’ tentative values.
All previous efficient mechanisms for interdependent valua-
tions settings achieve truthfulness at ex-post incentive com-
patibility. Mezzetti [2004] introduced a two-stage Groves
mechanism, which works for any interdependent valuations
problem. This mechanism is identical to a Groves mecha-
nism, except for a second reporting phase, where agents re-
port their actual values of the determined outcome, and the
Groves payment is made based on these actual values. This
second reporting phase can be eliminated under Assumption
I, as the center is monitoring the outcome and knows the
agents’ actual values. Domain specific mechanisms for out-
come failure problems can handle failures easily, as agent i
can be the only agent behind the outcome failure (i.e., other
agents are reporting truthfully under ex-post incentive com-
patibility). In [Porter et al., 2008; Ramchurn et al., 2009],
mechanisms were proposed for task allocation, where valu-
ations were interdependent in the first because of the inter-
dependencies between tasks, while in the second because of
assuming a trust-based model. In [van der Krogt et al., 2008;
Zhang and de Weerdt, 2009], mechanisms were proposed
for multiagent planning, where valuations were interdepen-
dent because of the interdependencies between the plans ex-
ecuted by different agents. The multiagent planning model is
more complicated than an ITA model, as interdependencies
between actions are not pre-defined, and agents report their
own goals and the goals’ associated rewards.

Failure Models. Previous studies assume that an outcome
may fail either accidentally (e.g., [Porter et al., 2008]) by
assuming that an agent privately knows its probability of suc-
cess (PoS) of [0, 1] when performing a particular task, or in-
tentionally (e.g., [Zhang and de Weerdt, 2009]) as we assume
here (i.e., an agent reports PoS of ‘1’ for a task instead of
reporting its true PoS of ‘0’). Accidental failure models as-
sume that a task may fail even if the agent reported truthfully
its PoS, and an agent will attempt a task only once. To ex-

tend the work proposed here to consider accidental failures,
we need to differentiate between if an agent failed because
it can’t execute the task at all (where the task must be reas-
signed to another agent as we did here), and between if the
agent can execute the task but failed because there is a PoS
(where here the agent must keep trying to execute the task
until it succeeds). We can achieve this differentiation by ex-
tending Assumption I to allow the center to decide whether
an agent attempted to execute a task in the first place or not,
and we leave that for future work.

Private Durations. Another way - a study we have under
review - to design strategy-proof mechanisms for ITA without
using reassignment is to factorize the agent’s privately known
cost for performing a task into two components: a privately
known duration in which the agent can perform that task,
and a publicly known unit cost associated with each duration
unit. Although here and previous studies [Porter et al., 2008;
Ramchurn et al., 2009; Zhang and de Weerdt, 2009] use As-
sumption I, assuming private durations gives an additional
advantage, because if an agent claims the ability to perform
a task in a shorter period than its actual capability, then the
agent can easily be detected. With private costs, an agent can
execute a task for a higher or lower cost than its actual cost
without being detected.

6 Conclusions and Future Work
In this study, we proposed a reassignment mechanism that

is efficient and strategy-proof when valuations are interdepen-
dent. And then, we illustrated the effects of assuming agents
with limited resources. Interdependent valuations introduce
a lot of complexities to the classical mechanism design prob-
lem, which only can be handled by designing domain spe-
cific mechanisms. Extending the current model and methods
to consider combinatorial values in ITA, and to multiagent
planning appear fruitful avenues of pursuit.

References
[Groves, 1973] T. Groves. Incentives in teams. Econometrica,

41:617–631, 1973.
[Mas-Colell et al., 1995] A. Mas-Colell, M. D. Whinston, and J. R.

Green. Microeconomic Theory. Oxford Uni. Press, 1995.
[Mezzetti, 2004] C. Mezzetti. Mechanism design with interdepen-

dent valuations: Efficiency. Econometrica, 72(5), 2004.
[Nisan and Ronen, 2001] N. Nisan and A. Ronen. Algorithmic

mechanism design. Games and Economic Behavior, 35, 2001.
[Porter et al., 2008] R. Porter, A. Ronen, Y. Shoham, and M. Ten-

nenholtz. Fault tolerant mechanism design. Artificial Intelli-
gence, 172(15):1783–1799, 2008.

[Ramchurn et al., 2009] S. D. Ramchurn, C. Mezzetti, A. Giovan-
nucci, J. A. Rodriguez-Aguilar, R. K. Dash, and N. R. Jennings.
Trust-based mechanisms for robust and efficient task allocation
in the presence of execution uncertainty. Journal of Artificial In-
telligence Research, 35:119–159, 2009.

[van der Krogt et al., 2008] R. van der Krogt, M. M. de Weerdt, and
Y. Zhang. Of mechanism design and multiagent planning. In The
18th ECAI, 2008.

[Zhang and de Weerdt, 2009] Y. Zhang and M. M. de Weerdt. Cre-
ating incentives to prevent intentional execution failures. In
IEEE/WIC/ACM, pages 431–434, 2009.


