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Abstract
The room assignment-rent division problem allo-
cates a heterogeneous set of indivisible items (e.g.
rooms in a house) along with a share of some di-
visible item (e.g. the rent for the house), such that
all items and resources are allocated without sur-
plus or deficit, and each agent receives exactly one
indivisible item. It is desirable to have envy-free
outcomes but this is not possible for determinis-
tic, truthful mechanisms. In this work we present
truthful, randomised mechanisms for this problem,
along with new measures of envy appropriate for
non-deterministic mechanisms.

1 Introduction
The room assignment-rent division problem (RA-RD) [Su,
1999] is a classic problem in multiagent resource allocation
and fair division. Consider a group of friends who will rent a
house together. They must decide both who gets which room,
and what share of the rent each person will pay. Each friend
will want to be allocated just one room and there should be no
surplus or deficit when meeting the total rent. Each individual
has his or her own preferences on which room is best, such as
preferring the largest room, or the room with the best view.
More generally, this can be seen as a problem of allocating a
set of indivisible, heterogeneous items (i.e. the rooms) along
with a share of a divisible resource (i.e. the rent), such that all
items are allocated and each agent gets exactly one indivisible
item. The resources can have positive or negative utility.

While the real-estate setting is intuitive, this model of re-
source allocation can be applied to problems in other areas.
In a job or task allocation setting, the indivisible items are
tasks with some negative utility, and the divisible resource
is some payment to be distributed among the workers upon
completion of the tasks. The workers or processors can be
considered the indivisible resources, with agents submitting
work and covering some cost of maintaining the equipment.

In these settings, we are interested in more than just a
Pareto-efficient allocation, but also some notion of fairness.
In this paper we focus on envy and envy-freeness as measures
of fairness. An allocation assigns a bundle to each agent,
where a bundle is a single item along with some share of the
divisible resource. For a particular allocation of bundles to

agents, an agent is envious if it views another agent’s bun-
dle as strictly better than its own. An envy-free mechanism
provides an allocation where no agent is envious. Brams and
Taylor [1996] discuss envy-freeness and other measures of
fairness in fair division.

In the RA-RD problem, deterministic, envy-free mech-
anisms are vulnerable to manipulation by the participating
agents. Since envy-free allocations in this setting are Pareto-
efficient with balanced agent transfers, this is a consequence
of the impossibility result of Green and Laffont [1979]. As
such, previous work on this problem has focussed on proce-
dures that have full information about agent preferences.

We use randomisation to create new mechanisms that
achieve envy-freeness in strategy-proof mechanisms. Ran-
domisation has been a powerful technique for overcoming
impossibility results in past work on social choice prob-
lems. For example, in other item allocation settings [Faltings,
2005], k-self-selection [Alon et al., 2010], and voting proto-
cols [Procaccia, 2010]. We also examine appropriate mea-
sures of qualities such as envy-freeness in randomised mech-
anisms. As previous work on the room assignment-rent divi-
sion problem focusses on deterministic mechanisms, existing
measures are not entirely suitable. For envy-freeness, we look
at the probability a mechanism returns an envy-free outcome.
Additionally we use the expected number of envy-free agents
to consider what happens over all possible outcomes. We pro-
vide bounds for these measures in truthful mechanisms.

1.1 The Model
The room assignment-rent division problem assigns a set of
indivisible, heterogeneous items (e.g. rooms in a shared
house), M , to a set of agents, N such that all agents receive
exactly one item and |N | = |M |. There is also some total
quantity T of a divisible resource (e.g. rent) to be completely
divided among the agents. This allocation and division is per-
formed simultaneously. Each agent i ∈ N has a value for
each item j ∈ M , denoted as vi(j) (or equivalently, vi,j),
with the unit of the divisible resource as the numeraire.

We do not assume complete knowledge of agent types, so
an RA-RD mechanism receives a vector of reported agent val-
ues V̄ =< v̄1, . . . v̄n > and produces an allocation function,
f : N → M , and a division R ∈ Rn. A valid f must be
bijective so every agent receives one item, every item is as-
signed to one agent. Let ri denote the share of divisible re-



source agent i receives, where
∑

i∈N ri = T . To simplify
the notation, we let vi(f) = vi(f(i)). Agents have quasi-
linear utilities, so an agent’s utility for an allocation (f, R) is
ui(f, R) = vi(f) + ri.

In this work we use randomised mechanisms for the RA-
RD problem. A deterministic mechanism takes a vector V̄
of reported types and returns a single outcome, (f, R). A
randomised mechanism instead uses a probability distribution
over outcomes and returns a single outcome, (f, R), accord-
ing to this distribution. Agents are risk neutral, so an agent’s
expected utility for a random distribution over outcomes is
the probability-weighted sum of its utility of each outcome.
A deterministic mechanism is truthful, or dominant strategy
incentive compatible (DSIC), if no agent can increase its own
utility by misreporting its type, regardless of other agents’
actions. Similarly, a randomised mechanism is truthful in ex-
pectation if no agent can increase its own expected utility by
misreporting, regardless of other agents’ actions.

1.2 Related Work
For the room assignment-rent division problem there have
been a number of previous solutions for finding envy-free so-
lutions while assuming complete knowledge of agent types.
Su [1999] proves the existence of envy-free outcomes for
this setting, along with an interactive algorithm based on
Sperner’s lemma that uses simple queries to the agents.
Abudlkadoiroǧlu, Sönmez and Ünver [2004] developed an
envy-free auction method for determining the allocation and
prices of rooms with any number of agents that guarantees
non-negative pricing. Haake, Raith and Su [2002] provided a
more general procedure without the restrictions that the num-
ber of objects must equal the number of agents and each agent
must receive exactly one object. For the room assignment-
rent division problem, an envy-free solution relies on truth-
ful preferences of the agents. Unfortunately, no deterministic
mechanism exists that is both envy-free and non-manipulable.

Sun and Yang [2003] achieved a strategy-proof and envy-
free mechanism for a similar allocation problem, but has dif-
ferent restrictions on the allocation of the divisible resource.
Instead of dividing a single quantity of some resource, each
indivisible item has its own “compensation limit”. This
model and proof was generalised by Andersson and Svens-
son [2008], and Andersson [2009] for greater flexibility on
the indivisible objects, and a proof of coalitional strategy-
proofness. However, the use of an item-based compensation
limit instead of a single budget of divisible resource that must
be entirely allocated mean that these mechanisms are incom-
patible for the room assignment-rent division model of this
paper.

In this paper we use randomisation to achieve strategy-
proof outcomes that are not possible in deterministic mech-
anisms. Moulin and Bogomolnaia [2001] and later Kojima
[2009] examined a randomised mechanism for a similar allo-
cation problem to RA-RD, but with the restriction that agents
have the same ordinal ranking and where individual prefer-
ences are distinguished by a private “acceptance threshold”.
These randomised, strategy-proof mechanisms were shown to
achieve efficient and envy-free outcomes. These papers also
discuss methods of evaluating randomised allocation proce-

dures. In a more general, but related item allocation setting,
the Green-Laffont impossibility theorem [Green and Laffont,
1979] shows that for heterogeneous item allocation, no mech-
anism is Pareto-efficient, DSIC, and strong budget balanced.
Strong budget balance requires that all agents’ payments sum
to exactly zero, while in RA-RD payments must sum to ex-
actly T . Work by Faltings [2005] provided a randomised al-
location technique that achieves incentive compatibility and
budget balance at the expense of allocative efficiency. The
quality of this randomised mechanism is assessed by the loss
of efficiency in generated problems.

1.3 Deterministic RA-RD Mechanisms
As has been shown in previous work [Haake et al., 2002;
Su, 1999], no truthful, envy-free mechanism exists for the
RA-RD problem. This follows by the Green-Laffont impos-
sibility theorem [Green and Laffont, 1979], as an envy-free
allocation is an efficient allocation [Alkan et al., 1991], and
the sum of payments must be budget balanced (if T 6= 0,
each room can be given an initial charge of T

n to bring the
budget to zero). As the truthful mechanism cannot guarantee
efficiency when ensuring the divisible resource is entirely al-
located, the mechanism cannot provide an envy-free outcome
for all inputs.

2 Envy-Freeness in Randomised Mechanisms
An envy-free, deterministic allocation mechanism produces
an outcome where no agent prefers another agent’s allocated
bundle to its own. For the RA-RD problem, an outcome
(f, R) is envy-free if :

vi(f(i)) + ri ≥ vi(f(j)) + rj , ∀i, j ∈ N

This measurement states whether or not a single outcome is
envy-free. When examining randomised mechanisms, which
can produce several outcomes for a single input, this does
not provide an appropriate comparison of mechanisms. For
this problem, it is beneficial to consider measures of envy-
freeness designed for randomised mechanisms. In a ran-
domised mechanism, agent envy can be measured before the
randomisation process (i.e. on the agent’s lottery of out-
comes), or on the final outcome. A simple extension of mea-
suring envy to a randomised mechanism is to compare each
agent’s lottery of allocations, prior to the mechanism per-
forming its random selection.
Definition 1. For ex ante envy-freeness, no agent strictly
prefers another agent’s lottery over final outcomes. Let K
be the set of allocations, and pk is the probability of choosing
k ∈ K, which has associated allocation and payment func-
tions (fk, Rk). That is, for all agents i ∈ N :
∑

k∈K

pk(vi(fk(i))+ rk
i ) ≥

∑

k∈K

pk(vi(fk(j))+ rk
j ) , ∀j ∈ N

Ex ante envy-freeness is trivial to achieve in truthful mech-
anisms – simply randomise over all possible allocations with
equal probability and give each agent T

n of the divisible re-
source. This gives the same lottery for each agent regardless
of reported type but generally provides poor final outcomes,
with most or all agents envious in all outcomes. Because of



this, we propose looking at envy-freeness in the actual out-
comes, after the mechanism has performed the random selec-
tion. One measure is to look at which of these final outcomes
are envy-free in the deterministic sense, and the probability of
the mechanism producing such an outcome in the worst case.

Definition 2. An outcome is envy-free if no agent values an-
other agent’s bundle higher than its own. The guaranteed
probability of envy-freeness (GPEF) is the minimum prob-
ability a mechanism will produce an envy-free outcome, for
any set of agents.

The previous example that was ex ante envy-free has a
GPEF of zero. For some sets of agents, it will never pro-
duce an envy-free outcome. Consider two agents that both
prefer indivisible item 1. As the divisible resource is split
evenly, whichever agent is assigned item 2 will be envious.
This measure only considers the very best outcomes, where
all agents are envy-free, and all other outcomes are assessed
as valueless. For our third measure, we examine the level of
envy, as the number of envious agents, in each of the possible
outcomes.

Definition 3. An envy-free agent is one who does not value
another agent’s bundle higher than its own in a particular
allocation. The expected number of envy-free agents is the
probability-weighted sum of the number of envy-free agents
in each outcome of the mechanism for a particular input.

In the example of two agents preferring the same item, the
basic mechanism gives 1 expected envy-free agent, as both
allocations would have one agent envious and one envy-free.

3 Randomised RA-RD Mechanisms
We now examine these new measures of envy-freeness in the
RA-RD problem on mechanisms that are truthful in expecta-
tion. A mechanism is truthful in expectation if, irrespective
of the actions of other agents, an agent’s expected utility can
not be increased by misreporting its type.

Lemma 1. An RA-RD mechanism is truthful in expectation if
(but not only if) each agent’s expected share of the divisible
resource, and probability of being assigned to each indivisi-
ble item is constant (independent of reported types).

Proof. Let pi,j be the probability agent i is assigned item j,
and r̄i = E(ri) be agent i’s expected share of the divisible
resource. The expected utility of agent i ∈ N is calculated
as: E(ui) =

∑
j∈M pi,jvi(j)+ r̄i. As all pi,j and r̄i are con-

stant with respect to the agent’s bid/reported type, the agent’s
expected utility is constant and cannot be increased by misre-
porting.

Note that these are not the necessary conditions for a truth-
ful RA-RD mechanism. We use these conditions to define a
simple, truthful mechanism as a baseline for comparing other
randomised mechanisms.

A simple randomised RA-RD mechanism. From previ-
ous work [Alkan et al., 1991; Haake et al., 2002], given full
knowledge of agents’ types, we can find an envy-free alloca-
tion and division, denoted (f∗, R∗). Our random mechanism
first calculates the envy-free solution, then randomly selects

an integer x ∈ [0, n− 1]. Agent i is given the item and share
allocated to agent (i + x) (mod n) in the envy-free alloca-
tion. Thus, fx(i) = f∗((i + x) (mod n)). Each agent has
a 1

n probability of being assigned any particular item. An
agent’s expected share of the divisible resource is

r̄i =
∑

j∈n

1
n

r∗j =
1
n

∑

j∈n

r∗j =
T

n

This is constant for each agent, so by Lemma 1 the mech-
anism is truthful in expectation, allowing the mechanism to
correctly calculate (f∗, R∗).

Whenever x = 0, the envy-free outcome is chosen, and
this occurs with probability 1

n . Apart from special cases, for
all other values of x, all agents will be envious of their bundle
from the envy-free outcome. Thus, for this mechanism the
GPEF is 1

n . When x = 0, there are n envy-free agents, while
in the worst case, all other choices of x will have no envy-free
agents. This gives a worst-case expected number of envy-free
agents of n · 1

n + 0 · n−1
n = 1. In this mechanism, all agents

have the same lottery over items and expected payment, so it
is ex ante envy-free.

3.1 Maximising Guaranteed Probability of
Envy-Freeness

A truthful mechanism that guarantees 100% probability of
envy-freeness would be optimal for the three definitions in
Section 2. Unfortunately, this is not possible for RA-RD.

Theorem 1. A truthful (in expectation) mechanism for the
RA-RD problem with n agents has a guaranteed probability
of envy-freeness of at most 1

n .

Proof. In our setting with an equal number of agents and
items, an envy-free allocation is a Pareto-efficient allocation
[Alkan et al., 1991]. So, if a mechanism were capable of
envy-freeness with probability p > 1

n , it would also provide
an efficient allocation with probability at least p.

To get an efficient allocation with probability more than 1
n ,

then all agents must be able to change their probabilities of
item allocation through their reported values. For any mecha-
nism for this problem, an agent’s expected utility, which must
be maximised when reporting truthfully, can be decomposed
into parts. The first is its expected utility from receiving items
– a probability-weighted sum of the resources it can receive.
An agent will always receive one item. Next, the agent’s
expected payment for any mechanism can be separated into
two functions ḡi(v)+hi(v−i). Function ḡi(v) depends on all
agents’ reported types and must be maximised when agent i
reports truthfully (similar to the Groves payment in a Vickrey-
Clarke-Groves (VCG) mechanism). There is some additional
expected payment, hi(v−i), that doesn’t depend on agent i’s
reported type.

Let pi,j(v) denote the probability agent i receives item j.
If an agent receives each item with equal probability, then
the agent will receive some constant expected utility from
the allocation, regardless of its reported type. The minimum
probability an agent can receive an item, mini,v pi,j(v), deter-
mines the fraction of outcomes that contribute to this constant
utility. All items must be received with probability at least



mini,v pi,j(v). So with n items, let p0
i = n · mini,v pi,j(v)

be the fraction of outcomes where each agent receives each
item with equal probability. Reported values do not affect ex-
pected utility from these allocations and the contribution to
ḡi(v) to ensure truthfulness is 0.

If p∗i (v) is the probability an agent receives its item in
the efficient allocation, then it receives this item with in-
creased probability of (p∗i (v)− p0

i

n ) over the equal-probability
allocations that are independent of bids. For truthfulness,
ḡi(v) must include (p∗i (v) − p0

i

n )gi(v), where gi(v) =∑
j 6=i vj(f∗(j)) is the Groves payment. This maximises the

agents expected utility when it bids such that the true efficient
allocation is chosen. Finally, if p0

i (v) + p∗i (v) < 1, there are
other, non-efficient allocations for which agent i can change
the probability, but the mechanism cannot counteract any gain
from misreporting without ḡi(v) directly including agent i’s
reported values, which will allow agent i to benefit by reduc-
ing its payment. This gives an agent’s final expected payment
of (1−p0

i )gi(v)+hi(v−i). The efficient allocation is possible
with probability at most p∗i (v) = (1− p0

i ).
All agents’ expected payments must sum to T . If p0

i < 1,
then dividing the h functions by constant factor (1 − p0

i )
would give budget balanced Groves transfers. This contra-
dicts the Green-Laffont impossibility theorem, so p0

i = 1.
With constant probability of being assigned each item, an

agent cannot change its expected utility from the allocation
by misreporting. This limits the probability of an efficient
allocation to at most 1

n in the worst case (where there is only a
single efficient allocation). Envy-free outcomes have efficient
allocations so the best GPEF is 1

n .

This is a tight bound as demonstrated by the simple ran-
domised RA-RD mechanism described above, with a GPEF
of 1

n . This places some limiting restrictions on what is possi-
ble with a strategy-proof mechanism for this problem. Envy-
freeness at a low probability that asymptotically goes to zero
means that most of the time the mechanism will produce a
“bad” result. Considering only envy-free outcomes ignores
what happens in the remainder of cases. In the mechanism
described above, in the (n − 1) non-envy-free outcomes, ev-
ery single agent will be envious. This motivates measuring
the quality of each outcome with more detail than a yes/no
test of “envy-free”.

3.2 Maximising Expected Number of Envy-Free
Agents

While having all agents envy-free is the ideal outcome, at-
tempting to maximise the probability of such an outcome
can come at the expense of the quality of non-envy-free out-
comes. For truthful mechanisms, these non-envy-free out-
comes are the most likely, so when comparing mechanisms
they should not be ignored.

The above mechanism with a GPEF of 1
n has expected

number of envy-free agents of 1, as defined in Definition 3.
This is because there is a 1

n probability of n envy-free agents,
and 0 envy-free agents otherwise. By this measure alone,
this is equivalent to a mechanism that always has 1 envy-free
agent, such as a “random dictator” mechanism. The “ran-
dom dictator” picks an agent at random and gives that agent

its most preferred item along with the maximum share of the
divisible resource (i.e. max(T, 0)), with the remaining re-
sources allocated to other agents independently of all agent
bids. As the probability of being the dictator does not depend
on reported types, no agent can benefit by misreporting its
type.

The maximum expected number of envy-free agents is n,
and this implies that every outcome is envy-free. However,
as shown in the previous subsection, this is not possible for a
truthful mechanism.

Theorem 2. A truthful (in expectation) mechanism for the
RA-RD problem with n agents has an expected number of
envy-freeness of at most (n− 1 + 1

n ).

Proof. From Theorem 1, the maximum probability of an
envy-free outcome is 1

n , where there are n envy-free agents.
The remaining outcomes, with probability n−1

n , can have at
most (n−1) envy-free agents. This gives an expected number
of envy-free agents of n 1

n + (n− 1)n−1
n = n− 1 + 1

n

The GPEF was maximised with a fairly simple mechanism,
and in the rest of this section we present mechanisms for max-
imising the expected number of envy-free agents. The first is
a mechanism that achieves the bound in Theorem 2 for two
agents, followed by a more general mechanism with expected
number of envy-free agents of at least (n − 1), falling short
of the bound by 1

n .

The 2 Agent Case
For n = 2, this bound, 3

2 , can be reached with the following
mechanism. Let Ij denote the point of indifference for agent
j, which is the division of the divisible resource such that all
bundles have equal value. For two agents, this can be repre-
sented as a single value, as the divisions must sum to T , and
can be calculated as:

vj,1 + Ij = vj,2 + (T − Ij) ⇒ Ij =
1
2
(vj,2 − vj,1 + T )

The mechanism chooses an agent at random, and uses that
agent’s point of indifference to determine bundles. Agents
are then randomly assigned to a bundle. Each agent has a 1

2
probability of being assigned each indivisible resource, and
has an constant expected share of the divisible resource:

r̄1 = r̄2 =
1
2

(
I1 + (T − I1)

2
+

I2 + (T − I2)
2

)
=

T

2

So by Lemma 1, this mechanism is truthful in expectation.
The agent chosen to set the bundles will be envy-free with
either bundle, while the other agent will prefer one bundle,
so there is a probability of 1

2 this agent will be envious. This
gives expected number of envy-free agents of 3

2 and a GPEF
of 1

2 . Thus, based on both measures of envy-freeness, the
worst-case behaviour cannot be improved.

The n > 2 Agent Case
Our mechanism is a random distribution over deterministic
mechanisms that are modifications to a VCG allocation with
(n− 1) agents, based on the randomised technique proposed
by Faltings [2005]. The mechanism proceeds as follows:



1. Find f , the efficient allocation for all agents in N . The
value of this efficient allocation is C̄ =

∑
i∈N vi(f).

2. Next, randomly select an agent x ∈ N , with equal prob-
ability over all agents, as the agent to be “ignored”.

3. Find f−x and f−{i,x}, the efficient allocations for agents
N \{x} and N \{i, x} respectively, for all agents i 6= x.

4. Assign non-ignored agents according to f−x, giving
agent x the leftover item.

5. Agents make payments according to rx
i for each agent

i 6= x, and rx
x for agent x, as in the following equations.

rx
i = −Cx + vi(f−x(i)) + Cx

−i +
T

n
− C̄

n
, i 6= x (1)

rx
x = T −

∑

i 6=x

rx
i

= (n− 2)Cx −
∑

i 6=x

Cx
−i +

T

n
+

(n− 1)
n

C̄ (2)

Where Cx =
∑

j 6=x vj(f−x(j)) is the value of the efficient
allocation excluding x, and Cx

−i =
∑

j 6={i,x} vj(f−{i,x}(j))
is the value of the efficient allocation excluding {x, i}.

The payment for agent x is calculated based on the other
agents’ payments to ensure strong budget balance, i.e. the
sum of all payments is equal to T . The payment rx

i is made up
of three parts. The first three terms in Equation 1 are the VCG
payments with Clarke pivot payments in an allocation setting
with agent x ignored. For this part of the payment function,
along with the allocation function f−x, the agents will have
no incentive to misreport. Additionally, VCG mechanisms
with Clake pivot payments are known to be envy-free when
agents only receive one item [Leonard, 1983; Cohen et al.,
2010], so there will be no envy between non-ignored agents.
The term T

n is added equally to all agents, so will not affect
envy or truthfulness. It is added to ensure payments sum to T .
The final term, −C̄

n , is added to ensure no agents are envious
of the ignored agent. It is added equally to all agents, so will
not create envy between non-ignored agents. This breaks the
incentive-compatibility of the VCG payments, as it depends
on all agents’ reported values. When considering expected
utility, agents have a 1

n probability of paying (n−1)
n C̄ and an

(n−1)
n probability of paying −C̄

n , so in expected utility the
term cancels out. This means the mechanism remains truthful
in expectation. If the value of the efficient allocation is at least
T , then all agents will have a non-negative expected utility.

While non-ignored agents are not envious of each other, the
pricing must also ensure they are not envious of the ignored
agent. Agent i is envious of agent x iff:

vi(f−x(i))− rx
i < vi(f−x(x))− rx

x

⇒C̄ < vi(f−x(x)) + Cx
−i +

∑

j 6=x

Cx
−j − (n− 1)Cx (3)

Since, assuming non-negative agent values, Cx ≥ Cx
−i,

then C̄ ≥ C̄ +
∑

i 6=x Cx
−i − (n − 1)Cx. Also, for any

agents {i, x}, we have C̄ ≥ Cx ≥ Cx
−i + vi(f−x(x)). Oth-

erwise the efficient allocation used for Cx could have been
improved by using allocation f−{i,x} and switching agent i
to item f−x(x). Thus we have:
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Figure 1: Fraction of value profiles that give outcomes within the
worst case bounds, and where all outcomes are envy-free.

C̄ ≥ vi(f−x(x)) + Cx
−i +

∑

i 6=x

Cx
−i − (n− 1)Cx

As no agent can be envious of the ignored agent, for any
choice of x, there will be at least (n − 1) envy-free agents.
This is the minimum expected number of envy-free agents,
but short of the upper bound by 1

n .

3.3 Empirical tests
The mechanism described in Section 3.2 for n > 2 agents
does not meet the bound for guaranteed probability of envy-
freeness or expected number of envy-free agents. While
(n − 1) agents are guaranteed to be envy-free, the excluded
agent may be envious in all outcomes. We test our mechanism
empirically by generating random value profiles, where each
agent’s value for an item is drawn from a uniform distribution
in the range [0, 1]. Including negative values did not notice-
ably affect our results. We then calculated the expected num-
ber of envy-free agents and the probability of envy-freeness
for each value profile. At least 2500 random value profiles
were generated for each n.

The plot in Figure 1 summarises the fraction of value pro-
files that give at least 1

n probability of envy-freeness, and the
profiles that always give envy-freeness. For this mechanism,
outcomes either have 0 or 1 envious agents, so all outcomes
that give a probability of envy-freeness of at least 1

n also have
an expected number of envy-free agents of at least (n−1+ 1

n ).
The dotted line in the plot shows that the majority of profiles
fall within the optimal bound for these two measures, and
this fraction increases with additional agents. However, there
is still a significant fraction of profiles for which this mech-
anism falls short of this bound. So these worst-case profiles
are not rare, special cases. The solid line shows that the frac-
tion of ideal cases, where all outcomes are envy-free, for this
mechanism rapidly approaches zero. So with this mechanism,
an input that will always give an envy-free outcome becomes
extremely rare as n increases.

4 Relation to Heterogeneous Item Allocation
This randomised approach to the room assignment-rent di-
vision problem, along with the measures used to assess ran-
domised mechanisms can be used in related problems. The
problem of budget balanced, efficient allocation involves dis-
tributing a set of heterogeneous items to a set of agents such



that the items are allocated efficiently, the sum of all agents’
payments is zero (strong budget balance), and no agent bene-
fits from misreporting preferences. In variations of this prob-
lem, there can be a different number of agents and items, and
agents may not necessarily have unit demand. However, due
to the Green-Laffont impossibility theorem, there is no effi-
cient mechanism that is DSIC and strong budget balanced.

The RA-RD mechanism for n > 2 agents, described in
Section 3.2, with the C̄ and T terms removed from payment
functions is strong budget balanced and DSIC. This is be-
cause the VCG mechanism used after an agent is ignored is
DSIC and the ignored agent is payed so as to achieve strong
budget balance. While not efficient deterministically, the
Pareto efficiency of randomised mechanisms can be assessed
by measures similar to those used for envy-freeness in RA-
RD. For each choice of ignored agent, the remaining (n− 1)
agents are assigned to an efficient allocation for those agents.
Thus, in every outcome, the expected number of agents over
which the allocation is efficient is at least (n−1). This is sim-
ilar to the property of expected number of envy-free agents.
Note that this will hold for general allocation settings, not just
those where each agent receives at most one item.

In the restricted case where each agent receives at most one
item, and where m ≤ n, for at least one chosen ignored agent
the overall allocation for all n agents is efficient. For n = m,
there is at least one agent who, when ignored, does not change
the efficient allocation of the remaining agents. Furthermore,
if m < n, then ignoring any of the agents that were left unal-
located in the efficient allocation will also leave the allocation
unchanged. In cases where the allocation is unchanged, then
the final outcome will be efficient over all agents. As there
are n different outcomes, and n − m agents who receive no
item in the efficient allocation, this gives a worst-case proba-
bility of an efficient allocation of 1

n for cases where m = n,
or n−m

n for cases where m < n. This measurement is analo-
gous to the guaranteed probability of envy-freeness, and from
Theorem 1 it is also the best achievable for n = m.

5 Conclusions and Future Work
In this work we presented randomised mechanisms for
achieving envy-freeness in the room assignment-rent division
problem. A deterministic mechanism is unable to provide an
envy-free outcome while ensuring agents have no incentive
to misreport their preferences. For a randomised mechanism,
there are several possible outcomes, so evaluating and com-
paring these mechanisms by purely deterministic measures is
not always suitable. We presented measures of envy-freeness
appropriate for comparing randomised mechanisms.

Calculating envy between agents’ lotteries of outcomes is
not an effective measure in the RA-RD problem, as we show
it is trivial to achieve this in mechanisms, and it does not
consider the quality of final outcomes. Instead we focused
on measuring the GPEF, which shows, in the worst case,
what probability the mechanism will achieve the ideal out-
come of envy-freeness in all agents. We also propose assess-
ing mechanisms based on the expected number of envy-free
agents, which can give an expected level of quality where the
ideal outcome is unlikely. For these measures on the RA-RD

problem, we provided upper bounds for strategy-proof ran-
domised mechanisms.

These measures can be applied to mechanisms in other
problems where truthful, deterministic, envy-free mecha-
nisms are impossible. Similar measures can also be used on
other qualities, such as Pareto efficiency. Efficiency cannot be
achieved with strong budget balance and incentive compati-
bility, but a randomised mechanism can guarantee a minimum
probability of efficiency in the worst-case.
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