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Abstract
While the Gibbard-Satterthwaite theorem states
that every non-dictatorial and resolute, i.e., single-
valued, social choice function is manipulable, it
was recently shown that a number of appealing ir-
resolute Condorcet extensions are strategyproof ac-
cording to Kelly’s preference extension. In this
paper, we study whether these results carry over
to stronger preference extensions due to Fishburn
and Gärdenfors. For both preference extensions,
we provide sufficient conditions for strategyproof-
ness and identify social choice functions that sat-
isfy these conditions, answering a question by
Gärdenfors (1976) in the affirmative. We also show
that some more discriminatory social choice func-
tions fail to satisfy necessary conditions for strate-
gyproofness.

1 Introduction
One of the central results in social choice theory states that
every non-trivial social choice function (SCF)—a function
mapping individual preferences to a collective choice—is
susceptible to strategic manipulation (Gibbard, 1973; Sat-
terthwaite, 1975). However, the classic result by Gibbard
and Satterthwaite only applies to resolute, i.e., single-valued,
SCFs. This assumption has been criticized for being unnat-
ural and unreasonable (Gärdenfors, 1976; Kelly, 1977). As
Taylor (2005) puts it, “If there is a weakness to the Gibbard-
Satterthwaite theorem, it is the assumption that winners are
unique.” For example, consider a situation with two agents
and two alternatives such that each agent prefers a different
alternative. The problem is not that a resolute SCF has to
select a single alternative (which is a well-motivated practi-
cal requirement), but that it has to select a single alternative
based on the individual preferences alone (see, e.g., Kelly,
1977). As a consequence, the SCF has to be biased towards
an alternative or a voter (or both). Resoluteness is therefore at
variance with such elementary fairness notions as neutrality
(symmetry among the alternatives) and anonymity (symmetry
among the voters).

In order to remedy this shortcoming, Gibbard (1977) went
on to characterize the class of strategyproof decision schemes,
i.e., aggregation functions that yield probability distributions

over the set of alternatives rather than single alternatives (see
also Gibbard, 1978; Barberà, 1979). This class consists of
rather degenerate decision schemes and Gibbard’s characteri-
zation is therefore commonly interpreted as another impossi-
bility result. However, Gibbard’s theorem rests on unusually
strong assumptions with respect to the voters’ preferences. In
contrast to the traditional setup in social choice theory, which
typically only involves ordinal preferences, his result relies on
the axioms of von Neumann and Morgenstern (1947) (or an
equivalent set of axioms) in order to compare lotteries over al-
ternatives. The gap between Gibbard and Satterthwaite’s the-
orem for resolute SCFs and Gibbard’s theorem for decision
schemes has been filled by a number of impossibility results
with varying underlying notions of how to compare sets of
alternatives with each other (e.g., Gärdenfors, 1976; Barberà,
1977a,b; Kelly, 1977; Duggan and Schwartz, 2000; Barberà
et al., 2001; Ching and Zhou, 2002; Sato, 2008; Umezawa,
2009), many of which are surveyed by Taylor (2005) and Bar-
berà (2010).

How preferences over sets of alternatives relate to or de-
pend on preferences over individual alternatives is a funda-
mental issue that goes back to at least de Finetti (1937) and
Savage (1954). In the context of social choice the alternatives
are usually interpreted as mutually exclusive candidates for a
unique final choice. For instance, assume an agent prefers a
to b, b to c, and—by transitivity—a to c. What can we rea-
sonably deduce from this about his preferences over the sub-
sets of {a, b, c}? It stands to reason to assume that he would
strictly prefer {a} to {b}, and {b} to {c}. If a single alterna-
tive is eventually chosen using a procedure that is beyond the
agent’s control, it is safe to assume that he also prefers {a}
to {b, c} (Kelly’s extension), but whether he prefers {a, b} to
{a, b, c} already depends on (his knowledge about) the final
decision process. In the case of a lottery over all pre-selected
alternatives according to a known a priori probability distri-
bution with full support, he would prefer {a, b} to {a, b, c}
(Fishburn’s extension). This assumption is, however, not suf-
ficient to separate {a, b} and {a, c}. Based on a sure-thing
principle which prescribes that alternatives present in both
choice sets can be ignored, it would be natural to prefer the
former to the latter (Gärdenfors’ extension). Finally, whether
the agent prefers {a, c} to {b} depends on his attitude towards
risk: he might hope for his most-preferred alternative (lexi-
max extension), fear that his worst alternative will be chosen



(leximin extension), or maximize his expected utility.
In general, there are at least three interdependent reasons

why it is important to get a proper conceptual hold and a
formal understanding of how preferences over sets relate to
preferences over individual alternatives.

Rationality constraints. The examples above show that
depending on the situation that is being modeled, preferences
over sets are subject to certain rationality constraints, even
if the preferences over individual alternatives are not. Not
taking this into account would obviously be detrimental to a
proper understanding of the situation at hand.

Epistemic and informational considerations. In many ap-
plications preferences over all subsets may be unavailable,
unknown, or at least harder to obtain than preferences over
the individual alternatives. With a proper grasp of how set
preferences relate to preferences over alternatives, however,
one may still be able to extract important structural informa-
tion about the set preferences. In a similar vein, agents may
not be fully informed about the situation they are in, e.g.,
they may not know the kind of lottery by means of which
final choices are selected from sets. The less the agents know
about the selection procedure, the less may be assumed about
the structural properties of their preferences over sets.

Succinct representations. Clearly, as the set of subsets
grows exponentially in the number of alternatives, prefer-
ences over subsets become prohibitively large. Hence, ex-
plicit representation and straightforward elicitation are not
feasible and the succinct representation of set preferences be-
comes inevitable. Preferences over individual alternatives are
of linear size and are the most natural basis for any suc-
cinct representation. Even when preferences over sets are
succinctly represented by more elaborate structures than just
preferences over individual alternatives, having a firm con-
ceptual grasp on how set preferences relate to preferences
over single alternatives is of crucial importance.

Any function that yields a preference relation over subsets
of alternatives when given a preference relation over individ-
ual alternatives is called a preference extension or set exten-
sion. How to extend preferences to subsets is a fundamen-
tal issue that pervades the mathematical social sciences and
has numerous applications in a variety of its disciplines. One
example given by Gärdenfors (1979) is the following: “sup-
pose one only has ordinal information about the welfare of
the members of society. When is it possible to say that one
group of people is better off than another group?”

In this paper, we will be concerned with three of the most
well-known preference extensions due to Kelly (1977), Fish-
burn (1972), and Gärdenfors (1976). On the one hand, we
provide sufficient conditions for strategyproofness and iden-
tify social choice functions that satisfy these conditions. For
example, we show that the top cycle is strategyproof accord-
ing to Gärdenfors’ set extension, answering a question by
Gärdenfors (1976) in the affirmative. On the other hand, we
propose necessary conditions for strategyproofness and show

that some more discriminatory social choice functions such
as the minimal covering set and the bipartisan set, which have
recently been shown to be strategyproof according to Kelly’s
extension, fail to satisfy strategyproofness according to Fish-
burn’s and Gärdenfors’ extension. By means of a counter-
example, we also show that Gärdenfors (1976) incorrectly
claimed that the SCF that returns the Condorcet winner when
it exists and all Pareto-undominated alternatives otherwise is
strategyproof according to Gärdenfors’ extension.

2 Preliminaries
In this section, we provide the terminology and notation re-
quired for our results.

2.1 Social Choice Functions
Let N = {1, . . . , n} be a set of voters with preferences over
a finite set A of alternatives. The preferences of voter i ∈ N
are represented by a complete and anti-symmetric preference
relation Ri ⊆ A × A.1 We have a Ri b denote that voter i
values alternative a at least as much as alternative b. In accor-
dance with conventional notation, we write Pi for the strict
part of Ri, i.e., a Pi b if a Ri b but not b Ri a. As Ri is anti-
symmetric, a Pi b if and only if a Ri b and a 6= b. The set
of all preference relations over A will be denoted by R(A).
The set of preference profiles, i.e., finite vectors of preference
relations, is then given by R∗(A). The typical element of
R∗(A) will be R = (R1, . . . , Rn).

The following notational convention will turn out to be use-
ful. For a given preference profile R with b Ri a, Ri:(a,b)

denotes the preference profile

(R1, . . . , Ri−1, Ri \ {(b, a)} ∪ {(a, b)}, Ri+1, . . . , Rn).

That is, Ri:(a,b) is identical to R except that alternative a is
strengthened with respect to b within voter i’s preference re-
lation.

Our central object of study are social choice functions, i.e.,
functions that map the individual preferences of the voters to
a non-empty set of socially preferred alternatives.

Definition 1. A social choice function (SCF) is a function
f : R∗(A)→ 2A \ ∅.

An SCF f is said to be based on pairwise comparisons
(or simply pairwise) if, for all preference profiles R and R′,
f(R) = f(R′) whenever for all alternatives a, b,

|{i ∈ N | a Ri b}| − |{i ∈ N | b Ri a}|
= |{i ∈ N | a R′i b}| − |{i ∈ N | b R′i a}|.

In other words, the outcome of a pairwise SCF only de-
pends on the comparisons between pairs of alternatives (see,
e.g., Young, 1974; Zwicker, 1991).

1For most of our results, we do not assume transitivity of prefer-
ences. In fact, Theorems 3 and 5 become stronger but are easier to
prove for general—possibly intransitive—preferences. Theorems 4
and 6, on the other hand, become slightly weaker because there ex-
ist SCFs that are only manipulable if intransitive preferences are al-
lowed. For all the manipulable SCFs in this paper, however, we show
that they are manipulable even if transitive preferences are required.



For a given preference profile R = (R1, . . . , Rn), the ma-
jority relation RM ⊆ A × A is defined by a RM b if and
only if |{i ∈ N | a Ri b}| ≥ |{i ∈ N | b Ri a}|. Let PM

denote the strict part of RM . A Condorcet winner is an al-
ternative a that is preferred to any other alternative by a strict
majority of voters, i.e., a PM b for all alternatives b 6= a. An
SCF is called a Condorcet extension if it uniquely selects the
Condorcet winner whenever one exists.

We will now introduce the SCFs considered in this paper.
With the exception of the Pareto rule and the omninomination
rule, all of these SCFs are pairwise Condorcet extensions.

Pareto rule An alternative a is Pareto-dominated if there ex-
ists an alternative b such that b Pi a for all voters i ∈ N .
The Pareto rule PAR returns all alternatives that are not
Pareto-dominated.

Omninomination rule The omninomination rule OMNI re-
turns all alternatives that are ranked first by at least one
voter.

Condorcet rule The Condorcet rule COND returns the
Condorcet winner if it exists, and all alternatives oth-
erwise.

Top Cycle Let R∗M denote the transitive closure of the ma-
jority relation, i.e., a R∗M b if and only if there exists
k ∈ N and a1, . . . , ak ∈ A with a1 = a and ak = b
such that ai RM ai+1 for all i < k. The top cycle rule
TC (also known as weak closure maximality, GETCHA,
or the Smith set) returns the maximal elements of R∗M ,
i.e., TC (R) = {a ∈ A | a R∗M b for all b ∈ A} (Good,
1971; Smith, 1973; Schwartz, 1986).

Minimal Covering Set A subset C ⊆ A is called a covering
set if for all alternatives b ∈ A \ C, there exists a ∈ C
such that a PM b and for all c ∈ C\{a}, b PM c implies
a PM c and c PM a implies c PM b. Dutta (1988) and
Dutta and Laslier (1999) have shown that there always
exists a unique minimal covering set. The SCF MC re-
turns exactly this set.

Bipartisan Set Consider the two-player zero-sum game in
which the set of actions for both players is given by A
and payoffs are defined as follows. If the first player
chooses a and the second player chooses b, the payoff for
the first player is 1 if a PM b, −1 if b PM a, and 0 oth-
erwise. The bipartisan set BP contains all alternatives
that are played with positive probability in some Nash
equilibrium of this game (Laffond et al., 1993; Dutta and
Laslier, 1999).

Observe that PAR and OMNI are only well-defined for tran-
sitive individual preferences. It is well-known that BP(R) ⊆
MC (R) ⊆ TC (R) ⊆ COND(R) for all preference pro-
files R. Furthermore, MC (R) ⊆ PAR(R) and OMNI (R) ⊆
PAR(R) for all R, but the choice sets of OMNI and COND
may be disjoint.

2.2 Strategyproofness
An SCF is manipulable if one or more voters can misrep-
resent their preferences in order to obtain a more preferred
choice set. While comparing choice set is trivial for resolute

SCFs, this is not the case for irresolute ones. Whether one
choice set is preferred to another depends on how the prefer-
ences over individual alternatives are to be extended to sets of
alternatives.

In our investigation of strategyproof SCFs, we will con-
sider the following three well-known set extensions due to
Kelly (1977), Fishburn (1972),2 and Gärdenfors (1976). Let
Ri be a preference relation over A and X,Y ⊆ A.

• X RK
i Y if and only if x Ri y for all x ∈ X and all

y ∈ Y (Kelly, 1977)
One interpretation of this extension is that voters are un-
aware of the lottery that will be used to pick the winning
alternative (Gärdenfors, 1979).

• X RF
i Y if and only if x Ri y, x Ri z, and y Ri z for

all x ∈ X \ Y , y ∈ X ∩ Y , and z ∈ Y \X (Fishburn,
1972)
One interpretation of this extension is that voters are
unaware of the a priori distribution underlying the lot-
tery that picks the winning alternative (Ching and Zhou,
2002). Alternatively, one may assume the existence of a
tie-breaker with linear, but unknown, preferences.

• X RG
i Y if and only if one of the following conditions

is satisfied (Gärdenfors, 1976):

(i) X ⊂ Y and x Ri y for all x ∈ X and y ∈ Y \X
(ii) Y ⊂ X and x Ri y for all x ∈ X \ Y and y ∈ Y

(iii) neither X ⊂ Y nor Y ⊂ X and x Ri y for all
x ∈ X \ Y and y ∈ Y \X

No interpretation in terms of lotteries is known for this
set extension. Gärdenfors (1976) motivates it by allud-
ing to Savage’s sure-thing principle (when comparing
two options, identical parts may be ignored). Unfortu-
nately, the definition of this extension is somewhat “dis-
continuous,” which is also reflected in the hardly elegant
characterization given in Theorem 5.

It is easy to see that these extensions form an inclusion hier-
archy.

Fact 1. For all preference relations Ri and subsets X,Y ⊆
A,

X RK
i Y implies X RF

i Y implies X RG
i Y .

For E ∈ {K,F,G}, let PE
i denote the strict part of RE

i . As
Ri is anti-symmetric, so is RE

i . Therefore, we have X PE
i Y

if and only if X RE
i Y and X 6= Y .

Definition 2. Let E ∈ {K,F,G}. An SCF f is PE-
manipulable by a group of voters C ⊆ N if there exist pref-
erence profiles R and R′ with Rj = R′j for all j 6∈ C such
that

f(R′) PE
i f(R) for all i ∈ C.

An SCF is PE-strategyproof if it is not PE-manipulable by
single voters. An SCF is PE-group-strategyproof if it is not
PE-manipulable by any group of voters.

2Gärdenfors (1979) attributed this extension to Fishburn because
it is the weakest extension that satisfies a certain set of axioms pro-
posed by Fishburn (1972).



Fact 1 implies that PG-group-strategyproofness is stronger
than PF -group-strategyproofness, which in turn is stronger
than PK-group-strategyproofness. Note that, in contrast to
some related papers, we interprete preference extensions as
fully specified (incomplete) preference relations rather than
minimal conditions on set preferences.

3 Related Work
Barberà (1977a) and Kelly (1977) have shown independently
that all non-trivial SCFs that are rationalizable via a quasi-
transitive preference relation are PK-manipulable. However,
as witnessed by various other (non-strategic) impossibility re-
sults that involve quasi-transitive rationalizability (e.g., Mas-
Colell and Sonnenschein, 1972), it appears as if this property
itself is unduly restrictive. As a consequence, Kelly (1977)
concludes his paper by contemplating that “one plausible in-
terpretation of such a theorem is that, rather than demon-
strating the impossibility of reasonable strategy-proof social
choice functions, it is part of a critique of the regularity [ra-
tionalizability] conditions.”

Strengthening earlier results by Gärdenfors (1976) and
Taylor (2005), Brandt (2011a) showed that no Condorcet ex-
tension is PK-strategyproof. The proof, however, crucially
depends on strategic tie-breaking and hence does not work
for strict preferences. For this reason, only preference profiles
with strict, i.e., anti-symmetric, preferences are considered in
the present paper.

Brandt (2011a) also provided a sufficient condition for
PK-group-strategyproofness. Set-monotonicity can be seen
as an irresolute variant of Maskin-monotonicity (Maskin,
1999) and prescribes that the choice set is invariant under the
weakening of unchosen alternatives.
Definition 3. An SCF f satisfies set-monotonicity (SET-
MON) if f(Ri:(a,b)) = f(R) for all preference profiles R,
voters i, and alternatives a, b with b 6∈ f(R).
Theorem 1 (Brandt, 2011a). Every SCF that satisfies SET-
MON is PK-group-strategyproof.

Set-monotonicity is a demanding condition, but a hand-
ful of SCFs such as TC , MC , and BP are known to be
set-monotonic. For the class of pairwise SCFs, this condi-
tion is also necessary, which shows that many well-known
SCFs such as Borda’s rule, Copeland’s rule, Kemeny’s rule,
the uncovered set, and the Banks set are not PK-group-
strategyproof.
Theorem 2 (Brandt, 2011a). Every pairwise SCF that is PK-
group-strategyproof satisfies SET-MON.

Strategyproofness according to Kelly’s extension thus
draws a sharp line within the space of SCFs as almost all es-
tablished non-pairwise SCFs (such as plurality and all weak
Condorcet extensions like Young’s rule) are also known to be
PK-manipulable (see, e.g., Taylor, 2005).

The state of affairs for Gärdenfors’ and Fishburn’s exten-
sions is less clear. Gärdenfors (1976) has shown that COND
and OMNI are PG-group-strategyproof. In an attempt to ex-
tend this result to more discriminatory SCFs, he also claimed
that COND ∩ PAR, which returns the Condorcet winner if
it exists and all Pareto-undominated alternatives otherwise,

is PG-strategyproof. However, we show that this is not the
case (Proposition 2). Gärdenfors concludes that “we have not
been able to find any more decisive function which is stable
[strategyproof] and satisfies minimal requirements on demo-
cratic decision functions.” We show that TC is such a func-
tion (Corollary 1).

Apart from a theorem by Ching and Zhou (2002), which
uses an unusually strong definition of strategyproofness, we
are not aware of any characterization result using Fishburn’s
extension. Feldman (1979) has shown that the Pareto rule
is PF -strategyproof and Sanver and Zwicker (2010) have
shown that the same is true for TC .

4 Results
This section contains our results. Most proofs are omitted due
to the space constraint.

4.1 Necessary and Sufficient Conditions for
Group-Strategyproofness

We first introduce a new property that requires that modify-
ing preferences between chosen alternatives may only result
in smaller choice sets. Set-monotonicity entails a condition
called independence of unchosen alternatives, which states
that the choice set is invariant under modifications of the pref-
erences between unchosen alternatives. Accordingly, the new
property will be called exclusive independence of chosen al-
ternatives, where “exclusive” refers to the requirement that
unchosen alternatives remain unchosen.

Definition 4. An SCF f satisfies exclusive independence of
chosen alternatives (EICA) if f(R′) ⊆ f(R) for all pairs of
preference profiles R and R′ that differ only on alternatives
in f(R), i.e., Ri|{a,b} = R′i|{a,b} for all i ∈ N and all alter-
natives a, b with b 6∈ f(R).

It turns out that, together with SET-MON, this new prop-
erty is sufficient for an SCF to be group-strategyproof accord-
ing to Fishburn’s preference extension.

Theorem 3. Every SCF that satisfies SET-MON and EICA
is PF -group-strategyproof.

For pairwise SCFs, the following weakening of EICA can
be shown to be necessary for group-strategyproofness accord-
ing to Fishburn’s extension. It prescribes that modifying pref-
erences among chosen alternatives does not result in a choice
set that is a strict superset of the original choice set.

Definition 5. An SCF f satisfies weak EICA if f(R) 6⊂
f(R′) for all pairs of preference profiles R and R′ that differ
only on alternatives in f(R).

Theorem 4. Every pairwise SCF that is PF -group-
strategyproof satisfies SET-MON and weak EICA.

We now turn to PG-group-strategyproofness. When com-
paring two sets, PG differs from PF only in the case when
neither set is contained in the other. The following definition
captures exactly this case.

Definition 6. An SCF f satisfies the symmetric difference
property (SDP) if either f(R) ⊆ f(R′) or f(R′) ⊆ f(R) for
all pairs of preference profiles R and R′ such that Ri|{a,b} =



R′i|{a,b} for all i ∈ N and all alternatives a, b with a ∈ f(R)\
f(R′) and b ∈ f(R′) \ f(R).

Theorem 5. Every SCF that satisfies SET-MON, EICA, and
SDP is PG-group-strategyproof.

As was the case for Fishburn’s extension, a set of necessary
conditions for pairwise SCFs can be obtained by replacing
EICA with weak EICA.

Theorem 6. Every pairwise SCF that is PG-group-
strategyproof satisfies SET-MON, weak EICA, and SDP.

4.2 Consequences
We are now ready to study the strategyproofness of the SCFs
defined in Section 2. It can be checked that COND and TC
satisfy SET-MON, EICA, and SDP and thus, by Theorem 5,
are PG-group-strategyproof.

Corollary 1. COND and TC are PG-group-strategyproof.

OMNI , PAR, and COND ∩ PAR satisfy SET-MON and
EICA, but not SDP.

Corollary 2. OMNI , PAR, and COND ∩ PAR are PF -
group-strategyproof.

As OMNI , PAR, and COND ∩ PAR are not pairwise,
the fact that they violate SDP does not imply that they are
PG-manipulable. In fact, it turns out that OMNI is strate-
gyproof according to Gärdenfors’ extension, while PAR and
COND ∩ PAR are not.

Proposition 1. OMNI is PG-group-strategyproof.

Proposition 2. PAR and COND ∩ PAR are PG-
manipulable.

Proof. Consider the following profile R = (R1, R2, R3, R4).

R1 R2 R3 R4

c c a a
d d b b
b a c c
a b d d

It is easily verified that PAR(R) = {a, b, c}. Now let
R′ = (R′1, R2, R3, R4) where R′1 : d � c � a � b. Ob-
viously, PAR(R′) = {a, c, d} and {a, c, d} PG

1 {a, b, c}
because d R1 b. I.e., the first voter can obtain a prefer-
able choice set by misrepresenting his preferences. As nei-
ther R nor R′ has a Condorcet winner, the same holds for
COND ∩ PAR.

Finally, we show that MC and BP violate weak EICA,
which implies that both rules are manipulable according to
Fishburn’s extension.

Corollary 3. MC and BP are PF -manipulable.

Proof. By Theorem 4 and the fact that both MC and BP
are pairwise, it suffices to show that MC and BP violate
weak EICA. To this end, consider the following profile R =

PK-str.pr. PF -str.pr. PG-str.pr.

OMNI X X Xa

COND X X Xa

TC X Xb X
PAR X Xc –
COND ∩ PAR X X –
MC X – –
BP X – –

aGärdenfors (1976)
bSanver and Zwicker (2010)
cFeldman (1979)

Table 1: Summary of results.

(R1, R2, R3, R4, R5) and the corresponding majority graph
representing PM .

R1 R2 R3 R4 R5

d c b e d
e b c a c
a a e b a
b e a d b
c d d c e

c a

b

d e

It can be checked that MC (R) = BP(R) = {a, b, c}. De-
fine R′ = R1:(c,b), i.e., the first voter strengthens c with re-
spect to b. Observe that PM and P ′M disagree on the pair
{b, c}, and that MC (R′) = BP(R′) = {a, b, c, d, e}. Thus,
both MC and BP violate weak EICA and the first voter can
manipulate because {a, b, c, d, e} PF

1 {a, b, c}.

The same example shows that the tournament equilibrium
set (Schwartz, 1990) and the minimal extending set (Brandt,
2011b), both of which are only defined for an odd number
of voters and conjectured to be PK-group-strategyproof, are
PF -manipulable.

5 Conclusion
In this paper, we investigated the effect of various prefer-
ence extensions on the manipulability of irresolute SCFs.
We proposed necessary and sufficient conditions for strate-
gyproofness according to Fishburn’s and Gärdenfors’ set ex-
tensions and used these conditions to illuminate the strate-
gyproofness of a number of well-known SCFs. Our results
are summarized in Table 1. As mentioned in Section 3, some
of these results were already known or—in the case of PF -
strategyproofness of the top cycle—have been discovered in-
dependently by other authors. In contrast to the papers by
Gärdenfors (1976), Feldman (1979), and Sanver and Zwicker
(2010), which more or less focus on particular SCFs, our ax-
iomatic approach yields unified proofs of most of the state-
ments in the table.3

Many interesting open problems remain. For example, it
is not known whether there exists a Pareto-optimal pairwise

3The results in the leftmost column of Table 1 are due to Brandt
(2011a) and are included for the sake of completeness.



SCF that is strategyproof according to Gärdenfors’ exten-
sion. Recently, the study of the manipulation of irresolute
SCFs by other means than untruthfully representing one’s
preferences—e.g., by abstaining the election (Pérez, 2001; Ji-
meno et al., 2009)—has been initiated. For the set extensions
considered in this paper it is unknown which SCFs can be ma-
nipulated by abstention. It would be desirable to also obtain
characterizations of these classes of SCFs and, more gener-
ally, to improve our understanding of the interplay between
both types of manipulation. For instance, it is not difficult to
show that the negative results in Corollary 3 also extend to
manipulation by abstention.

Another interesting related question concerns the epistemic
foundations of the above extensions. Most of the literature in
social choice theory focusses on well-studied economic mod-
els where agents have full knowledge of a random selection
process, which is often assumed to be a lottery with uniform
probabilities. The study of more intricate distributed proto-
cols or computational selection devices that justify certain
set extensions appears to be very promising. For instance,
Kelly’s set extension could be justified by a distributed proto-
col for “unpredictable” random selections that do not permit
a meaningful prior distribution.
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S. Barberà. Strategy-proof social choice. In K. J. Arrow, A. K.
Sen, and K. Suzumura, editors, Handbook of Social Choice and
Welfare, volume 2, chapter 25, pages 731–832. Elsevier, 2010.
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