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Abstract

A minimal requirement on allocative efficiency in
the social sciences is Pareto optimality. In this pa-
per, we exploit a strong structural connection be-
tween Pareto optimal and perfect partitions that has
various algorithmic consequences for coalition for-
mation. In particular, we show that computing and
verifying Pareto optimal partitions in general he-
donic games and B-hedonic games is intractable
while both problems are tractable for roommate
games and W-hedonic games. The latter two posi-
tive results are obtained by reductions to maximum
weight matching and clique packing, respectively.

1 Introduction

Topics concerning coalitions and coalition formation have
come under increasing scrutiny of computer scientists. The
reason for this may be obvious. For the proper operation of
distributed and multiagent systems, cooperation may be re-
quired. At the same time, collaboration in very large groups
may also lead to unnecessary overhead, which may even ex-
ceed the positive effects of cooperation. To model such situ-
ations formally, concepts from the social and economic sci-
ences have proved to be very helpful and thus provide the
mathematical basis for a better understanding of the issues
involved.

Coalition formation games, which were first formalized by
Dreze and Greenberg [1980], model coalition formation in
settings in which utility is non-transferable. In many such sit-
uations it is natural to assume that a player’s appreciation of a
coalition structure only depends on the coalition he is a mem-
ber of and not on how the remaining players are grouped. Ini-
tiated by Banerjee et al. [2001] and Bogomolnaia and Jackson
[2002], much of the work on coalition formation now con-
centrates on these so-called hedonic games. In this paper, we
focus on Pareto optimality and individual rationality in this
rich class of coalition formation games.

The main question in coalition formation games is which
coalitions one may reasonably expect to form. To get a proper
formal grasp of this issue, a number of stability concepts have
been proposed for hedonic games—such as the core or Nash
stability—and much research concentrates on conditions for

existence, the structure, and computation of stable and effi-
cient partitions. Pareto optimality—which holds if no coali-
tion structure is strictly better for some player without be-
ing strictly worse for another—and individual rationality—
which holds if every player is satisfied in the sense that no
player would rather be on his own—are commonly consid-
ered minimal requirements for any reasonable partition.

Another reason to investigate Pareto optimal partitions al-
gorithmically is that, in contrast to other stability concepts
like the core, they are guaranteed to exist. This even holds
if we additionally require individual rationality. Moreover,
even though the Gale-Shapley algorithm returns a core stable
matching for marriage games, it is already NP-hard to check
whether the core is empty in various classes and represen-
tations of hedonic games, such as roommate games [Ronn,
1990], general hedonic games [Ballester, 2004], and games
with #- and #-preferences [Cechlarovd and Hajdukova,
2004a,b]. Interestingly, when the status-quo partition cannot
be changed without the mutual consent of all players, Pareto
optimality defines stability [Morrill, 2010].

In this paper, we investigate both the problem of find-
ing a Pareto optimal and individually rational partition and
the problem of deciding whether a partition is Pareto opti-
mal. In particular, our results concern general hedonic games,
B-hedonic and W-hedonic games (two classes of games in
which each player’s preferences over coalitions are based on
his most preferred and least preferred player in his coalition,
respectively), and roommate games.

Many of our results, both positive and negative, rely on the
concept of perfection and how it relates to Pareto optimal-
ity. A perfect partition is one that is most desirable for every
player. We find (a) that under extremely mild conditions, NP-
hardness of finding a perfect partition implies NP-hardness of
finding a Pareto optimal partition (Lemma 1), and () that un-
der stronger but equally well-specified circumstances, feasi-
bility of finding a perfect partition implies feasibility of find-
ing a Pareto optimal partition (Lemma 2). The latter we show
via a Turing reduction to the problem of computing a perfect
partition. At the heart of this algorithm, which we refer to as
the Preference Refinement Algorithm (PRA), lies a fundamen-
tal insight of how perfection and Pareto optimality are related.
It turns out that a partition is Pareto optimal for a particular
preference profile if and only if the partition is perfect for an-
other but related one (Theorem 1). In this way PRA is also



applicable to any other discrete allocation setting.

For general allocation problems, serial dictatorship—
which chooses subsequently the most preferred allocation
for a player given a fixed ranking of all players—is well-
established as a procedure for finding Pareto optimal solu-
tions [see, e.g., Abdulkadiroglu and S6nmez, 1998]. How-
ever, it is only guaranteed to do so, if the players’ preferences
over outcomes are strict, which is not feasible in many com-
pact representations. Moreover, when applied to coalition
formation games, there may be Pareto optimal partitions that
serial dictatorship is unable to find, which may have serious
repercussions if also other considerations, like fairness, are
taken into account. By contrast, PRA handles weak prefer-
ences well and and is complete in the sense that it may return
any Pareto optimal partition, provided that the subroutine that
calculates perfect partitions can compute any perfect partition
(Theorem 2).

2 Preliminaries

In this section, we review the terminology and notation used
in this paper.

Hedonic games Let N be a set of n players. A coalition
is any non-empty subset of N. By .4/ we denote the set of
coalitions player i belongs to, i.e., A4 = {S € N:i € S}.
A coalition structure, or simply a partition, is a partition 7
of the players N into coalitions, where (i) is the coalition
player i belongs to.

A hedonic game is a pair (N, R), where R = (Ry,...,R,) is
a preference profile specifying the preferences of each player i
as a binary, complete, reflexive, and transitive preference re-
lation R; over #;. If R; is also anti-symmetric we say that i’s
preferences are strict. We adopt the conventions of social
choice theory by writing S P;T if S R; T but not T R; S—
i.e., if i strictly prefers S to T—and S I; T if both S R; T and
T R; S—i.e., if i is indifferent between S and T.

For a player i, a coalition S in .4} is acceptable if for i being
in S is at least preferable as being alone—i.e., if S R; {i}—and
unacceptable otherwise.

In a similar fashion, for X a subset of .4}, a coalition S
in X is said to be most preferred in X by i if S R; T for all T
in X and least preferredin X by i if TR; S forall T € X. In
case X = .4} we generally omit the reference to X. The sets
of most and least preferred coalitions in X by i, we denote by
maxg,(X) and ming, (X), respectively.

In hedonic games players are only interested in the coali-
tion they are in. Accordingly, preferences over coalitions
naturally extend to preferences over partitions and we write
nR; ' if 7(i) R; 7’ (i). We also say that partition 7 is accept-
able or unacceptable to a player i according to whether (i) is
acceptable or unacceptable to i, respectively. Moreover, 7 is
individually rational if & is acceptable to all players. A par-
tition 7 is Pareto optimal in R if there is no partition 7’ with
n' Rjn for all players j and 7" P; mr for at least one player i.
Partition 7 is, moreover, said to be weakly Pareto optimal
in R; if there is no 7’ with 7’ P; rr for all players i.

Classes of hedonic games The number of potential coali-
tions grows exponentially in the number of players. In this
sense, hedonic games are relatively large objects and for algo-
rithmic purposes it is often useful to look at classes of games
that allow for concise representations.

For general hedonic games, we will assume that each
player expresses his preferences only over his acceptable
coalitions. This representation is alternatively known as
Representation by Individually Rational Lists of Coali-
tions [Ballester, 2004].

We now describe classes of hedonic games in which the
players’ preferences over coalitions are induced by their pref-
erences over the other players. For R; such preferences of
player i over players, we say that a player j is acceptable to i
if j R; i and unacceptable otherwise. Any coalition containing
an unacceptable player is unacceptable to player i.

Roommate games. The class of roommate games, which
are well-known from the literature on matching theory, can
be defined as those hedonic games in which only coalitions
of size one or two are acceptable.

B-hedonic and W-hedonic games. For a subset J of players,
we denote by maxg,(J) and ming,(J) the sets of the most and
least preferred players in J by i, respectively. We will assume
that maxg,(0) = ming,(0) = {i}. In a B-hedonic game the
preferences R; of a player i over players extend to preferences
over coalitions in such a way that, for all coalitions S and T
in .4}, we have S R; T if and only if maxg, (S \{i}) R; maxg, (T \
{i}) or some j in T is unacceptable to i. Analogously, in a W-
hedonic game (N, R), we have S R; T if and only if ming, (S \
{i}) R; ming,(T \ {i}) or some j in T is unacceptable to it

3 Perfection and Pareto Optimality

Pareto optimality constitutes a rather minimal efficiency re-
quirement on partitions. A much stronger property is that of
perfection. We say that a partition 7 is perfect if n(i) is a
most preferred coalition for all players i. Thus, every perfect
partition is Pareto optimal but not necessarily the other way
round. Perfect partitions are obviously very desirable, but,
in contrast to Pareto optimal ones, they are not guaranteed to
exist. Still, a strong structural connection exists between the
two concepts, which, in the next section, we exploit in our
algorithm for finding Pareto optimal partitions.

The problem of finding a perfect partition (PP) we formally
specify as follows: given a preference profile R, find a perfect
partition for R and if no perfect partition exists in R, output
“none”.

We will later see that the complexity of PP depends on the
specific class of hedonic games that is being considered. By
contrast, the related problem of checking whether a partition
is perfect is an almost trivial problem for virtually all reason-
able classes of games. If perfect partitions exist, they clearly
coincide with the Pareto optimal ones. Hence, an oracle to
compute a Pareto optimal partition can be used to solve PP.

"W-hedonic games are equivalent to hedonic games with #-
preferences if individually rational outcomes are assumed. Unlike
hedonic games with %-preferences, B-hedonic games are defined in
analogy to W-hedonic games and the preferences are not based on
coalition sizes [cf. Cechlarovd and Hajdukova, 2004a].



If this Pareto optimal partition is perfect we are done, if it is
not, no perfect partitions exist. Thus, we obtain the follow-
ing lemma, which we will invoke in our hardness proofs for
computing Pareto optimal partitions.

Lemma 1 For every class of hedonic games for which check-
ing whether a given partition is perfect can be solved in poly-
nomial time, NP-hardness of PP implies NP-hardness of com-
puting a Pareto optimal partition.

It might be less obvious that a procedure solving PP can
also be deployed as an oracle for an algorithm to compute
Pareto optimal partitions. To do so, we first give a character-
ization of Pareto optimal partitions in terms of perfect parti-
tions, which forms the mathematical heart of the Preference
Refinement Algorithm to be presented in the next section.

This characterization depends on the concept of a coars-
ening of a preference profile and the lattices these coarsen-
ings define. To make things precise, we say that a preference
profile R = (Ry,...,R,) is a coarsening of or coarsens an-
other preference profile R" = (R’, ..., R),) whenever for every
player i we have R} C R;. In that case we also say that R’
refines R and write R < R’. Moreover, we write R<R’ if R<R’
but not R’"<R. Thus, if R’ refines R, i.e., if R < R’, then for
each i and all coalitions S and T we have that S R} T implies
S R; T, but not necessarily the other way round. Intuitively,
a player i may be indifferent in R between coalitions over
which i entertains strict preferences in R’. It is worth observ-
ing that, if a partition is perfect in some preference profile R,
then it is also perfect in any coarsening of R. The same holds
for Pareto optimal partitions.

For preference profiles R and R’ with R < R’, let [R,R’]
denote the set {R” : R < R” < R'}, i.e.,, [R,R’] is the set
of all coarsenings of R’ that are not coarser than R. Then,
([R,R’], <) is a complete lattice with R and R’ as bottom and
top element, respectively. We say that R covers R’ if R is a
minimal refinement of R’, i.e., if R” < R and there is no R”’
such that R” < R” < R. R strongly covers R’ if among all
preference profiles that cover R’, R is one that, for all players,
allows for a maximal number of most preferred alternatives,
i.e., maxg-(./4;) C maxg,(./#) for all players i and each R” that
covers R’. We are now in a position to prove the following
theorem, which characterizes Pareto optimal partitions given
a preference profile R as those that are perfect in particular
coarsenings R’ of R. These R’ are such that no perfect parti-
tions exist in any preference profile that strongly covers R’.

Theorem 1 Let (N,RT) and (N, R*) be hedonic games and
a partition such that R < R" and 7 is a perfect partition
in RY. Then, r is Pareto optimal in R" if and only if there is
some R € [R*,R"] such that (i) r is a perfect partition in R
and (ii) there is no perfect partition for any R’ € [R*+, R"] that
strongly covers R.

Proof: For the if-direction, assume there is some R €
[R*, R"] such that 7 is perfect in R and there is no perfect par-
tition in any R’ € [R*, R"] that strongly covers R. (Observe
that this implies that, for all i, R; and RiT coincide on coali-
tions less preferred by i than m(i).) For contradiction, also

assume 7 is not Pareto optimal in RT. Then, there is some 7’
such that #” R} n for all j and 7’ P 7 for some i. By R < R'
and transitivity of preferences, 7’ is a perfect partition in R
as well. Let 7”7 be such that n”’(i) € mingr (maxg,(47))
and define Rl = R; \ {(X,Y) : 7”())R] X and Y P[ 7" (i)}.
Thus, 7”’(i) is one of i’s least preferred coalitions accord-
ing to R among i’s most preferred coalitions in R;. Intu-
itively, R} is exactly like R; be it that i strictly prefers Y
to X in R} if X € minR’r (maxg,(-47)) and YPiT X. Observe
that R = (Ry,...,Ri-1,R/,Ri11,...,R,) is in [R*,R"] and
covers R. By choice of 7”7, R’ even strongly covers R. More-
over, as 7’ P m and, therefore, 7 ¢ mingr (maxg, (A7), 7 is
still a perfect partition in R’, a contradiction.

For the only-if direction assume that 7 is Pareto optimal
in RT. Let R be the finest coarsening of R" in which 7 is per-
fect. Observe that R = (Ry,...,R,) can be defined such that
Ri =R} U{(X,Y): XR] nand Y R n} for all i. Also observe
that R* < R. If R = R", we are done immediately. Otherwise,
consider an arbitrary R’ € [R*, R"] that strongly covers R and
assume for contradiction that there is some perfect partition 7’
in R’. Then, in particular, 7" R} 7 for all k. Since R’ covers R,
there is exactly one i with R} # R;, whereas R; = R; for all
J # i. As m is perfect in R, we also have ﬂR} n’ forall j #i.

With R’ being a finer coarsening of R than R, however, 7 is
not perfect in R’. Hence, it is not the case that 7 R} 7" and,
therefore, 7" P; 7. We may now conclude that 7 is not Pareto
optimal in R’. Since, R’ < RT, moreover, 7 not Pareto optimal
in R either, a contradiction. O

4 The Preference Refinement Algorithm

In this section, we present the Preference Refinement Algo-
rithm (PRA), a general algorithm to compute Pareto optimal
and individually rational partitions. The algorithm invokes an
oracle solving PP and is based on the formal connection be-
tween Pareto optimality and perfection made explicit in The-
orem 1.

The idea underlying the algorithm is as follows. To cal-
culate a Pareto optimal and individually rational partition for
a hedonic game (N, R), first find that coarsening R’ of R in
which each player is indifferent among all his acceptable
coalitions and his preferences among unacceptable coalitions
are as in R. In this coarsening, a perfect and individually
rational partition—which we also refer to as the coarsest ac-
ceptable coarsening—is guaranteed to exist. From there on,
start moving up in the lattice ([R’, R], <) to strongly covering
preference profiles for which a perfect partition exists, un-
til you reach a preference profile for which this is no longer
possible. By calculating a perfect partition for this last pref-
erence profile, in virtue of Theorem 1, you find a Pareto op-
timal partition for R. A formal specification of PRA is given
in Algorithm 1. It is worth mentioning that Algorithm 1 is an
anytime algorithm that can return an intermediate result when
stopped prematurely.

Theorem 2 For any hedonic game (N, R),

(i) PRA returns an individually rational and Pareto opti-
mal partition.



Algorithm 1 Preference Refinement Algorithm (PRA)
Input: Hedonic game (N, R)
Output: Pareto optimal and individually rational partition

1 QiR U{X,Y): XR;{i}and Y R, {i}}, foreachi e N

2 Q(_(len'an)

3 J«N

4 while J # 0 do

5 iel

6 S € ming, (maxg, (7))

7 Q< O \{X,Y): SR Xand Y P; S}
8 Q’(_(Ql"-',Qi—lyQ;,QHh“-’Qn)
9 if PP(V, Q') # none then

10 0«0

11 else

12 J «— J\ {i}

13 end if

14 end while
15 return PP(N, Q)

(i) For every individually rational and Pareto optimal par-
tition ', there is an execution of PRA that returns a
partition w such that n I; ' for all i in N.

Proof: For (i), we prove that during the running of PRA, for
each assignment of Q, there exists a perfect partition 7 for
that assignment. This claim certainly holds for the first as-
signment of Q which is the coarsest acceptable coarsening of
R. Furthermore, Q is only refined via the strong covering re-
lation (Steps 6 through 7), if there exists a perfect partition for
a strong covering of Q. Let O be the final assignment of Q.
Then, we argue that the partition 7 returned by PRA is Pareto
optimal and individually rational. By Theorem 1, if 7 were
not Pareto optimal, there would exist a strong covering of Q*
for which a perfect partition still exists and Q* would not be
the final assignment of Q. Since, each player at least gets one
of his acceptable coalitions, r is also individually rational.
For (ii), first observe that, by Theorem 1, for each Pareto
optimal and individually rational partition x for a preference
profile R there is some coarsening R* of R where r is perfect
and no perfect partitions exist for any strong covering of R*.
By individual rationality of n, it follows that R* is a refine-
ment of the initial assignment of Q. An appropriate number
of strong coverings of the initial assignment of Q with respect
to each player results in a final assignment Q" of Q to R*. The
perfect partition for O that is returned by PRA is then such
that 7 I; 7/ for all i in N. |

Note that for each player’s preferences over coalitions in-
duces equivalence classes in which a player is indifferent be-
tween coalitions in the same equivalence class. We specify
the conditions under which PRA runs in polynomial time.

Lemma 2 Let (N, R) be a hedonic game such that for each
player the number of equivalence classes of acceptable out-
comes is polynomial in the input, the coarsest acceptable
coarsening of R as well as the strong coverings of each of
its refinements can be computed in polynomial time, and PP
can be solved in polynomial time for all coarsenings of R.
Then, PRA runs in polynomial time.

Proof: Under the given conditions, we prove that PRA runs
in polynomial time. In each iteration of the while-loop, either
the preference profile Q is strongly covered (Step 10) or a
player i which cannot be further improved is removed from J
(Step 12). Both of these steps take polynomial time due to
the conditions specified. Since each player has a polynomial
number of acceptable equivalence classes in R;, there can only
be a polynomial number of reassignments of Q and therefore
the while-loop iterates a polynomial number of times. As the
crucial subroutine PP (Step 9) takes polynomial time, PRA
runs in polynomial time. m}

PRA applies not only to general hedonic games but to
many natural classes of hedonic games in which equivalence
classes (of possibly exponentially many coalitions) for each
player are implicitly defined.’

Note that PRA as it is presented does not leverage the po-
tential benefit of preferences being strict because when pref-
erences are coarsened, the strictness of the preferences is lost
and PP becomes NP-hard (see Theorem 3). Serial dictator-
ship is a well-studied mechanism in resource allocation, in
which an arbitrary player is chosen as the ‘dictator’ who is
then given his most favored allocation and the process is re-
peated until all players or resources have been dealt with. In
the context of coalition formation, serial dictatorship is well-
defined only if in every iteration, the dictator has a unique
most preferred coalition.

Proposition 1 For general hedonic games, W-hedonic
games, and roommate games, a Pareto optimal partition can
be computed in polynomial time when preferences are strict.

Proposition 1 follows from the application of serial dic-
tatorship to hedonic games with strict preferences over the
coalitions. If the preferences over coalitions are not strict,
then the decision to assign one of the favorite coalitions to
the dictator may be sub-optimal. Serial dictatorship does not
work for hedonic games in which preferences over coalitions
are not strict, not even for B-hedonic games with strict pref-
erences over players. Observe that PRA can be tweaked so as
to obtain an individually rational version of the serial dicta-
torship algorithm, which also achieves the positive results of
Proposition 1. Abdulkadiroglu and Sonmez [1998] showed
that in the case of strict preferences and house allocation set-
tings, every Pareto optimal allocation can be achieved by se-
rial dictatorship. In the case of coalition formation, however,
it is easy to construct a four-player hedonic game with strict
preferences for which there is a Pareto optimal partition that
serial dictatorship cannot return.

5 Computational results

In this section, we consider the problem of VERIFICATION (ver-
ifying whether a given partition is Pareto optimal) and Com-
PUTATION (computing a Pareto optimal partition).

“For example, in W-hedonic games, maxg,(N) specifies the set
of favorite players of player i but can also implicitly represent all
those coalitions S such that the least preferred player in S is also a
favorite player for i.



5.1 General hedonic games

As shown in Proposition 1, Pareto optimal partitions can be
found efficiently for general hedonic games with strict pref-
erences. If preferences are not strict, the problem becomes
NP-hard. We can prove the following statement by utilizing
Lemma 1 and showing that PP is NP-hard by a reduction from
ExactCoverBY3SETs (X3C).

Theorem 3 For a general hedonic game, computing a Pareto
optimal partition is NP-hard even when each player has a
maximum of four acceptable coalitions and the maximum size
of each coalition is three.

Interestingly, verifying Pareto optimality is coNP-complete
even for strict preferences.

Theorem 4 For any general hedonic game, verifying
whether a partition ©t is Pareto optimal and whether ©t is
weakly Pareto optimal is coNP-complete even when prefer-
ences are strict and ©t consists of the grand coalition of all
players.

5.2 Roommate games

For roommate games, we observe that PP is equivalent to
solving a perfect matching of the graph in which two ver-
tices (players) are connected if and only if they consider each
other as a favorite player. Therefore, we obtain the following
as a corollary of Lemma 2.

Theorem 5 For roommate games, an individually rational
and Pareto optimal coalition can be computed in polynomial
time.

We found that in the case of general hedonic games, veri-
fying Pareto optimality can be significantly harder than com-
puting a Pareto optimal partition when preferences are strict.
Abraham and Manlove [2004] and Morrill [2010] showed
that there are efficient algorithms to verify whether a partition
is Pareto optimal for roommate games with strict preferences.
The more general case of non-strict preferences is left open.>
We answer this problem in the next theorem.

Theorem 6 For roommate games, it can be checked in poly-
nomial time whether a partition is Pareto optimal.

Proof sketch: We reduce the problem to computing a maxi-
mum weight matching of a graph.

For roommate game (N, R), let  be the partition which we
want to check for Pareto optimality. Since 7 contains coali-
tions of size one or two, we can construct an undirected graph
G = (V,E)ywhere V=NUWX{0}), E=VxV\{{i,j}:
(i) P {i}} U {{i, (i, 0)} : (i) P; {i}}. For graph (V, E), consider
the matching M = {S e n:|S| =2} U {{i, (;,0)} : {i} € 7}.

We now define a weight function such that for alli € V,
w; 1 E = R* where w; is defined inductively in the following
way: w(;0)(e) = 0 for all e such that (i,0) € e € Eandi € N;

3In fact, Abraham and Manlove [2004] state that ‘the case where
preference lists [...] may include ties merits further investigation.’

wi(n(i)) = nif 7(Q) # {i} and 7(0) = {i, j}; wi({i, G, 0)}) = n
if 7(@) = {i}; wi(S) = —nifi ¢ S; wi(T) = wi(S) + 1/n if
there is a coalition T such thati € T, T P; S, and there exists
no coalition 77 such that T P; T’ P; S; and w;(T) = w;(S) if
S R; n(i) and T is coalition such that T I; S .

Define a weight function w’ : E — R* such that for any
S ={i,j} € E,w'(S) = wi(S) + w;i(S). For E” C E, denote
by w'(E”), the value ),z w'(e). We can then prove that
m is Pareto optimal if and only if 7 is the maximum weight
matching of G"', the graph G, weighted by weight function
w’. The complete proof is omitted due to space limitations.
Since we have a linear-time reduction to maximum weight
matching [Gabow and Tarjan, 1991], the complexity of the
algorithm is ond). m]

Note that Theorem 6 allows us to find a Pareto optimal
Pareto improvement for any given partition if the partition is
not Pareto optimal.

5.3 W-hedonic games
We now turn to Pareto optimality in W-hedonic games.

Theorem 7 For W-hedonic games, a partition that is both
individually rational and Pareto optimal can be computed in
polynomial time.

Proof sketch: The statement follows from Lemma 2 and the
fact that PP can be solved in polynomial time for W-hedonic
games. The latter is proved by a polynomial-time reduction
of PP to a polynomial-time solvable problem called clique
packing.

We first introduce the more general notion of graph pack-
ing. Let .# be a set of undirected graphs. An .%-packing
of a graph G is a subgraph H such that each component
of H is (isomorphic to) a member of .%. The size of .%-
packing H is |V(H)|. We will informally say that vertex i is
matched by .7 -packing H if i is in a connected component
in H. Then, a maximum .% -packing of a graph G is one that
matches the maximum number of vertices. It is easy to see
that computing a maximum {K>}-packing of a graph is equiv-
alent to maximum cardinality matching. Hell and Kirkpatrick
[1984] and Cornuéjols et al. [1982] independently proved that
there is a polynomial-time algorithm to compute a maximum
{K3,..., K,}-packing of a graph. Cornuéjols et al. [1982] note
that finding a {K>, . .., K,,}-packing can be reduced to finding
a {K», K3}-packing.

We are now in a position to reduce PP for W-hedonic
games to computing a maximum {K,, K3}-packing. For a
W-hedonic game (N, R), construct a graph G = (N U (N X
{0, 1}), E) such that {(i,0), (i, 1)} € E foralli e N; {i,j} € E
if and only if i € maxg,(N) and j € maxg(N) for i,j € N
such that i # j; and {1, (i,0)},{i,(i,1)} € E if and only if
i € maxg,(N) for all i € N. Let H be a maximum {K>, K3}-
packing of G.

It can then be proved that there exists a perfect partition of
N according to R if and only if |V(H)| = 3|N|. We omit the
technical details due to space restrictions.

Since PP for W-hedonic games reduces to checking
whether graph G can be packed perfectly by elements in
7 ={K,, K3}, we have a polynomial-time algorithm to solve



PP for W-hedonic games. Denote by CC(H) the set of con-
nected components of graph H. If |V(H)| = 3|N| and a perfect
partition does exist, then {V(S)NN:S € CC(H)}\ 0is a
perfect partition. O

Similarly, the following is evident from the arguments in the
proof of Theorem 7.

Theorem 8 For W-hedonic games, it can be checked in poly-
nomial time whether a given partition is Pareto optimal or
weakly Pareto optimal.

Our positive results for W-hedonic games also apply to he-
donic games with #-preferences.

5.4 B-hedonic games

We saw that for W-hedonic games, a Pareto optimal partition
can be computed efficiently, even in the presence of unaccept-
able players. In the absence of unacceptable players, com-
puting a Pareto optimal and individually rational partition is
trivial in B-hedonic games, as the partition consisting of the
grand coalition is a solution. Interestingly, if preferences do
allow for unacceptable players, the same problem becomes
NP-hard.

Theorem 9 For B-hedonic games, computing a Pareto opti-
mal partition is NP-hard.

Proof sketch: It can be checked in polynomial time whether a
partition is perfect in a B-hedonic game. Hence, by Lemma 1,
it suffices to show that PP is NP-hard. We do so by a re-
duction from Sar. Let ¢ = X; A .-+ A X; a Boolean for-
mula in conjunctive normal form in which the Boolean vari-
ables pi,...,pm occur. Now define the B-hedonic game
(N,R), where N = {X1,...,Xx} U {p1,=P1s. s Pms—Pm} U
{0, 1} and the preferences for each literal p or —p, and each
clause X = (x; V -+ V xy) are denoted by lists of equiva-
lence classes of equally preferred players in decreasing order
of preference, as follows,

p: {0, 1}, N\{0, 1, =p}, {=p}
-p: {0,1}, N\ {0, 1, p}, {p}
X: {X|,...,X[},N\{0,xl,...
0: N\{O,1}, {0}, {1}

1: N\({0,1}, {1}, {0}

> xe}, {0}

We prove that ¢ is satisfiable if and only if a perfect (and
individually rational) partition for (N, R) exists. The proof
details are omitted due to space limitations. O

By using similar techniques, the following can be proved.

Theorem 10 For B-hedonic games, verifying whether a par-
tition is weakly Pareto optimal is coNP-complete.

6 Conclusions

Pareto optimality and individual rationality are important re-
quirements for desirable partitions in coalition formation. In
this paper, we examined computational and structural issues
related to Pareto optimality in various classes of hedonic

Game 'VERIFICATION COMPUTATION
General coNP-C (Th. 4) NP-hard (Th. 3)
General (strict) coNP-C (Th. 4) in P (Prop. 1)
Roommate in P (Th. 6) in P (Th. 5)
B-hedonic coNP-C (Th. 10, weak PO) NP-hard (Th. 9)
W-hedonic in P (Th. 8) in P (Th. 7)

Table 1: Complexity of Pareto optimality in hedonic games:
positive results hold for both Pareto optimality and individual
rationality.

games (see Table 1). We saw that unacceptability and ties
are a major source of intractability when computing Pareto
optimal outcomes. In some cases, checking whether a given
partition is Pareto optimal can be significantly harder than
finding one. We expect Theorem 10 to also hold for Pareto
optimality instead of weak Pareto optimality.

It should be noted that most of our insights gained into
Pareto optimality and the resulting algorithmic techniques—
especially those presented in Section 3 and Section 4—do not
only apply to coalition formation but to any discrete alloca-
tion setting.
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