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Abstract

A preference function (PF) takes a set of votes (linear orders over aset of alternatives) as input,
and produces one or more rankings (also linear orders over the alternatives) as output. Such
functions have many applications, for example, aggregating the preferences of multiple agents,
or merging rankings (of, say, webpages) into a single ranking. The key issue is choosing a PF
to use. One natural and previously studied approach is to assume that there is an unobserved
“correct” ranking, and the votes are noisy estimates of this. Then, we can use the PF that
always chooses the maximum likelihood estimate (MLE) of the correct ranking. In this paper,
we define simple ranking scoring functions (SRSFs) and show that the class of neutral SRSFs
is exactly the class of neutral PFs that are MLEs for some noise model. Wealso define ex-
tended ranking scoring functions (ERSFs) and show a condition under which these coincide
with SRSFs. We study key properties such as consistency and continuity, and consider some
example PFs. In particular, we study Single Transferable Vote (STV), acommonly used PF,
showing that it is an ERSF but not an SRSF, thereby clarifying the extent towhich it is an MLE
function. This also gives a new perspective on how ties should be broken under STV. We leave
some open questions.

1 Introduction

In a typical social choice setting, there is some set of alternatives, and multiple rankings of these
alternatives are provided. These input rankings are calledthevotes. Based on these votes, the goal
is either to choose one alternative, or to create an aggregate ranking of all the alternatives. In this
paper, we will be interested in the latter goal; if it is desired to choose one alternative, then we can
simply choose the top-ranked alternative in the aggregate ranking. Formally, apreference function
(PF)1 takes a set of votes (linear orders over the alternatives) asinput, and produces one or more
aggregate rankings (also linear orders over the alternatives) as output. (The only reason for allowing
multiple aggregate rankings is to account for the possibility of ties.)

The key issue is to choose a rule for determining the aggregate ranking, that is, a preference
function. So, we may ask the following (vague) question:What is the optimal preference function?
This has been (and will likely continue to be) a topic of debate for centuries among social choice
theorists. Many different PFs have been proposed, each withits own desirable properties; some
of them have elegant axiomatizations. Presumably, which PFis optimal depends on the setting at
hand. For example, in some settings, the voters are agents that each have their own idiosyncratic
preferences over the alternatives, and the only purpose of voting is to reach a compromise. In such
a setting, no alternative can be said to be better than another alternative in anyabsolutesense: an
alternative’s quality is defined relative to the votes. In such a setting, it makes sense to pay close
attention to issues such as the manipulability of the PF.

In other settings, however, there is more of an absolute sense in which some alternatives are
better than others. For example, when we wish to aggregate rankings of webpages, provided by
multiple search engines in response to the same query, it is reasonable to believe that some of these
pages are in fact more relevant than others. The reason that not all of the search engines agree on

1We use “preference function” rather than “social welfare function” because the resulting set of strict rankings need not
correspond to a weak ranking (where a set of strict rankings “corresponds” to a weak ranking if it consists of all the strict
rankings that can be obtained by breaking the ties in the weakranking). The term “preference function” has previously been
used in this context [14].
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the ranking is that the search engines are unable to directlyperceive this absolute relevance of the
pages. Here, it makes sense to think of each vote as anoisy estimateof the correct, absolute ranking.
Our goal is to find an aggregate ranking that is as close as possible to the correct ranking, based on
these noisy estimates. This is the type of setting that we will study in this paper.

In a 2005 paper, Conitzer and Sandholm considered the following way of making this precise [3].
There is a correct rankingr of the alternatives; givenr, for every rankingv, there is a conditional
probabilityP (v|r) that a given voter will cast votev. (In this paper, we do not consider the possibil-
ity that different voters’ votes are drawn according to different conditional distributions.) Votes are
conditionally independent givenr. Put another way, the noise that each voter experiences is i.i.d.
The Bayesian network in Figure 1 illustrates this setup.

vote 1

"correct" outcome

vote 2 vote n...

Figure 1: A Bayesian network representation.

The votes are the observed variables, and the noise that a voter experiences is represented by the
conditional probability table of that vote. Under this setup, a natural goal is to find the maximum
likelihood estimate (MLE) of the correct ranking. (Ifr is drawn uniformly at random, this maximum
likelihood estimate also maximizes the posterior probability.) The function that takes the votes as
input and produces the MLE ranking(s) as output is a preference function; in a sense, it is the optimal
one for the particular noise model at hand.

As pointed out by Conitzer and Sandholm, they were not the first to consider this type of setup.
In fact, the basic idea dates back over two centuries to Condorcet [4], who studied one particular
noise model. He solved for the MLE PF for two and three alternatives under this model; the general
solution was given two centuries later by Young [13], who showed that the MLE PF for Condorcet’s
model coincides with a function proposed by Kemeny [7]. Thishas frequently been used as an
argument in favor of using Kemeny’s PF; however, different noise models will in general result in
different MLE PFs. Several generalizations of this basic noise model have been studied [6, 5, 8, 9].
Conitzer and Sandholm considered the opposite direction: they studied a number of specific well-
known PFs and they showed that for some of them, there exists anoise model such that this PF
becomes the MLE, whereas for others, no such noise model can be constructed. This shows that the
former PFs are in a sense more natural than the latter. Also, when a noise model can be constructed,
it gives insight into the PF; moreover, if the noise model is unreasonable in a certain way, it can be
modified, resulting in an improved PF.

In this paper, we continue this line of work. We provide an exact characterization of the class
of (neutral) PFs for which a noise model can be constructed: we show that this class is equal to the
class of (neutral)simple ranking scoring functions (SRSFs), which, for every vote, assign a score to
every potential aggregate ranking, and the ranking(s) withthe highest total score win(s). We show
that several common PFs are SRSFs (these proofs resemble thecorresponding proofs by Conitzer
and Sandholm that these PFs are MLEs, but the proofs are significantly simpler in the language of
SRSFs). We also considerextended ranking scoring functions (ERSFs), which coincide with SRSFs
except they can break ties according to another SRSF, and remaining ties according to another SRSF,
etc. We show that if there is a bound on the number of votes, then thetwo classes (SRSFs and
ERSFs) coincide. We study some basic properties of SRSFs andERSFs, some of them closely
related to Conitzer and Sandholm’s proof techniques. Finally, we study one PF, Single Transferable
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Vote (STV), also known as Instant Runoff Voting, in detail. STV is used in many elections around
the world; additionally, it illustrates a number of key points about our results. A noise model for
STV was given by Conitzer and Sandholm. However, this noise model involves probabilities that are
infinitesimally smaller than other probabilities. We show that such infinitesimally small probabilities
are in a sense necessary, by showing that STV is in fact not an SRSF (when there is no bound on the
number of votes). Still, we do show that STV is an ERSF (in a waythat resembles the noise model
with infinitesimally small probabilities). Hence, STV is infact an MLE PF if there is an upper bound
on the number of votes. Along the way, some interesting questions arise about how ties should be
broken under STV. We propose two ways of breaking ties that webelieve are perhaps more sensible
than the common way, although at least one of the ways leads tocomputational difficulties. We also
leave some open questions.

2 Definitions

In the below, we letA be the set of alternatives,|A| = m, and L(A) the set of linear or-
ders over (that is, strict rankings of) these alternatives.A preference function (PF)is a function
f :

⋃
i=0,1,2,... L(A)i → 2L(A) − ∅. That is,f takes as input a vector (of any length)V of linear

orders (votes) over the alternatives, and as output produces one or more linear orders over (aggregate
rankings of) the alternatives. (On many inputs, only a single ranking is produced, but it is possible
that there are ties.) Input vectors are also calledprofiles. We restrict our attention to PFs that are
anonymous, that is, they treat all votes equally; hence, a profile can bethought of as a multiset of
votes. Below are the PFs that we will study in this paper.

• Positional scoring functions. A positional scoring function is defined by a vector
(s1, . . . , sm) ∈ Rm, with s1 ≥ s2 ≥ . . . ≥ sm. An alternative receivessi points every
time it is rankedith. Alternatives are ranked by how many points they receive;if some alter-
natives end up tied, then they can be ranked in any order (and all the complete rankings that
can result from this will be produced by the PF). Examples include plurality (s1 = 1, s2 =
s3 = . . . = sm = 0), vetoor anti-plurality (s1 = s2 = . . . = sm−1 = 1, sm = 0), andBorda
(s1 = m− 1, s2 = m− 2, . . . , sm = 0).

• Kemeny.Given a votev, a possible rankingr, and two alternativesa, b, let δ(v, r, a, b) =
1 if a ≻v b and a ≻r b, and δ(v, r, a, b) = 0 otherwise. Then,f(V ) =
arg maxr∈L(A)

∑
a,b∈A

∑
v∈V δ(v, r, a, b). That is, we choose the ranking(s) that maxi-

mize(s) the total number of times that the ranking agrees with a vote on a pair of alternatives.

• Single Transferable Vote (STV).The alternative with the lowest plurality score (that is, the one
that is ranked first by the fewest votes) is ranked last, and isremoved from all the votes (so
that the plurality scores change). The remainder of the ranking is determined recursively. (We
will have more to say about how ties are broken later.)

A PF isneutral if treats all alternatives equally. To be precise, a PF is neutral if for any votesV
and any permutationπ on the alternatives,f(π(V )) = π(f(V )). Here, a permutation is applied to
a vector or set of rankings of the alternatives by applying itto each individual alternative in those
rankings. Naturally, neutrality is a common requirement. Another common requirement for an
anonymous PF ishomogeneity: if we multiply the profile by some natural numbern > 0 (that is,
replace each vote byn duplicates of it), then the outcome should not change. All ofthe above PFs
are anonymous, neutral, and homogenous.

We now define noise models and MLE PFs formally.

Definition 1 A noise modelν specifies a probabilityPν(v|r) for everyv, r ∈ L(A).
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Definition 2 A noise modelν is neutralif for anyv, r, and permutationπ onA, we havePν(v|r) =
Pν(π(v)|π(r)).

Definition 3 A PF f is a maximum likelihood estimator (MLE)if there exists a noise modelν so
thatf(V ) = arg maxr∈L(A)

∏
v∈V Pν(v|r).

We now define simple ranking scoring functions. Effectively, every vote gives a number of points
to every possible aggregate ranking, and the ranking(s) with the most points win(s).

Definition 4 A PF f is a simple ranking scoring function (SRSF)if there exists a functions :
L(A)× L(A) → R such that for allV , f(V ) = arg maxr∈L(A)

∑
v∈V s(v, r).

Definition 5 A functions : L(A) × L(A) → R is neutralif for any v, r, and permutationπ on A,
s(v, r) = s(π(v), π(r)).

An SRSF can be run by explicitly computing each ranking’s score, but because there arem!
rankings this is impractical for all but the smallest numbers of alternatives. However, such explicit
computation is generally not necessary. For example, we will see that positional scoring functions
as well as the Kemeny function are SRSFs. Positional scoringfunctions are of course easy to run;
running the Kemeny function is in fact NP-hard [1], but can inpractice be done quite fast [2, 9].

3 Equivalence of neutral MLEs and SRSFs

We now show the equivalence of MLEs and SRSFs. We only show this for neutral PFs; in fact, it
is not true for PFs that are not neutral. For example, a PF thatalways chooses the same rankingr∗

regardless of the votes is an SRSF, simply by settings(v, r∗) = 1 for all v and settings(v, r) = 0
everywhere else. However, this PF is not an MLE: given a noisemodelν, if we take another ranking
r 6= r∗, we must have

∑
v∈L(A) Pν(v|r) = 1 =

∑
v∈L(A) Pν(v|r∗), hence there exists somev such

thatPν(v|r) ≥ Pν(v|r∗); it follows thatr∗ is not the (sole) winner ifv is the only vote.

Lemma 1 A neutral PFf is an MLE if and only if it is an MLE for a neutral noise model.

Proof: The “if” direction is immediate. For the “only if” direction, given a noise modelν for f ,
construct a new noise modelν′ as follows:Pν′(v|r) = (1/m!)

∑
π Pν(π(v)|π(r)). (Here,π ranges

over permutations ofA.) This is still a valid noise model because
∑

v∈L(A) Pν′(v|r) =∑
v∈L(A)(1/m!)

∑
π Pν(π(v)|π(r)) = (1/m!)

∑
π

∑
v∈L(A) Pν(π(v)|π(r)) = 1. ν′

is also neutral becausePν′(π(v)|π(r)) = (1/m!)
∑

π′ Pν(π′(π(v))|π′(π(r))) =
(1/m!)

∑
π′′ Pν(π′′(v)|π′′(r)) = Pν′(v|r). Also, if r∗ ∈ arg maxr∈L(A)

∏
v∈V Pν(v|r),

then by the neutrality off , for any π, π(r∗) ∈ arg maxr∈L(A)

∏
v∈V Pν(π(v)|r).

Hence, r∗ ∈ arg maxr∈L(A)(1/m!)
∑

π

∏
v∈V Pν(π(v)|π(r)) =

arg maxr∈L(A)

∏
v∈V (1/m!)

∑
π Pν(π(v)|π(r)) = arg maxr∈L(A)

∏
v∈V Pν′(v|r). Con-

versely, it can similarly be shown that ifr∗ /∈ arg maxr∈L(A)

∏
v∈V Pν(v|r), then

r∗ /∈ arg maxr∈L(A)

∏
v∈V Pν′(v|r). Hence,ν′ is a valid noise model forf .

Lemma 2 A neutral PFf is an SRSF if and only if it is an SRSF for a neutral functions′.

Proof: The “if” direction is immediate. For the “only if” direction, given a functions,
construct a new functions′ as follows: s′(v, r) =

∑
π s(π(v), π(r)). s′ is neutral because

s′(π(v), π(r)) =
∑

π′ s(π
′(π(v)), π′(π(r))) =

∑
π′′ s(π

′′(v), π′′(r)) = s′(v, r). Also,
if r∗ ∈ arg maxr∈L(A)

∑
v∈V s(v, r), then by the neutrality off , for any π, π(r∗) ∈

arg maxr∈L(A)

∑
v∈V s(π(v), r). Hence, r∗ ∈ arg maxr∈L(A)

∑
π

∑
v∈V s(π(v), π(r)) =
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arg maxr∈L(A)

∑
v∈V

∑
π s(π(v), π(r)) = arg maxr∈L(A)

∑
v∈V s′(v, r). Con-

versely, it can similarly be shown that ifr∗ /∈ arg maxr∈L(A)

∑
v∈V s(v, r), then

r∗ /∈ arg maxr∈L(A)

∑
v∈V s′(v, r). Hence,s′ is a valid function forf .

We can now prove the characterization result:

Theorem 1 A neutral PF is an MLE if and only if it is an SRSF.

Proof: If f is an MLE, then for some neutralν, f(V ) = arg maxr∈L(A)

∏
v∈V Pν(v|r) =

arg maxr∈L(A) log(
∏

v∈V Pν(v|r)) = arg maxr∈L(A)

∑
v∈V log(Pν(v|r)). Hence it is the SRSF

wheres(v, r) = log(Pν(v|r)) (here,s is neutral).
Conversely, iff is an SRSF, then for some neutrals, f(V ) = arg maxr∈L(A)

∑
v∈V s(v, r) =

arg maxr∈L(A) 2
P

v∈V s(v,r) = arg maxr∈L(A)

∏
v∈V 2s(v,r). Becauses is neutral, we have that∑

v∈L(A) 2s(v,r) is the same for allr. (This is because for anyr1, r2, there exists a permutationπ

on A such thatπ(r1) = r2, so that we have
∑

v∈L(A) 2s(v,r1) =
∑

v∈L(A) 2s(π(v),r2) by neutrality,

which by changing the order of the summands is equal to
∑

v∈L(A) 2s(v,r2).) It follows thatf(V ) =
arg maxr∈L(A)

∏
v∈V (2s(v,r))/(

∑
v′∈L(A) 2s(v′,r)). Hencef is the maximum likelihood estimator

for the noise modelν defined byPν(v|r) = (2s(v,r))/(
∑

v′∈L(A) 2s(v′,r)).

4 Examples of SRSFs

We now show that some common PFs are SRSFs. These proofs resemble the corresponding proofs
by Conitzer and Sandholm that these functions are MLEs, but they are simpler. These propositions
also follow from the work of Zwicker [15].

Proposition 1 Every positional scoring function is an SRSF.

Proof: Given a positional scoring function, lett : L(A) × A → R be defined as follows:t(v, a)
is the number of points thata gets for votev. Then, lets(v, r) =

∑m
i=1(m − i)t(v, r(i)),

where r(i) is the alternative rankedith in r. Let us consider the SRSF defined by this func-
tion s; it selectsarg maxr∈L(A)

∑
v∈V s(v, r) = arg maxr∈L(A)

∑
v∈V

∑m
i=1(m − i)t(v, r(i)) =

arg maxr∈L(A)

∑m
i=1(m − i)

∑
v∈V t(v, r(i)). Here,

∑
v∈V t(v, r(i)) is the total score that alter-

native r(i) receives under the positional scoring function. Becausem − i is decreasing ini, to
maximize

∑m
i=1(m− i)

∑
v∈V t(v, r(i)), we should rank the alternative with the highest total score

first, the one with the next-highest total score second,etc. If some of the alternatives are tied, they
can be ranked in any order.

Not only positional scoring functions are SRSFs, however.

Proposition 2 The Kemeny PF is an SRSF.

Proof: This is almost immediate: we defined the Kemeny PF byf(V ) =
arg maxr∈L(A)

∑
a,b∈A

∑
v∈V δ(v, r, a, b), so we simply lets(v, r) =

∑
a,b∈A δ(v, r, a, b).

5 Extended ranking scoring functions

An extended ranking scoring function (ERSF)starts by running an SRSF, then (potentially) breaks
ties according to another SRSF, and (potentially) any remaining ties according to yet another SRSF,
etc.Formally:
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Definition 6 An ERSFf of depthk consists of an ERSFf ′ of depthk − 1 and a functionsd :
L(A) × L(A) → R. It choosesf(V ) = arg maxr∈f ′(V )

∑
v∈V sd(v, r). An ERSF of depth0

returns the set of all rankingsL(A).

So, an ERSF of (finite) depthd is defined by a sequencef1, . . . , fd of SRSFs. We can think of
the scores at each depth as being infinitesimally smaller than the ones at the previous depths. We can
multiply the scores at depthl by ǫl for some smallǫ and then add all the scores together to obtain
an SRSF; however, this SRSF will in general be different fromthe ERSF. Nevertheless, ifǫ is small
relative to the number of votes, then the two will coincide. This is the intuition behind the following
result:

Proposition 3 For any ERSF, for any natural numberN , there exists an SRSF that agrees with the
ERSF as long as there are at mostN votes.

Proof: Let the sequence of SRSFsf1, . . . , fd, defined by scoring functionss1, . . . , sd, define the
ERSFf ; we prove the claim by induction. The claim is trivial ford = 1. Let us assume that we
have proven the result ford = k − 1; we will show it ford = k. Let f ′ be the ERSF corresponding
to the firstd − 1 SRSFs, and, by the induction assumption, lets define the SRSF that agrees with
f ′ when there are at mostN votes. There are only finitely many profilesV of size at mostN ;
hence, there must be someǫ such that

∑
v∈V s(v, r) <

∑
v∈V s(v, r′) and |V | ≤ N implies that∑

v∈V s(v, r)+ ǫ <
∑

v∈V s(v, r′). Now let us considersd; there must exist someH ∈ R such that
|V | ≤ N implies

∑
v∈V sd(v, r) < H. Then, lets′ be defined bys′(v, r) = s(v, r)+(ǫ/H)sd(v, r).

On profiles of size at mostN , the second term will contribute at mostǫ to the total score of anyr,
so if r receives a strictly lower total score thanr′ unders, it will also receive a strictly lower score
unders′. Hence, the only effect of the second term is to break ties according tosd; so the SRSF
defined bys′ coincides with the original ERSFf when there are at mostN votes.

Thus, for all practical purposes, we can simulate an ERSF with an SRSF. (Of course, every SRSF
is also an ERSF.)

6 Properties of SRSFs and ERSFs

In this section, we study some important properties of SRSFsand ERSFs. Specifically, we study
consistencyandcontinuity. There are several related works that study similar properties and derive
related results, but there are significant differences in the setup. Smith [11] and Young [12] study
these properties insocial choice rules, which select one or more alternatives as the winner(s); we
will discuss their results in more detail in Section 8. However, consistency in the context of pref-
erence functions (studied previously by Young and Levenglick [14]) is significantly different from
consistency in the context of social choice rules. Other related work includes Myerson [10], who ex-
tends the Smith and Young result to settings where voters do not necessarily submit a ranking of the
alternatives, and Zwicker [15], who studies a general notion of scoring rules and shows these rules
are equivalent tomean proximity rules, which compute the mean location of the votes according to
some embedding in space, and then choose the closest outcome(s).

An anonymous PFf is consistentif for any pair of profilesV1 andV2, if f(V1) ∩ f(V2) 6= ∅,
thenf(V1 + V2) = f(V1) ∩ f(V2) (where addition is defined in the natural way). That is, if the
rankings thatf produces givenV1 overlap with those thatf produces givenV2, then whenV1 and
V2 are taken together,f must produce the rankings that were produced in both cases, and no others.

Proposition 4 Any ERSF is consistent.

Proof: Letf be an ERSF of depthk, defined by a sequence of SRSFsf1, . . . , fk with score functions
s1, . . . , sk. For anyi ≤ k, let Fi be the ERSF of depthi defined by the sequencef1, . . . , fi. Let V1,
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V2 be profiles such thatf(V1)∩ f(V2) 6= ∅; this also implies thatFi(V1)∩Fi(V2) 6= ∅ for all i ≤ k.
We use induction oni to prove that for anyi ≤ k, Fi(V1 + V2) = Fi(V1) ∩ Fi(V2). Wheni = 1,
F1(V1) = f1(V1) is the set of rankingsr that maximizes1(V1, l); F1(V2) = f1(V2) is the set of
rankingsr that maximizes1(V2, l). Therefore,F1(V1)∩F1(V2) (which we know is nonempty) is the
set of rankingsr that maximizes1(V1 + V2, r). Now, suppose that for somei ≤ k, Fi(V1 + V2) =
Fi(V1)∩Fi(V2). Fi+1(V1) (Fi+1(V2)) is the set of rankingsr ∈ Fi(V1) (r ∈ Fi(V2)) that maximize
si+1(V1, r) (si+1(V2, r)). Hence,Fi+1(V1) ∩ Fi+1(V2) (which we know is nonempty) is the set of
rankingsr ∈ Fi(V1)∩ Fi(V2) that maximizesi+1(V1, r) + si+1(V2, r) = si+1(V1 + V2, r). By the
induction assumption, we have thatFi(V1) ∩ Fi(V2) = Fi(V1 + V2), and we know that the set of
rankingsr ∈ Fi(V1 + V2) that maximizesi+1(V1 + V2, r) is equal toFi+1(V1 + V2). It follows
thatFi+1(V1) ∩ Fi+1(V2) = Fi+1(V1 + V2), completing the induction step. Wheni = k, Fk = f ,
which completes the proof.

The proofs by Conitzer and Sandholm [3] that several PFs are not MLEs effectively come down
to showing examples where these PFs are not consistent. By the above result, this implies that they
are not ERSFs (and hence not SRSFs, and hence not MLEs). Formally (we will not define these PFs
in this paper):

Proposition 5 The Bucklin, Copeland, maximin, and ranked pairs PFs are notERSFs.

Proof: None of these PFs are consistent: counterexamples can be found in the proofs of Conitzer
and Sandholm [3].

Let L(A) = {l1, . . . , lm!}. For any anonymous PFf , any profileV can be rewritten as a
linear combination of the linear orders inL(A). Let V =

∑m!
i=1 tili, where for anyi ≤ m!, ti

is a non-negative integer. Iff is also homogenous, then the domain off can be extended to the
set of all fractional profilesV =

∑m!
i=1 tili where eachti is a nonnegative rational number, as

follows. We chooseNV > 0, NV ∈ N such that for everyi ≤ m!, tiNV is a integer. Then, we let
f(V ) = f(NV V ). (This is well-defined because of the homogeneity.)

A fractional profileV can be viewed as a point in them!-dimensional space(Q≥0)m! where
the coefficientti is the component of theith dimension. Thus, in a slight abuse of notation, we can
applyf to vectors ofm! nonnegative rational numbers, under the interpretation thatf(t1, . . . , tm!) =
f(

∑m!
i=1 tili). The extension off to (Q≥0)m! allows us to define continuity. An anonymous PFf is

continuousif for any sequence of pointsp1, p2, . . . ∈ (Q≥0)m! with 1. limi→∞ pi = p, and 2. for
all i ∈ N, r ∈ f(pi), we haver ∈ f(p). That is, iff produces some rankingr on every point along
a sequence that converges to a limit point, thenf should also producer at the limit point.2

Proposition 6 Any SRSF is continuous.

Proof: For any sequence of pointsp1, p2, . . . ∈ (Q≥0)m! with limi→∞ pi = p, we have that for all
r ∈ L(A), limi→∞ s(pi, r) = s(p, r). If r ∈ f(pi) for all i, then for anyr′ ∈ L(A), s(pi, r) ≥
s(pi, r

′), hence we haves(p, r) = limi→∞ s(pi, r) ≥ limi→∞ s(pi, r
′) = s(p, r′). It follows that

r ∈ f(p).

In contrast, ERSFs are not necessarily continuous, as shownby the following example. Letf1 be
the SRSF defined by the score functions1, which is defined bys1(v, r) = 1 if v = r ands1(v, r) =
0 if v 6= r. Let f2 be the Borda function. Letf be the ERSF defined by the sequencef1, f2. Let
m = 3 with alternativesA,B, andC, and letp = {A ≻ B ≻ C,B ≻ C ≻ A,C ≻ B ≻ A}. We
havef(p) = {B ≻ C ≻ A}, but for anyǫ > 0, f(p + ǫ(A ≻ B ≻ C)) = f1(p + ǫ(A ≻ B ≻

2Our definition of continuity is equivalent to the correspondence beingupper hemicontinuous, or closed(the two are
equivalent in this context).
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C)) = {A ≻ B ≻ C}. Therefore, if we letpi = p+ 1
i (A ≻ B ≻ C), it follows thatlimi→∞ pi = p

and for anyi, A ≻ B ≻ C ∈ f(pi), butA ≻ B ≻ C /∈ f(p).
As we have noted before, there is generally a possibility of ties for PFs, and sometimes a PF is

not defined for these cases (for example, we have not defined how they should be broken for STV).
We can use the continuity property to gain some insight into how ties should be broken. For any
S ⊆ (Q≥0)m!, let C(S) be theclosureof S, that is,C(S) is the smallest set such that for any
infinite sequencep1, p2, . . . in S, if limi→∞ pi = p, thenp ∈ C(S). Let fS be a PF that satisfies
anonymity and homogeneity, defined overS. That is,fS : S → 2L(A)−∅. Theminimal continuous
extensionof fS is the PFfC(S) : C(S) → 2L(A)−∅ such that for anyp ∈ C(S) and anyr ∈ L(A),
r ∈ fC(S)(p) if and only if there exists a sequencep1, p2, . . . in S such thatlimi→∞ pi = p and for
anyi, r ∈ fS(pi). The following lemma will be useful in our study of STV.

Lemma 3 Suppose we have two SRSFsf, fS that have the same score functions, butf is defined
over(Q≥0)m!, andfS over a setS ⊆ (Q≥0)m! such thatC(S) = (Q≥0)m!. If for any r ∈ L(A),
there exists a profilepr such thatf(pr) = {r}, thenf is the minimal continuous extension offS .

Proof: By Proposition 6,f is continuous. On the other hand, for anyp ∈ (Q≥0)m! with r ∈ f(p),
for any i ∈ N, f(p + 1

i pr) = {r}. BecauseC(S) = (Q≥0)m!, for everyi ∈ N, there exists a point
pi ∈ S sufficiently close top + 1

i pr such thatf(pi) = {r}, becauses is continuous and atp + 1
i pr,

for anyr′ ∈ L(A) with r 6= r′, s(p + 1
i pr, r)− s(p + 1

i pr, r
′) > 0. So,p1, p2, . . . is a sequence of

points inS with for anyi, r ∈ fS(pi); therefore any continuous extension must haver ∈ f(p).

7 Single Transferable Vote (STV)

In this section, we study the Single Transferable Vote (STV)PF in detail, for two reasons. First, it
is a commonly used PF, so it is of interest in its own right. Second, it gives a good illustration of
a number of subtle technical phenomena, and a precise understanding of these phenomena is likely
to be helpful in the analysis of other PFs. We recall that under STV, in each round, the alternative
that is ranked first (among the remaining alternatives) the fewest times is removed from all the votes
and ranked the lowest among the remaining alternatives, that is, just above the previously removed
alternative. We note that when an alternative is removed, all the votes that ranked it firsttransfer
to the next remaining alternative in that vote. The number ofvotes ranking an alternative first is
that alternative’splurality scorein that round. One key issue is determining how ties in a round
should be broken, that is, what to do if multiple alternatives have the lowest plurality score in a
round. We will at first ignore this and show that STV is an ERSF.(This proof resembles the earlier
Conitzer-Sandholm noise model but is much clearer in the language of scoring functions.)

Theorem 2 When restricting attention to profiles without ties, STV is an ERSF.

Proof: For l ∈ L(A), let l(i) be theith-ranked alternative inl. Let s1(v, r) = 0 if r(m) = v(1),
ands1(v, r) = 1 otherwise. That is, a ranking receives a point for a vote if and only if the ranking
does not rank the alternative ranked first in the vote last. Consider the alternativea with the lowest
plurality score; the rankings that win unders1 are exactly the rankings that ranka last. Now, let
s2(v, r) = 0 if eitherr(m − 1) = v(1), or r(m) = v(1) andr(m − 1) = v(2); ands2(r, v) = 1
otherwise. That is, a ranking receives a point for a voteunlessthe ranking ranks the first alternative
in the vote second-to-last, or the ranking ranks the first alternative in the vote last and the second
alternative in the vote second-to-last. If we look at rankings that surviveds2—the rankings that
ranked the alternativea with the lowest plurality score last—a ranking that ranksb ( 6= a) second-to-
last will fail to receive a point for every vote that ranksb first, and for every vote that ranksa first
andb second. That is, it fails to receive a point for every vote that ranksb first in the second iteration
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of STV. Hence, the rankings that survives2 are the ones that rank the alternative that receives the
fewest votes in the second iteration of STV second-to-last.More generally, letsk(v, r) = 0 if,
letting b = r(m− k + 1), for everya such thatv−1(a) < v−1(b), r−1(a) > r−1(b) = m− k + 1;
andsk(v, r) = 0 otherwise. That is, a ranking receives a point for a voteunlessthe alternativeb
rankedkth-to last byr is preceded inv only by alternatives ranked afterb in r. Given thatr has not
yet been eliminated and is hence consistent with STV so far, the latter condition holds if and only if
b receivesv’s vote in thekth iteration of STV.

In fact, we can break ties in STV simply according to the scoring functions used in the proof of
Theorem 2. We will call the resulting PFERSF-STV. ERSF-STV is an ERSF and hence consistent.
By Theorem 1 and Proposition 3, this means that ERSF-STV is anMLE when there is an upper
bound on the number of votes. Does there exist a tiebreaking rule for STV such that it is an SRSF,
that is, so that it is an MLE without a bound on the number of votes? We will show that the answer
is negative. To do so, we consider one particular tiebreaking rule. Under this rule, when multiple
alternatives are tied to be eliminated, we have a choice of which one is eliminated. A ranking is
among the winning rankings if and only if there is some sequence of such choices that results in this
ranking. We call the resulting PFparallel-universes tiebreaking STV (PUT-STV). (Every choice can
be thought of as leading to a separate parallel universe in which STV is executed.)

Lemma 4 PUT-STV is the minimal continuous extension of STV defined onnon-tied profiles.

Proof: Let fSTV be the STV PF restricted to the setS of non-tied profiles, and letfPUT−STV be
PUT-STV. We first prove that for any tied profilep = (t1, . . . , tm!) and anyr ∈ fPUT−STV (p),
there exists a sequence of pointsp1, p2, . . . ∈ S such thatlimi→∞ pi = p and for anyi, r ∈
fSTV (pi). From this, it will follow that any continuous extension offSTV must include all of the
rankings that win underfPUT−STV among the winners. LetN be a positive integer such that for any
i ≤ m!, Nti ∈ Z. Letn = |Np|, that is,n =

∑m!
i=1 Nti. For anya ∈ A and anyr ∈ fPUT−STV (p)

such thatr = ai1 ≻ . . . ≻ aim
, where(i1, . . . , im) is a permutation of(1, . . . ,m), let va,r = a ≻

ai1 ≻ others if a 6= ai1 , andva,r = ai1 ≻ others if a = ai1 . (These are complete linear orders
in which the order of the others does not matter.) We letpr =

∑m−1
j=0 2j

∑
k<m−j vaik

,r. We now
show that for anyǫ > 0, p + ǫpr ∈ S andfSTV (p + ǫpr) = {r}.

For anyA′ ⊆ A and any profilep overA, let p|A′ be the profile overA′ obtained by removing
all alternatives inA − A′ from p. For anyj ≤ m, let Aj = {ai1 , . . . , aim−j

}. For any profilep∗,
subset of alternativesA′ ⊆ A, and any alternativea, let Pl(p∗|A′ , a) be the number of times thata
is ranked first in the votes inp∗|A′ . We note that becauser ∈ fPUT−STV (p), for anyj ≤ m − 1,
anyk < m− j, Pl(p|Aj

, aik
) ≥ Pl(p|Aj

, aim−j
). We have:

Pl((p + ǫpr)|Aj
, aik

) = Pl(p|Aj
, aik

) + ǫP l(pr|Aj
, aik

)

≥Pl(p|Aj
, aik

) + ǫ2j > Pl(p|Aj
, aik

) + ǫ

j−1∑
q=0

2q

=Pl(p|Aj
, aik

) + ǫP l(pr|Aj
, aim−j

)
≥Pl(p|Aj

, aim−j
) + ǫP l(pr|Aj

, aim−j
)

=Pl((p + ǫpr)|Aj
, aim−j

)

Hence, for anyj ≤ m− 1, in roundj, aim−j
is the alternative inAj that is ranked first in the votes

in (p + ǫpr)|Aj
(strictly) the fewest times. It follows thatfSTV (p + ǫpr) = {r}.

All that remains to show is thatfPUT−STV is continuous, that is, for any sequencep1, p2, . . . ∈
S for which limi→∞ pi = p and there exists anr ∈ L(A) such that for anyi, r ∈ fSTV (pi),
we have thatr ∈ fPUT−STV (p). Again, letr = ai1 ≻ . . . ≻ aim

andAj = {ai1 , . . . , aim−j
}.

Because for alli andk < m − j, Pl(pi|Aj
, aim−j

) < Pl(pi|Aj
, aik

), by the continuity ofPl, we
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havePl(p|Aj
, aim−j

) ≤ Pl(p|Aj
, aik

). Hence, under PUT-STV, it is possible to eliminateaim−j
in

thej + 1th round, completing the proof.

Lemma 5 PUT-STV is not consistent.

Proof: Consider the following profile of votes, whereA, B, andC are alternatives:2(A ≻ B ≻
C) + 0(A ≻ C ≻ B) + 1(B ≻ A ≻ C) + 1(B ≻ C ≻ A) + 1(C ≻ A ≻ B) + 1(C ≻ B ≻ A).
All alternatives are tied in the first round, and we split intothree parallel universes. In the universe
whereA is eliminated, theA ≻ B ≻ C votes transfer toB, andB is left as the only possible winner,
producing the rankingB ≻ C ≻ A. In the universe whereB is eliminated, theB ≻ A ≻ C and
B ≻ C ≻ A votes transfer evenly toA andC, leaving us with another tie betweenA andC, and
hence the rankingsA ≻ C ≻ B andC ≻ A ≻ B are produced. Similarly, in the universe where
C is eliminated first, the rankingsA ≻ B ≻ C andB ≻ A ≻ C are produced. Ultimately, every
rankingexceptC ≻ B ≻ A is in the set of winning rankings.

By symmetry, under the profile0(A ≻ B ≻ C) + 2(A ≻ C ≻ B) + 1(B ≻ A ≻ C) + 1(B ≻
C ≻ A) + 1(C ≻ A ≻ B) + 1(C ≻ B ≻ A), every ranking exceptB ≻ C ≻ A wins. If we add
the two profiles together, we obtain2(A ≻ B ≻ C) + 2(A ≻ C ≻ B) + 2(B ≻ A ≻ C) + 2(B ≻
C ≻ A) + 2(C ≻ A ≻ B) + 2(C ≻ B ≻ A), which has all rankings in its output. But this violates
consistency (which would require all rankings butC ≻ B ≻ A andB ≻ C ≻ A to win).

Corollary 1 PUT-STV is not an ERSF (and hence not an SRSF).

Proof: This follows immediately from Proposition 4 and Lemma 5.

This allows us to prove a property of STV in general:

Theorem 3 STV is not an SRSF, even when restricting attention to non-tied profiles.

Proof: Suppose thatfSTV (restricted to the setS of non-tied profiles) is an SRSF defined by the
score functions. By Lemma 4,fPUT−STV is the minimal continuous extension offSTV . Also,
for everyr ∈ L(A), it is easy to construct a (non-tied) profilepr such thatfSTV (pr) = {r}. So,
we can use Lemma 3 to conclude thatfPUT−STV is the SRSF that results from usings on all
profiles. However, by Corollary 1, we know that PUT-STV is notan SRSF, and we have the desired
contradiction.

Incidentally, PUT-STV is also computationally intractable (in a sense); we omit the proof due to
space constraint. (We do not know if an analogous result holds for ERSF-STV.)

Theorem 4 It is NP-complete to determine whether, given a profilep and an alternativea, one of
the winning rankings under PUT-STV ranksa first.

As it turns out, neither PUT-STV nor ERSF-STV corresponds tohow ties are commonly broken
under STV: rather, usually, if there is a tie, all of these alternatives are simultaneously eliminated.
Mathematically, this leads to bizarre discontinuities; weomit further discussion due to space con-
straint.

8 Axiomatic characterization of SRSFs and ERSFs

Examiningsocial choice rules (SCRs), that is, functions that output one or more alternatives as
the winner(s) (rather than one or more rankings), Young found the following axiomatic character-
ization of positional scoring functions [12]. (A similar characterization was given by Smith [11].)
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He showed that all SCRs satisfying consistency, continuity, and neutrality—SCR analogues of the
properties we considered—must be positional scoring functions, and all positional scoring functions
satisfy these properties. Further, dropping continuity, he found that any consistent and neutral SCR
must be equivalent to what in the language of this paper wouldbe called an “extended” positional
scoring function. These results lead to two natural analogous conjectures about PFs.

Conjecture 1 Any PF that is consistent, continuous, and neutral must be anSRSF (and therefore
an MLE).

Conjecture 2 Any PF that is consistent and neutral must be an ERSF (and therefore an MLE when
the number of votes is bounded).

It does not appear that these conjectures can be easily proven using Smith and Young’s tech-
niques.

9 Conclusions

The maximum likelihood approach provides a natural way for choosing a PF in settings where it
makes sense to think there is a “correct” ranking. In this paper, we gave a characterization of the
neutral MLE PFs, showing they coincide with the neutral SRSFs. We also considered ERSFs as a
slight generalization and showed that for bounded numbers of votes they coincide with SRSFs. We
considered key properties such as continuity and consistency, and gave several examples of SRSFs
and ERSFs. We studied STV in detail, showing that it is an ERSFbut not an SRSF, and discussed
the implications for breaking ties under STV. Finally, we left some open questions concerning the
complexity of ERSF tiebreaking for STV and whether consistency can be used to characterize the
class of SRSFs/ERSFs.

We believe that these results will greatly facilitate the use of the maximum likelihood approach
in (computational) social choice. Similar results can be obtained for social choice settings other than
PFs—for example, for social choice rules that only choose thewinning alternative(s), or for settings
in which the inputs are not linear orders (but rather, for example, labelings of the alternatives as
“approved” or “not approved”, or partial orders,etc.).
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