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Abstract

We consider the case of self-interested agents that are willing to form coalitions for
increasing their individual rewards. We assume that each agent gets an individual
payoff which depends on the coalition structure (CS) formed. We consider a CS to
be stable if no individual agent has an incentive to change coalition from this CS.
Stability is a desirable property of a CS: if agents form a stable CS, they do not
spend further time and effort in selecting or changing CSs. When no stable CSs
exist, rational agents will be changing coalitions forever unless some agents accept
suboptimal results. When stable CSs exist, they may not be unique, and choosing
one over the other will give an unfair advantage to some agents. In addition, it may
not be possible to reach a stable CS from any CS using a sequence of myopic rational
actions. We provide a payoff distribution scheme that is based on the expected utility
of a rational myopic agent (an agent that changes coalitions to maximize immediate
reward) given a probability distribution over the initial CS. To compute this expected
utility, we model the coalition formation problem with a Markov chain. Agents share
the utility from a social welfare maximizing CS proportionally to the expected utility
of the agents, which guarantees that agents receive at least as much as their expected
utility from myopic behavior. This ensures sufficient incentives for the agents to use
our protocol.

1 Introduction

In the literature on coalition formation, valuation functions are typically defined only over a
coalition, and the agents need to decide or negotiate a payoff distribution. We are interested
in cases where the payoff distribution is defined for each partition of the agents into coalition
structures (CS): each agent knows its payoff for any CS. This model corresponds to the
hedonic aspect of coalition formation [1, 2, 4, 7] where the payoff of an agent, not the value
of a coalition, depends only on the members of its coalition. We can view this assumption
from two perspectives. The first perspective is that the environment provides a payoff to
each agent. This can happen when the agents’ individual goals are different but correlated
and the CSs have different effects on different agents’ performance. This formulation can
model a community of agents that help each other improve their respective private utilities:
each agent obtains a private utility which can be boosted with the help of other agents
in the community. Another example is that of firms forming coalitions in a supply chain
domain: each firm in a coalition provides preferred rates or discounts for its services to
other members of its coalition. The benefit of each member of the coalition depends on
the behaviors of other firms. Each firm in the coalition is autonomous: each sells and
buys goods, and makes its own profit or loss. Note that firms still benefit from being in a
coalition but the benefit varies from firm to firm in any given CS. The second perspective is
to consider that the payoff distribution has already been computed using a stability criteria,
e.g., the Kernel [5]. Given a CS and a valuation function, it is always possible to compute a
Kernel-stable payoff distribution. Let us consider two different CSs with associated Kernel-
stable payoff distributions. In both cases, the payoff distribution is stable, but an agent may
prefer to form the first CS when another agent would prefer the second: even if agents are
using a stable payoff distribution, agents may still have incentive to change CS.
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In the papers related to hedonic coalition formation [1, 2, 4, 7], one assumption is that
there is no transfer of utility. Under these assumptions it is known that the core or the set
of Nash-stable equilibria may be empty. In particular, the personal goals of the agents may
be conflicting, there may not be any CS that satisfies all the agents at the same time: for
each CS, at least one agent may have an incentive to change coalitions. Some research deals
with the search of conditions for the existence of stable coalition structures [1, 2, 4], but we
want to provide a solution even when no stable CSs exist. The compromise we propose is
based on allowing transfer of utility to make a CS stable.

From a societal point of view, we also want the society to perform well as a whole,
hence our mechanism selects a social welfare maximizing CS. The computation of the side-
payments to stabilize the CS is based on the expected utility of myopic and rational agents
(i.e., agents that change coalition to maximize their immediate payoff). The computation
of the expected utility uses the analysis of a Markov chain where a state of the chain
corresponds to a CS and a transition corresponds to the will of an agent to change coalition.
The analysis of the chain differentiate the transient states from the ergodic states1, the
latest corresponds to the Sink equilibria in [9] for games in normal forms: myopic rational
agents are bound to be trapped in a set of ergodic states. The expected utility of the agent
is a weighted average of the utility over the ergodic states. We view the expected utility as
a means to weight the importance of an agent in the coalition formation process. We share
the utility of a social welfare maximizing CS proportionally to this expected utility. Under
the assumption that the initial CS is chosen at random, we show that each agent is better
off following our protocol.

Most current studies on coalition formation in the multiagent community assume known
valuation functions that estimate the worth of a coalition and where the valuation of any
coalition is independent of the other coalitions present in the population [10, 14, 15]. How-
ever, this may not always be appropriate. In situations when the population of agents is
competing for a resource or a niche, e.g., in electronic supply chains, the valuation of a
coalition depends on the organization of the other agents. More generally, the presence
of shared resources (if a coalition uses some resource, they will not be available to other
coalitions) or conflicting goals (non-members can move the world farther from a coalition’s
goal state) [13] makes a valuation function depend on CS. We are especially interested in
studying those situations where the worth of a coalition depends on the other coalitions
that are present in the population [6, 12]. Our approach can also be used in that context
as shown by our empirical example.

The paper is organized as follows. In Section 2, we present the coalition framework and
the existing stability concepts for coalition formation when in the non transferable utility
case. In Section 3, we show how to build a Markov chain that models the coalition formation
process, how to use it to compute the expected utility. Finally in Section 4, we present and
discuss our proposed solution. We conclude and discuss future work in Section 5.

2 Coalition Framework

2.1 Problem Description

We consider a set N of n agents; N is also known as the grand coalition. A coalition
structure (CS) s = {S1, · · · ,Sm} is a partition of N , where Si is the ith coalition of agents
with ∪i∈[1..m]Si = N and i 6= j ⇒ Si ∩ Sj = ∅. S is the set of all CSs. The coalition of
agent i in s is noted as s(i). We consider that an agent i has a preference order %i over S

1Ergodic states are states that the chain will keep coming back to, whereas transient states are states
that the chain will eventually leave to never visit again.
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and for a CS s, an agent i has a valuation vi(s). These assumptions have two consequences:

• Each agent has a private utility which depends on the other agents present in the
coalition, as for hedonic coalition formation [1, 4, 2, 7]. Coalitions do not always
receive a reward as a whole: each agent has a private cost and benefit which depends
on the organization of the agents. Members of a coalition help each other, which
can globally reduce the cost or increase the private benefit of each member. For
example, soccer players have a private utility, or satisfaction, which depends on the
other members of the team.

• Unlike in the hedonic coalition formation case, we are working in the more general
case where the valuation of a coalition depends on the other coalitions present in the
population. For an agent i such that i ∈ C and two CSs s1 and s2 such that C ∈ s1 and
C ∈ s2, it is possible that ui(s1) 6= ui(s2). In our soccer example, the satisfaction of a
player in a team playing a league may also depend on how the remaining players are
dispatched in the other team, for example, he may prefer that the best players are put
in different teams than put altogether in a “dream team”. A more generic example
involves agents competing for an environmental niche. The payoff of a coalition may
be higher when the competitors work alone than when the competitors also decide to
team together to form a more competitive group. Ray and Vohra [12] consider this
problem and propose a protocol where agents propose a coalition and a distribution
of the coalitions’ worth. Other agents can accept or reject the proposition. One issue
is that, when proposing a coalition, an agent does not know which CS will ultimately
form. Hence, the payoff distribution proposed by an agent is conditioned on the CS
that is finally selected. Ray and Vohra consider that the agents’ offer contains a payoff
distribution for each possible CS, which is not realistic for large populations. But such
elaborate offers allow them to show the existence of an equilibrium.

We further assume that there is no coordinated change of coalitions; one agent at a time
can change coalition. This assumption prevents uncertainties about the state of the CS.
For example, let agents i, j and k form singleton coalitions. At this point, agent i would
like to join agent k, and agent j would like to join agent i, but neither i or j would like
to form the grand coalition. If we allowed simultaneous moves, the resulting state would
be unclear. The grand coalition may be formed though it was not the intent of agent i or
j. The resultant CS could also be {{i, k}, {j}} where agent i joined agent k, and agent j
tried to join the coalition of agent i, but ended up joining an empty coalition. It could also
be {{i, j}, {k}} where agent j joined agent i, and agent k refused that both agent i and j
joined it at the same time. We avoid such ambiguities with this assumption.

Finally, we assume that agents are myopic and rational, and members of a coalition
accepts a new member only when all members agree. After a change of CS, it is possible,
if not likely, that another agent changes its coalition, leading to a different CS. As it is
computationally expensive to perform multi-steps look ahead because of the large state
space, we consider myopic agents that change coalition to maximize their immediate reward.
We believe it is reasonable to assume that current members can control when other agents
can join a coalition. Moreover, it would not be myopic rational for a member i to accept
a new agent if this meant a payoff loss for i. Hence, we also assume that all members of
a coalition must agree to accept a new member and, if some member i refuses, we will say
that agent i vetoes the transition. We also make the implicit assumption that members of
a coalition cannot prevent a member to leave, even if some of the remaining members lose
utility.
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2.2 Stability Concepts

We first start by giving the definition of stability concepts in the non-transferable utility
case when the value function depends only on the members of the coalition [4]. In the
following, %i denotes a preference order over coalitions.

Definition 2.1. A coalition structure s is core stable iff @C ⊂ N | ∀i ∈ C,C �i s(i).

Definition 2.2. A coalition structure s is Nash stable (∀i ∈ N) (∀C ∈ s ∪ {∅}) s(i) %i

C ∪ {i}
Definition 2.3. A coalition structure s is individually stable iff (@i ∈ N) (@C ∈ s ∪
{∅}) | (C ∪ {i} �i s(i)) and (∀j ∈ C, C ∪ {i} %j C)

Definition 2.4. A coalition structure s is contractually individually stable iff (@i ∈
N) (@C ∈ s∪ {∅}) | (C ∪ {i} �i s(i)) and (∀j ∈ C, C ∪ {i} %j C) and (∀j ∈ s(i) \ {i}, s(i) \
{i} %j s(i))

If a CS is core stable, no subset of agents has incentive to leave their respective coalition
to form a new one. In a Nash stable CS s, no single agent i has an incentive to leave its
coalition s(i) to join an existing coalition in s or create the singleton coalition {i}. The
two other criteria add a constraint on the members of the coalition joined or left by the
agent. For an individually stable CS, there is no agent that can change coalition from s(i)
to C ∈ (s\ s(i))∪{∅} yielding better payoff for itself, and the members of C should not lose
utility. The contractually individual stability in addition requires that the members of s(i),
the coalition left by i, should not lose utility.

The definition of Nash, individually and contractually individually stability can easily
be extended to the case where the value of a coalition depends on the CS. Another criterion
for a rational agent to be a member of a coalition is individual rationality [6]: an agent i
would consider joining a coalition only when it is beneficial for itself. The agent compares
the situation when it is on its own and when it is a member of a coalition. However, the
payoff the agent gets when it is by itself depends on the CS. The minimum payoff that agent
i can guarantee on its own is ri = mins∈S ,{i}∈s vi(s) [6] (the minimum is over all the CSs
where agent i forms a coalition on its own). An agent is individual rational when its payoff
in a coalition with other agents is greater than the minimum payoff it can get on its own.

For some coalition formation problem, it is possible that no CS satisfies any of these
stability criteria. Satisfying the individually or contractually individually stability criteria
may depend on the protocol used by the agents to form coalition. For example, an academic
can freely leaves its department to join a new one, provided that no member of the new
department will suffer from its presence. In some cases, the coalition left is allowed to
demand compensation. For example, as pointed out in [7], a player of a soccer team can
join another club, but its former club can receive a compensation for the transfer. In the
following, we will only assume that members of a coalition can veto the entrance of new
agent in their coalition. Hence, we consider as our main stability criterion the individually
stability.

2.3 Graphical representation

We can represent the relation % by a preference graph of the coalition formation
process: each node is a CS, and there exists an edge from node S to node T when ∃i ∈
N | T �i S. The transition graph of the coalition formation process is a directed
graph where the nodes represent the CSs, and edges are valid transitions between two CSs.
A transition from node s to node t is valid when
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• ∃i ∈ N , ∃C ∈ (t \ s(i)) ∪ {∅} | t = (s \ s(i) \C) ∪ (C ∪ {i}) and t � s. In other words,
there is an agent i that is better off leaving its coalition s(i) to either join an existing
coalition in s or to form a singleton coalition.

• and ∀j ∈ C, t %j s, i.e., this transition is not vetoed by the members of the coalition
C joined by i (of course, i is always allowed to form a singleton coalition).

Incidentally, another agent j may also prefer t over s (for example, when i moves to an
existing coalition C, all agents in C may benefit). Hence, a transition may be beneficial
for more than one agent. However, only the agent that changes the coalition can induce
the transition. Even if it is beneficial for members of C, C’s members cannot force i to
leave its current coalition to join them (this action would be considered to be a group action
whereas in our model, we consider only individual actions). In the case where two agents i
and j that were previously forming singleton coalitions now form a coalition of two agents
in the new CS, it may be difficult to interpret which agent induced the transition: as it is
beneficial for both agents, an interpretation of the transition can be that agent i joins the
coalition {j} or vice versa. Our interpretation is that both agents are responsible for this
transition. Hence we make an exception for this case.

Since we assume that agents are myopically rational, for a given CS, each agent will only
choose the transition that yields the maximum immediate payoff gain over all its possible
legal moves. For each state, there can then be at most n outgoing edges, one for each of
the n agents (this happens when every agent prefer another CS over the current one). This
prunes the number of transitions from the preference graph to the transition graph.

Property 1. A CS s is individually stable iff there is no outgoing edge from state s in the
transition graph of the coalition formation.

The proof is obvious given the definition of the transition graph. In Figure 1(a), we
present an example with three agents where the payoff of an agent is shown below its
label in a coalition. In this example, no CS is core or Nash stable. However, {{1, 2, 3}}
is individually stable. However, if the agents start from the bottom of the lattice (where
each agent forms a singleton coalition) or any other CS in the mid level, the agents will be
trapped in a cycle: for each CS in the mid-level, one agent benefits from leaving its coalition
in that CS to join the singleton agent. We present a different scenario in Figure 1(b): the
CS {{0}{1, 2}} is Nash stable, core stable (and hence individually stable), and the grand
coalition is individually stable. From any CS, it is possible to reach an individually stable
CS.

3 A Markov Chain model

A myopic rational agent will change coalitions if it can immediately gain utility by doing so.
In this paper, we assume that the valuation is common knowledge. It is therefore possible
to build and analyze the transition graph. Given the assumption that only one agent at a
time can change coalition, we are now in position to estimate the probability of transition
between any two CSs. For each outgoing edge e from CS s, the probability of making this
transition is either

• 1
o(s) , where o(s) is the out degree of a node, i.e., the number of agents that want to
change from s.

• 2
o(s) when two agents i and j that are each forming a singleton coalition merge to form
the two-agent coalition {i, j} and it is the best choice for both i and j.
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Figure 1: Example of Coalition Formation problem (double boxed CS are individually stable)
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Table 1: Transition Matrices for Figure 1(a)

As the probability of a transition does not depend upon the prior states of the population,
the Markov assumption is verified. We have now completely defined a Markov chain. From
the above specified transition model, we can construct the transition matrix P of the Markov
chain. The size of the matrix is B(n)×B(n), where n is the number of agents and B(n) is
the Bell function. The dimension of the matrix can be quite large, however, the matrix is
sparse: for each row of the matrix, there can be only up to n positive entries2. In Table 1,
we present the transition matrix for the example of Figure 1(a).

As agents change from one CS to another, the chain moves from one state to another.
A state of a Markov chain is either transient or ergodic: ergodic states are states that
the chain will keep coming back to, whereas transient states are states that the chain will
eventually leave to never visit again. In the long term, the chain will be in one of the ergodic
states. The ergodic states form multiple strongly connected components. If the size of such
a strongly connected component is one, it means that the corresponding CS is individually
stable (it may also be core or Nash stable, but not necessarily). The study of the Markov
chain will tell us, given a probability distribution over the initial state, the probability to
reach each strongly connected component, and, once reached, what is the proportion of time
spent in each ergodic states. Hence, the value of the expected utility is an average over the

2S can be represented by a lattice where each CS at a given level of the lattice contains the same number
of coalitions. For each level i in the lattice, an agent has at most i actions: joining one of the existing i− 1
coalitions and forming a singleton coalition if it is not already forming one. As there are n levels, the
maximum number of transitions from a CS is n.
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Figure 2: Example of the ART domain: probability to be in an ergodic state

possible stable CSs, and the CSs that are parts of some cycle. More formally, let E be the
set of ergodic states of the Markov chain. For each strongly connected component X ⊂ E ,
we compute the probability pXto reach X, and then for each state s of X, we compute
the fraction of time ps spent in s in the limit (the chain may visit a state in X more often
then another). If a CS s is at least individually stable, then the size of the corresponding
component is one, and ps = 1. For each ergodic state s ∈ E , let X(s) be the strongly
connected component of s. The expected utility E(vi) is then E(vi) =

∑
s∈E

pX(s) · ps · vi(s).

In Figure 2, we present an example issue from the Agent Reputation and Trust
testbed [8]. In the testbed, agents provide appraisals about artifacts and compete for a
pool of clients. To improve their appraisals, agents can ask other agents for appraisals for
artifacts and reputation of other agents. We consider collusion of agents: agents can form a
coalition where members provide their truthful appraisals, which benefits all members. In a
domain with 8 agents, we computed the valuation function and the associated Markov chain
for a particular instance, and the outcome is presented in Figure 2. In that instance, the
Markov chain contains 4,140 CSs, 26,641 transitions, 62 stable CSs and 5 additional ergodic
states which correspond to some strongly connected components.

4 A Fair Payoff Distribution for Myopic Rational Agent

It is possible that some coalition formation problem do not have any stable CS. To operate
efficiently, we require that the agents remain in a CS. We propose that the agent forms a CS
s? that maximizes social welfare. However, s? may not be stable, hence we want to share
the utility u? of s? that provides the agent an incentive to stay in that CS.

The utility function, as a whole, tells how good the agent is. A first candidate is to
share u? proportionally to the average utility over all the CSs. This assumes that each CS is
equally important and we believe it is not so. Another candidate is to consider an average
over the stable CSs. However, such stable CSs may not always exist, and even if they do,
there may not be a path allowing to reach a stable CS (as in the example of Figure 1(a)).
If we assume any CS is likely to be the initial CS, we can compute an expected utility when
the agents are myopic, rational, and when members of a coalition can veto the entrance of
new members. The expected utility is a great metric to determine and compare the strength
of each agent in the coalition formation process. We will show that the payoff obtained is
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at least its expected utility, which is a sufficient incentive for using our proposed payoff
distribution.

4.1 Choice of Final Payoff Distribution and Corresponding CS

The expected value E(vi)we computed using the Markov chain assumes that the initial CS
is chosen uniformly over S , in other word, it is no biased by the initial CS. E(vi) reflects
the utility that agent i receives on average when all agents are myopically rational. We
consider that this value represents the strength of an agent given the valuation function.
Agents with high E(vi) should obtain a larger payoff than agents with lower E(vi).

To be used in a real world application, it is not desirable to have agents continuously
change coalitions: agents should form a stable CS and have no incentive to further change
coalition. To maximize the agents’ payoff, we choose as the final CS s? one of the CSs that
maximizes social welfare. This CS may not be a stable, but it guarantees maximal total
payoff to the agents. As we view the expected utility value as a measure of the strength
of each agent, we propose a distribution of v(s?) to all agents proportional to the expected
payoff of the agents, i.e., we prescribe the payoff to agent i to be

ui =
E(vi)∑

j∈N E(vj)
v(s?).

Note that this value is guaranteed to be at least as good as E(vi), as shown by Property 2.
So, when agents share the payoff we propose, they are guaranteed to have at least the
expected value when they were changing coalitions to maximize their immediate reward,
and in general, they may get more. In addition, the payoff distribution is Pareto Optimal
as we share the value of a social welfare maximizing CS (if an agent gets more utility, at
least another agent must lose some). We believe that these incentives are sufficient for the
agents to accept our proposed value. Not only is the payoff distribution fair, as the share
of utility the agents receive is proportional to their expected utility over the chain, but the
outcome is also efficient as it maximizes social welfare.

Property 2. ui = E(vi)P
j∈N E(vj)

v(s?) ≥ E(vi), i.e., the payoff of an agent is at least as good as
the expected utility that an agent would get on average if the agents are myopically rational.

Proof. Let E denote the set of the ergodic states of a Markov chain. For player i, the
expected payoff is a weighted average over the ergodic states: E(vi) =

∑
s∈E αsvi(s), where

αs is the weight of the ergodic state s and we have
∑

s∈E αs = 1. The transient states
are only used to determine the probability of leading to one of the ergodic sets: the αs’s
are determined by the transient and the ergodic states (when there is a cycle or a regular
sub-chain).

∀s, v(s) ≤ v(s?)
∀s, αs · v(s) ≤ αs · v(s?) as αs ≥ 0∑
s∈E αs · v(s) ≤ ∑

s∈E αs · v(s?)∑
s∈E αs · v(s) ≤ v(s?) ·∑s∈E αs∑
s∈E αs · v(s) ≤ v(s?), as

∑
s∈E αs = 1∑

s∈E αs

∑
j∈N vj(s) ≤ v(s?)∑

j∈N

∑
s∈E αsvj(s) ≤ v(s?)∑

j∈N E(vj) ≤ v(s?)
E(vi) ≤ E(vi)P

j∈N E(vj)
v(s?) as E(vi) ≥ 0.
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Another important question is to determine whether the payoff distribution vi is individ-
ually rational: is an agent guaranteed to get as much as when an agent is forming a singleton
coalition? The minimum payoff an agent can guarantee for itself is ri = mins∈S , {i}∈s vi(s).
For example, consider the three-agent example in Figure 3. The value obtained by i is
209
36 = 5.806, which is lower than 6, the minimum payoff that agent i receives when it forms

a singleton coalition. This means that the payoff obtained by an agent in a coalition from
our protocol is less than the worst payoff obtained by the agent when it forms a singleton
coalition. Although possible in the general case, this may not be likely in practice: the worst
case scenario for an agent should be when it forms a singleton coalition and when all other
agents in the population try to minimize its payoff. As shown by Property 3, if the worst
payoff for an agent occurs when it is forming a singleton coalition, our protocol is individual
rational.

{i j k}
7 2 2

{i j}
0 5

{k}
6

{i}
6

{j}
0

{k}
0

{i}
6

{j k}
1 1

{i k}
5 0

{j}
1

There is a cycle with 4 states, hence, the proportion spent in each state is 1
4
. The value of

the optimal CS is 11. The minimum value of agent i when it is in a singleton coalition is 6.
E(vi) = 1

4 (7 + 0 + 6 + 6) = 4.75
E(vj) = 1

4 (2 + 5 + 0 + 1) = 2
E(vk) = 1

4 (2 + 6 + 0 + 1) = 2.25

vi = 4.75
4.75+2+2.25 · 11 = 5.8056 < 6 = 216

36

vj = 2
4.75+2+2.25 · 11 = 2.4444 > 0

vk = 2.25
4.75+2+2.25 · 11 = 2.75 > 0

Figure 3: Case where the protocol is not individual rational: i’s payoff is lower than ri, i’s
minimum payoff when it forms a singleton.

Property 3. If (∀s ∈ S ) vi(s) ≥ ri = mins∈S |{i}∈s, then ui ≥ ri, i.e., the payoff distribu-
tion ui is individually rational.

Proof. The hypothesis ∀s ∈ S , vi(s) ≥ ri means that for any CS, the valuation of agent
i is at least equal to i’s minimum valuation when it forms a singleton coalition, i.e., the
payoff of an agent in a coalition with at least another agent should be at least the minimum
payoff the agent receives when it is on its own in a singleton coalition. Hence, we have∑

s∈E αsvi(s) ≥
∑

s∈E αsri, and then E(vi) ≥ ri as
∑

s∈E αs = 1. From Proposition 2, we
have ui ≥ E(vi) ≥ ri.

4.2 Computational Complexity of the centralized algorithm

We now consider the complexity of computing the payoff distribution if a centralized entity
was used. To compute the canonical form of a stochastic matrix, we first need to compute
the communication classes of the matrix and this operation is polynomial in the size of the
matrix (O(B(n)2)). Then, to determine the canonical form of the matrix, we need to find
the permutation matrix, which can also be done in quadratic time, hence in O(B(n)2). To
compute the limit behavior of the Markov chain, either a matrix has to be inverted (which
can be done in O(B(n)3), or a linear system needs to be solved (iterative methods can also
be used here). The complexity is then O(B(n)3). The fact that the matrix is sparse should
allow for faster computation. The search of the optimal CS is O(B(n)) if the brute force
method is applied. As we consider valuation function that depends on CS, we cannot use
the faster algorithm in [11]. The computation of the side-payments and the execution of the
payments has linear complexity. Hence, the complexity of the protocol is O(B(n)3).
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4.3 Experiments with Random Valuation Function

We now experiment with random valuation functions. The valuation of a coalition C for a
particular CS is drawn from a uniform distribution in [0, C]. Using this distribution, it is on
average better to have coalitions containing many agents, but the valuation function is not
superadditive. The valuation of each member of C is distributed randomly: each member
i ∈ C receives wi · v(C) with zi drawn from a uniform distribution in [0, 1] and wi = ziP

j∈C zi
.

We now present the result of a particular valuation function with 6 agents where the number
of CSs is 203. The associated Markov chain has 54 transient states and 149 ergodic states.
The associated transition matrix of size 203 × 203 = 41209 has only 735 positive entries,
the matrix is quite sparse. The CS with maximal social welfare is not individually stable.
The value of the agents are shown in Table 4.3: the second column (avg) represents the
average payoff of an agent over all CSs, the third column vi is the expected utility of an
agent computed with the Markov chain, the fourth column wi is the share of the value of
the optimal CS and the last column vi is payoff of the agents from our protocol. Note that
in the example, the value allocated to the agents from our protocol is much larger than the
expected value from traversing the Markov chain.

agent avg vi wi vi

0 0.50 0.61 0.17 0.96
1 0.49 0.63 0.17 0.99
2 0.50 0.60 0.16 0.93
3 0.51 0.64 0.18 1.00
4 0.56 0.54 0.15 0.85
5 0.50 0.58 0.16 0.90

Table 2: Agents utilities for a random valuation function

4.4 Discussion on the payoff distribution

Our protocol uses global properties of the valuation function and shares the utility of the
optimal CS, s?, in a fair manner. The distribution of the valuation of s?, however, is not
according to the actual coalitions present in s?. In other words, given the payoff function
vi, it is possible that, for each coalition C ∈ s?,

∑
i∈C ui 6=

∑
i∈C vi(s?).

This is different from the traditional assumption in game theory where agents share the
value of their coalition. For some agents i, vi(s?) > ui, which may not appear fair. What
we propose to the agents is to sign a binding contract to form s? and receive ui as a payoff.
If one agent does not want to sign the contract, the agents can form a random CS and
try to find a stable CS3. From Proposition 2, we see that the expected utility from such
a process is at most as good as the value proposed by the protocol and hence the agents
have an incentive to accept the guaranteed value while saving on the “cost” of continual
change. Hence, on one hand, we want the entire population of agents to cooperate and work
together, which has a flavor of using the grand coalition. On the other hand, we want to
use the synergy between the agents, and thus form a CS that maximizes social welfare. The
reward the agent obtain is designed to be fair for all agents and reflects the performance of
the agents over all CSs.

To compute the expected utility of an agent, we have assumed that the coalition forma-
tion process starts in a CS picked randomly from a uniform distribution. Of course, some

3Note that some agents may benefit from starting the coalition formation process in s?, hence, if some
agents deviate, other agents should force the restart the coalition formation process from a random CS
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probability distribution for the initial CSs will benefit some agents in detriment of others.
We believe that the probability distribution of the initial CS is part of the definition of the
coalition formation problem, and agents do not have any control over it. It is from the entire
definition of the coalition formation problem that we compute the expected utility, which
we use as a measure of the strength of an agent. If it the distribution is not uniform, the
probability to reach the strongly connected components will be different (some components
may not be reachable). In addition, the search of the CS that maximizes social welfare
should be performed on the subset of CSs that are reachable from the set of possible initial
CSs. Minor modification of our computations are needed to address these changes.

5 Conclusion, current and future work

Myopic rational agents who receive a private payoff that depends on the CS may never
reach an agreement on the CS to be formed. It may be possible that for each CS, at least
one agent has an incentive to change coalition. We designed a protocol that computes a
payoff distribution so that agents are guaranteed to have at least the expected utility from
a process where each agent would change coalition to maximize its immediate reward. The
protocol assumes that 1) the valuation function provides a payoff for each individual agent
given a CS and 2) the agents are myopically rational. The payoff function we propose is
based on the value of a social welfare maximizing CS and on the expected utility of the
agents if they try to change coalitions to maximize their immediate reward. Following our
protocol, the agents form the optimal CS, which makes the multiagent system efficient from
the viewpoint of a system designer. The valuation of the optimal CS is shared proportionally
to the expected utility of the agents. We argue that this is a fair distribution as the payoff
obtained by an agent reflects the behavior of the agents over the entire space of CSs, i.e.,
it is a global property of the valuation function. When the agents follow our protocol, they
are guaranteed to have a payoff which is at least their expected value if all agents try to
maximize their immediate reward.

The drawback of our approach is its computational cost: the agents needs to build
a Markov chain where the number of states is equal to the number of the CSs, which
is exponential in the number of agents. Although the corresponding transition matrix is
sparse, this method may not be suitable for large number of agents (10 and more). The
agents can approximate the expected value by simulating the Markov chain. In that case,
they only need to be able to evaluate the best coalitional move from a given CS.

Because of the computational cost, we are studying algorithms to approximate the com-
putation of the Markov chain. By sampling the chain, we can obtain rapidly good estimate of
the expected utility of the agents. Another current line of research is the design of protocols
and the issue of revealing the valuation function. In the general case, agents have to reveal
their valuation, and protocol as [3] can help us ensure that no agent can take advantage of
knowledge asymmetry. When agents are sharing a niche, e.g., when the valuation function
represent a share attributed to each agent, the agents only need to reveal a preference order
over the CSs and no agent has incentive to lie unilaterally.
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