Jan Broersen, Rosja Mastop, John-Jules Meyer, Paolo Turrini

Utrecht University, The Netherlands

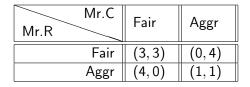
2nd International Workshop on Computational Social Choice Liverpool, 3-5 September 2008

Outline

A Model of Interaction

- Interactions as Games
- Violation as Inefficiency

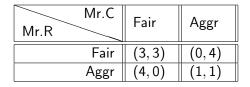
2 The Logic


- Language and Models
- Semantics
- Properties

A Model of Interaction

Interactions as Games

The Tragedy of Commons

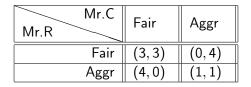


- The owners of two broadcasting companies have to choose an advertising strategy to face the competitor.
- An aggressive campaign is individually rational but it ultimately over-exploits the common resource.

A Model of Interaction

Interactions as Games

The Tragedy of Commons

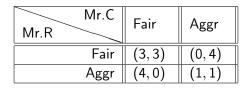


- The owners of two broadcasting companies have to choose an advertising strategy to face the competitor.
- An aggressive campaign is individually rational but it ultimately over-exploits the common resource.

A Model of Interaction

Interactions as Games

Playing for the optimal

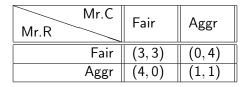

Conflicting interests;

What is an optimal outcome?

A Model of Interaction

Interactions as Games

Playing for the optimal

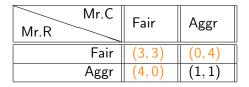


- Conflicting interests;
- What is an *optimal* outcome?

A Model of Interaction

Interactions as Games

Pareto Optimality


Definition

Given a set of outcomes W, a set of agents Agt and a partial order \geq_i over W, $x \in W$ is *Strongly Pareto Efficient* (or Optimal) if there is no $y \in W$ for which $y \geq_i x$ for all $i \in Agt$ and $y >_i x$ for some.

A Model of Interaction

Interactions as Games

Pareto Optimality

Definition

Given a set of outcomes W, a set of agents Agt and a partial order \geq_i over W, $x \in W$ is *Strongly Pareto Efficient* (or Optimal) if there is no $y \in W$ for which $y \geq_i x$ for all $i \in Agt$ and $y >_i x$ for some.

A Model of Interaction

Interactions as Games

Constructing efficient policies

- The efficient states are not necessarily reached by even fully individually rational players.
- The idea is to forbid those outcomes that are incoherent with the notion of optimality we propose.

A Model of Interaction

Interactions as Games

Constructing efficient policies

- The efficient states are not necessarily reached by even fully individually rational players.
- The idea is to forbid those outcomes that are incoherent with the notion of optimality we propose.

A Model of Interaction

Interactions as Games

Constructing efficient policies

- The efficient states are not necessarily reached by even fully individually rational players.
- The idea is to forbid those outcomes that are incoherent with the notion of optimality we propose.

A Model of Interaction

Interactions as Games

Constructing efficient policies

Mr.C Mr.R	Fair	Aggr
Fair	(3,3)	(0,4)
Aggr	(4,0)	(1,1)

But no agent is both able and willing to avoid such outcome.

(日)(4月)(4日)(4日)(日)

Interactions as Games

Effectivity in games

• Pareto Efficiency is independent of agents abilities;

- We need to consider:
 - What agents can do together;
 - What collective choices are the optimal ones.

John Horty

Deontic Logic and Agency. 2001.

Barteld Kooi and Allard Tamminga, at DEON '06; DEON '08 2006.

Interactions as Games

Effectivity in games

- Pareto Efficiency is independent of agents abilities;
- We need to consider:
 - What agents can do together;
 - What collective choices are the optimal ones.

John F

Deontic Logic and Agency. 2001.

Barteld Kooi and Allard Tamminga, at DEON '06; DEON '08 2006.

Interactions as Games

Effectivity in games

- Pareto Efficiency is independent of agents abilities;
- We need to consider:
 - What agents can do together;
 - What collective choices are the optimal ones.

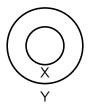
John Horty,

Deontic Logic and Agency. 2001.

Barteld Kooi and Allard Tamminga, at DEON '06; DEON '08 2006.

A Model of Interaction

Interactions as Games


Definition (Dynamic Effectivity Function)

Given a finite set of agents Agt and a set of states W, a dynamic effectivity function is a function $E: W \rightarrow (2^{Agt} \rightarrow 2^{2^{W}}).$

A Model of Interaction

Interactions as Games

E is outcome monotonic

$X \subseteq Y$ and $X \in E(C)$ implies $Y \in E(C)$

A Model of Interaction

Interactions as Games

E is outcome monotonic

() Y

 $X \subseteq Y$ and $X \in E(C)$ implies $Y \in E(C)$

A Model of Interaction

Interactions as Games

E is outcome monotonic

$X \subseteq Y$ and $X \in E(C)$ implies $Y \in E(C)$

A Model of Interaction

Interactions as Games

Lifting Preferences

$X \ge_i Y \Leftrightarrow x \ge_i y$ for $x \in X, y \in Y$

$X \ge_C Y \Leftrightarrow X \ge_i Y$ for $i \in C$

$X >_C Y \Leftrightarrow X \ge_C Y$ and not $Y \ge_C X$

A Model of Interaction

Interactions as Games

Lifting Preferences

$X \ge_i Y \Leftrightarrow x \ge_i y$ for $x \in X, y \in Y$

$X \ge_C Y \Leftrightarrow X \ge_i Y$ for $i \in C$

$X >_C Y \Leftrightarrow X \ge_C Y$ and not $Y \ge_C X$

A Model of Interaction

Interactions as Games

Lifting Preferences

$X \ge_i Y \Leftrightarrow x \ge_i y$ for $x \in X, y \in Y$

$X \ge_C Y \Leftrightarrow X \ge_i Y$ for $i \in C$

$X >_C Y \Leftrightarrow X \ge_C Y$ and not $Y \ge_C X$

A Model of Interaction

Violation as Inefficiency

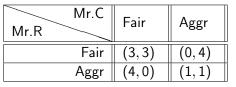
Pareto Efficient Choices

Definition (Pareto Efficient Choice)

Given a choice set $\mathcal{X} \subseteq \wp(W)$, a choice $X \in \mathcal{X}$ is *Pareto Efficient* for coalition *C* if, and only if, for no $Y \in \mathcal{X}$, $Y \ge_i X$ for all $i \in C$ and $Y >_i X$ for some. When C = Agt we speak of *Pareto Efficiency*.

A Model of Interaction

Violation as Inefficiency


Domination

Definition (Subchoice set)

If $X \in E(w)(\overline{C})$, then the X-subchoice set for C in w is given by $E^X(w)(C) = \{X \cap Y \mid Y \in E(w)(C)\}.$

Violation as Inefficiency

Back to the game

• $E^{(Aggr_C)}(w)(R) =$ { $(Aggr_C \land Aggr_R), (Aggr_C \land Fair_R)$ } • $E^{(Fair_C)}(w)(R) =$ { $(Fair_C \land Aggr_R), (Fair_C \land Fair_R)$ }

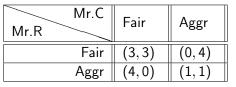
(日)(4月)(4日)(4日)(日)

- $(Aggr_R) \subseteq [[Aggr_R]]^{PD}$
- $[[Aggr_R]]^{PD} = \{w|PD, w \models Aggr_R\}$

Violation as Inefficiency

Back to the game

Mr.C Mr.R	Fair	Aggr
Fair	(3,3)	(0,4)
Aggr	(4,0)	(1,1)


• $E^{(Aggr_C)}(w)(R) =$ { $(Aggr_C \land Aggr_R), (Aggr_C \land Fair_R)$ } • $E^{(Fair_C)}(w)(R) =$ { $(Fair_C \land Aggr_R), (Fair_C \land Fair_R)$ }

(日)(4月)(4日)(4日)(日)

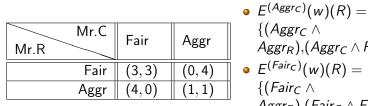
- $(Aggr_R) \subseteq [[Aggr_R]]^{PD}$
- $[[Aggr_R]]^{PD} = \{w|PD, w \models Aggr_R\}$

Violation as Inefficiency

Back to the game

 $Aggr_R$, (Fair_C \land Fair_R)

(ロ) (部) (E) (E) (E)


•
$$E^{(Fair_C)}(Aggr_C \wedge Fair_R)$$

• $E^{(Fair_C)}(w)(R) = {(Fair_C \wedge Fair_C)}$

Aggr_R),(Aggr_C
$$\land$$
 Fair_F
• $E^{(Fair_C)}(w)(R) = {(Fair_C) \land}$

• $E^{(Aggr_C)}(w)(R) =$ $\{(Aggr_{C} \land$

Violation as Inefficiency

Back to the game

•
$$(Aggr_R) \subseteq [[Aggr_R]]^{PD}$$

•
$$[[Aggr_R]]^{PD} = \{w | PD, w \models Aggr_R\}$$

$$\{(Aggr_C \land Aggr_R), (Aggr_C \land Fair_R)\}$$

• $E^{(Fair_C)}(w)(R) =$
 $\{(Fair_C \land Aggr_R), (Fair_C \land Fair_R)\}$

$$Aggr_R$$
),($Aggr_C \land Fair_R$)
 $\bullet E^{(Fair_C)}(w)(R) = {(Fair_C \land N)}$

Violation as Inefficiency

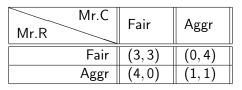
Definition (Domination)

Given an effectivity function E, X is undominated for C in w(abbr. $X \triangleright_{C,w}$) if, and only if, (i) $X \in E(w)(C)$ and $X'(\subset X) \neq E(w)(C)$ (ii) for all $Y \in E(w)(\overline{C})$, $(X \cap Y)$ is Pareto Efficient in $E^Y(w)(C)$ for C.

• 'inwardly' Pareto-like, 'outwardly' strategic.

Violation as Inefficiency

Definition (Domination)


Given an effectivity function E, X is *undominated* for C in w(abbr. $X \triangleright_{C,w}$) if, and only if, (i) $X \in E(w)(C)$ and $X'(\subset X) \neq E(w)(C)$ (ii) for all $Y \in E(w)(\overline{C})$, $(X \cap Y)$ is Pareto Efficient in $E^{Y}(w)(C)$ for C.

• 'inwardly' Pareto-like, 'outwardly' strategic.

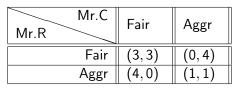
A Model of Interaction

Violation as Inefficiency

Back to the game

• $(Aggr_R) \triangleright_{R,w}$.

•
$$(Aggr_C) \triangleright_{C,w}$$
.


• not

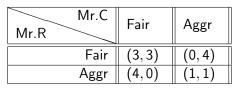
 $(Aggr_C \land Aggr_R) \triangleright_{Agt,w}$

A Model of Interaction

Violation as Inefficiency

Back to the game

- $(Aggr_R) \triangleright_{R,w}$.
- $(Aggr_C) \triangleright_{C,w}$
- onot


 $(Aggr_C \land Aggr_R) \triangleright_{Agt,w}$

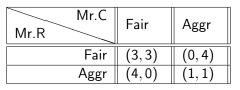
э

A Model of Interaction

Violation as Inefficiency

Back to the game

- $(Aggr_R) \triangleright_{R,w}$.
- $(Aggr_C) \triangleright_{C,w}$.
- o not


 $(Aggr_C \land Aggr_R) \triangleright_{Agt,w}$

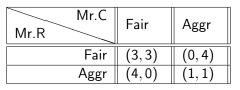
э

A Model of Interaction

Violation as Inefficiency

Back to the game

- $(Aggr_R) \triangleright_{R,w}$.
- $(Aggr_C) \triangleright_{C,w}$.


o not

 $(Aggr_C \land Aggr_R) \triangleright_{Agt,w}$

A Model of Interaction

Violation as Inefficiency

Back to the game

- $(Aggr_R) \triangleright_{R,w}$.
- $(Aggr_C) \triangleright_{C,w}$.

o not

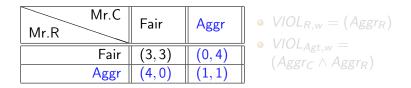
 $(Aggr_C \land Aggr_R) \triangleright_{Agt,w}$

A Model of Interaction

Violation as Inefficiency

Violation

Definition (Violation)

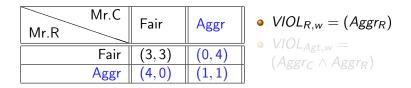

If $C \subseteq C'$, then the choice $X \in E(w)(C)$ is a violation by C towards C' in w ($X \in VIOL_{C,C',w}$) iff it is not undominated for C' in w.

We indicate with $VIOL_{C,w}$ the set \mathcal{X} of violations by C at w towards Agt.

A Model of Interaction

Violation as Inefficiency

Violation as Inefficiency

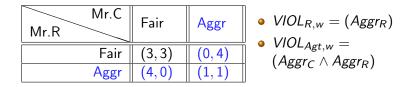

Row and Column can cooperate to avoid inefficiency.

э

A Model of Interaction

Violation as Inefficiency

Violation as Inefficiency

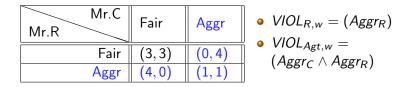

Row and Column can cooperate to avoid inefficiency.

э

A Model of Interaction

Violation as Inefficiency

Violation as Inefficiency



Row and Column can cooperate to avoid inefficiency.

A Model of Interaction

Violation as Inefficiency

Violation as Inefficiency

Row and Column can cooperate to avoid inefficiency.

The syntax of the Logic is defined as follows:

 $\phi ::= p |\neg \phi| \phi \lor \phi | [C] \phi | P(C, \phi) | F(C, \phi) | O(C, \phi) | [rational_C] \phi$

The informal reading of the modalities is:

- "Coalition C can choose ϕ ",
- "It is permitted (/forbidden/obligated) for coalition C to choose ϕ ",
- "It is rational for coalition C to choose ϕ ".

(日)(4月)(4日)(4日)

The Logic

Language and Models

Structures

Definition (Models)

A model is a quadruple

$$(W, E, \{\geq_i\}_{i \in Agt}, V)$$

where:

- W is a nonempty set of states;
- *E* : *W* → (2^{Agt} → 2^{2^W}) is an outcome monotonic effectivity function.
- $\geq_i \subseteq W \times W$ for each $i \in Agt$, is the preference relation.
- $V: W \longrightarrow 2^{Prop}$ is the valuation function.

The Logic

Semantics

Semantics

$$\begin{array}{ll} M,w\models p & \text{iff} \quad p\in V(w) \\ M,w\models \neg \phi & \text{iff} \quad M,w\not\models \phi \\ M,w\models \phi\wedge\psi & \text{iff} \quad M,w\models \phi \text{ and } M,w\models\psi \\ M,w\models [C]\phi & \text{iff} \quad [[\phi]]^M\in E(w)(C) \end{array}$$

$$[[\phi]]^M =_{def} \{ w \in W \mid M, w \models \phi \}$$

Marc Pauly,

A Logic for Social Software. PhD thesis, 2001.

æ

The Logic

Semantics

 $M, w \models [rational_C] \phi \quad \text{iff} \quad \forall X (X \triangleright_{C, w} \Rightarrow X \subseteq [[\phi]]^M)$

(ロ) (部) (注) (注) (注) (の)

The Logic

Semantics

$\begin{array}{ll} M, w \models P(C, \phi) & \text{iff} \quad \exists X \in E(w)(C) \text{ s.t. } X \in \overline{VIOL}_{C,w} \text{ and } X \subseteq [[\phi]]^M \\ M, w \models F(C, \phi) & \text{iff} \quad \forall X \in E(w)(C)(X \subseteq [[\phi]]^M \Rightarrow X \in VIOL_{C,w}) \\ M, w \models O(C, \phi) & \text{iff} \quad \forall X \in E(w)(C)(X \in \overline{VIOL}_{C,w} \Rightarrow X \subseteq [[\phi]]^M) \end{array}$

The Logic

Semantics

$\begin{array}{ll} M, w \models P(C, \phi) & \text{iff} \quad \exists X \in E(w)(C) \text{ s.t. } X \in \overline{VIOL}_{C,w} \text{ and } X \subseteq [[\phi]]^M \\ M, w \models F(C, \phi) & \text{iff} \quad \forall X \in E(w)(C)(X \subseteq [[\phi]]^M \Rightarrow X \in VIOL_{C,w}) \\ M, w \models O(C, \phi) & \text{iff} \quad \forall X \in E(w)(C)(X \in VIOL_{C,w} \Rightarrow X \subseteq [[\phi]]^M) \end{array}$

The Logic

Semantics

$$\begin{array}{ll} M, w \models P(C, \phi) & \text{iff} \quad \exists X \in E(w)(C) \text{ s.t. } X \in \overline{VIOL}_{C,w} \text{ and } X \subseteq [[\phi]]^M \\ M, w \models F(C, \phi) & \text{iff} \quad \forall X \in E(w)(C)(X \subseteq \underline{[[\phi]]}^M \Rightarrow X \in VIOL_{C,w}) \\ M, w \models O(C, \phi) & \text{iff} \quad \forall X \in E(w)(C)(X \in \overline{VIOL}_{C,w} \Rightarrow X \subseteq [[\phi]]^M) \end{array}$$

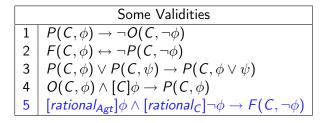
イロト イポト イヨト イヨト 二日

The Logic

Semantics

Deontic Operators

- P(C, φ) iff ∃X ∈ E(w)(C) s.t. X ∈ VIOL_{C,w} and X ⊆ [[φ]]^M is a socially safe permission;
- O(C, φ) iff ∀X ∈ E(w)(C)(X ∈ VIOL_{C,w} ⇒ X ⊆ [[φ]]^M) tells a Coalition how to behave to avoid social inefficiency.


The Logic

Properties

Some Validities1
$$P(C, \phi) \rightarrow \neg O(C, \neg \phi)$$
2 $F(C, \phi) \leftrightarrow \neg P(C, \neg \phi)$ 3 $P(C, \phi) \lor P(C, \psi) \rightarrow P(C, \phi \lor \psi)$ 4 $O(C, \phi) \land [C]\phi \rightarrow P(C, \phi)$ 5 $[rational_{Agt}]\phi \land [rational_C] \neg \phi \rightarrow F(C, \neg \phi)$

The Logic

Properties

(日)(4月)(4日)(4日)

The Logic

Properties

Non-Validities

Some non-Validities6
$$\neg O(C, \neg \phi) \rightarrow P(C, \phi)$$
7 $O(C, \phi) \leftrightarrow \neg O(C, \neg \phi)$ 8 $O(C, \phi) \rightarrow [C]\phi$ 9 $[rational_C]\phi \leftrightarrow [rational_{Agt}]\phi$

イロト イポト イヨト イヨト 三日

The Logic

Properties

Non-Validities

Some non-Validities6
$$\neg O(C, \neg \phi) \rightarrow P(C, \phi)$$
7 $O(C, \phi) \leftrightarrow \neg O(C, \neg \phi)$ 8 $O(C, \phi) \rightarrow [C]\phi$ 9 $[rational_C]\phi \leftrightarrow [rational_{Agt}]\phi$

イロト イポト イヨト イヨト 三日

The Logic

Properties

Back to the Game

Mr.C Mr.R	Fair	Aggr
Fair	(3,3)	(0,4)
Aggr	(4,0)	(1,1)

- $\bullet \models_{PD} [rational_R](Aggr_R)$
- $\models_{PD} [rational_C](Aggr_C)$

● ⊨_{PD}

 $[rational_{Agt}] \neg (Aggr_R) \land [rational_{Agt}] \neg (Aggr_C)$

3

The Logic

Properties

Back to the Game

Mr.C Mr.R	Fair	Aggr
Fair	(3,3)	(0,4)
Aggr	(4,0)	(1,1)

• $\models_{PD} [rational_R](Aggr_R)$

 $\bullet \models_{PD} [rational_C](Aggr_C)$

 \models_{PD}

 $[rational_{Agt}] \neg (Aggr_R) \land [rational_{Agt}] \neg (Aggr_C)$

(日)(4月)(4日)(4日)

The Logic

Properties

Back to the Game

Mr.C Mr.R	Fair	Aggr
Fair	(3,3)	(0,4)
Aggr	(4,0)	(1,1)

- $\models_{PD} [rational_R](Aggr_R)$
- $\models_{PD} [rational_C](Aggr_C)$

=PD

 $[rational_{Agt}] \neg (Aggr_R) \land [rational_{Agt}] \neg (Aggr_C)$

(日)(4月)(4日)(4日)

The Logic

Properties

Back to the Game

Mr.C Mr.R	Fair	Aggr
Fair	(3,3)	(0,4)
Aggr	(4,0)	(1,1)

- $\models_{PD} [rational_R](Aggr_R)$
- $\models_{PD} [rational_C](Aggr_C)$

• \models_{PD} [rational_{Agt}] \neg (Aggr_R) \land [rational_{Agt}] \neg (Aggr_C)

The Logic

Properties

Back to the Game

Mr.C Mr.R	Fair	Aggr
Fair	(3,3)	(0,4)
Aggr	(4,0)	(1,1)

- $\models_{PD} [rational_R](Aggr_R)$
- $\models_{PD} [rational_C](Aggr_C)$

• \models_{PD} [rational_{Agt}] \neg (Aggr_R) \land [rational_{Agt}] \neg (Aggr_C)

The Logic

Properties

Coalitionally Optimal Norms

$M, w \models O^{C'}(C, \phi) \quad \text{iff} \quad \forall X \in E(w)(C)(X \in \overline{VIOL}_{C,C',w} \Rightarrow X \subseteq [[\phi]]^M)$

$\models_{\mathcal{M}} O^{\mathcal{C}}(\mathcal{C}, \phi) \leftrightarrow [rational_{\mathcal{C}}]\phi$

(日)(4月)(4日)(4日)(日)

The Logic

Properties

Coalitionally Optimal Norms

$M, w \models O^{C'}(C, \phi) \quad \text{iff} \quad \forall X \in E(w)(C)(X \in \overline{VIOL}_{C,C',w} \Rightarrow X \subseteq [[\phi]]^M)$

$$\models_{\mathcal{M}} O^{\mathcal{C}}(\mathcal{C}, \phi) \leftrightarrow [rational_{\mathcal{C}}]\phi$$

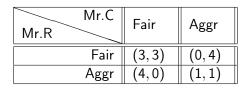
(日)(4月)(4日)(4日)(日)

Conclusion

- We defined the concept of optimality as Pareto Efficiency over the possible system choices;
- We studied the interaction between coalitionally rational and socially rational choice;
- We provided a Cooperative Game Theoretical semantics of Deontic Logic.

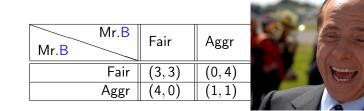
A Deontic Logic for Socially Optimal Norms Conclusion and Future Work

Further Developments


- Dynamics: what happens to efficient outcomes when preferences and choices change?
- Regulation: forcing properties that are not socially desirable;

A Deontic Logic for Socially Optimal Norms Conclusion and Future Work

Further Developments


- Dynamics: what happens to efficient outcomes when preferences and choices change?
- Regulation: forcing properties that are not socially desirable;

Further Developments

イロト イポト イヨト イヨト 三日

Further Developments

æ

Thanks!

イロト イポト イヨト イヨト 二日