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Coalitional games

Pair (I, ν), where I = {1, . . . , n} - set of agents, and
ν : 2I → R

Simple games: ν(S) ∈ {0, 1} for any S ⊂ I
ν(S) = 1 if S is winning, otherwise – S is losing

Payoffs: 0 ≤ p ∈ Rn, normalised: p(I) :=
∑

i∈I pi = 1
Want to find “most satisfying” payoffs – solution concepts
Want to be able to specify ν efficiently

Edith Elkind, Dmitrii Pasechnik Nucleolus of WVGs



Introduction
Solving sequential LPs for WVGs

Conclusion and future work

Coalitional games
Solution concepts
The least core and the nucleolus
Sequential LPs for nucleolus

Weighted voting games (WVGs)

0 ≤ w ∈ Rn – weights, T > 0 - threshold

for S ⊂ I, we have ν(S) =

{
1 : w(S) ≥ T
0 : w(S) < T
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Solution concepts

Fairness-based, such as Shapley-Shubik index and
Banzhaf index
Stability-related, such as core, least core, and nucleolus.
Maximising the chances for the grand coalition to stay
together, treat each coalition as fairly as possible. . .
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The ε-core and the least core

Definition
The ε-core of a (I, ν) is the set of all p s.t. p(S) ≥ ν(S)− ε for
all S ⊆ I.

In particular, when ε = 0 this is just the core, mentioned in an
earlier talk today. The core might be empty: let’s look at the
minimal ε1 so that the ε1-core is nonempty (this is called least
core, L1) Informally, it minimises, over all the possible p, the
unhappiness of the most unhappy coalitions.
What would be the “optimal” payoff in L1?
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The nucleolus and the deficits

– a particular way to define such an optimal payoff. We try to
minimize the unhappiness of all the coalitions, not only the
most unhappy ones.

Let dS(p), for S ⊂ I and p ∈ L1, be given by
p(S) = ν(S) + dS(p). This is the deficit of S w.r.t. p.
Sort S ⊂ I so that dS1(p) ≤ dS2(p) . . .

This defines a function
φ : L1 → {non-decreasing vectors of length 2n}
There will be the lexicographically maximal element d∗ in
φ(L1).
The (necessarily unique) p = φ−1(d∗) is the nucleolus of
(I, ν)
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LP for the least core

Finding ε1—what we need for L1—is a linear program (LP)

min
(p,ε)

ε s.t.


∑
i∈I

pi = 1, pi ≥ 0 for all i = 1, . . . , n∑
i∈S

pi ≥ ν(S)− ε for all S ⊂ I.
(1)

Let (p1, ε1) be an interior optimizer to (1). Let Σ1 be the set of
tight constraints for (p1, ε1) : for any S ∈ Σ1 we have
p1(S) = ν(S)− ε1. Now we can specify the least core:

L1 =


p(I) = 1, p ≥ 0

p(S) ≥ ν(S) for all Σ1 63 S ⊂ I

p(S) = ν(S)− ε1 for all S ∈ Σ1.
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Sequential LPs for nucleolus

Now we can restrict attention to L̃1

ε2 := min
(p,ε)∈L̃1

ε. (2)

Let (p2, ε2) be an interior optimizer to (2). Let Σ2 be the set of
tight constraints for (p2, ε2) : for any S ∈ Σ2 we have
p2(S) = ν(S)− ε2. Now we can specify the “second” least core:

L2 =


p(I) = 1, p ≥ 0

p(S) ≥ ν(S) for all Σ1 ∪ Σ2 63 S ⊂ I

p(S) = ν(S)− εj for all S ∈ Σj , j = 1, 2.

We keep going, specifying L3, . . . ,Lk = {p∗}. Note that k < n,
as the dimension goes down.
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Oracles for LPs and ellipsoid method

For an (I, ν), these LPs will have O(2n) constraints, so one
cannot, generally speaking, solve them in polynomial time,
unless there exists a polynomial-time separation oracle

Definition
A separation oracle for a polytope
P = {x ∈ Rn | 〈ci , x〉 ≤ bi , 1 ≤ i ≤ k} is an algorithm that,
given y ∈ Rn, checks whether y ∈ P, and if y 6∈ P, returns an
inequality 〈c, x〉 ≤ b that is valid for P, but 〈c, y〉 > b.

Given such a polytime oracle, one can apply the ellipsoid
method to solve LPs over P, as well as e.g. finding vertices,
interior points, dimension – all this in polytime.
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Known results.

Polynomial-time algorithms are known for the nucleolus for a
number of classes of (I, ν), typically of a combinatorial nature,
e.g. flow games, matching games, etc.
For WVG (I, w , T ), an algorithm to compute ε1 is given in
[EGGW07]. It runs in time polynomial in n and
maxi{w1, . . . , wn}, so it is pseudo-polynomial – a truly
polynomial-time procedure would depend rather on bitsizes, i.e.
on log w1, . . . , log wn. However, [EGGW07] shows that already
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Note the parallel with the KNAPSACK problem. It is not a
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Computing the nucleolus of WVGs

Theorem

For a WVG specified by integer weights w1, . . . , wn and a quota
T , there exists a procedure that computes its nucleolus in time
polynomial in n and W = maxi wi .

Our algorithm solves the sequence of LPs using the ellipsoid
method. The main technical difficulty is thus designing the
separation oracles.
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An oracle for L̃j in WVG

L̃j =


ν(S) = (1 + sign(w(S)− T ))/2, S ⊂ I

p(I) = 1, p ≥ 0, ε ≤ εj−1

p(S) = ν(S)− εk for all S ∈ Σk , 1 ≤ k ≤ j − 1

p(S) ≥ ν(S)− ε for all ∪j−1
k=1 Σj 63 S ⊂ I

An oracle shall be able to tell whether a given (p, ε) belongs to
L̃j , and return a violated inequality (e.g. just an S ⊂ I). The 2nd
and 3rd rows are easy, as one can maintain a “short” equivalent
system of linear equations (they can be obtained using the
ellipsoid method). The 4th row is complicated – we cannot
explicitly list Σ1, . . . , Σj−1.
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Naive attempt

We can try to formulate the conditions on S ⊂ I to provide a
separating hyperplane as the following 0− 1 linear feasibility
problem: ∑

i

pj−1
i xi > 1− εj−1, (3)∑

i

pixi < 1− ε, (4)∑
i

wixi ≥ T , x ∈ {0, 1}n. (5)

But this is NP-hard, in general - the bitsizes of p and pj−1 are
too big!
So off-the-shelf tools won’t work here. In (3) we have certainly
thrown away a lot of extra information available.
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A counting oracle

compute the top j distinct deficits dS(p) := p(S)− ν(S) + ε:

m1 = max{dS(p) | S ⊆ I}
m2 = max{dS(p) | S ⊆ I, dS(p) 6= m1}

. . .

mj = max{dS(p) | S ⊆ I, dS(p) 6= m1, . . . , mj−1}

as well as the numbers n1, . . . , nj of coalitions that have deficits
of m1, . . . , mj , respectively:

nk = |{S | S ⊆ I, dS(p) = mk}|, k = 1, . . . , j .

Doable by dynamic programming in polynomial in W and n
time! If mt = εt and nt = |Σt | for all t = 1, . . . , j − 1 and mj ≤ ε,
then (p, ε) is feasible, otherwise separation-inducing S can be
found by a variation of the above.
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Essentially the same procedure provides a
pseudo-polynomial time algorithm for the nucleolus of the
k -vector WVGs, for a fixed k .
The oracle developed can be used in a practical
implementation of nucleolus computation for WVGs (this,
due to poor practical performance of the ellipsoid method,
ought to be e.g. a dual simplex cutting plane procedure).
An approximation algorithm for the nucleolus of WVGs?
(For ε1, this was done in [EGGW07]). This will have to be
an additive approximation, as it is NP-hard to decide
whether the nucleolus payoff of a player is 0.
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