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Background
Dodgson Rule:

• NP-Hard (Bartholdi et al., 1989)
• Θp

2-Complete (Hemaspaandra et al., 1997)
• “Efficient for fixed #alternatives m”∼ f (m!m! ln n)

(McCabe-Dansted, 2006)
• Impartial Culture (votes independent, equally likely)

• Tideman rule: Converges as n →∞
(McCabe-Dansted et al., 2006)

• Dodgson Quick: exponentially fast (McCabe-Dansted
et al., 2006)

• Greedy Winner: exponentially fast (Homan and
Hemaspaandra, 2005)
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Impartial Culture

Impartial Culture is implausible

• Voters are not independent
• E.g. “How to vote cards”

• Votes not equally likely
• Left > Right > Centre?

Important to test against other assumptions
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Impartial Anonymous Culture

A “Voting Situation”:

• Represents number of voters who voted which way.
• Does not store who voted what.

IAC: Each voting situation equally likely

• 9:1 victory as likely as 6:4 (for two alternatives)
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Without Independence

We show previous approximations do not converge.
We show the following do converge:

• Dodgson Relaxed and Rounded (new)
• Dodgson Relaxed (new)
• Dodgson Clone

• Young: Fixes an Absurdity
• Rothe et al. 2003: Polynomial

Improvements over original.

• Which was not actual proposed by Dodgson
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Dodgson’s Rule

• Picks candidate closest to being a Condorcet winner
• We swap neighbouring alternatives in votes to

produce a Condorcet winner
• Dodgson score (ScD) is # of such swaps required
• Alternative with lowest Dodgson score is Winner
• E.g. single voter {cba} =⇒ ScD(a) = 2

c

b
a
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New Approximations
Can define Dodgson Clone in terms of cloning electorate.
ILP for Dodgson Score (Bartholdi et al., 1989)

• Relax integer constraints?
• Linear Program =⇒ Polynomial time.

Fractional votes:

• Condorcet tie winner if switch a over c in 0.5 votes
• Dodgson Clone score is (0.5)(2).
• Dodgson Relaxed (DR): must switch d0.5e times:

score is (1)(2)

• Dodgson Relaxed and Rounded (D&): Round up DR
score: score is d(1)(2)e.
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Linear Programs
WLOG, all swaps swap d up profile.
min

∑
i

∑
j>0 yij subject to

yi0 = Ni (for each type of vote i)∑
ij(eijk − ei(j−1)k)yij ≥ Dk (for each alternative k )

yij ≤ yi(j−1) (for each i and j > 0)
yij ≥ 0, and each yij must be integer.
• For each i and j variable yij represents the number of

times that the candidate d is swapped up at least j
positions in votes of the i th type.

• eijk is 1 if swapping d up j positions in votes of the i th

i swaps d over k . (0 otherwise).
• Dk is number of times d must be swapped over k .

• dadv(k , d)/2e [DR] or adv(k , d)/2 [DC]
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Bounds
Note that:

1 A solution to an ILP is a solution to LP.
• ∴ ScC (d) ≤ ScD(d)

2 Rounding up variables to LP gives solution to ILP.
• (for our LP)
• m!e variables e = 2.71 . . .
• ∴ ScD(d)−m!e < ScC(d)

3 Every solution for DC LP is solution to DR LP.

ScD(d)−m!e < ScC(d) ≤ ScR(d) ≤ Sc&(d) ≤ ScD(d)
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Convergence

ScD(d)−m!e < ScC(d) ≤ ScR(d) ≤ Sc&(d) ≤ ScD(d)

• Informally: Even neck-and-neck elections won by
thousands or millions of votes.

• Converge under any reasonable assumption.
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Convergence: IAC

ScD(d)−m!e < ScC(d) ≤ ScR(d) ≤ Sc&(d) ≤ ScD(d)

Let v = ab . . . z and v̄ = z . . . ba
Group voting situations, differ only in #(v) and #(v̄).

• Replacing v with v̄ will improve relative score of z
over a by ≥ 1
• less than m!e members s.t. DC winner differs

#Groups increase slower than #voting situations.
∴ converges.
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Accuracy of Tideman’s Rule Under IC

Frequency that Tideman winner is Dodgson winner
3 5 7 9 15 25 85

3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
5 0.9984 0.9974 0.9961 0.9972 0.9936 0.9917 0.9930
7 0.9902 0.9864 0.9852 0.9868 0.9845 0.9805 0.9847
9 0.9792 0.9730 0.9724 0.9731 0.9718 0.9760 0.9815

15 0.9468 0.9292 0.9263 0.9273 0.9379 0.9485 0.9649
25 0.8997 0.8691 0.8620 0.8625 0.8833 0.9113 0.9534

x : number of voters
y : number of alternatives
D& winner differs only once at (5,25)
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A “bad” voting ratio
We say a voting ratio is bad if every even profile P that
reduces to it has different DQ and Dodgson winners.

g(v) =


7/18 if v = abcde
6/18 if v = cdabe
5/18 if v = bcead

0 otherwise

Recall: DQ score ScQ(x) of x is
∑

y dadv(y , x)/2e
For 18n agents:
• DQ and Dodgson score of c will be 3n
• the DQ score of a will be 2n and the Dodgson score

of a will be 4n.
• Hence a is DQ winner but c is Dodgson winner.
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Proof of Non-Convergence

We have a bad voting ratio.

• Has neighbourhood S of “bad” voting ratios.

IAC: every voting situation equally likely

• Probably of falling in S does not converge to 0 as
n →∞.

Tideman based rules converge to DQ, not Dodgson.
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Overview

IAC Converges IC: fast Split-ties Non-absurd

Tideman No No N/A (Yes)
Dodgson Quick No Yes N/A (No)
Dodgson Clone Yes (No) N/A Yes

DR Yes Yes Yes (No)
D& Yes Yes No (No)

Dodgson + + No No
(X): X “obvious” but not proven.
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Conclusion
Old Approximations (DQ etc.)

• Do not converge under IAC.

New Approximations:

• Do converge.
• D& picked Dodgson Winner in all but one of 43 million

simulations (McCabe-Dansted, 2006)

• Can sacrifice accuracy for
• Splitting ties
• Invulnerability to cloning the electorate

• For many purposes better.
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Analysis: Background
Swapping Neighbouring Candidates a natural measure of
distance

• Kemeny uses similar measure, compares difference
to entire rankings.

• To use this measure implies Dodgson rule.

Dodgson’s rule has flaws, particularly

• Hard to compute
• NP-hard
• O(f (m) ln n), but f (m) ∼ m!m!

• Cloning electorate changes winner.

Minor modification (DC) fixes both of above.
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Analysis: New Convergence Result

Stronger:

• Does not require IC

Weaker:

• not exponentially fast.
• Fixed m?

• n � m! vs n � m2

• (Actual convergence better)
• 43 million, only one D& 6= Dodgson Winner

(McCabe-Dansted, 2006)

John McCabe-Dansted Dodgson’s Rule Approximations and Absurdity



Introduction
Proofs

Conclusions
References

Number of Variables

Alternative d is the alternative we are computing Dodgson
score of.
#Linear orders with d ranked in i th position = (m − 1)!

#Vote types with d ranked in i th position = (m−1)!
(m−i)!

#Vote types
=
∑

i
(m−1)!
(m−i)! < (m − 1)!

(
1
0!

+ 1
1!

+ · · ·
)

= (m − 1)!e
(e = 2.71 . . .)
Less than m variables yij per vote type =⇒ less than m!e
variables
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Tideman-like Approximations

• We define each approximation in terms of the score
(lowest score wins)

• We can compute these scores from the “advantages”
• nba : Number of voters who prefer b to a
• adv(b, a) = max(0, nba − nab): Advantage of b over a

• Also called “margin of defeat”

• Dodgson Quick (DQ) score: ScQ(a) =
∑

b 6=a

⌈
adv(b,a)

2

⌉
• (this is our new approximation)

• Tideman score: ScT(a) =
∑

b 6=a adv(b, a)

John McCabe-Dansted Dodgson’s Rule Approximations and Absurdity


	Introduction
	Overview
	Definitions

	Proofs
	Linear Programs
	Convergence
	Non-convergence

	Conclusions
	References

