

Dodgson's Rule Approximations and Absurdity

John M^cCabe-Dansted

University of Western Australia

September 5, 2008

John M^cCabe-Dansted Dodgson's Rule Approximations and Absurdity

Background

Introduction

Dodgson Rule:

THE UNIVERSITY OF

WESTERN AUSTRALIA

- NP-Hard (Bartholdi et al., 1989)
- Θ₂^p-Complete (Hemaspaandra et al., 1997)
- "Efficient for fixed #alternatives m"∼ f(m!^{m!} ln n) (M^cCabe-Dansted, 2006)
- Impartial Culture (votes independent, equally likely)
 - Tideman rule: Converges as $n \to \infty$ (M^cCabe-Dansted et al., 2006)
 - Dodgson Quick: exponentially fast (M^cCabe-Dansted et al., 2006)
 - Greedy Winner: exponentially fast (Homan and Hemaspaandra, 2005)

THE UNIVERSITY OF

Western Australia

Overview Definitions

Impartial Culture

Introduction

Impartial Culture is implausible

- Voters are not independent
 - E.g. "How to vote cards"
- Votes not equally likely
 - Left > Right > Centre?

Important to test against other assumptions

Overview Definitions

Impartial Anonymous Culture

A "Voting Situation":

THE UNIVERSITY OF

WESTERN AUSTRALIA

- Represents number of voters who voted which way.
- Does not store who voted what.
- IAC: Each voting situation equally likely
 - 9:1 victory as likely as 6:4 (for two alternatives)

THE UNIVERSITY OF

Western Australia

Overview Definitions

Without Independence

We show previous approximations do not converge. We show the following do converge:

- Dodgson Relaxed and Rounded (new)
- Dodgson Relaxed (new)
- Dodgson Clone
 - Young: Fixes an Absurdity
 - Rothe et al. 2003: Polynomial

Improvements over original.

Which was not actual proposed by Dodgson

Dodgson's Rule

Introduction

- Picks candidate closest to being a Condorcet winner
- We swap neighbouring alternatives in votes to produce a Condorcet winner
- Dodgson score (Sc_D) is # of such swaps required
- Alternative with lowest Dodgson score is Winner
- E.g. single voter $\{cba\} \Longrightarrow \operatorname{Sc}_{D}(a) = 2$

Dodgson's Rule

Introduction

- Picks candidate closest to being a Condorcet winner
- We swap neighbouring alternatives in votes to produce a Condorcet winner
- Dodgson score (Sc_D) is # of such swaps required
- Alternative with lowest Dodgson score is Winner
- E.g. single voter $\{cba\} \Longrightarrow \operatorname{Sc}_{D}(a) = 2$

$$\begin{array}{c}
c\\b\\b\\a\\b\\b\end{array}$$

Dodgson's Rule

Introduction

- Picks candidate closest to being a Condorcet winner
- We swap neighbouring alternatives in votes to produce a Condorcet winner
- Dodgson score (Sc_D) is # of such swaps required
- Alternative with lowest Dodgson score is Winner
- E.g. single voter $\{cba\} \Longrightarrow \operatorname{Sc}_{D}(a) = 2$

Overview Definitions

New Approximations

Can define Dodgson Clone in terms of cloning electorate. ILP for Dodgson Score (Bartholdi et al., 1989)

- Relax integer constraints?
- Linear Program \implies Polynomial time.

Fractional votes:

THE UNIVERSITY OF Western Australia

- Condorcet tie winner if switch a over c in 0.5 votes
- Dodgson Clone score is (0.5)(2).
- Dodgson Relaxed (DR): must switch [0.5] times: score is (1)(2)
- Dodgson Relaxed and Rounded (D&): Round up DR score: score is [(1)(2)].

Linear Programs

WLOG, all swaps swap *d* up profile. min $\sum_{i} \sum_{j>0} y_{ij}$ subject to $y_{i0} = N_i$ (for each type of vote *i*) $\sum_{ij} (e_{ijk} - e_{i(j-1)k}) y_{ij} \ge D_k$ (for each alternative *k*) $y_{ij} \le y_{i(j-1)}$ (for each *i* and j > 0) $y_{ij} \ge 0$, and each y_{ij} must be integer.

- For each *i* and *j* variable y_{ij} represents the number of times that the candidate *d* is swapped up *at least j* positions in votes of the *i*th type.
- *e*_{ijk} is 1 if swapping *d* up *j* positions in votes of the *i*th *i* swaps *d* over *k*. (0 otherwise).
- D_k is number of times *d* must be swapped over *k*.
 - $\lceil \operatorname{adv}(k, d)/2 \rceil$ [DR] or $\operatorname{adv}(k, d)/2$ [DC]

Bounds

Note that:

- A solution to an ILP is a solution to LP.
 - \therefore Sc_C(d) \leq Sc_D(d)
- Rounding up variables to LP gives solution to ILP.
 - (for our LP)
 - *m*!*e* variables *e* = 2.71...
 - $\therefore \operatorname{Sc}_{\mathbf{D}}(d) m! e < \operatorname{Sc}_{\mathbf{C}}(d)$
- **③** Every solution for DC LP is solution to DR LP.

 $\operatorname{Sc}_{\mathsf{D}}(d) - m! e < \operatorname{Sc}_{\mathsf{C}}(d) \le \operatorname{Sc}_{\mathsf{R}}(d) \le \operatorname{Sc}_{\&}(d) \le \operatorname{Sc}_{\mathsf{D}}(d)$

Linear Programs Convergence

Proofs

$$\mathrm{Sc}_{\mathsf{D}}(d) - m! e < \mathrm{Sc}_{\mathsf{C}}(d) \le \mathrm{Sc}_{\mathsf{R}}(d) \le \mathrm{Sc}_{\&}(d) \le \mathrm{Sc}_{\mathsf{D}}(d)$$

- Informally: Even neck-and-neck elections won by thousands or millions of votes.
- Converge under any reasonable assumption.

Convergence: IAC

$$\operatorname{Sc}_{\mathsf{D}}(d) - m! e < \operatorname{Sc}_{\mathsf{C}}(d) \le \operatorname{Sc}_{\mathsf{R}}(d) \le \operatorname{Sc}_{\&}(d) \le \operatorname{Sc}_{\mathsf{D}}(d)$$

Let $\mathbf{v} = ab \dots z$ and $\mathbf{\bar{v}} = z \dots ba$ Group voting situations, differ only in $\#(\mathbf{v})$ and $\#(\mathbf{\bar{v}})$.

Convergence

- Replacing v with v will improve relative score of z over a by ≥ 1
 - less than *m*!*e* members s.t. DC winner differs

#Groups increase slower than #voting situations.

∴ converges.

Accuracy of Tideman's Rule Under IC

Frequency that Tideman winner is Dodgson winner

	3	5	7	9	15	25	85
3	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
5	0.9984	0.9974	0.9961	0.9972	0.9936	0.9917	0.9930
7	0.9902	0.9864	0.9852	0.9868	0.9845	0.9805	0.9847
9	0.9792	0.9730	0.9724	0.9731	0.9718	0.9760	0.9815
15	0.9468	0.9292	0.9263	0.9273	0.9379	0.9485	0.9649
25	0.8997	0.8691	0.8620	0.8625	0.8833	0.9113	0.9534

x: number of voters

y: number of alternatives

D& winner differs only once at (5,25)

Linear Programs Convergence Non-convergence

A "bad" voting ratio

We say a voting ratio is bad if every even profile ${\cal P}$ that reduces to it has different DQ and Dodgson winners.

$$g(\mathbf{v}) = \begin{cases} \frac{7}{18} \text{ if } & \mathbf{v} = abcde \\ \frac{6}{18} \text{ if } & \mathbf{v} = cdabe \\ \frac{5}{18} \text{ if } & \mathbf{v} = bcead \\ 0 & \text{otherwise} \end{cases}$$

Recall: DQ score $Sc_Q(x)$ of x is $\sum_y \lceil adv(y, x)/2 \rceil$ For 18*n* agents:

- DQ and Dodgson score of *c* will be 3*n*
- the DQ score of *a* will be 2*n* and the Dodgson score of *a* will be 4*n*.
- Hence *a* is DQ winner but *c* is Dodgson winner.

Proof of Non-Convergence

We have a bad voting ratio.

• Has neighbourhood *S* of "bad" voting ratios.

IAC: every voting situation equally likely

• Probably of falling in *S* does not converge to 0 as $n \rightarrow \infty$.

Tideman based rules converge to DQ, not Dodgson.

Overview

	IAC Converges	IC: fast	Split-ties	Non-absurd
Tideman	No	No	N/A	(Yes)
Dodgson Quick	No	Yes	N/A	(No)
Dodgson Clone	Yes	(No)	N/A	Yes
DR	Yes	Yes	Yes	(No)
D&	Yes	Yes	No	(No)
Dodgson	+	+	No	No

(X): X "obvious" but not proven.

Conclusion

Old Approximations (DQ etc.)

• Do not converge under IAC.

New Approximations:

- Do converge.
 - D& picked Dodgson Winner in all but one of 43 million simulations (M^cCabe-Dansted, 2006)
- Can sacrifice accuracy for
 - Splitting ties
 - Invulnerability to cloning the electorate
- For many purposes better.

References

References

- Bartholdi, III., Tovey, C. A., and Trick, M. A. Voting schemes for which it can be difficult to tell who won the election. *Social Choice and Welfare: Springer-Verlag*, 6:157–165, 1989.
- Hemaspaandra, E., Hemaspaandra, L., and Rothe, J. Exact analysis of Dodgson elections: Lewis Carroll's 1876 voting system is complete for parallel access to NP. *Journal of the ACM*, 44(6):806–825, 1997.
- Homan, C. M. and Hemaspaandra, L. A. Guarantees for the success frequency of an algorithm for finding Dodgson-election winners. Technical Report Technical Report TR-881, Department of Computer Science, University of Rochester, Rochester, NY, 2005. https://urresearch.rochester.edu/retrieve/4794/tr881.pdf.
- M^cCabe-Dansted, J. C. *Feasibility and Approximability of Dodgson's rule*. Master's thesis, Auckland University, 2006. http://hdl.handle.net/2292/2614.
- M^cCabe-Dansted, J. C., Pritchard, G., and Slinko, A. Approximability of Dodgson's rule, 2006. Presented at COMSOC '06, To appear in Social Choice and Welfare.
- Rothe, J., Spakowski, H., and Vogel, J. Exact complexity of the winner problem for young elections. *Theory Comput. Syst.*, 36(4):375–386, 2003.

Analysis: Background

Swapping Neighbouring Candidates a natural measure of distance

- Kemeny uses similar measure, compares difference to entire rankings.
- To use this measure implies Dodgson rule.

Dodgson's rule has flaws, particularly

- Hard to compute
 - NP-hard
 - $\mathcal{O}(f(m) \ln n)$, but $f(m) \sim m!^{m!}$
- Cloning electorate changes winner.

Minor modification (DC) fixes both of above.

Analysis: New Convergence Result

Stronger:

• Does not require IC

Weaker:

- not exponentially fast.
- Fixed m?
 - $n \gg m!$ vs $n \gg m^2$
 - (Actual convergence better)
 - 43 million, only one D& ≠ Dodgson Winner (M^cCabe-Dansted, 2006)

References

Number of Variables

Alternative *d* is the alternative we are computing Dodgson score of.

#Linear orders with *d* ranked in *i*th position = (m - 1)!#Vote types with *d* ranked in *i*th position = $\frac{(m-1)!}{(m-i)!}$ #Vote types

$$=\sum_{i} \frac{(m-1)!}{(m-i)!} < (m-1)! \left(\frac{1}{0!} + \frac{1}{1!} + \cdots\right) = (m-1)! e$$

(e = 2.71...)

Less than *m* variables y_{ij} per vote type \implies less than m!e variables

References

Tideman-like Approximations

- We define each approximation in terms of the score (lowest score wins)
- We can compute these scores from the "advantages"
- *n_{ba}* : Number of voters who prefer *b* to *a*
- $adv(b, a) = max(0, n_{ba} n_{ab})$: Advantage of b over a
 - Also called "margin of defeat"
- Dodgson Quick (DQ) score: $Sc_{\mathbf{Q}}(a) = \sum_{b \neq a} \left\lceil \frac{adv(b,a)}{2} \right\rceil$
 - (this is our new approximation)
- Tideman score: $Sc_T(a) = \sum_{b \neq a} adv(b, a)$