Confluence Operators – Negotiation as Pointwise Merging –

Sébastien Konieczny Ramón Pino Pérez

CNRS - Centre de Recherche en Informatique de Lens (CRIL) Université d'Artois, Lens, France konieczny@cril.fr

Departamento de Matemáticas, Facultad de ciencias Universidad de Los Andes, Mérida, Venezuela pino@ula.ve

- **Revision** Belief revision is the process of accomodating a new piece of evidence that is more reliable than the current beliefs of the agent. In belief revision the world is static, it is the beliefs of the agents that evolve.
 - **Update** In belief update the new piece of evidence denotes a change in the world. The world is dynamic, and these (observed) changes modify the beliefs of the agent.
- **Merging** Belief merging is the process of defining the beliefs of a group of agents. So the question is: Given a set of agents that have their own beliefs, what can be considered as the beliefs of the group?

Update

Merging

$\mathsf{Revision} \longleftrightarrow \mathsf{Update}$

Merging

Propositional logic:

- A formula φ is build from
 - A set \mathcal{P} of propositional symbols (a, b, \ldots)
 - And logical connectives $(\neg, \land, \lor, \rightarrow, ...)$
- An interpretation ω is a function from \mathcal{P} to $\{0,1\}$

$$\bullet \ \textit{mod}(\varphi) = \{ \omega \in \mathcal{W} \mid \omega \models \varphi \}$$

- A formula is complete if it has a unique model
- A base φ is a (finite set of) propositional formula
- A profile Ψ is a multi-set of bases : Ψ = {φ₁,...,φ_n}

- 3 principles:
 - Primacy of update
 - Coherence
 - Minimal change

Revision Belief revision is the process of accomodating a new piece of evidence that is more reliable than the current beliefs of the agent. In belief revision the world is static, it is the beliefs of the agents that evolve.

3 principles:

- Primacy of update
- Coherence
- Minimal change

- 3 principles:
 - Primacy of update
 - Coherence
 - Minimal change

- 3 principles:
 - Primacy of update
 - Coherence
 - Minimal change

- 3 principles:
 - Primacy of update
 - Coherence
 - Minimal change

$$arphi = (b \wedge \neg m) \lor (\neg b \wedge m)$$

 $\mu = b$

$$arphi = (b \wedge \neg m) \lor (\neg b \wedge m) \ \mu = b$$

$$arphi = (b \wedge \neg m) \lor (\neg b \wedge m) \ \mu = b$$

$$\varphi \circ \mu = b \wedge \neg m$$

$$arphi = (b \wedge \neg m) \lor (\neg b \wedge m) \ \mu = b$$

$$\varphi = (b \land \neg m) \lor (\neg b \land m)$$

$$\mu = b$$

$$\varphi \diamond \mu = (b \land \neg m)$$

$$\varphi = (b \land \neg m) \lor (\neg b \land m)$$

$$\mu = b$$

$$\varphi \diamond \mu = (b \land \neg m)$$

 $\varphi = (b \land \neg m) \lor (\neg b \land m)$ $\mu = b$

$$\varphi \diamond \mu = (b \land \neg m) \lor (b \land m)$$

$$arphi = (b \wedge \neg m) \lor (\neg b \wedge m) \ \mu = b$$

 $\begin{array}{l} \textit{mod}(\varphi) = \{10,01\}\\ \textit{mod}(\mu) = \{10,11\} \end{array}$

$$\varphi \diamond \mu = (b \land \neg m) \lor (b \land m)$$

$$arphi_1 \qquad arphi_2 \qquad arphi_3 \ a, \ b
ightarrow c \qquad a, \ b \qquad
eg a \ (\{arphi_1, arphi_2, arphi_3\}) =$$

$$egin{array}{ccccc} arphi_1 & arphi_2 & arphi_3 \ a, \ b
ightarrow c & a, \ b &
odot \ b &
odot \ egin{array}{cccccc} arphi_1, arphi_2, arphi_3 \ eta &
odot \ eta &
odot$$

$$egin{array}{ccccc} arphi_1 & arphi_2 & arphi_3 \ a, \ b
ightarrow c & a, \ b &
odot \ a, \ b, \ a &
odot \ a, \ a, \ b & \ a, \ a & \ a & \ a, \ a & \ a, \ a & \ a, \ a & \ a & \ a & \ a, \ a & \$$

- g: german car
- e: expensive car
- s: sport car

$$\begin{array}{ll} \varphi_{1} = \neg g \land \neg e \land s & mod(\varphi_{1}) = \{001\} \\ \varphi_{2} = (g \land e \land s) \lor (\neg g \land \neg e \land s) & mod(\varphi_{2}) = \{001, 111\} \\ \mu = \neg (g \land \neg e \land s) & mod(\mu) = \mathcal{W} \setminus \{101\} \end{array}$$

• Belief/Goal Merging: $\triangle_{\mu}(\{\varphi_1, \varphi_2\}) = \neg g \land \neg e \land s$

- g: german car
- e: expensive car
- s: sport car

$$\begin{aligned} \varphi_1 &= \neg g \land \neg e \land s & mod(\varphi_1) = \{001\} \\ \varphi_2 &= (g \land e \land s) \lor (\neg g \land \neg e \land s) & mod(\varphi_2) = \{001, 111\} \\ \mu &= \neg (g \land \neg e \land s) & mod(\mu) = \mathcal{W} \setminus \{101\} \end{aligned}$$

• Belief/Goal Merging: $\triangle_{\mu}(\{\varphi_1, \varphi_2\}) = \neg g \land \neg e \land s$

- g: german car
- e: expensive car
- s: sport car

$$\begin{aligned} \varphi_1 &= \neg g \land \neg e \land s & mod(\varphi_1) = \{001\} \\ \varphi_2 &= (g \land e \land s) \lor (\neg g \land \neg e \land s) & mod(\varphi_2) = \{001, 111\} \\ \mu &= \neg (g \land \neg e \land s) & mod(\mu) = \mathcal{W} \setminus \{101\} \end{aligned}$$

- Belief/Goal Merging: $\triangle_{\mu}(\{\varphi_1, \varphi_2\}) = \neg g \land \neg e \land s$
- Confluence:

$$\Diamond_{\mu}(\{\varphi_{1},\varphi_{2}\}) = (\neg g \land \neg e \land s) \lor (\neg g \land e \land s) = \neg g \land s$$

001 011

- g: german car
- e: expensive car
- s: sport car

$$\begin{aligned} \varphi_{1} &= \neg g \land \neg e \land s & mod(\varphi_{1}) = \{001\} \\ \varphi_{2} &= (g \land e \land s) \lor (\neg g \land \neg e \land s) & mod(\varphi_{2}) = \{001, 111\} \\ \mu &= \neg (g \land \neg e \land s) & mod(\mu) = \mathcal{W} \setminus \{101\} \end{aligned}$$

- Belief/Goal Merging: $\triangle_{\mu}(\{\varphi_1, \varphi_2\}) = \neg g \land \neg e \land s$
- Confluence:

$$\Diamond_{\mu}(\{\varphi_1,\varphi_2\}) = (\neg g \land \neg e \land s) \lor (\neg g \land e \land s) = \neg g \land s$$

001 011

- g: german car
- e: expensive car
- s: sport car

$$\begin{array}{ll} \varphi_{1} = \neg g \land \neg e \land s & mod(\varphi_{1}) = \{001\} \\ \varphi_{2} = (g \land e \land s) \lor (\neg g \land \neg e \land s) & mod(\varphi_{2}) = \{001, 111\} \\ \mu = \neg (g \land \neg e \land s) & mod(\mu) = \mathcal{W} \setminus \{101\} \end{array}$$

- Belief/Goal Merging: $\triangle_{\mu}(\{\varphi_1, \varphi_2\}) = \neg g \land \neg e \land s$
- Confluence:

$$\Diamond_{\mu}(\{\varphi_{1},\varphi_{2}\}) = (\neg g \land \neg e \land s) \lor (\neg g \land e \land s) = \neg g \land s \\ 001 \qquad 011$$

- Unperfectly known goals
- Potential evolution

Revision [Alchourrón-Gärdenfors-Makinson 85]

(R1)
$$\varphi \circ \mu \vdash \mu$$

(R2) If $\varphi \land \mu \nvDash \bot$ then $\varphi \circ \mu \equiv \varphi \land \mu$
(R3) If $\mu \nvDash \bot$ then $\varphi \circ \mu \nvDash \bot$
(R4) If $\varphi_1 \equiv \varphi_2$ and $\mu_1 \equiv \mu_2$ then $\varphi_1 \circ \mu_1 \equiv \varphi_2 \circ \mu_2$
(R5) $(\varphi \circ \mu) \land \phi \vdash \varphi \circ (\mu \land \phi)$
(R6) If $(\varphi \circ \mu) \land \phi \nvDash \bot$ then $\varphi \circ (\mu \land \phi) \vdash (\varphi \circ \mu) \land \phi$

Revision [Alchourrón-Gärdenfors-Makinson 85]

(R1)
$$\varphi \circ \mu \vdash \mu$$

(R2) If $\varphi \land \mu \nvDash \bot$ then $\varphi \circ \mu \equiv \varphi \land \mu$
(R3) If $\mu \nvDash \bot$ then $\varphi \circ \mu \nvDash \bot$
(R4) If $\varphi_1 \equiv \varphi_2$ and $\mu_1 \equiv \mu_2$ then $\varphi_1 \circ \mu_1 \equiv \varphi_2 \circ \mu_2$
(R5) $(\varphi \circ \mu) \land \phi \vdash \varphi \circ (\mu \land \phi)$
(R6) If $(\varphi \circ \mu) \land \phi \nvDash \bot$ then $\varphi \circ (\mu \land \phi) \vdash (\varphi \circ \mu) \land \phi$

A faithful assignment is a function mapping each base φ to a pre-order \leq_{φ} over interpretations such that:

- If $\omega \models \varphi$ and $\omega' \models \varphi$, then $\omega \simeq_{\varphi} \omega'$
- If $\omega \models \varphi$ and $\omega' \not\models \varphi$, then $\omega <_{\varphi} \omega'$
- If $\varphi \equiv \varphi'$, then $\leq_{\varphi} = \leq_{\varphi'}$

Revision [Alchourrón-Gärdenfors-Makinson 85]

(R1)
$$\varphi \circ \mu \vdash \mu$$

(R2) If $\varphi \land \mu \nvDash \bot$ then $\varphi \circ \mu \equiv \varphi \land \mu$
(R3) If $\mu \nvDash \bot$ then $\varphi \circ \mu \nvDash \bot$
(R4) If $\varphi_1 \equiv \varphi_2$ and $\mu_1 \equiv \mu_2$ then $\varphi_1 \circ \mu_1 \equiv \varphi_2 \circ \mu_2$
(R5) $(\varphi \circ \mu) \land \phi \vdash \varphi \circ (\mu \land \phi)$
(R6) If $(\varphi \circ \mu) \land \phi \nvDash \bot$ then $\varphi \circ (\mu \land \phi) \vdash (\varphi \circ \mu) \land \phi$

A faithful assignment is a function mapping each base φ to a pre-order \leq_φ over interpretations such that:

- If $\omega \models \varphi$ and $\omega' \models \varphi$, then $\omega \simeq_{\varphi} \omega'$
- If $\omega \models \varphi$ and $\omega' \not\models \varphi$, then $\omega <_{\varphi} \omega'$
- If $\varphi \equiv \varphi'$, then $\leq_{\varphi} = \leq_{\varphi'}$

Theorem (Katsuno-Mendelzon 91a)

An operator \circ is a revision operator (ie. it satisfies (R1)-(R6)) if and only if there exists a faithful assignment that maps each base φ to a total pre-order \leq_{φ} such that

$$\mathit{mod}(arphi \circ \mu) = \min(\mathit{mod}(\mu), \leq_arphi).$$

Update [Kastuno-Mendelzon 91b]

(U1)
$$\varphi \diamond \mu \vdash \mu$$

(U2) If $\varphi \vdash \mu$, then $\varphi \diamond \mu \equiv \varphi$
(U3) If $\varphi \vdash \bot$ and $\mu \nvDash \bot$ then $\varphi \diamond \mu \nvDash \bot$
(U4) If $\varphi_1 \equiv \varphi_2$ and $\mu_1 \equiv \mu_2$ then $\varphi_1 \diamond \mu_1 \equiv \varphi_2 \diamond \mu_2$
(U5) $(\varphi \diamond \mu) \land \phi \vdash \varphi \diamond (\mu \land \phi)$
(U6) If $\varphi \diamond \mu_1 \vdash \mu_2$ and $\varphi \diamond \mu_2 \vdash \mu_1$, then $\varphi \diamond \mu_1 \equiv \varphi \diamond \mu_2$
(U7) If φ is a complete formula, then $(\varphi \diamond \mu_1) \land (\varphi \diamond \mu_2) \vdash \varphi \diamond (\mu_1 \lor \mu_2)$
(U8) $(\varphi_1 \lor \varphi_2) \diamond \mu \equiv (\varphi_1 \diamond \mu) \lor (\varphi_2 \diamond \mu)$
(U9) If φ is a complete formula and $(\varphi \diamond \mu) \land \phi \nvDash \bot$, then $\varphi \diamond (\mu \land \phi) \vdash (\varphi \diamond \mu) \land \phi$

Theorem

An update operator \diamond satisfies (U1)-(U8) if and only if there exists a faithful assignment that maps each interpretation ω to a partial pre-order \leq_{ω} such that

$$\mathit{mod}(\varphi \diamond \mu) = \bigcup_{\omega \models \varphi} \min(\mathit{mod}(\mu), \leq_{\omega})$$

Update [Kastuno-Mendelzon 91b]

(U1)
$$\varphi \diamond \mu \vdash \mu$$

(U2) If $\varphi \vdash \mu$, then $\varphi \diamond \mu \equiv \varphi$
(U3) If $\varphi \nvDash \bot$ and $\mu \nvDash \bot$ then $\varphi \diamond \mu \nvDash \bot$
(U4) If $\varphi_1 \equiv \varphi_2$ and $\mu_1 \equiv \mu_2$ then $\varphi_1 \diamond \mu_1 \equiv \varphi_2 \diamond \mu_2$
(U5) $(\varphi \diamond \mu) \land \phi \vdash \varphi \diamond (\mu \land \phi)$
(U6) If $\varphi \diamond \mu_1 \vdash \mu_2$ and $\varphi \diamond \mu_2 \vdash \mu_1$, then $\varphi \diamond \mu_1 \equiv \varphi \diamond \mu_2$
(U7) If φ is a complete formula, then $(\varphi \diamond \mu_1) \land (\varphi \diamond \mu_2) \vdash \varphi \diamond (\mu_1 \lor \mu_2)$
(U8) $(\varphi_1 \lor \varphi_2) \diamond \mu \equiv (\varphi_1 \diamond \mu) \lor (\varphi_2 \diamond \mu)$
(U9) If φ is a complete formula and $(\varphi \diamond \mu) \land \phi \nvDash \bot$, then $\varphi \diamond (\mu \land \phi) \vdash (\varphi \diamond \mu) \land \phi$

Theorem

An update operator \diamond satisfies (U1)-(U5), (U8) and (U9) if and only if there exists a faithful assignment that maps each interpretation ω to a total pre-order \leq_{ω} such that

$$\mathit{mod}(\varphi \diamond \mu) = \bigcup_{\omega \models \varphi} \min(\mathit{mod}(\mu), \leq_{\omega})$$

Merging [Konieczny-Pino-Pérez 99]

(IC0)
$$\bigtriangleup_{\mu}(\Psi) \vdash \mu$$

- (IC1) If μ is consistent, then $\triangle_{\mu}(\Psi)$ is consistent
- (IC2) If $\bigwedge \Psi$ is consistent with μ , then $\bigtriangleup_{\mu}(\Psi) \equiv \bigwedge \Psi \land \mu$
- (IC3) If $\Psi_1 \equiv \Psi_2$ and $\mu_1 \equiv \mu_2$, then $\triangle_{\mu_1}(\Psi_1) \equiv \triangle_{\mu_2}(\Psi_2)$
- (IC4) If $\varphi_1 \vdash \mu$ and $\varphi_2 \vdash \mu$, then $\triangle_{\mu}(\{\varphi_1, \varphi_2\}) \land \varphi_1$ is consistent if and only if $\triangle_{\mu}(\{\varphi_1, \varphi_2\}) \land \varphi_2$ is consistent
- (IC5) $riangle_{\mu}(\Psi_1) \land riangle_{\mu}(\Psi_2) \vdash riangle_{\mu}(\Psi_1 \sqcup \Psi_2)$

(IC6) If
$$\triangle_{\mu}(\Psi_1) \land \triangle_{\mu}(\Psi_2)$$
 is consistent, then
 $\triangle_{\mu}(\Psi_1 \sqcup \Psi_2) \vdash \triangle_{\mu}(\Psi_1) \land \triangle_{\mu}(\Psi_2)$

(IC7) $riangle_{\mu_1}(\Psi) \land \mu_2 \vdash riangle_{\mu_1 \land \mu_2}(\Psi)$

(IC8) If $\triangle_{\mu_1}(\Psi) \land \mu_2$ is consistent, then $\triangle_{\mu_1 \land \mu_2}(\Psi) \vdash \triangle_{\mu_1}(\Psi)$

A syncretic assignment is a function mapping each profile Ψ to a total pre-order \leq_{Ψ} over interpretations such that:

• If
$$\omega \models \Psi$$
 and $\omega' \models \Psi$, then $\omega \simeq_{\Psi} \omega'$

- If $\omega \models \Psi$ and $\omega' \not\models \Psi$, then $\omega <_{\Psi} \omega'$
- If $\Psi_1 \equiv \Psi_2$, then $\leq_{\Psi_1} \equiv \leq_{\Psi_2}$

•
$$\forall \omega \models \varphi \; \exists \omega' \models \varphi' \; \omega' \leq_{\{\varphi\} \sqcup \{\varphi'\}} \omega$$

- If $\omega \leq_{\Psi_1} \omega'$ and $\omega \leq_{\Psi_2} \omega'$, then $\omega \leq_{\Psi_1 \sqcup \Psi_2} \omega'$
- If $\omega <_{\Psi_1} \omega'$ and $\omega \leq_{\Psi_2} \omega'$, then $\omega <_{\Psi_1 \sqcup \Psi_2} \omega'$

Theorem

An operator \triangle is an IC merging operator if and only if there exists a syncretic assignment that maps each profile Ψ to a total pre-order \leq_{Ψ} such that

 $mod(\triangle_{\mu}(\Psi)) = min(mod(\mu), \leq_{\Psi})$

Proposition

If \circ is a revision operator (i.e. it satisfies (R1)-(R6)), then the operator \diamond defined by:

$$\varphi \, \diamond \, \mu = \bigvee_{\omega \models \varphi} \varphi_{\omega} \, \diamond \, \mu$$

is an update operator that satisfies (U1)-(U9).

Moreover, for each update operator \diamond , there exists a revision operator \circ such that the previous equation holds.

Proposition

If \triangle is an IC merging operator (it satisfies (IC0-IC8)), then the operator \circ , defined as $\varphi \circ \mu = \triangle_{\mu}(\varphi)$, is an AGM revision operator (it satisfies (R1-R6)).

An operator \Diamond is a confluence operator if it satisfies the following properties:

- (UC0) $\Diamond_{\mu}(\Psi) \vdash \mu$
- **(UC1)** If μ is consistent and Ψ is p-consistent, then $\Diamond_{\mu}(\Psi)$ is consistent
- **(UC2)** If Ψ is complete, Ψ is consistent and $\bigwedge \Psi \vdash \mu$, then $\Diamond_{\mu}(\Psi) \equiv \bigwedge \Psi$
- **(UC3)** If $\Psi_1 \equiv \Psi_2$ and $\mu_1 \equiv \mu_2$, then $\Diamond_{\mu_1}(\Psi_1) \equiv \Diamond_{\mu_2}(\Psi_2)$
- **(UC4)** If φ_1 and φ_2 are complete formulae and $\varphi_1 \vdash \mu$, $\varphi_2 \vdash \mu$, then $\Diamond_{\mu}(\{\varphi_1, \varphi_2\}) \land \varphi_1$ is consistent if and only $\Diamond_{\mu}(\{\varphi_1, \varphi_2\}) \land \varphi_2$ is consistent
- **(UC5)** $\Diamond_{\mu}(\Psi_1) \land \Diamond_{\mu}(\Psi_2) \vdash \Diamond_{\mu}(\Psi_1 \sqcup \Psi_2)$
- **(UC6)** If Ψ_1 and Ψ_2 are complete profiles and $\Diamond_{\mu}(\Psi_1) \land \Diamond_{\mu}(\Psi_2)$ is consistent, then $\Diamond_{\mu}(\Psi_1 \sqcup \Psi_2) \vdash \Diamond_{\mu}(\Psi_1) \land \Diamond_{\mu}(\Psi_2)$

$$(\mathsf{UC7}) \hspace{0.1cm} \Diamond_{\mu_1}(\Psi) \wedge \mu_2 \vdash \Diamond_{\mu_1 \wedge \mu_2}(\Psi)$$

- **(UC8)** If Ψ is a complete profile and if $\Diamond_{\mu_1}(\Psi) \land \mu_2$ is consistent then $\Diamond_{\mu_1 \land \mu_2}(\Psi) \vdash \Diamond_{\mu_1}(\Psi) \land \mu_2$
- **(UC9)** $\Diamond_{\mu}(\Psi \sqcup \{\varphi \lor \varphi'\}) \equiv \Diamond_{\mu}(\Psi \sqcup \{\varphi\}) \lor \Diamond_{\mu}(\Psi \sqcup \{\varphi'\})$

Definition

- A multi-set of interpretations e will be called a state.
- If Ψ = {φ₁,...,φ_n} is a profile and e = {ω₁,...,ω_n} is a state such that ω_i ⊨ φ_i for each i, we say that e is a state of the profile Ψ, that will be denoted by e ⊨ Ψ.
- If $e = \{\omega_1, \dots, \omega_n\}$ is a state, we define the profile Ψ_e by putting $\Psi_e = \{\varphi_{\{\omega_1\}}, \dots, \varphi_{\{\omega_n\}}\}$

Lemma

If \Diamond satisfies (UC3) and (UC9) then \Diamond satisfies the following

$$\Diamond_\mu(\Psi)\equiv igvee_{e\models\Psi}\Diamond_\mu(\Psi_e)$$

A distributed assignment is a function mapping each state e to a total pre-order \leq_e over interpretations such that:

- $\omega <_{\{\omega,...,\omega\}} \omega'$ if $\omega' \neq \omega$
- $\omega \simeq_{\{\omega,\omega'\}} \omega'$
- If $\omega \leq_{e_1} \omega'$ and $\omega \leq_{e_2} \omega'$, then $\omega \leq_{e_1 \sqcup e_2} \omega'$
- If $\omega <_{e_1} \omega'$ and $\omega \leq_{e_2} \omega'$, then $\omega <_{e_1 \sqcup e_2} \omega'$

Theorem

An operator \Diamond is a confluence operator if and only if there exists a distributed assignment that maps each state e to a total pre-order \leq_e such that

$$mod(\Diamond_{\mu}(\Psi)) = \bigcup_{e \models \Psi} min(mod(\mu), \leq_e)$$
 (1)

Proposition

If \Diamond is a confluence operator (i.e. it satisfies (UC0-UC9)), then the operator \diamond , defined as $\varphi \diamond \mu = \Diamond_{\mu}(\varphi)$, is an update operator (i.e. it satisfies (U1-U9)).

Proposition

If \triangle is an IC merging operator (i.e. it satisfies (IC0-IC8)) then the operator \Diamond defined by

$$\Diamond_\mu(\Psi) = igvee_{e\models\Psi} riangle_\mu(\Psi_e)$$

is a confluence operator (i.e. it satisfies (UC0-UC9)). Moreover, for each confluence operator \Diamond , there exists a merging operator \triangle such that the previous equation holds.

- A distance *d* between interpretations
 - Drastic distance, Hamming (Dalal) distance, ...
- An aggregation function f
 - sum, leximax, ...
- $\omega \leq_e \omega'$ if and only if $d(\omega, e) \leq d(\omega', e)$, where $(e = \{\omega_1, \dots, \omega_n\})$:

$$d(\omega, e) = f(d(\omega, \omega_1) \dots, d(\omega, \omega_n))$$

• $mod(\Diamond_{\mu}(\Psi)) = \bigcup_{e \models \Psi} min(mod(\mu), \leq_e)$

Example

Let
$$\Psi = \{\varphi_1, \varphi_2\}$$
 and μ :

The corresponding states are:

$$egin{aligned} \mathsf{mod}(\mu) &= \mathcal{W} \setminus \{101\} \ \mathsf{mod}(arphi_1) &= \{001\} \ \mathsf{mod}(arphi_2) &= \{001,111\} \end{aligned}$$

$$\begin{array}{l} e_1 = \{001, 001\} \\ e_2 = \{001, 111\} \end{array}$$

\mathcal{W}	001	111	<i>e</i> 1		e ₂		$\Diamond_{\mu}^{d_H,\Sigma}$	$\Diamond_{\mu}^{d_{\mathcal{H}},Gmax}$
			Σ	Gmax	Σ	Gmax		
000	1	3	2	11	4	31		
001	0	2	0	00	2	20	×	×
010	2	2	4	22	4	22		
011	1	1	2	11	2	11	×	×
100	2	2	4	22	4	22		
101	1	1	2	11	2	11		
110	3	1	6	33	4	31		
111	2	0	4	22	2	20	×	

Example

Let
$$\Psi = \{\varphi_1, \varphi_2\}$$
 and μ :

The corresponding states are:

$$egin{aligned} \mathsf{mod}(\mu) &= \mathcal{W} \setminus \{101\} \ \mathsf{mod}(arphi_1) &= \{001\} \ \mathsf{mod}(arphi_2) &= \{001,111\} \end{aligned}$$

$$\begin{array}{l} e_1 = \{001, 001\} \\ e_2 = \{001, 111\} \end{array}$$

\mathcal{W}	001	111	e ₁		e ₂		$\Diamond_{\mu}^{d_H,\Sigma}$	$\Diamond_{\mu}^{d_{\mathcal{H}},Gmax}$
			Σ	Gmax	Σ	Gmax		
000	1	3	2	11	4	31		
001	0	2	0	00	2	20	×	×
010	2	2	4	22	4	22		
011	1	1	2	11	2	11	×	×
100	2	2	4	22	4	22		
101	1	1	2	11	2	11		
110	3	1	6	33	4	31		
111	2	0	4	22	2	20	×	

 $mod(\Diamond_{\mu}^{d_{H},\Sigma}(\Psi)) = \{001,011,111\}$

Example

Let
$$\Psi = \{\varphi_1, \varphi_2\}$$
 and μ :

The corresponding states are:

$$egin{aligned} \mathsf{mod}(\mu) &= \mathcal{W} \setminus \{101\} \ \mathsf{mod}(arphi_1) &= \{001\} \ \mathsf{mod}(arphi_2) &= \{001,111\} \end{aligned}$$

$$\begin{array}{l} e_1 = \{001, 001\} \\ e_2 = \{001, 111\} \end{array}$$

\mathcal{W}	001	111	e ₁		e ₂		$\Diamond_{\mu}^{d_{H},\Sigma}$	$\Diamond_{\mu}^{d_{H},\text{Gmax}}$
			Σ	Gmax	Σ	Gmax		
000	1	3	2	11	4	31		
001	0	2	0	00	2	20	×	×
010	2	2	4	22	4	22		
011	1	1	2	11	2	11	×	×
100	2	2	4	22	4	22		
101	1	1	2	11	2	11		
110	3	1	6	33	4	31		
111	2	0	4	22	2	20	×	

$$mod(\Diamond_{\mu}^{d_{H},\Sigma}(\Psi)) = \{001,011,111\}$$
 $mod(\Diamond_{\mu}^{d_{H},\mathsf{Gmax}}(\Psi)) = \{001,011\}$

- Confluence operators
- Pointwise merging
- Negotiation
- Belief vs Goal aggregation