A Computational Analysis of the Tournament Equilibrium Set

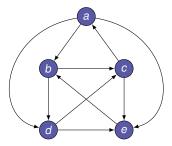
Felix Brandt Felix Fischer Paul Harrenstein Maximilian Mair

Ludwig-Maximilians-Universität, München

COMSOC, 4th September 2008

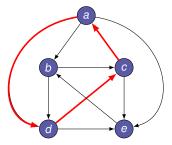
The Trouble with Tournaments

- Tournaments are complete and asymmetric graphs
- Multiple applications in: social choice theory, sports tournaments, game theory, psychometrics, biology, argumentation theory, webpage and journal ranking, etc.
- However, how to select the winners of a tournament in the absence of transitivity?



The Trouble with Tournaments

- Tournaments are complete and asymmetric graphs
- Multiple applications in: social choice theory, sports tournaments, game theory, psychometrics, biology, argumentation theory, webpage and journal ranking, etc.
- However, how to select the winners of a tournament in the absence of transitivity?



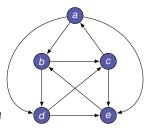
Overview

- Schwartz's Tournament Equilibrium Set (TEQ)
- How appealing is TEQ as a tournament solution?
- Schwartz's conjecture and monotonicity of TEQ
- Computational intractability of TEQ
- Heuristic and experiments
- Conclusion

Introduction

Tournaments

- A tournament T = (A, >) consists of:
 - a finite set of alternatives A
 - a complete and asymmetric relation > on A
 - $\overline{D}(a) = \{x \in A : x > a\}$, the set of dominators of a

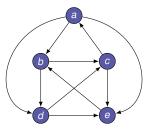


- A *tournament solution* S associates each tournament T = (A, >) with a subset S(T) of A such that:
 - S(T) non-empty if A is non-empty
 - S(T) consists of the Condorcet winner only if there is one
- Examples: Copeland set, Top Cycle, Uncovered Set, Banks Set, Minimal Covering Set, Essential Set, *Tournament Equilibrium Set (TEQ)*...

Introduction

Tournaments

- A tournament T = (A, >) consists of:
 - a finite set of alternatives A
 - a complete and asymmetric relation > on A
 - $\overline{D}(a) = \{x \in A : x > a\}$, the set of dominators of a

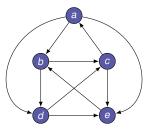


- A *tournament solution* S associates each tournament $T = (A, \succ)$ with a subset S(T) of A such that:
 - S(T) non-empty if A is non-empty
 - $\circ S(T)$ consists of the Condorcet winner only if there is one
- Examples: Copeland set, Top Cycle, Uncovered Set, Banks Set, Minimal Covering Set, Essential Set, *Tournament Equilibrium Set (TEQ)*...

Introduction

Tournaments

- A tournament T = (A, >) consists of:
 - a finite set of alternatives A
 - a complete and asymmetric relation > on A
 - $\overline{D}(a) = \{x \in A : x > a\}$, the set of dominators of a



- A *tournament solution* S associates each tournament $T = (A, \succ)$ with a subset S(T) of A such that:
 - S(T) non-empty if A is non-empty
 - $\circ S(T)$ consists of the Condorcet winner only if there is one
- Examples: Copeland set, Top Cycle, Uncovered Set, Banks Set, Minimal Covering Set, Essential Set, *Tournament Equilibrium Set (TEQ)*...

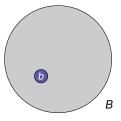
Intuition: For *S* a solution concept:

- An alternative *a* is only "properly" dominated, if dominated by a "good" alternative
- No alternative selected by *S* should be "properly" dominated by an "outside" alternative not selected by *S*

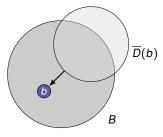
Intuition: For *S* a solution concept:

- An alternative a is only "properly" dominated, if dominated by an alternative selected by S from the dominators of a
- No alternative selected by *S* should be "properly" dominated by an "outside" alternative not selected by *S*

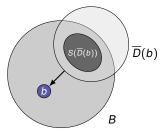
Definition: *B* is *S*-retentive if $B \neq \emptyset$ and $S(\overline{D}(b)) \subseteq B$ for all $b \in B$



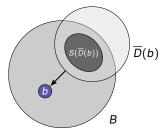
Definition: *B* is *S*-retentive if $B \neq \emptyset$ and $S(\overline{D}(b)) \subseteq B$ for all $b \in B$



Definition: *B* is *S*-retentive if $B \neq \emptyset$ and $S(\overline{D}(b)) \subseteq B$ for all $b \in B$



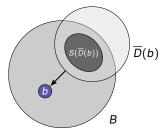
Definition: *B* is *S*-retentive if $B \neq \emptyset$ and $S(\overline{D}(b)) \subseteq B$ for all $b \in B$



Thomas Schwartz

Definition \mathring{S} returns the union of minimal *S*-retentive subsets **Definition** *TEQ* is recursively defined by $TEQ(T) = T\mathring{E}Q(T)$

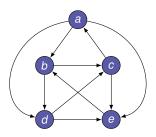
Definition: *B* is *S*-retentive if $B \neq \emptyset$ and $S(\overline{D}(b)) \subseteq B$ for all $b \in B$



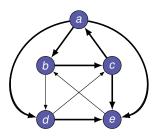
Thomas Schwartz

Alternative characterization

- TEQ-relation: $x \rightarrow y$ if and only if $x \in TEQ(\overline{D}(y))$
- TEQ is the top cycle of the TEQ-relation

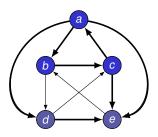


x	$\overline{D}(x)$	$TEQ(\overline{D}(x))$
а	{ C }	{ <i>C</i> }
b	{ <i>a</i> , <i>e</i> }	{ a }
С	{b, d}	{ b }
d	{a, b}	{ a }
е	{a.c.d}	{a.c.d}



Thomas Schwartz

x	$\overline{D}(x)$	$TEQ(\overline{D}(x))$
а	{ C }	{ <i>C</i> }
b	{ <i>a</i> , <i>e</i> }	{ a }
С	{b, d}	{ b }
d	{a, b}	{ a }
е	{a.c.d}	{a.c.d}

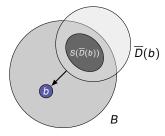


Thomas Schwartz

x	$\overline{D}(x)$	$TEQ(\overline{D}(x))$
а	{ C }	{ c }
b	{ <i>a</i> , <i>e</i> }	{ a }
С	{b, d}	{ b }
d	{a,b}	{ a }
е	$\{a, c, d\}$	$\{a, c, d\}$

 $TEQ(T) = \{a, b, c\}$

Definition: *B* is *S*-retentive if $B \neq \emptyset$ and $S(\overline{D}(b)) \subseteq B$ for all $b \in B$

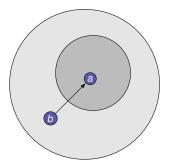


Thomas Schwartz

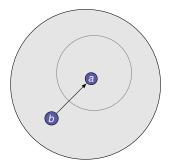
Definition *TEQ* satisfies CTC (Connected Top Cycle) if there is always a unique minimal TEQ-retentive subset

Schwartz's Conjecture: TEQ satsifies CTC.

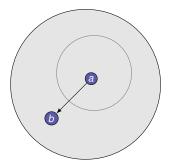
- Monotonicity (MON)
- Strong Superset Property (SSP)
- Independence of non-winners (INW)



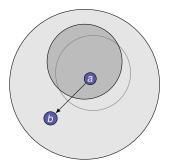
- Monotonicity (MON)
- Strong Superset Property (SSP)
- Independence of non-winners (INW)



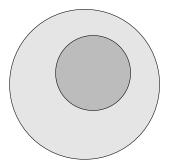
- Monotonicity (MON)
- Strong Superset Property (SSP)
- Independence of non-winners (INW)



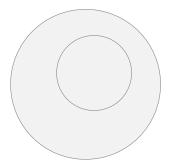
- Monotonicity (MON)
- Strong Superset Property (SSP)
- Independence of non-winners (INW)



- Monotonicity (MON)
- Strong Superset Property (SSP)
- Independence of non-winners (INW)



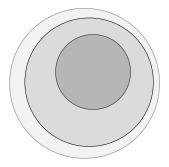
- Monotonicity (MON)
- Strong Superset Property (SSP)
- Independence of non-winners (INW)



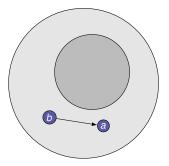
- Monotonicity (MON)
- Strong Superset Property (SSP)
- Independence of non-winners (INW)



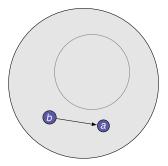
- Monotonicity (MON)
- Strong Superset Property (SSP)
- Independence of non-winners (INW)



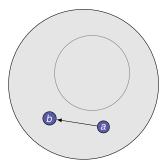
- Monotonicity (MON)
- Strong Superset Property (SSP)
- Independence of non-winners (INW)



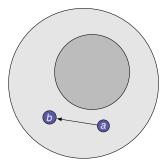
- Monotonicity (MON)
- Strong Superset Property (SSP)
- Independence of non-winners (INW)



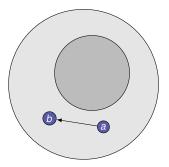
- Monotonicity (MON)
- Strong Superset Property (SSP)
- Independence of non-winners (INW)



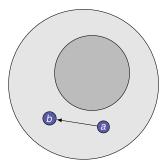
- Monotonicity (MON)
- Strong Superset Property (SSP)
- Independence of non-winners (INW)



- Monotonicity (MON)
- Strong Superset Property (SSP)
- Independence of non-winners (INW)

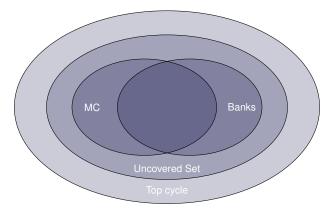


- Monotonicity (MON)
- Strong Superset Property (SSP)
- Independence of non-winners (INW)

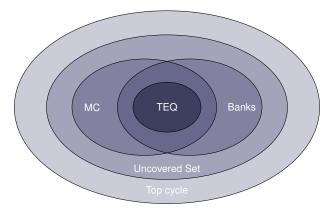


Theorem (Laffond et al., 1993): TEQ satisfying CTC is equivalent to TEQ satisfying SSP, to TEQ satisfying INW, as well as to TEQ satisfying CTC.

Inclusions



Inclusions



Brandt, Fischer, Harrenstein, Mair (LMU)

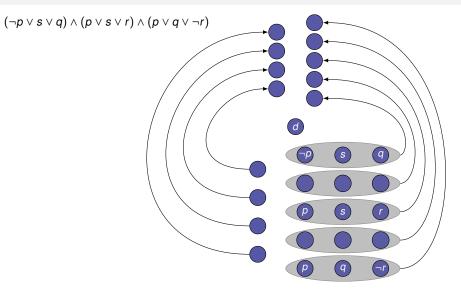
Computational Intractability of TEQ

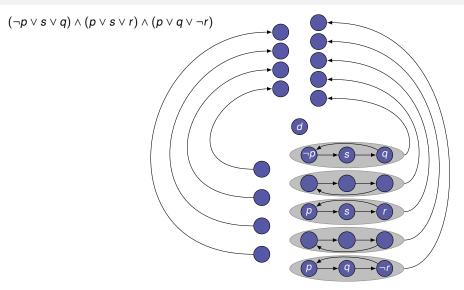
Theorem Deciding whether an alternative is in TEQ is NP-hard.

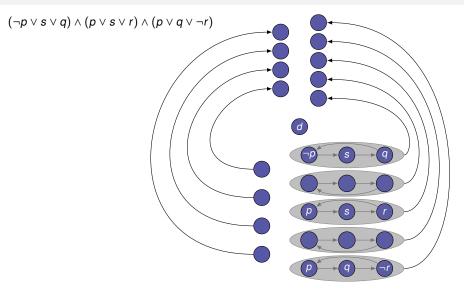
Proof: Reduction from 3-SAT, also observing that

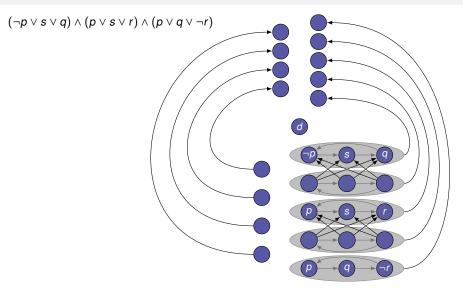
- the construction also works for membership in the Banks set
- TEQ is included in the Banks set.

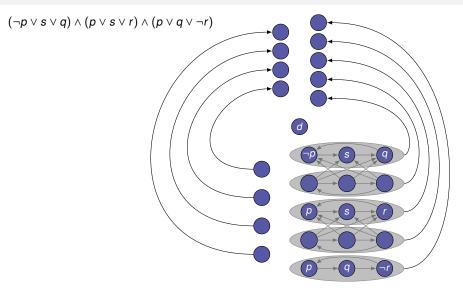
Computational Intractability of TEQ

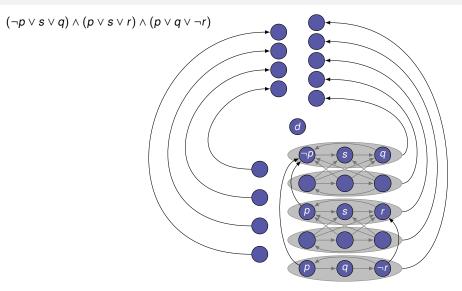


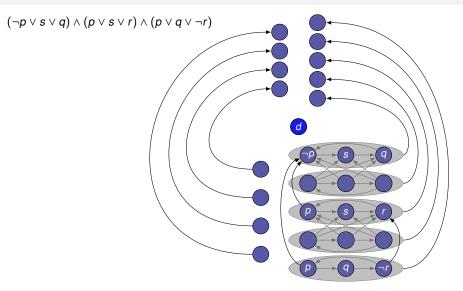












Theorem Deciding whether an alternative is in TEQ is NP-hard.

Proof: Reduction from 3-SAT, also observing that

- the construction also works for membership in the Banks set
- TEQ is included in the Banks set.

Theorem Deciding whether an alternative is in TEQ is NP-hard.

Proof: Reduction from 3-SAT, also observing that

- the construction also works for membership in the Banks set
- TEQ is included in the Banks set.

Remarks:

- Computing TEQ is also intractable.
- Compare Woeginger's reduction from graph three-colorability for NP-completeness of membership in the Banks set
- NP-hardness result does not depend on Schwartz's conjecture
- Reduction shows the NP-hardness of any tournament solution between Banks and TEQ

- · Recursive definition of TEQ suggests an exponential naive algorithm
- Naive algorithm can be improved upon by assuming TEQ satisfies CTC
- Idea: Start with the alternatives with minimal dominator sets (Copeland winners) and calculate the TEQ-relation backwards until you end up in **the** TEQ top cycle.

```
procedure TEQ(X)

R \leftarrow \emptyset

B \leftarrow C \leftarrow \text{Copeland set of } X

loop

R \leftarrow R \cup \{(b, a) : a \in C \text{ and } b \in \text{TEQ}(\overline{D}(a))\}

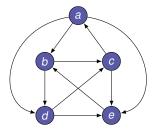
D \leftarrow \bigcup_{a \in C} \text{TEQ}(\overline{D}(a))

if D \subseteq B then return TC_B(R) end if

C \leftarrow D

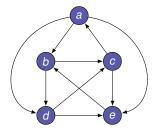
B \leftarrow B \cup C

end loop
```



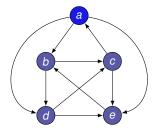
- Recursive definition of TEQ suggests an exponential naive algorithm
- Naive algorithm can be improved upon by assuming TEQ satisfies CTC
- Idea: Start with the alternatives with minimal dominator sets (Copeland winners) and calculate the TEQ-relation backwards until you end up in **the** TEQ top cycle.

x	$\overline{D}(x)$	$TEQ(\overline{D}(x))$
а	{ <i>C</i> }	{ c }
b	{ <i>a</i> , <i>e</i> }	{ a }
С	{b, d}	{ b }
d	{a,b}	{ a }
е	{a, c, d}	{ <i>a</i> , <i>c</i> , <i>d</i> }



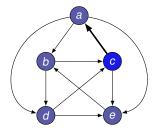
- Recursive definition of TEQ suggests an exponential naive algorithm
- Naive algorithm can be improved upon by assuming TEQ satisfies CTC
- Idea: Start with the alternatives with minimal dominator sets (Copeland winners) and calculate the TEQ-relation backwards until you end up in **the** TEQ top cycle.

x	$\overline{D}(x)$	$TEQ(\overline{D}(x))$
а	{ C }	{ <i>c</i> }
b	{a, e}	{ a }
С	{b, d}	{ b }
d	{a,b}	{ a }
е	{a, c, d}	{a, c, d}



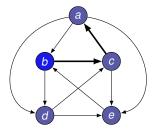
- Recursive definition of TEQ suggests an exponential naive algorithm
- Naive algorithm can be improved upon by assuming TEQ satisfies CTC
- Idea: Start with the alternatives with minimal dominator sets (Copeland winners) and calculate the TEQ-relation backwards until you end up in **the** TEQ top cycle.

x	$\overline{D}(x)$	$TEQ(\overline{D}(x))$
а	{ C }	{ <i>c</i> }
b	{a, e}	{ a }
С	{b, d}	{ b }
d	{a,b}	{ a }
е	{a, c, d}	{a, c, d}



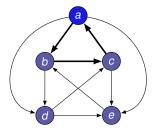
- Recursive definition of TEQ suggests an exponential naive algorithm
- Naive algorithm can be improved upon by assuming TEQ satisfies CTC
- Idea: Start with the alternatives with minimal dominator sets (Copeland winners) and calculate the TEQ-relation backwards until you end up in **the** TEQ top cycle.

x	$\overline{D}(x)$	$TEQ(\overline{D}(x))$
а	{ C }	{ <i>c</i> }
b	{a, e}	{ a }
С	{b, d}	{ b }
d	{a,b}	{ a }
е	{a, c, d}	{a, c, d}



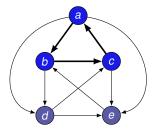
- Recursive definition of TEQ suggests an exponential naive algorithm
- Naive algorithm can be improved upon by assuming TEQ satisfies CTC
- Idea: Start with the alternatives with minimal dominator sets (Copeland winners) and calculate the TEQ-relation backwards until you end up in **the** TEQ top cycle.

x	$\overline{D}(x)$	$TEQ(\overline{D}(x))$
а	{ C }	{ <i>c</i> }
b	{a, e}	{ a }
С	{b, d}	{ b }
d	{a,b}	{ a }
е	{a, c, d}	{a, c, d}



- Recursive definition of TEQ suggests an exponential naive algorithm
- Naive algorithm can be improved upon by assuming TEQ satisfies CTC
- Idea: Start with the alternatives with minimal dominator sets (Copeland winners) and calculate the TEQ-relation backwards until you end up in **the** TEQ top cycle.

x	$\overline{D}(x)$	$TEQ(\overline{D}(x))$
а	{ C }	{ <i>c</i> }
b	{a, e}	{ a }
С	{b, d}	{ b }
d	{a,b}	{ a }
е	{a, c, d}	{a, c, d}



Experimental Results: Evaluation of the Heuristic

A	Floyd-Warshall	Kosaraju	Algorithm 1
50	0.48 s	0.59 s	0.09 s
100	53.33 s	65.73 s	9.57 s
150	1 166 s	1 429 s	210 s

Uniform random tournaments (p = 0.5)

 A	Floyd-Warshall	Kosaraju	Algorithm 1
50	13.87 s	16.56 s	0.01 s
100	18416s	21 382 s	8.46 s
150	_	_	1273 s

Structured random tournaments (p = 0.8)

- Two versions of naive algorithm depending on transitive closure subalgorithm
- Floyd-Warshall slightly outperforms Kosaraju despite worse asymptotic complexity
 - Hidden constants are amplified as consequence of TEQ's recursive definition
- Our heuristic outperforms naive algorithm by factor five on uniform tournaments
 - o Dramatically faster on structured tournaments than naive algorithm

Searching for Counterexamples to Schwartz's Conjecture

 A	no. of non-isomorphic tournaments on A
1	1
2	1
3	2
4	4
5	12
6	56
7	456
8	6 880
9	191 536
10	9733056
11	903 753 248
12	154 108 311 168
	$2^{\binom{n}{2}}$
n	$\approx \frac{1}{n!}$

Result: Exhaustive search of all tournaments up to 10 alternatives revealed no counterexample to Schwartz's conjecture. (Testing for 11 alternatives using a list of non-isomorphic tournaments (42GB) provided by Brendan McKay in progress)

Conclusion

- Attractiveness of TEQ dependent on Schwartz's conjecture
- Deciding TEQ membership is NP-hard
- · Heuristic significantly improves on naive algorithm
- So far no counterexample for Schwartz's conjecture found by:
 - o random sampling among millions of tournaments
 - exhaustive search in tournaments up to 11 alternatives