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Introduction

The Trouble with Tournaments

• Tournaments are complete and asymmetric graphs

• Multiple applications in: social choice theory, sports tournaments, game theory,
psychometrics, biology, argumentation theory, webpage and journal ranking, etc.

• However, how to select the winners of a tournament in the absence of transitivity?
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Introduction

Overview

• Schwartz’s Tournament Equilibrium Set (TEQ)

• How appealing is TEQ as a tournament solution?

• Schwartz’s conjecture and monotonicity of TEQ

• Computational intractability of TEQ

• Heuristic and experiments

• Conclusion
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Introduction

Tournaments

• A tournament T = (A ,�) consists of:

◦ a finite set of alternatives A

◦ a complete and asymmetric relation � on A

◦ D(a) = {x ∈ A : x � a}, the set of dominators of a

b c
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• A tournament solution S associates each tournament T = (A ,�) with a subset
S(T) of A such that:

◦ S(T) non-empty if A is non-empty

◦ S(T) consists of the Condorcet winner only if there is one

• Examples: Copeland set, Top Cycle, Uncovered Set, Banks Set, Minimal Covering
Set, Essential Set, Tournament Equilibrium Set (TEQ). . .
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Tournament Equilibrium Set

Retentiveness and the Tournament Equilibrium Set (TEQ)

Intuition: For S a solution concept:

• An alternative a is only “properly” dominated, if dominated by
a “good” alternative

• No alternative selected by S should be “properly” dominated
by an “outside” alternative not selected by S

Thomas Schwartz
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Tournament Equilibrium Set

Retentiveness and the Tournament Equilibrium Set (TEQ)

Definition: B is S-retentive if B , ∅ and S(D(b)) ⊆ B for all b ∈ B
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Retentiveness and the Tournament Equilibrium Set (TEQ)

Definition: B is S-retentive if B , ∅ and S(D(b)) ⊆ B for all b ∈ B

b

B

D(b)D(b)S(D(b))

Thomas Schwartz

Definition S̊ returns the union of minimal S-retentive subsets

Definition TEQ is recursively defined by TEQ(T) = ˚TEQ(T)
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Tournament Equilibrium Set

Retentiveness and the Tournament Equilibrium Set (TEQ)

Definition: B is S-retentive if B , ∅ and S(D(b)) ⊆ B for all b ∈ B

b

B

D(b)D(b)S(D(b))

Thomas Schwartz

Alternative characterization

• TEQ-relation: x → y if and only if x ∈ TEQ(D(y))

• TEQ is the top cycle of the TEQ-relation
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Tournament Equilibrium Set

Retentiveness and the Tournament Equilibrium Set (TEQ)
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x D(x) TEQ(D(x))

a {c} {c}
b {a, e} {a}
c {b , d} {b}
d {a, b} {a}
e {a, c, d} {a, c, d}
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d e Thomas Schwartz

x D(x) TEQ(D(x))

a {c} {c}
b {a, e} {a}
c {b , d} {b}
d {a, b} {a}
e {a, c, d} {a, c, d} TEQ(T) = {a, b , c}
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Tournament Equilibrium Set

Retentiveness and the Tournament Equilibrium Set (TEQ)

Definition: B is S-retentive if B , ∅ and S(D(b)) ⊆ B for all b ∈ B

b

B

D(b)D(b)S(D(b))

Thomas Schwartz

Definition TEQ satisfies CTC (Connected Top Cycle) if there is always a unique minimal
TEQ-retentive subset

Schwartz’s Conjecture: TEQ satsifies CTC.
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Tournament Equilibrium Set

Desirable Properties of TEQ

• Monotonicity (MON)

• Strong Superset Property (SSP)

• Independence of non-winners (INW)
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Tournament Equilibrium Set

Desirable Properties of TEQ

• Monotonicity (MON)

• Strong Superset Property (SSP)

• Independence of non-winners (INW)

a
b

Theorem (Laffond et al., 1993): TEQ satisfying CTC is equivalent to TEQ satisfying SSP,
to TEQ satisfying INW, as well as to TEQ satisfying CTC.
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Tournament Equilibrium Set

Inclusions

Top cycle

Uncovered Set

BanksMC
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Computational Intractability of TEQ

Computational Intractability of TEQ

Theorem Deciding whether an alternative is in TEQ is NP-hard.

Proof: Reduction from 3-SAT, also observing that

• the construction also works for membership in the Banks set

• TEQ is included in the Banks set. �
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Computational Intractability of TEQ

Computational Intractability of TEQ

Theorem Deciding whether an alternative is in TEQ is NP-hard.

Proof: Reduction from 3-SAT, also observing that

• the construction also works for membership in the Banks set

• TEQ is included in the Banks set. �
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Computational Intractability of TEQ

Theorem Deciding whether an alternative is in TEQ is NP-hard.

Proof: Reduction from 3-SAT, also observing that

• the construction also works for membership in the Banks set

• TEQ is included in the Banks set. �

Remarks:

• Computing TEQ is also intractable.

• Compare Woeginger’s reduction from graph three-colorability for NP-completeness
of membership in the Banks set

• NP-hardness result does not depend on Schwartz’s conjecture

• Reduction shows the NP-hardness of any tournament solution between Banks and
TEQ
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Implementation and Experiments

A Heuristic for Computing TEQ

• Recursive definition of TEQ suggests an exponential naive algorithm

• Naive algorithm can be improved upon by assuming TEQ satisfies CTC

• Idea: Start with the alternatives with minimal dominator sets (Copeland winners)
and calculate the TEQ-relation backwards until you end up in the TEQ top cycle.

procedure TEQ(X)
R ← ∅
B ← C ← Copeland set of X
loop

R ← R ∪
{
(b , a) : a ∈ C and b ∈ TEQ(D(a))

}
D ←

⋃
a∈C TEQ(D(a))

if D ⊆ B then return TCB(R) end if
C ← D
B ← B ∪ C

end loop

b c

a

d e
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Implementation and Experiments

Experimental Results: Evaluation of the Heuristic

|A| Floyd-Warshall Kosaraju Algorithm 1

50 0.48 s 0.59 s 0.09 s
100 53.33 s 65.73 s 9.57 s
150 1 166 s 1 429 s 210 s

Uniform random tournaments (p = 0.5)

|A| Floyd-Warshall Kosaraju Algorithm 1

50 13.87 s 16.56 s 0.01 s
100 18 416 s 21 382 s 8.46 s
150 — — 1273 s

Structured random tournaments (p = 0.8)

• Two versions of naive algorithm depending on transitive closure subalgorithm

• Floyd-Warshall slightly outperforms Kosaraju despite worse asymptotic complexity

◦ Hidden constants are amplified as consequence of TEQ’s recursive definition

• Our heuristic outperforms naive algorithm by factor five on uniform tournaments

◦ Dramatically faster on structured tournaments than naive algorithm
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Implementation and Experiments

Searching for Counterexamples to Schwartz’s Conjecture

no. of non-isomorphic
|A | tournaments on A

1 1
2 1
3 2
4 4
5 12
6 56
7 456
8 6 880
9 191 536

10 9 733 056
11 903 753 248
12 154 108 311 168

n ≈
2(n

2)

n!

Result: Exhaustive search of all tournaments up to 10 alternatives revealed no counterexample to

Schwartz’s conjecture. (Testing for 11 alternatives using a list of non-isomorphic tournaments (42GB)

provided by Brendan McKay in progress)
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Conclusion

Conclusion

• Attractiveness of TEQ dependent on Schwartz’s conjecture

• Deciding TEQ membership is NP-hard

• Heuristic significantly improves on naive algorithm

• So far no counterexample for Schwartz’s conjecture found by:

◦ random sampling among millions of tournaments
◦ exhaustive search in tournaments up to 11 alternatives
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