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Introduction

Combine Social Choice Theory with Discrete Optimization

Given: individuals' preferences over edges of a graph

Aim: Find a �socially best� spanning tree in the graph

Applications:

oil pipeline construction

water network construction in a village

Group ranking of edges may or may not allocate numerical values to
the edges

Main result:

1 sets of best spanning trees for the discussed ranking rules coincide

2 a best spanning tree for each considered ranking rule can be
determined e�ciently
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Formal Framework

Undirected Graph G = (V ,E )

T ⊆ E is a spanning tree :⇐⇒ subgraph (V ,T ) of G is acyclic and
connected

τ...set of spanning trees of G

�nite set of individuals I = {1, 2, ..., k},
linear orders Pi on E , 1 ≤ i ≤ k

π = (P1,P2, ...,Pk) is a (voter) preference pro�le

Complete order % on E :
asymmetric part � and symmetric part ∼
Complete order D on τ :
asymmetric part B and symmetric part ./
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De�nition

Let D be a complete order on τ .
T ∈ τ is a best tree with respect to D :⇐⇒ @T ′ ∈ τ : T ′ B T

Examples

Let w(e) ∈ R for all e ∈ E .

Minimum Spanning Tree Problem is to determine a best tree with
respect to the relation T1 D T2 :⇐⇒

∑
e∈T1

w(e) ≤
∑

e∈T2
w(e).

Maximum Spanning Tree Problem: �nd a best tree w.r.t. relation
T1 D T2 :⇐⇒

∑
e∈T1

w(e) ≥
∑

e∈T2
w(e).
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Basic orders on the edge-set

De�nitions

Borda's method (see [BF02]):
Individual i 's Borda count of edge e is given by
Bi (e) := |{f ∈ E : ePi f }|. The total Borda count of edge e is
de�ned by B(e) :=

∑
i∈I Bi (e). For e, f ∈ E we de�ne the

Borda-order on E by e %b f :⇐⇒ B(e) ≥ B(f ).

Simple Majority-order (see [BF02]):
Let e, f ∈ E . Then we de�ne the Simple Majority-order on E by
e %sm f :⇐⇒ |{i ∈ I : ePi f }| ≥ |{i ∈ I : fPie}|.
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De�nitions

Let e, f ∈ E .
For all i ∈ I , partition edge-set E into a set Si ⊂ E of edges individual i
approves of and a set E \ Si individual i disapproves of.

Approval-order (see [BF83]):
The Approval count of e is de�ned by A(e) := |{i ∈ I : e ∈ Si}|.
The Approval-order %a is then de�ned by e %a f :⇐⇒ A(e) ≥ A(f ).

For all i ∈ I the set S t
i := {e ∈ E |ePi f ∀f ∈ E \ {e}} represents

individual i 's top choice

Plurality-order (see [Rob91]):
The Plurality count of e is Pl(e) := |{i ∈ I : e ∈ S t

i }|. The
Plurality-order %pl is de�ned by e %pl f :⇐⇒ Pl(e) ≥ Pl(f ).
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Borda-, Approval- and Plurality-order are weak orders on E

(complete and transitive).

Simple Majority-order is in general not transitive ⇒ preference cycles
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Some complete orders on τ

Idea: Derive weak orders on τ from weak orders on E

De�nition

For T ∈ τ we de�ne the Borda count of T by B(T ) :=
∑

e∈T B(e).
Then the Borda-order DB on τ is de�ned by letting, for all T1,T2 ∈ τ ,

T1 DB T2 :⇐⇒ B(T1) ≥ B(T2) .

Analogously: Approval-order DA on τ , Plurality-order DPl on τ .
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General concept of a best tree w.r.t. orders, that are based on summing
up numerical values of the edges:

De�nition

Let τ be the set of spanning trees of G and let % be a weak order on E .
A tree M ∈ τ is called max-spanning tree if and only if for every edge
f = {i , j}, f /∈ M,

f - e

holds for all e ∈ M that are part of the unique simple path between i and
j in M.



Introduction Formal Framework Some complete orders on τ Comparing trees

Remarks:

1 Above de�nition generalizes the path optimality condition for the
maximum spanning tree problem stated in [AMO93]

2 A max-spanning tree can be determined e�ciently by a greedy
algorithm (e.g. Kruskal's algorithm)

3 Note that for above de�nition % does not need to be based on
numerical values

4 Simple-Majority order does not �t in this concept
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Alternative idea to rank two trees:

1 Those edges that are simultaneously contained in both trees should
not play a role. Thus, we simply remove those edges that both trees
have in common.

2 Rank trees T1,T2 ∈ τ according to the sum of wins of edges of T̃1

against those of T̃2, where T̃1 := T1 \ T2 and T̃2 := T2 \ T1

De�nition

Let % be a complete order on E . For e, f ∈ E let

s(e, f ) :=

 1 if e � f

0 if e ∼ f

−1 if e ≺ f

be the score of e versus f .
For T1, T2 ∈ τ we de�ne

T1 DS T2 :⇐⇒
∑
a∈T̃1

∑
b∈T̃2

s(a, b) ≥ 0 .



Introduction Formal Framework Some complete orders on τ Comparing trees

t t

t t
@

@
@

@
@

@
@b

a d

c

1 2 3
a b c

b c a

c a b

d d d

Example

3 spanning trees: T1 := {a, b, d}, T2 := {b, c, d} and T3 := {a, c, d}.
Preference cycle a �sm b �sm c �sm a.

We get T1 \ T2 = {a} and T2 \ T1 = {c},
T1 \ T3 = {b} and T3 \ T1 = {c},
T2 \ T3 = {b} and T3 \ T2 = {a}.
Thus we have T3 BS T2 BS T1 BS T3.

Hence a best tree with respect to DS does not exist in this example.
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Example

For the above graph the Simple Majority-order on E = {a, b, c, d, e, f } is of the following form:

a �sm b b �sm d c �sm a d �sm e f �sm c
a �sm d b �sm e c �sm b e �sm c f �sm d
a �sm e b �sm f d �sm c f �sm a f �sm e

edge # of inf. edges

f 4
a, b 3
c, d 2
e 1

⇒ Kruskal's algorithm according to SM-wins outputs Tg = {f , a, b, d, e}.

The two other spanning trees are T1 = {b, c, d, e, f } and T2 = {a, c, d, e, f }.
T1 \ Tg = {c} and Tg \ T1 = {a} ⇒ T1 BS Tg .

T2 \ Tg = {c} and Tg \ T2 = {b} ⇒ T2 BS Tg .
I.e. according to DS every other spanning tree of the graph is strictly preferred to Tg .
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Proposition

Let %=%sm. Then the following statements hold:

1 There exist a graph G = (V ,E ) and a voter preference pro�le on E

such that a best tree with respect to DS does not exist.

2 There exist a graph G = (V ,E ) and a voter preference pro�le on E

such that a best tree with respect to DS exists but the generalized
version of Kruskal's algorithm fails to determine such a best tree. In
fact, the tree determined by the algorithm may even be the worst
tree with respect to DS .
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Comparing trees
Three more complete orders on τ

Idea:

Compare trees on basis of a given weak order % on E .

When comparing two trees, those edges that are simultaneously
contained in both trees should not play a role.

Notation:
Given T1,T2 ∈ τ , we use the notation T̃1 := T1 \ T2, T̃2 := T2 \ T1 and
r := |T̃1|
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Three more complete orders on τ

Concept 1: Derived from the maxmin-order on sets presented in [BBP04]

De�nition

Let T1, T2 ∈ τ . Then we de�ne the maxmin-order Dmxn on τ by

T1 Dmxn T2 :⇐⇒ [T̃1 = ∅ or
max T̃1 � max T̃2 or

(max T̃1 ∼ max T̃2 and min T̃1 % min T̃2)]
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Concept 2: Derived from the leximax order on sets presented in [BBP04]

De�nition

Let T1, T2 ∈ τ .
Let T̃1 := {e1, e2, ..., er}, T̃2 := {f1, f2, ..., fr} such that ei % ei+1 and
fi % fi+1 holds for 1 ≤ i ≤ r − 1.
Then the leximax order Dlex on τ is de�ned by

T1 Dlex T2 :⇐⇒ [T̃1 = ∅ or
ei ∼ fi for all 1 ≤ i ≤ r or
(∃j ∈ {1, ..., r} such that
ei ∼ fi for all i < j and ej � fj)]
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Concept 3: Rank the edges of the disjoint union of T1,T2 ∈ τ according
to %. For the resulting ranking use a positional scoring concept to
compare the trees.

De�nition

Let T1, T2 ∈ τ .
Let T̃1 ∪ T̃2 := {d1, d2, ..., d2r} such that di % di+1 holds for
1 ≤ i ≤ 2r − 1.
Let b : E → R be strictly increasing according to %, that is, for
1 ≤ i ≤ 2r − 1,

b(di ) = b(di+1) if di ∼ di+1

b(di ) > b(di+1) if di � di+1

Let b(T̃1) :=
∑

e∈T̃1
b(e) and b(T̃2) :=

∑
f∈T̃2

b(f ).
Then we de�ne

T1 Dps T2 :⇐⇒ b(T̃1) ≥ b(T̃2) .

Remark. This approach adapts the concept of the positional scoring
procedures presented in [BF02]
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Remarks.

The orders DS , Dlex , Dmxn and Dps are complete orders on τ .

In the above concepts the order % on E does not need to be of
numerical nature, i.e. % does not have to allocate numbers to the
edges.

Aim: Find a best tree w.r.t. the corresponding order
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Results on max-spanning trees and best trees

Recall: % is assumed to be a given weak order on E ,
i.e. % is complete and transitive

Theorem

A max-spanning tree can be computed in O(|E |+ |V | log |V |) time.

Proof.

Immediately follows from the fact that the maximum spanning tree
problem can be solved in O(|E |+ |V | log |V |) time.
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Main Theorem

Theorem

Let M ∈ τ and let % be a weak order on E. Then the following

statements are equivalent:

1 M is a max-spanning tree

2 @B ∈ τ : B Blex M

3 @B ∈ τ : B BS M

4 @B ∈ τ : B Bmxn M

5 @B ∈ τ : B Bps M

Corollary

Every positional scoring method that yields the same ranking % on E

yields the same set of best trees w.r.t. Dps , irrespective of the numerical

values assigned to the edges.
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Consequences

Let % be a weak order on E and let D∈ {Dlex ,DS ,Dmxn,Dps}

Consequences of the Theorem:

1 A best tree with respect to D always exists

2 A best tree with respect to D can be determined e�ciently

3 For the orders Dlex ,DS ,Dmxn,Dps , the sets of best trees coincide

Concluding Remark: Results can be generalized to bases of matroids
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