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Large population games: traffic routing

e Traffic subject to congestion delays
e cars and packets follow shortest path
e Congestion game =cost (delay) depends only on congestion on edges



Example 2: advertising auctions

Put your business here.
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advertising auctions

* Advertisers leave and join the system
* Changes in system setup
* Advertiser values change



Questions + Motivation

* Repeated game: How do players behave?
* Nash equilibrium?
* Today: Machine Learning

* With players (or player objectives) changing over time

e Efficiency loss due to selfish behavior of players (Price of
Anarchy)



Traffic Pattern (optimal)




Not Nash equilibrium!

Nash: Stable solution: no incentive to deviate



Nash equilibrium

Time: 2 hours

Nash: Stable solution: no incentive to deviate

But how did the players find it?



Congestion game in Social Science
Kleinberg-Oren STOC'11

Which project should | try?

* Each project j has reward c; projects

* Each player has a probability p;; for solving

* Fair credit: equally shared by discoverers

Uniform players and fair sharing= congestion game
Unfair sharing and/or different abilities:

Vetta utility game




Nash as Selfish Outcome ?

e Can the players find Nash?
* Which Nash?

Daskalakis-Goldberg-Papadimitrou’06
Nash exists, but ....
Finding Nash is

* PPAD hard in many games

e Coordination problem (multiple Nash)



Repeated games
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* Assume same game each period
* Player’s value/cost additive over periods



Learning outcome
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Maybe here they don’t By here they have a
know how to play, who are better idea...

the other players, ...



Nash equilibrium
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Nash equilibrium: Stable actions a with no regret for any
alternate strategy x:

cost;(x,a_;) = cost;(a)



No-regret without stability: learning

a11 a12 313 alt
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a, a, a, a, time

For any fixed action x (with d options) :

(at) < . t
Y.t cost;(a’) < Yscost;(x,a”;) No-regret

/

Regret: R(x,T)=); cost;(a?) — X cost;(x,al;) < o(T)

Many simple rules ensure R.(x,T) approx. "‘\/Tlog d for all x
MWU (Hedge), Regret Matching, etc.
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For any fixed action x (with d options) :
Y. cost;(at) < ¥, cost;(x,at))

Approx.

no-regret

/

Regret: Ri(x,T)=);cost;(a’) — (1 + €) Y, cost;(x,a;) < o(T)

Many simple rules ensure R.(x,T) approx. ~O(logd/e€) for all x
MWU (Hedge), Regret Matching, etc.
Foster, Li, Lykouris, Sridharan, T'16



Dynamics of rock-paper-scissor
Nash:
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) Payoffs/utility
* Doesn’t converge

e correlates on shared history



Main Question

* Efficiency loss due to selfish behavior of players (Price of Anarchy)
* In repeated game settings
* With players (or player objectives) changing over time

Examples
C X S
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internet routing advertising auctions

« Traffic changes over time * Advertisers leave and join the system
* Advertiser values change 16



Result: routing, limit for very small users

Theorem (Roughgarden-T'02):

In any network with continuous, non-decreasing cost
functions and small users

cost of Nash with cost of opt with
rates r for all i < rates 2r. for all i

Nash equilibrium: stable solution where no player had
incentive to deviate.

cost of worst Nash equilibrium
“socially optimum” cost

Price of Anarchy=




Quality of Learning outcomes:
Price of Total Anarchy

Bounds average welfare assuming no-regret learners
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“socially optimum” cost

Price of Total Anarchy=Tlim

[Blum, Hajiaghayi, Ligett, Roth, 2008]



Result 2: routing with learning players

Theorem (Blum, Even-Dar, Ligett’06; Roughgarden’09):

Price of anarchy bounds developed for Nash equilibria extend to no-
regret learning outcomes
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Assumes a stable set of participants



Today: Dynamic Population

Classical model:
 Game is repeated identically and nothing changes

Dynamic population model:
At each step t each player i

is replaced with an arbitrary new player with probability p

In a population of N players, each step, Np players replaced
In expectation

20



Learning players can adapt....

Goal:
Bound average welfare assuming adaptive no-regret learners

T t .t
_,cost(a*,v

PoA = lim t_; ( - )
T-eo ) _; Opt(vh)

where vt is the vector of player types at time t

even when the rate of change is high, i.e. a large fraction can turn over
at every step.

21



Need for adaptive learning
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Example routing - R .
L
 Strategy = path o
* Best “fixed” strategy in hindsight very weak in
changing environment - ees
* Learners can adapt to the changing - . -

environment
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Need for adaptive learning
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Example 2: matching (project selection)

» Strategy = choose a project

* Best “fixed” strategy in hindsight very weak in
changing environment

* Learners can adapt to the changing
environment




Adaptive Learning
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e Adaptive regret [Hazan-Seshadiri’07, Luo-Schapire’15, Blum-Mansour’07, Lehrer’03]

for all player i, strategy x and interval 14, 75 ]

12

Ri(x,7{,7,) = 2 cost;(at; vt) — costy(x,at;vt) < o1y, — 79)

t=T1

rates of ~\/T, — T;

= Regret with respect to a strategy that changes k times < ~VkT

24



Adaptive Learning

dq a12 a13 alt
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* Adaptive regret [Foster,Li,Lykouris,Sridharan,T'16]

for all player i, strategy x and interval 14, 75 ]

_i)

R;(x,71,72) = X2, costy(ab;vh) — (1 +€) cost;(x,al;;vt) < O(klogd/e)
Regret with respect to a strategy that changes k times

Using any of MWU (Hedge), Regret Matching, etc. mixed with a bit of “forgetting”
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Result (Lykouris, Syrgkanis, T'16) :

Bound average welfare close to Price of Anarchy for Nash*

with n players

even when the rate of change is high, p = log 1

assuming adaptive no-regret learners

- Worst case change of player type = need for adapting to changing
environment

- Sudden large change is unlikely

26



No-regret and Price of Anarchy

Low regret: )

Ri(x) = z cost;(at; vt) — Costi(x, at; vt) < o(T) projects
t=1
Best action varies with choices of others...

Consider Optimal Solution
Let x=a; be the choice in OPT

No regret for all players i:
Y cost(a') < ¥, cost;(a;,a_;)

Players don’t have to know a;




Proof Technique: Smoothness (Roughgarden’09)

Consider optimal solution: player i does action a; in optimum

No regret: Y., cost;(at) < ¥, cost;(a’,a’;) (doesn’t need to know a;)

A game is (A,p)-smooth (A > 0; pu< 1):

if for all strategy vectors a

z cost;(a) < z cost;(a;,a_;) < AOPT + ucost(a)
i i

A Nash equilibrium a has cost(a) < ﬁOpt



Smoothness and no-regret learning

Consider optimal solution: player i does action a; in optimum

No regret: Y., cost;(at) < ¥, cost;(a’,a’;) (doesn’t need to know a;)

A cost minimization game is (A,i)-smooth (A > 0; u< 1):
if for all strategy vectors a

1 1 ; 1
TZ Z cost;(al) SthZi cost;(a;,a;) < A0PT + u th cost(a®)
t 1

A no-regret sequence a‘ has ]
1
and hence ;Zt cost(a') < EOpt



Smoothness Example:

Credit allocation
Monotone util; =expected credit: game is (1,1)-smooth:
a; (Opt) with ¥ action vector a

z utily(a;*, a_;) = OPT — Z utily(a)
[

i
Note: Y; util;(a) is total value of successful projects =Y. .y, ceeds Cj

True project by project: k; and k; the number of players choosing project j
in a and OPT.

If k; = k}‘ then right hand side is non-positive
Else: players benefit more than in OPT from trying their opt project



Examples of “smoothness bounds”

* Monotone increasing congestion costs (1,1) smooth

—> Nash cost < opt of double traffic rate (Roughgarden-T"02)
* affine congestion cost are (1, %) smooth (Roughgarden-T'02)

= 4/3 price of anarchy

* Atomic game (players with >0 traffic) with linear delay (5/3,1/3)-
smooth (Awerbuch-Azar-Epstein & Christodoulou-Koutsoupias’05)

—> 2.5 price of anarchy
Resulting bounds are tight



Smoothness in utility games

 Vetta utility games are (1,1)-smooth Vetta FOCS'02

* First price is (1-1/e)-smooth (we have seen %5, see also Hassidim, Kaplan,
Mansour, Nisan EC’11)

* All pay auction %-smooth

* First position auction (GFP) is ¥2-smooth

 Variants with second price (see also Christodoulou, Kovacs, Schapira ICALP’08)
Other applications include:

- public goods

- Fair sharing (Kelly, Johari-Tsitsiklis)

- Walrasian Mechanism (Babaioff, Lucier, Nisan, and Paes Leme EC’13)



Adapting smoothness to dynamic populations

Inequality we “wish to have”

2 cost;(at; vt) < 2 cost;(a;t,at ;v
t t
where az‘t is the optimum strategy for the players at time t.

with stable population = no regret for a;
Too much to hope for in dynamic case:

* sequence a*' of optimal solutions changes too much.
* No hope of learners not to regret this!



Change in Optimum Solution

True optimum is too sensitive

 Example using matching

* The optimum solution

* One person leaving O
* Can change the solution for everyone
@
* Np changes each step — No time to © —

learn!! (we have p>>1/N)



Theorem (high level)

If a game satisfies a “smoothness property” [Roughgarden’09]

The welfaLg optimization problem admits an approximation algorithm whose
outcome a* is stable to changes in one player’s type

Then any adaptive learning outcome is approximately efficient even when the rate
of change is high.

Proof idea: use this approximate solution as a* in Price of Anarchy proof
With a*not changing much, learners have time to learn not to regret following a*

Note: learner doesn’t have to know a* !!



Do Stable Solutions Exist?

* How close can we remain to the optimum, while being stable?

* How much change can we manage, while being stable?

Recall: Regret of adaptive learning is bounded by < VkT
with respect to any strategy that changes k times



Stable = Optimum in Matching

True optimum is too sensitive

e Use greedy allocation: assign large values first
(loss of factor of 2)

* Use coarse approximation of value, e.g.,
power of 2 only

e Potential function argument:

increase in log value of allocation only m log v,,, 4 ,
decrease due to departures



Use Differential Privacy — Stable Solutions

Joint privacy [Kearns et al. 14, Dwork et al. ‘06]

A randomized algorithm is jointly differentially private if
* when input from player i changes

* the probability of change in solution of players other thani is
smaller than €

* Turn a sequence of randomized solutions to a randomized
sequence with small number of changes using Coupling Lemma

* and handling “failure probabilities” of private algorithms



Application 1: Large Congestion Games

* Using joint differentially private algorithm of Rogers et al EC’15,

* the (5/3,1/3)-smoothness congestion with affine cost:

Theorem. Atomic congestion game with m edges, and affine and
Increasing costs:

1 1
TZ Cost(at; vt) < 2.5(1 +¢€) Tz OPT(v*)
- t

: _ poly(€) .
withp = 0 (poly(m) polylog(n)) if each player controls only a 1/n

fraction of the total flow.

Almost a constant fraction of change each step: dependence on
number of players only polylog



Other Applications

Using joint differentially private algorithm of Hsu et al "14
Theorem 2. Matching markets if values are [p,1]

L3 W(ativt) > =25, 0PT(v") withp = O ( pZe” )
T <t ’ = a4(1+e) T T polylog(m,1/p,1/€)

Theorem 3. Large Combinatorial Markets with Gross-Substitutes

l t. ,t 1 l t . . p565
TZtW(a v ) = 2(1+e)TZt OPT(U ) with P = 0 (m polylog(n))

Each item in large supply () (polylog(n)log(i,%)) and O(n) items



Do players really learn?

e Data from Microsoft: 9 frequent bid changing advertisers

Value of advertiser?

* Nekipelov, Syrgkanis, T'15: infer the value smallest multiplicative
regret

41



Distribution of smallest rationalizable
multiplicative regret
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Distribution of smallest rationalizable
multiplicative regret

0.35 - - 120.00%
0.3 - —w—u—u—=n - 100.00%
0.25 -

- - 80.00%

§ 0.2 -

S - 60.00%

g 0.15 -

L - 40.009
0.1 - %
0.05 - - 20.00%

0.00%

Maybe converged to Strictly positive regret:

best response learning phase —=Cumulative %
43



Conclusions

Learning in games:

* Good way to adapt to opponents

* No need for common prior

* Takes advantage of opponent playing badly.

Learning players do well even in dynamic environments

e Stable approx. solution + good PoA bound = good efficiency with
dynamic population

e Strong connection of stable solutions with differential privacy



