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Large population games: traffic routing 

• Traffic subject to congestion delays 

•  cars and packets follow shortest path 

• Congestion game =cost (delay) depends only on congestion on edges 



Example 2: advertising auctions 

• Advertisers leave and join the system 

• Changes in system setup 

• Advertiser values change 
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Questions + Motivation 

• Repeated game: How do players behave? 
• Nash equilibrium? 

• Today: Machine Learning 

 

• With players (or player objectives) changing over time 

 

• Efficiency loss due to selfish behavior of players (Price of 
Anarchy) 
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Not Nash equilibrium! 

Time: 1.5 hours 

Nash: Stable solution: no incentive to deviate 
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Time: 2 hours 

Nash: Stable solution: no incentive to deviate 

But how did the players find it? 



Congestion game in Social Science 
Kleinberg-Oren STOC’11 

projects 

Which project should I try? 

• Each project j has reward 𝑐𝑗  

• Each player has a probability 𝑝𝑖𝑗 for solving 

• Fair credit: equally shared by discoverers 

Uniform players and fair sharing= congestion game 

Unfair sharing and/or different abilities:  

   Vetta utility game 

 

 

??? 



Nash as Selfish Outcome ? 

• Can the players find Nash? 

• Which Nash? 

 

Daskalakis-Goldberg-Papadimitrou’06 

Nash exists, but …. 

Finding Nash is  

• PPAD hard in many games 

• Coordination problem (multiple Nash) 

   



Repeated games 
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• Assume same game each period 
• Player’s value/cost additive over periods 



Learning outcome 
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Maybe here they don’t 

know how to play, who are 
the other players, … 

By here they have a 
better idea… 



Nash equilibrium 

time 

Nash equilibrium: Stable actions a with no regret for any  
alternate strategy 𝑥: 

 

𝑐𝑜𝑠𝑡𝑖 𝑥, 𝑎−𝑖 ≥ 𝑐𝑜𝑠𝑡𝑖(𝑎) 
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No-regret without stability: learning  

time 

For any fixed action 𝑥 (with d options) :  

 𝑐𝑜𝑠𝑡𝑖 𝑎
𝑡 ≤  𝑐𝑜𝑠𝑡𝑖(𝑥, 𝑎−𝑖

𝑡 )𝑡𝑡           

 

Regret:  Ri(x,T)= 𝑐𝑜𝑠𝑡𝑖 𝑎
𝑡 −  𝑐𝑜𝑠𝑡𝑖(𝑥, 𝑎−𝑖

𝑡 )𝑡𝑡  
 

Many simple rules ensure Ri(x,T) approx. ~ 𝑇𝑙𝑜𝑔 𝑑 for all  x  

MWU (Hedge), Regret Matching, etc.  
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No-regret without stability: learning  

time 

For any fixed action 𝑥 (with d options) :  

 𝑐𝑜𝑠𝑡𝑖 𝑎
𝑡 ≤  𝑐𝑜𝑠𝑡𝑖(𝑥, 𝑎−𝑖

𝑡 )𝑡𝑡           

 

Regret:  Ri(x,T)= 𝑐𝑜𝑠𝑡𝑖 𝑎
𝑡 − (1 + 𝜖) 𝑐𝑜𝑠𝑡𝑖(𝑥, 𝑎−𝑖

𝑡 )𝑡𝑡  
 

Many simple rules ensure Ri(x,T) approx. ~𝑂(log 𝑑/𝜖) for all  x  

MWU (Hedge), Regret Matching, etc.  

Foster, Li, Lykouris, Sridharan, T’16 
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Dynamics of  rock-paper-scissor 
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• Doesn’t converge 
• correlates on shared history  
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Learning 
dynamic 

Payoffs/utility 



Main Question 
• Efficiency loss due to selfish behavior of players (Price of Anarchy) 

• In repeated game settings 

• With players (or player objectives) changing over time 
 

Examples 
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internet routing advertising auctions 

• Advertisers leave and join the system 
• Advertiser values change 

$ 
$ 

$ 

• Traffic changes over time 



Result: routing, limit for very small users 

Theorem  (Roughgarden-T’02):   

In any network with continuous, non-decreasing cost 
functions and small users 

cost of Nash with 
rates ri for all i 

cost of opt with 
rates 2ri for all i  

Nash equilibrium: stable solution where no player had 
incentive to deviate. 

cost of worst Nash equilibrium 

“socially optimum” cost 
     Price of Anarchy= 
  



Quality of Learning outcomes:  
    Price of Total Anarchy 
Bounds average welfare assuming no-regret learners 

 

 

 

 

[Blum, Hajiaghayi, Ligett, Roth, 2008] 
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1

𝑇
 𝑐𝑜𝑠𝑡(𝑎𝑡)

𝑇

𝑡=1

 

“socially optimum” cost 
     Price of Total Anarchy= lim

𝑇→∞
 

  



Result 2: routing with learning players 

Theorem  (Blum, Even-Dar, Ligett’06; Roughgarden’09):   

Price of anarchy bounds developed for Nash equilibria extend to no-
regret learning outcomes 

time 
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Today: Dynamic Population 

Classical model: 
• Game is repeated identically and nothing changes 

 

Dynamic population model: 

At each step t each player i  

 is replaced with an arbitrary new player with probability p 

 

In a population of N players, each step, Np players replaced 
in expectation 
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Learning players can adapt…. 

Goal: 
Bound average welfare assuming adaptive no-regret learners 

 

𝑃𝑜𝐴 = lim
𝑇→∞

 𝑐𝑜𝑠𝑡(𝑎𝑡 , 𝑣𝑡)𝑇
𝑡=1

 𝑂𝑝𝑡(𝑣𝑡)𝑇
𝑡=1  

 

 

   where 𝑣𝑡 is the vector of player types at time t 
 

even when the rate of change is high, i.e. a large fraction can turn over 
at every step. 
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Need for adaptive learning 

Example routing 

• Strategy = path 

• Best “fixed” strategy in hindsight very weak in 
changing environment 

• Learners can adapt to the changing 
environment  

time 
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Need for adaptive learning 

Example 2: matching (project selection) 

• Strategy = choose a project 

• Best “fixed” strategy in hindsight very weak in 
changing environment 

• Learners can adapt to the changing 
environment  
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Adaptive Learning 

• Adaptive regret [Hazan-Seshadiri’07, Luo-Schapire’15, Blum-Mansour’07, Lehrer’03]  

 for all player i, strategy x and interval [𝜏1, 𝜏2] 
 

𝑅𝑖 𝑥, 𝜏1, 𝜏2 =  𝑐𝑜𝑠𝑡𝑖 𝑎
𝑡; 𝑣𝑡 − 𝑐𝑜𝑠𝑡𝑖 𝑥, 𝑎−𝑖

𝑡 ; 𝑣𝑡
𝜏2

𝑡=𝜏1

≤ 𝑜 𝜏2 − 𝜏1  

     rates of ~ 𝜏2 − 𝜏1 

   Regret with respect to a strategy that changes k times ≤ ~ 𝑘𝑇 
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Adaptive Learning 

• Adaptive regret [Foster,Li,Lykouris,Sridharan,T’16]  

 for all player i, strategy x and interval [𝜏1, 𝜏2] 
 

𝑅𝑖 𝑥, 𝜏1, 𝜏2 =  𝑐𝑜𝑠𝑡𝑖 𝑎
𝑡; 𝑣𝑡 − 1 + 𝜖  𝑐𝑜𝑠𝑡𝑖 𝑥, 𝑎−𝑖

𝑡 ; 𝑣𝑡
𝜏2
𝑡=𝜏1

≤ 𝑂(k log 𝑑/𝜖)  

 Regret with respect to a strategy that changes k times 

Using any of MWU (Hedge), Regret Matching, etc. mixed with a bit of “forgetting” 
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Result (Lykouris, Syrgkanis, T’16) : 

Bound average welfare close to Price of Anarchy for Nash  

even when the rate of change is high, 𝒑 ≈
𝟏

𝐥𝐨𝐠 𝒏
 with n players 

assuming adaptive no-regret learners 

 

- Worst case change of player type   need for adapting to changing 
environment 

- Sudden large change is unlikely 
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No-regret and Price of Anarchy 

Low regret:  

𝑅𝑖 𝑥 = 𝑐𝑜𝑠𝑡𝑖 𝑎
𝑡; 𝑣𝑡 − 𝑐𝑜𝑠𝑡𝑖 𝑥, 𝑎−𝑖

𝑡 ; 𝑣𝑡
𝑇

𝑡=1

≤ 𝑜 𝑇  

Best action varies with choices of others… 

Consider Optimal Solution 

Let x=𝑎𝑖
∗ be the choice in OPT  

 

No regret for all players i:   
  𝑐𝑜𝑠𝑡𝑖 𝑎

𝑡 ≤  𝑐𝑜𝑠𝑡𝑖(𝒂𝒊
∗, 𝑎−𝑖)𝑡𝑡  

   Players don’t have to know 𝒂𝒊
∗ 
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projects 



Proof Technique: Smoothness (Roughgarden’09) 
Consider optimal solution: player i does action 𝑎𝑖

∗ in optimum 

No regret:  𝑐𝑜𝑠𝑡𝑖 𝑎
𝑡 ≤  𝑐𝑜𝑠𝑡𝑖(𝑎𝑖

∗, 𝑎−𝑖
𝑡 )𝑡𝑡  (doesn’t need to know 𝑎𝑖

∗) 

 

A game is (λ,μ)-smooth (λ > 0; μ< 1): 

if for all strategy vectors a  

 𝑐𝑜𝑠𝑡𝑖(𝑎𝑖
∗, 𝑎−𝑖

𝑖

) ≤ 𝜆 𝑂𝑃𝑇 + 𝜇 𝑐𝑜𝑠𝑡(𝑎) 

A Nash equilibrium a has     

 𝑐𝑜𝑠𝑡𝑖 𝑎 ≤

𝑖

 

cost(a)  ≤ 
𝜆

1−𝜇
Opt 

 



Smoothness and no-regret learning 
Consider optimal solution: player i does action 𝑎𝑖

∗ in optimum 

No regret:  𝑐𝑜𝑠𝑡𝑖 𝑎
𝑡 ≤  𝑐𝑜𝑠𝑡𝑖(𝑎𝑖

∗, 𝑎−𝑖
𝑡 )𝑡𝑡  (doesn’t need to know 𝑎𝑖

∗) 

 

A cost minimization game is (λ,μ)-smooth (λ > 0; μ< 1): 

if for all strategy vectors a  

                                    𝑐𝑜𝑠𝑡𝑖(𝑎𝑖
∗, 𝑎𝑖
𝑡

𝑖 ) ≤ 𝜆 𝑂𝑃𝑇 + 𝜇         𝑐𝑜𝑠𝑡(𝑎𝑡) 

 

A no-regret sequence 𝑎𝑡 has  

and hence   
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Smoothness Example: 
Credit allocation 
Monotone uti𝑙𝑖 =expected credit: game is (1,1)-smooth: 
𝑎𝑖
∗ (Opt) with  action vector a  

 𝑢𝑡𝑖𝑙𝑖(𝑎𝑖
∗, 𝑎−𝑖

𝑖

) ≥  𝑂𝑃𝑇 − 𝑢𝑡𝑖𝑙𝑖(𝑎)

𝑖

 

Note:  𝑢𝑡𝑖𝑙𝑖 𝑎𝑖   is total value of successful projects = 𝑐𝑗𝑗:𝑠𝑢𝑐𝑒𝑒𝑑𝑠  

 
True project by project: 𝑘𝑗  and 𝑘𝑗

∗ the number of players choosing project j 

in a and OPT.  
 
If 𝑘𝑗 ≥ 𝑘𝑗

∗ then right hand side is non-positive 

Else: players benefit more than in OPT from trying their opt project 



Examples of “smoothness bounds” 

• Monotone increasing congestion costs (1,1) smooth  

  Nash cost ≤ opt of double traffic rate (Roughgarden-T’02) 

• affine congestion cost are (1, ¼) smooth (Roughgarden-T’02) 

  4/3 price of anarchy 
 

• Atomic game (players with >0 traffic) with linear delay (5/3,1/3)-
smooth (Awerbuch-Azar-Epstein & Christodoulou-Koutsoupias’05) 

    2.5 price of anarchy 

Resulting bounds are tight 

 



Smoothness in utility games 

• Vetta utility games are (1,1)-smooth Vetta FOCS’02 

• First price is (1-1/e)-smooth (we have seen ½, see also Hassidim, Kaplan, 
Mansour, Nisan EC’11) 

• All pay auction ½-smooth 

• First position auction (GFP) is ½-smooth 

• Variants with second price (see also Christodoulou, Kovacs, Schapira  ICALP’08) 

Other applications include:  

- public goods 

- Fair sharing (Kelly, Johari-Tsitsiklis) 

- Walrasian Mechanism (Babaioff, Lucier, Nisan, and Paes Leme EC’13) 

 



Adapting smoothness to dynamic populations 

Inequality we “wish to have” 

 𝑐𝑜𝑠𝑡𝑖 𝑎
𝑡; 𝑣𝑡 ≤ 𝑐𝑜𝑠𝑡𝑖(𝑎𝑖

∗𝑡 , 𝑎−𝑖
𝑡 ; 𝑣𝑡)

𝑡𝑡

 

 where 𝑎𝑖
∗𝑡 is the optimum strategy for the players at time t. 

 

with stable population = no regret for 𝑎𝑖
∗  

Too much to hope for in dynamic case:  

• sequence 𝑎∗𝑡 of optimal solutions changes too much.  

• No hope of learners not to regret this!  



Change in Optimum Solution  

True optimum is too sensitive 

• Example using matching 

• The optimum solution 

• One person leaving 

• Can change the solution for everyone 

 

• Np changes each step  No time to 
learn!! (we have p>>1/N) 



Theorem (high level) 

If a game satisfies a “smoothness property” [Roughgarden’09] 

The welfare optimization problem admits an approximation algorithm whose 
outcome 𝑎∗  is stable to changes in one player’s type 

 

Then any adaptive learning outcome is approximately efficient even when the rate 
of change is high. 

 

Proof idea: use this approximate solution as 𝒂∗  in Price of Anarchy proof 

With  𝒂∗ not changing much, learners have time to learn not to regret following 𝒂∗  

Note: learner doesn’t have to know 𝒂∗  !! 
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Do Stable Solutions Exist? 

• How close can we remain to the optimum, while being stable? 

 

• How much change can we manage, while being stable? 

 

Recall: Regret of adaptive learning is bounded by ≤ 𝑘𝑇 

 with respect to any strategy that changes k times 

 



Stable  Optimum in Matching 

True optimum is too sensitive 

• Use greedy allocation: assign large values first 
(loss of factor of 2) 

• Use coarse approximation of value, e.g., 
power of 2 only  

• Potential function argument: 
increase in log value of allocation only m log 𝑣𝑚𝑎𝑥 , 
decrease due to departures  



Use Differential Privacy  Stable Solutions 

Joint privacy [Kearns et al. ’14, Dwork et al. ‘06] 

A randomized algorithm is jointly differentially private if  

• when input from player i changes  

• the probability of change in solution of players other than i is 
smaller than 𝝐 

 

• Turn a sequence of randomized solutions to a randomized 
sequence with small number of changes using Coupling Lemma 

•  and handling “failure probabilities” of private algorithms 
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Application 1: Large Congestion Games 
• Using joint differentially private algorithm of Rogers et al EC’15,          

• the (5/3,1/3)-smoothness congestion with affine cost: 

Theorem. Atomic congestion game with m edges, and affine and 
increasing costs: 

1

𝑇
 𝐶𝑜𝑠𝑡 𝑎𝑡; 𝑣𝑡

𝑡

≤ 2.5 1 + 𝜖
1

𝑇
 OPT 𝑣𝑡

𝑡

 

with 𝑝 = 𝑂
𝑝𝑜𝑙𝑦(𝜖)

𝑝𝑜𝑙𝑦(𝑚) 𝑝𝑜𝑙𝑦𝑙𝑜𝑔 𝑛
 if each player controls only a 1/n 

fraction of the total flow. 
 

Almost a constant fraction of change each step: dependence on 
number of players only polylog 
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Other Applications 

Using joint differentially private algorithm of Hsu et al ’14 

Theorem 2. Matching markets if values are [𝜌,1] 
1

𝑇
 𝑊 𝑎𝑡; 𝑣𝑡𝑡 ≥

1

4 1+𝜖

1

𝑇
 OPT 𝑣𝑡𝑡   with 𝑝 = 𝑂

𝜌2𝜖2

𝑝𝑜𝑙𝑦𝑙𝑜𝑔 𝑚,1/𝜌,1/𝜖
 

 

Theorem 3. Large Combinatorial Markets with Gross-Substitutes  

1

𝑇
 𝑊 𝑎𝑡; 𝑣𝑡𝑡 ≥

1

2 1+𝜖

1

𝑇
 OPT 𝑣𝑡𝑡  with 𝑝 = 𝑂

𝜌5𝜖5

𝑚 𝑝𝑜𝑙𝑦𝑙𝑜𝑔 𝑛
 

Each item in large supply Ω 𝑝𝑜𝑙𝑦𝑙𝑜𝑔 𝑛 log (
1

𝜖
,
1

𝜌
)  and Θ 𝑛  items 
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Do players really learn?  

• Data from Microsoft: 9 frequent bid changing advertisers 

 

 

Value of advertiser? 

• Nekipelov, Syrgkanis, T’15:  infer the value smallest multiplicative 
regret 

41 



Distribution of smallest rationalizable 
multiplicative regret 
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Maybe converged to 
best response 

Strictly positive regret: 
learning phase 

𝝀 



Conclusions 

Learning in games: 

• Good way to adapt to opponents 

• No need for common prior 

• Takes advantage of opponent playing badly. 

Learning players do well even in dynamic environments 

• Stable approx. solution + good PoA bound  good efficiency with 
dynamic population 

• Strong connection of stable solutions with differential privacy 
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