
Learning and Efficiency in Games
(with Dynamic Population)

Éva Tardos

Cornell

Joint work with Thodoris Lykouris and Vasilis Syrgkanis

Large population games: traffic routing

• Traffic subject to congestion delays

• cars and packets follow shortest path

• Congestion game =cost (delay) depends only on congestion on edges

Example 2: advertising auctions

• Advertisers leave and join the system

• Changes in system setup

• Advertiser values change
 3

advertising auctions

$
$

$

Questions + Motivation

• Repeated game: How do players behave?
• Nash equilibrium?

• Today: Machine Learning

• With players (or player objectives) changing over time

• Efficiency loss due to selfish behavior of players (Price of
Anarchy)

A B

C

D y/100

x/100
1 hour

1 hour

0 min

Traffic Pattern (optimal)

Time: 1.5 hours

delay

A B

C

D y/100

x/100
1 hour

1 hour

0 min

Not Nash equilibrium!

Time: 1.5 hours

Nash: Stable solution: no incentive to deviate

A B

C

D y/100

1 hour

1 hour

0min
100

x/100

Nash equilibrium

Time: 2 hours

Nash: Stable solution: no incentive to deviate

But how did the players find it?

Congestion game in Social Science
Kleinberg-Oren STOC’11

projects

Which project should I try?

• Each project j has reward 𝑐𝑗

• Each player has a probability 𝑝𝑖𝑗 for solving

• Fair credit: equally shared by discoverers

Uniform players and fair sharing= congestion game

Unfair sharing and/or different abilities:

 Vetta utility game

???

Nash as Selfish Outcome ?

• Can the players find Nash?

• Which Nash?

Daskalakis-Goldberg-Papadimitrou’06

Nash exists, but ….

Finding Nash is

• PPAD hard in many games

• Coordination problem (multiple Nash)

Repeated games

time

a1
1

a2
1

an
1

…

Outcome for
(a1

1, a2
1, …, an

1)
Outcome for
(a1

t, a2
t, …, an

t)

a1
2

a2
2

an
2

…

a1
3

a2
3

an
3

…

a1
t

a2
t

an
t

…

• Assume same game each period
• Player’s value/cost additive over periods

Learning outcome

time

a1
1

a2
1

an
1

…

a1
2

a2
2

an
2

…

a1
3

a2
3

an
3

…

a1
t

a2
t

an
t

…

Maybe here they don’t

know how to play, who are
the other players, …

By here they have a
better idea…

Nash equilibrium

time

Nash equilibrium: Stable actions a with no regret for any
alternate strategy 𝑥:

𝑐𝑜𝑠𝑡𝑖 𝑥, 𝑎−𝑖 ≥ 𝑐𝑜𝑠𝑡𝑖(𝑎)

a1
1

a2
1

an
1

…

a1
2

a2
2

an
2

…

a1
3

a2
3

an
3

…

a1

a2

an

…

a1

a2

an

…

a1

a2

an

…

a1

a2

an

…

a1

a2

an

…

a1

a2

an

…

a1

a2

an

…

a1

a2

an

…

a1

a2

an

…

No regret

No-regret without stability: learning

time

For any fixed action 𝑥 (with d options) :

 𝑐𝑜𝑠𝑡𝑖 𝑎
𝑡 ≤ 𝑐𝑜𝑠𝑡𝑖(𝑥, 𝑎−𝑖

𝑡)𝑡𝑡

Regret: Ri(x,T)= 𝑐𝑜𝑠𝑡𝑖 𝑎
𝑡 − 𝑐𝑜𝑠𝑡𝑖(𝑥, 𝑎−𝑖

𝑡)𝑡𝑡

Many simple rules ensure Ri(x,T) approx. ~ 𝑇𝑙𝑜𝑔 𝑑 for all x

MWU (Hedge), Regret Matching, etc.

a1
t

a2
t

an
t

…

 ≤ 𝑜(𝑇)

No-regret

a1
1

a2
1

an
1

…

a1
2

a2
2

an
2

…

a1
3

a2
3

an
3

…

No-regret without stability: learning

time

For any fixed action 𝑥 (with d options) :

 𝑐𝑜𝑠𝑡𝑖 𝑎
𝑡 ≤ 𝑐𝑜𝑠𝑡𝑖(𝑥, 𝑎−𝑖

𝑡)𝑡𝑡

Regret: Ri(x,T)= 𝑐𝑜𝑠𝑡𝑖 𝑎
𝑡 − (1 + 𝜖) 𝑐𝑜𝑠𝑡𝑖(𝑥, 𝑎−𝑖

𝑡)𝑡𝑡

Many simple rules ensure Ri(x,T) approx. ~𝑂(log 𝑑/𝜖) for all x

MWU (Hedge), Regret Matching, etc.

Foster, Li, Lykouris, Sridharan, T’16

a1
t

a2
t

an
t

…

 ≤ 𝑜(𝑇)

Approx.
no-regret

a1
1

a2
1

an
1

…

a1
2

a2
2

an
2

…

a1
3

a2
3

an
3

…

Dynamics of rock-paper-scissor

R P S

R -9
-9

 1
-1

 -1
1

P -1
1

 -9
-9

 1
-1

S 1
-1

 -1
1

 -9
-9

• Doesn’t converge
• correlates on shared history

Rock

Scissor

Paper

Nash:
1

3

1

3

1

3

Learning
dynamic

Payoffs/utility

Main Question
• Efficiency loss due to selfish behavior of players (Price of Anarchy)

• In repeated game settings

• With players (or player objectives) changing over time

Examples

16

internet routing advertising auctions

• Advertisers leave and join the system
• Advertiser values change

$
$

$

• Traffic changes over time

Result: routing, limit for very small users

Theorem (Roughgarden-T’02):

In any network with continuous, non-decreasing cost
functions and small users

cost of Nash with
rates ri for all i

cost of opt with
rates 2ri for all i 

Nash equilibrium: stable solution where no player had
incentive to deviate.

cost of worst Nash equilibrium

“socially optimum” cost
 Price of Anarchy=

Quality of Learning outcomes:
 Price of Total Anarchy
Bounds average welfare assuming no-regret learners

[Blum, Hajiaghayi, Ligett, Roth, 2008]

18

1

𝑇
 𝑐𝑜𝑠𝑡(𝑎𝑡)

𝑇

𝑡=1

“socially optimum” cost
 Price of Total Anarchy= lim

𝑇→∞

Result 2: routing with learning players

Theorem (Blum, Even-Dar, Ligett’06; Roughgarden’09):

Price of anarchy bounds developed for Nash equilibria extend to no-
regret learning outcomes

time

Assumes a stable set of participants

a1
t

a2
t

an
t

…

a1
1

a2
1

an
1

…

a1
2

a2
2

an
2

…

a1
3

a2
3

an
3

…

Today: Dynamic Population

Classical model:
• Game is repeated identically and nothing changes

Dynamic population model:

At each step t each player i

 is replaced with an arbitrary new player with probability p

In a population of N players, each step, Np players replaced
in expectation

20

Learning players can adapt….

Goal:
Bound average welfare assuming adaptive no-regret learners

𝑃𝑜𝐴 = lim
𝑇→∞

 𝑐𝑜𝑠𝑡(𝑎𝑡 , 𝑣𝑡)𝑇
𝑡=1

 𝑂𝑝𝑡(𝑣𝑡)𝑇
𝑡=1

 where 𝑣𝑡 is the vector of player types at time t

even when the rate of change is high, i.e. a large fraction can turn over
at every step.

21

Need for adaptive learning

Example routing

• Strategy = path

• Best “fixed” strategy in hindsight very weak in
changing environment

• Learners can adapt to the changing
environment

time

22

a1
t

a2
t

an
t

…

a1
1

a2
1

an
1

…

a1
2

a2
2

an
2

…

a1
3

a2
3

an
3

…

Need for adaptive learning

Example 2: matching (project selection)

• Strategy = choose a project

• Best “fixed” strategy in hindsight very weak in
changing environment

• Learners can adapt to the changing
environment

23

time

a1
t

a2
t

an
t

…

a1
1

a2
1

an
1

…

a1
2

a2
2

an
2

…

a1
3

a2
3

an
3

…

projects

Adaptive Learning

• Adaptive regret [Hazan-Seshadiri’07, Luo-Schapire’15, Blum-Mansour’07, Lehrer’03]

 for all player i, strategy x and interval [𝜏1, 𝜏2]

𝑅𝑖 𝑥, 𝜏1, 𝜏2 = 𝑐𝑜𝑠𝑡𝑖 𝑎
𝑡; 𝑣𝑡 − 𝑐𝑜𝑠𝑡𝑖 𝑥, 𝑎−𝑖

𝑡 ; 𝑣𝑡
𝜏2

𝑡=𝜏1

≤ 𝑜 𝜏2 − 𝜏1

 rates of ~ 𝜏2 − 𝜏1

 Regret with respect to a strategy that changes k times ≤ ~ 𝑘𝑇
24

time 𝜏1 𝜏2

a1
t

a2
t

an
t

…

a1
1

a2
1

an
1

…

a1
2

a2
2

an
2

…

a1
3

a2
3

an
3

…

Adaptive Learning

• Adaptive regret [Foster,Li,Lykouris,Sridharan,T’16]

 for all player i, strategy x and interval [𝜏1, 𝜏2]

𝑅𝑖 𝑥, 𝜏1, 𝜏2 = 𝑐𝑜𝑠𝑡𝑖 𝑎
𝑡; 𝑣𝑡 − 1 + 𝜖 𝑐𝑜𝑠𝑡𝑖 𝑥, 𝑎−𝑖

𝑡 ; 𝑣𝑡
𝜏2
𝑡=𝜏1

≤ 𝑂(k log 𝑑/𝜖)

 Regret with respect to a strategy that changes k times

Using any of MWU (Hedge), Regret Matching, etc. mixed with a bit of “forgetting”

25

time 𝜏1 𝜏2

a1
t

a2
t

an
t

…

a1
1

a2
1

an
1

…

a1
2

a2
2

an
2

…

a1
3

a2
3

an
3

…

Result (Lykouris, Syrgkanis, T’16) :

Bound average welfare close to Price of Anarchy for Nash

even when the rate of change is high, 𝒑 ≈
𝟏

𝐥𝐨𝐠 𝒏
 with n players

assuming adaptive no-regret learners

- Worst case change of player type  need for adapting to changing
environment

- Sudden large change is unlikely

26

No-regret and Price of Anarchy

Low regret:

𝑅𝑖 𝑥 = 𝑐𝑜𝑠𝑡𝑖 𝑎
𝑡; 𝑣𝑡 − 𝑐𝑜𝑠𝑡𝑖 𝑥, 𝑎−𝑖

𝑡 ; 𝑣𝑡
𝑇

𝑡=1

≤ 𝑜 𝑇

Best action varies with choices of others…

Consider Optimal Solution

Let x=𝑎𝑖
∗ be the choice in OPT

No regret for all players i:
 𝑐𝑜𝑠𝑡𝑖 𝑎

𝑡 ≤ 𝑐𝑜𝑠𝑡𝑖(𝒂𝒊
∗, 𝑎−𝑖)𝑡𝑡

 Players don’t have to know 𝒂𝒊
∗

27

projects

Proof Technique: Smoothness (Roughgarden’09)
Consider optimal solution: player i does action 𝑎𝑖

∗ in optimum

No regret: 𝑐𝑜𝑠𝑡𝑖 𝑎
𝑡 ≤ 𝑐𝑜𝑠𝑡𝑖(𝑎𝑖

∗, 𝑎−𝑖
𝑡)𝑡𝑡 (doesn’t need to know 𝑎𝑖

∗)

A game is (λ,μ)-smooth (λ > 0; μ< 1):

if for all strategy vectors a

 𝑐𝑜𝑠𝑡𝑖(𝑎𝑖
∗, 𝑎−𝑖

𝑖

) ≤ 𝜆 𝑂𝑃𝑇 + 𝜇 𝑐𝑜𝑠𝑡(𝑎)

A Nash equilibrium a has

 𝑐𝑜𝑠𝑡𝑖 𝑎 ≤

𝑖

cost(a) ≤
𝜆

1−𝜇
Opt

Smoothness and no-regret learning
Consider optimal solution: player i does action 𝑎𝑖

∗ in optimum

No regret: 𝑐𝑜𝑠𝑡𝑖 𝑎
𝑡 ≤ 𝑐𝑜𝑠𝑡𝑖(𝑎𝑖

∗, 𝑎−𝑖
𝑡)𝑡𝑡 (doesn’t need to know 𝑎𝑖

∗)

A cost minimization game is (λ,μ)-smooth (λ > 0; μ< 1):

if for all strategy vectors a

 𝑐𝑜𝑠𝑡𝑖(𝑎𝑖
∗, 𝑎𝑖
𝑡

𝑖) ≤ 𝜆 𝑂𝑃𝑇 + 𝜇 𝑐𝑜𝑠𝑡(𝑎𝑡)

A no-regret sequence 𝑎𝑡 has

and hence

1

𝑇
 𝑐𝑜𝑠𝑡𝑖 𝑎

𝑡 ≤

𝑖𝑡

1

𝑇
 𝑐𝑜𝑠𝑡(𝑎𝑡)𝑡 ≤

𝜆

1−𝜇
Opt


1

𝑇
t

1

𝑇
t

Smoothness Example:
Credit allocation
Monotone uti𝑙𝑖 =expected credit: game is (1,1)-smooth:
𝑎𝑖
∗ (Opt) with  action vector a

 𝑢𝑡𝑖𝑙𝑖(𝑎𝑖
∗, 𝑎−𝑖

𝑖

) ≥ 𝑂𝑃𝑇 − 𝑢𝑡𝑖𝑙𝑖(𝑎)

𝑖

Note: 𝑢𝑡𝑖𝑙𝑖 𝑎𝑖 is total value of successful projects = 𝑐𝑗𝑗:𝑠𝑢𝑐𝑒𝑒𝑑𝑠

True project by project: 𝑘𝑗 and 𝑘𝑗

∗ the number of players choosing project j

in a and OPT.

If 𝑘𝑗 ≥ 𝑘𝑗

∗ then right hand side is non-positive

Else: players benefit more than in OPT from trying their opt project

Examples of “smoothness bounds”

• Monotone increasing congestion costs (1,1) smooth

  Nash cost ≤ opt of double traffic rate (Roughgarden-T’02)

• affine congestion cost are (1, ¼) smooth (Roughgarden-T’02)

  4/3 price of anarchy

• Atomic game (players with >0 traffic) with linear delay (5/3,1/3)-
smooth (Awerbuch-Azar-Epstein & Christodoulou-Koutsoupias’05)

  2.5 price of anarchy

Resulting bounds are tight

Smoothness in utility games

• Vetta utility games are (1,1)-smooth Vetta FOCS’02

• First price is (1-1/e)-smooth (we have seen ½, see also Hassidim, Kaplan,
Mansour, Nisan EC’11)

• All pay auction ½-smooth

• First position auction (GFP) is ½-smooth

• Variants with second price (see also Christodoulou, Kovacs, Schapira ICALP’08)

Other applications include:

- public goods

- Fair sharing (Kelly, Johari-Tsitsiklis)

- Walrasian Mechanism (Babaioff, Lucier, Nisan, and Paes Leme EC’13)

Adapting smoothness to dynamic populations

Inequality we “wish to have”

 𝑐𝑜𝑠𝑡𝑖 𝑎
𝑡; 𝑣𝑡 ≤ 𝑐𝑜𝑠𝑡𝑖(𝑎𝑖

∗𝑡 , 𝑎−𝑖
𝑡 ; 𝑣𝑡)

𝑡𝑡

 where 𝑎𝑖
∗𝑡 is the optimum strategy for the players at time t.

with stable population = no regret for 𝑎𝑖
∗

Too much to hope for in dynamic case:

• sequence 𝑎∗𝑡 of optimal solutions changes too much.

• No hope of learners not to regret this!

Change in Optimum Solution

True optimum is too sensitive

• Example using matching

• The optimum solution

• One person leaving

• Can change the solution for everyone

• Np changes each step  No time to
learn!! (we have p>>1/N)

Theorem (high level)

If a game satisfies a “smoothness property” [Roughgarden’09]

The welfare optimization problem admits an approximation algorithm whose
outcome 𝑎∗ is stable to changes in one player’s type

Then any adaptive learning outcome is approximately efficient even when the rate
of change is high.

Proof idea: use this approximate solution as 𝒂∗ in Price of Anarchy proof

With 𝒂∗ not changing much, learners have time to learn not to regret following 𝒂∗

Note: learner doesn’t have to know 𝒂∗ !!

35

Do Stable Solutions Exist?

• How close can we remain to the optimum, while being stable?

• How much change can we manage, while being stable?

Recall: Regret of adaptive learning is bounded by ≤ 𝑘𝑇

 with respect to any strategy that changes k times

Stable  Optimum in Matching

True optimum is too sensitive

• Use greedy allocation: assign large values first
(loss of factor of 2)

• Use coarse approximation of value, e.g.,
power of 2 only

• Potential function argument:
increase in log value of allocation only m log 𝑣𝑚𝑎𝑥 ,
decrease due to departures

Use Differential Privacy  Stable Solutions

Joint privacy [Kearns et al. ’14, Dwork et al. ‘06]

A randomized algorithm is jointly differentially private if

• when input from player i changes

• the probability of change in solution of players other than i is
smaller than 𝝐

• Turn a sequence of randomized solutions to a randomized
sequence with small number of changes using Coupling Lemma

• and handling “failure probabilities” of private algorithms

38

Application 1: Large Congestion Games
• Using joint differentially private algorithm of Rogers et al EC’15,

• the (5/3,1/3)-smoothness congestion with affine cost:

Theorem. Atomic congestion game with m edges, and affine and
increasing costs:

1

𝑇
 𝐶𝑜𝑠𝑡 𝑎𝑡; 𝑣𝑡

𝑡

≤ 2.5 1 + 𝜖
1

𝑇
 OPT 𝑣𝑡

𝑡

with 𝑝 = 𝑂
𝑝𝑜𝑙𝑦(𝜖)

𝑝𝑜𝑙𝑦(𝑚) 𝑝𝑜𝑙𝑦𝑙𝑜𝑔 𝑛
 if each player controls only a 1/n

fraction of the total flow.

Almost a constant fraction of change each step: dependence on
number of players only polylog

39

Other Applications

Using joint differentially private algorithm of Hsu et al ’14

Theorem 2. Matching markets if values are [𝜌,1]
1

𝑇
 𝑊 𝑎𝑡; 𝑣𝑡𝑡 ≥

1

4 1+𝜖

1

𝑇
 OPT 𝑣𝑡𝑡 with 𝑝 = 𝑂

𝜌2𝜖2

𝑝𝑜𝑙𝑦𝑙𝑜𝑔 𝑚,1/𝜌,1/𝜖

Theorem 3. Large Combinatorial Markets with Gross-Substitutes

1

𝑇
 𝑊 𝑎𝑡; 𝑣𝑡𝑡 ≥

1

2 1+𝜖

1

𝑇
 OPT 𝑣𝑡𝑡 with 𝑝 = 𝑂

𝜌5𝜖5

𝑚 𝑝𝑜𝑙𝑦𝑙𝑜𝑔 𝑛

Each item in large supply Ω 𝑝𝑜𝑙𝑦𝑙𝑜𝑔 𝑛 log (
1

𝜖
,
1

𝜌
) and Θ 𝑛 items

40

Do players really learn?

• Data from Microsoft: 9 frequent bid changing advertisers

Value of advertiser?

• Nekipelov, Syrgkanis, T’15: infer the value smallest multiplicative
regret

41

Distribution of smallest rationalizable
multiplicative regret

42

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
0

.0
0

0
.0

4

0
.0

7

0
.1

1

0
.1

5

0
.1

8

0
.2

2

0
.2

6

0
.2

9

0
.3

3

0
.3

7

0
.4

1

0
.4

4

0
.4

8

0
.5

2

0
.5

5

0
.5

9

0
.6

3

0
.6

6

0
.7

0

0
.7

4

0
.7

7

0
.8

1

0
.8

5

M
o

re

Fr
e

q
u

e
n

cy

Multiplicative Regret

Frequency Cumulative %

𝝀

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
0

.0
0

0
.0

4

0
.0

7

0
.1

1

0
.1

5

0
.1

8

0
.2

2

0
.2

6

0
.2

9

0
.3

3

0
.3

7

0
.4

1

0
.4

4

0
.4

8

0
.5

2

0
.5

5

0
.5

9

0
.6

3

0
.6

6

0
.7

0

0
.7

4

0
.7

7

0
.8

1

0
.8

5

M
o

re

Fr
e

q
u

e
n

cy

Multiplicative Regret

Frequency Cumulative %

Distribution of smallest rationalizable
multiplicative regret

43

Maybe converged to
best response

Strictly positive regret:
learning phase

𝝀

Conclusions

Learning in games:

• Good way to adapt to opponents

• No need for common prior

• Takes advantage of opponent playing badly.

Learning players do well even in dynamic environments

• Stable approx. solution + good PoA bound  good efficiency with
dynamic population

• Strong connection of stable solutions with differential privacy

44

