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Sequential Models of Customer Engagement

d  Sequential models of marketing, advertising increasingly common

a Archak, et al. (WWW-10)

[ Silver, et al. (ICML-13)

A Theocarous et al. (NIPS-15), ...

d Long-term value impact: Hohnhold, O'Brien, Tang (KDD-15)

@—*@—* Generic (category) interest

i @ @ @ Interest in advertiser
Cend D,
R @ @ @ Interest in competitor

Search: s1: unint; s2: general it s3: searchl, s4: search2, s5:search3
Advertiser: s6: interest]; s7: interest2; s8: interest3, s9: conversion
Compt'r: s10: interest]; s11: mterest2; s12: interest3, s13: conversion
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Sequential Models of Customer Engagement

[ New focus at Google on RL, MDP models
d sequential engagement optimization: ads, recommendations, notifications, ...
3 RL, MDP (POMDP?) techniques beginning to scale

J  But multiple wrinkles emerge in practical deployment

A Budget, resource, attentional constraints
3 Incentive, contract design
4 Multiple objectives (preference assessment/elicitation)



This Work

Focus: handling budget constraints in large MDPs
Motivation: advertising budget allocation for large advertiser
Aim 1: find “sweet spot” in spend (value/spend trade off)

Aim 2: allocate budget across large customer population
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Basic Setup

[  Set of m MDPs (each corresp. to a “user type”) s_ltate«m
O States S, actions A, trans P(s,a,s’), reward R(s), cost C(s,a) e 22

3 Small MDPs, solvable by DP, LP, etc. MDP 1

[ Collection of U users A )
O Useriisin state sfi] of MDP M[i] % S I
O Assume state is fully observable e
AT
% State 1: n1 I
State 2: n2
State 3: n3
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Basic Setup

[  Set of m MDPs (each corresp. to a “user type”) s_ltate«m
O States S, actions A, trans P(s,a,s’), reward R(s), cost C(s,a) e 22

3 Small MDPs, solvable by DP, LP, etc. MDP 1

d  Collection of U users )
O Useriisin state sfi] of MDP M[i] % S I
State 3: n3

[ Assume state is fully observable
[ Advertiser has maximum budget B —
d What is optimal use of budget? i% Stto 111 I
[ Policy mapping joint state to joint action State 3: n3
d Expected spend less than B
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Potential Methods for Solving MDP

a Fixed budget (per cust.), solve constrained MDP (Archak, et al. WINE-12)

A Plus: nice algorithms for CMDPs under mild assumptions
[ Minus: no tradeoff between budget/value, no coordination across customers

3 Joint, constrained MDP (cross-product of individual MDPs)

3 Plus: optimal model, full recourse
d  Minus: dimensionality of state/action spaces make it intractable

ad We exploit weakly coupled nature of MDP (Meuleau, et al. AAAI-98)
3 Nointeraction except through budget constraints
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Decomposition of a Weakly-coupled MDP

3 Offline: solve budgeted MDPs

[ ** Solve each distinct MDP (user type); get VF V(s,b) and policy z(s,b)
[ Notice value is a function of state and available budget b
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Decomposition of a Weakly-coupled MDP

3 Offline: solve budgeted MDPs
A ** Solve each distinct MDP (user type); get VF V(s,b) and policy x(s,b)
[ Notice value is a function of state and available budget b

[  Online: allocate budget to maximize return

A Observe state of each user sfi]
[  ** Optimally allocate budget B, with b*[i] to user i
3  Implement optimal budget-aware policy

d  Optional: repeated budget allocation

[ Take action x(s[i],b*[i]), with cost c[i]
d  Repeat (re-allocate all unused budget)
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Outline

A Brief review of constrained MDPs (CMDPs)

3 Introduce budgeted MDPs (BMDPs)
Q Like a CMDP, but without a fixed budget
d DP solution method/approximation that exploits PWLC value function

d Distributed budget allocation
d  Formulate as a multi-item, multiple-choice knapsack problem
[ Linear program induces a simple (and optimal) greedy allocation

d  Some empirical (prototype) results
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Constrained MDPs

[  Usual elements of an MDP, but distinguish rewards, costs
3 Optimize value subject to an expected budget constraint B

[  Optimal (stationary) policy usually stochastic, non-uniformly optimal
3 Solvable by LP, DP methods

VeE) =17+ Y pn v
jeS

(i) ="+ 30O ().
JjES

argmax o; V" (i) s.t. a;C™ (i) < B.

7i
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Budgeted MDPs

d  CMDP’s fixed budget doesn't support:

[d  Budget/value tradeoffs in MDP
d Budget tradeoffs across different MDPs
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Budgeted MDPs

d  CMDP’s fixed budget doesn't support:

[d  Budget/value tradeoffs in MDP
d Budget tradeoffs across different MDPs

D BUdgeted MDPS 00 05 10 15 20 25 30 35 40

d  Want optimal VF V(s,b) of MDP given state and budget
[ Avariety of uses (value/spend tradeoffs, online allocation)
[ Aim: find structure in continuous dimension b

4.5
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Structure in BMDP Value Functions

d Result 1: For all s, VF is concave, non-decreasing in budget
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Structure in BMDP Value Functions

d Result 1: For all s, VF is concave, non-decreasing in budget
J Result 2 (finite-horizon): VF is piecewise linear, concave (PWLC)

H

L0 d 0

Finite number of useful (deterministic) budget levels

Randomized policies achieve “interpolation” between points

Simple dynamic program finds finite representation (i.e., PWL segments)
Complexity: representation can grow exponentially O((|A|d)t)

Simple pruning gives excellent approximations with few PWL segments
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BMDPs: Finite deterministic useful budgets

Vf)(?:, D) has finitely many useful budget levels b (for any j, t)
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BMDPs: Finite deterministic useful budgets

Vf)(?:, b) has finitely many useful budget levels b (for any j, t)

pt?'- ; bi—l bf 1 bf—l
O  “Next budget used” g : Sf’ — []\ﬂ : < I Y5 TREERLY:
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d  Gives natural DP algorithm




Budgeted MDPs: PWLC with Randomization

d Take union over actions, prune dominated budgets
d  Gives natural DP algorithm

d Randomized spends (actions) improve expected value
3  PWLC rep'n (convex hull) of deterministic VF

12

3 Asimple greedy approach gives
Bellman backups of stochastic
value functions
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Budgeted MDPs: Intnitinn hehind NP

Finding Q-values:

I<n

subj. to ¢ +f}f2p?jbj < b
J<n
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Budgeted MDPs: Intnitinn hehind NP

Finding Q-values:

[ Assign incremental
budget to successor
states in decr. order
of slope of V(s), or
“bang-per-buck”

d  Weight by transition
probability
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Budgeted MDPs: Intuition behind DP

Finding VF (stochastic policies):
Vi(i,b) = max p.Q'(i,a.b,)

peA(a)
s.t. Zpaba < b
l

[ Take union of all Q-functions, remove
dominated points, obtain convex hull
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Approximation

d  Simple pruning scheme for approx.

O Budget gap between adjacent points small '

3 Slopes of two adjacent segments close
d  Some combination (product of gap, delta)

+ 7 pv2+p'v3

~
s pv2+p'v2’

pv3+p'v3’

pva+|

p'V:

3"
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Approximation e

ad  Simple pruning scheme for approx. i

d Budget gap between adjacent points small 7 -
3 Slopes of two adjacent segments close i
d  Some combination (product of gap, delta)

d Integrate pruning directly into convex .|
hull algorithm ot p
d  Error bounds derivable (computable) - /

pv3+p'v3’

d  Hybrid scheme seems to work best
d Aggressive pruning early :

3 Cautious pruning later
[ Exploit contraction properties of MDP



Policy Implementation and Spend Variance

d  Policy execution somewhat subtle

[ Must track (final) budget mapping (from each state
[  Mustimplement spend “assumed” at next reached state

d  Essentially “solves” CMDP for all budget levels
[ Variance in actual spend may be of interest

3 Recall we satisfy budget in expectation only
[ Variance can be computed exactly during DP algorithm (expectation of

variance over sequence of multinomials)
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Budgeted MDPs: Some illustrative results

[  Synthetic 15-state MDP (search/sales funnel)

d  States reflect interest in general, advertiser, competitor(s)
[ 5 actions (ad intensity) with varying costs

4 Optimal VF (horizon 50):

No pruning Mild Aggressive | Mild then No
Segments || 3066 (0-5075) 18.3 (0-47) 10.4 (0-26) 480.8 (0-877)
Max. Err. — 4.84 (26.61) | 4.84 (26.61) 0.21 (58.77)
Max. Rel. Err. — 40.9% 4.24) | 48.7% (1.54) 2.3% (0.55)
CPU Time (s.) 1055.4 17.54 10.36 28.67




Budgeted MDPs: Some illustrative results

d “MDP"” derived from advertiser data

3.6M “touchpoint” trajectories (28 distinct events)

VOMC model/mixture learned

452K states / 1470 states; hypothesized actions, synthetic costs
Unsatisfying models: not too controllable (opt. policies mostly by no-ops)
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Budgeted MDPs: Some illustrative results

d “MDP"” derived from advertiser data

3 3.6M “touchpoint” trajectories (28 distinct events)

3 VOMC model/mixture learned
d 452K states / 1470 states; hypothesized actions, synthetic costs
[ Unsatisfying models: not too controllable (opt. policies mostly by no-ops)

d Large model (aggr. prun.): 11.67 segs/state; 1168s/iteration

No pruning (1469) | Mild (1469) Ager. (1469) | Mild then No (1469)
Segments 251.5 (74-359) 234.2 (77-342) 25.6 (5-39) 76.84 (18-321)
Max. Ermr. — 5.13 (171.56) 28.88 (169.33) 3.94 (167.61)
Max. Rel. Err. — 2.99% (171.56) | 12.32% (169.33) 2.35% (167.61)
EPU Timie (5.) [9918.9 10672.5 1451.8 2390.0

32



Online Budget Allocation

Users
a Collection of U users each with her own MDP i% S
Q  For simplicty, assume a single MDP i
A Buteach useriis in state sfi] of MDP M[i] MDP 1
[ State of joint MDP: |S|-vector of user counts AT
d Advertiser has maximum budget B i% S 2 mo I
State 3: n3

d What is optimal use of budget?

. )
State 1: n1
State 2: n2
State 3: n3



Online Budget Allocation

d  Optimal VFs, policies for user-level BMDPs used to allocate budget
4 Motivated by Meuleau et al. (1998) weakly coupled model

Q  Online budget allocation problem (BAP):
plilnec ; V(s[i],bli]) st. » bli] <B

1<
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Online Budget Allocation

d  Optimal VFs, policies for user-level BMDPs used to allocate budget
4 Motivated by Meuleau et al. (1998) weakly coupled model
[ Online budget allocation problem (BAP):
max Vi(s|i|,blz|) s.t. bli| < B
s 2Vl st 30l
3 Solution is optimal assuming “expected budget” commitment

3 Not truly optimal: no recourse across users
[ Equivalent to: allocate budget; once fixed, “solve” CMDP, implement policy

3 Alternative (later): dynamic budget reallocation (DBRA)
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Solving the Budget Allocation Problem

d  Multi-item version of multiple-choice knapsack (MCKP)

3 Sinha, Zoltners OR79 analyze MCKP as MIP
[ LP relaxation solvable with greedy alg. using “bang-per-buck” metric
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Solving the Budget Allocation Problem

d  Multi-item version of multiple-choice knapsack (MCKP)

3 Sinha, Zoltners OR79 analyze MCKP as MIP

[ LP relaxation solvable with greedy alg. using “bang-per-buck” metric
3 Assigning discrete useful budgets (UBAP) to users is an MCKP

[ LP relaxation of UBAP is exactly our BAP
d  Greedy method solves BAP (LP relaxation of UBAP) optimally

V (4, Bik) = V (4, Bjr—1)

BpB .. = :
! Jk _-"--j_jk = Iﬁj;ﬂ_l

Bang-per-buck for (user in) state j already
allocated useful budget 511
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Online Allocation: lllustrative Results

d Fast GBA allows quick determination (ms.) of sweet spot in spend

[ Candirectly plot budget-value trade-off curves
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Alternative Methods

0 Greedy budget allocation (GBA)

d Dynamic budget reallocation (DBRA) (see Meuleau et al. (1998))

3 Perform GBA at each stage, take immediate optimal action
d  Observe new state (or each user), re-allocate remaining budget using GBA
3 Allows for recourse, budget re-assignment; Reduces odds of overspending

[ Static user budget (SUB)
[ Allocate fixed budget to each user using GBA at initial state

[ Ignore next-state:budget mapping, enact policy using remaining user budget
3 No overspending possible

[ Uniform budget allocation (UBA)
[ Assign each user the same budget B/M; solve one CMDP per state (no BMDP)
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Online Allocation: lllustrative Results

d  15-state synth. MDP, 1000 users (all at initial state)

Total Budget || BMDP Value | DBRA Value | SUB Value
1000 8209.9 8578.8 (830.5) | 4106 (707)
2000 10,905 11,019 964) | 4429 (825)
5000 15,692 15,658 (1239) | 5270 (830.5)

10,000 18.110 17,942 (—) | 6329 (1159)

Variance in per-user spend high (e.g., last row: 28.7% of users oversp. >50%)
But average across population close to budget

DBRA: “guarantees” budget constraint, and can offer some recourse

Note: UBA and GBA identical if all users start at same state
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Online Allocation: lllustrative Results

d 15-state synth. MDP, 1000 users (spread over 12 non-term. states)

Total Budget || GBA Value | UBA Value
1000 39818.6 36997.2
2000 44559.5 40311.8
5000 53177.7 47142.4

10,000 58356.8 53773.8

d  GBA exploits BMDP solution to make tradeoffs across users
[  UBA has no information to differentiate high-value vs. low-value states



Online Allocation: lllustrative Results

d  452K-state synth. MDP, 1000 users (across 50 initial states)

Budg. BMDP Val. DBRA Val. SUB Val. UBA Val.
15 113358 99236 (3060) 112879 (1451) 106373
23 157228 142047 (3060) 157442 (2589) 149175

[  Results more mixed since MDP not very “controllable” (quite random)
d  UBA (uniform allocation to all users, as if BMDP solution were not available at
allocation time, but CMDP solution per-state is available)
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Next Steps

3

My Ny Nl N

Deriving genuine MDP models from advertiser data
d Reallocation helps very little with VOMC-MDP (due to hypothesized actions)

Large MDPs (feature-based states, actions)
Parameterized models, mixtures, ...

The reinforcement learning setting (unknown model)
Extensions:

4 Partial (including periodic) observability

d Censored observations

4 Limited controllability
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Applications to Social Choice

[ Much of SCinvolves allocation of resources to population
3 E.g., how to best determine distribution of resources to different area of public
policy (health care, education, infrastructure)
d Best use of allocated resources depends on “user-level” MDPs

3 Especially true in dynamic/sequential domains with constrained capacity, e.g.,
smart grid, constrained medical facilities, other public facilities/infrastructure
d  User's preferences for particular policies highly variable

d  Use of BMDPs can play a valuable role in assessing tradeoffs:

3 Allocation of resources across users within a policy domain
3 Allocation of resources across domains
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