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Sequential Models of Customer Engagement
❏ Sequential models of marketing, advertising increasingly common

❏ Archak, et al. (WWW-10)
❏ Silver, et al. (ICML-13)
❏ Theocarous et al. (NIPS-15), ...
❏ Long-term value impact: Hohnhold, O’Brien, Tang (KDD-15)
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Sequential Models of Customer Engagement
❏ New focus at Google on RL, MDP models

❏ sequential engagement optimization: ads, recommendations, notifications, …
❏ RL, MDP (POMDP?) techniques beginning to scale
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Sequential Models of Customer Engagement
❏ New focus at Google on RL, MDP models

❏ sequential engagement optimization: ads, recommendations, notifications, …
❏ RL, MDP (POMDP?) techniques beginning to scale

❏ But multiple wrinkles emerge in practical deployment
❏ Budget, resource, attentional constraints
❏ Incentive, contract design
❏ Multiple objectives (preference assessment/elicitation)
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This Work
❏ Focus: handling budget constraints in large MDPs
❏ Motivation: advertising budget allocation for large advertiser
❏ Aim 1: find “sweet spot” in spend (value/spend trade off)
❏ Aim 2: allocate budget across large customer population
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Basic Setup
❏ Set of m MDPs (each corresp. to a “user type”)

❏ States S, actions A, trans P(s,a,s’), reward R(s), cost C(s,a)
❏ Small MDPs, solvable by DP, LP, etc.

❏ Collection of U users
❏ User i is in state s[i] of MDP M[i]
❏ Assume state is fully observable
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❏ Set of m MDPs (each corresp. to a “user type”)

❏ States S, actions A, trans P(s,a,s’), reward R(s), cost C(s,a)
❏ Small MDPs, solvable by DP, LP, etc.

❏ Collection of U users
❏ User i is in state s[i] of MDP M[i]
❏ Assume state is fully observable

❏ Advertiser has maximum budget B
❏ What is optimal use of budget?

❏ Policy mapping joint state to joint action
❏ Expected spend less than B
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Potential Methods for Solving MDP
❏ Fixed budget (per cust.), solve constrained MDP (Archak, et al. WINE-12)

❏ Plus: nice algorithms for CMDPs under mild assumptions
❏ Minus: no tradeoff between budget/value, no coordination across customers
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Potential Methods for Solving MDP
❏ Fixed budget (per cust.), solve constrained MDP (Archak, et al. WINE-12)

❏ Plus: nice algorithms for CMDPs under mild assumptions
❏ Minus: no tradeoff between budget/value, no coordination across customers

❏ Joint, constrained MDP (cross-product of individual MDPs)
❏ Plus: optimal model, full recourse
❏ Minus: dimensionality of state/action spaces make it intractable

❏ We exploit weakly coupled nature of MDP (Meuleau, et al. AAAI-98)

❏ No interaction except through budget constraints
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Decomposition of a Weakly-coupled MDP
❏ Offline: solve budgeted MDPs

❏ ** Solve each distinct MDP (user type); get VF V(s,b) and policy ᶢ(s,b)
❏ Notice value is a function of state and available budget b
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Decomposition of a Weakly-coupled MDP
❏ Offline: solve budgeted MDPs

❏ ** Solve each distinct MDP (user type); get VF V(s,b) and policy ᶢ(s,b)
❏ Notice value is a function of state and available budget b

❏ Online: allocate budget to maximize return
❏ Observe state of each user s[i]
❏ ** Optimally allocate budget B, with b*[i] to user i
❏ Implement optimal budget-aware policy

❏ Optional: repeated budget allocation
❏ Take action ᶢ(s[i],b*[i]),  with cost c[i]
❏ Repeat (re-allocate all unused budget)
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Outline
❏ Brief review of constrained MDPs (CMDPs)
❏ Introduce budgeted MDPs (BMDPs)

❏ Like a CMDP, but without a fixed budget
❏ DP solution method/approximation that exploits PWLC value function

❏ Distributed budget allocation
❏ Formulate as a multi-item, multiple-choice knapsack problem
❏ Linear program induces a simple (and optimal) greedy allocation

❏ Some empirical (prototype) results
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Constrained MDPs
❏ Usual elements of an MDP, but distinguish rewards, costs

❏ Optimize value subject to an expected budget constraint B
❏ Optimal (stationary) policy usually stochastic, non-uniformly optimal
❏ Solvable by LP, DP methods
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Budgeted MDPs

❏ CMDP’s fixed budget doesn’t support:
❏ Budget/value tradeoffs in MDP
❏ Budget tradeoffs across different MDPs
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Budgeted MDPs

❏ CMDP’s fixed budget doesn’t support:
❏ Budget/value tradeoffs in MDP
❏ Budget tradeoffs across different MDPs

❏ Budgeted MDPs
❏ Want optimal VF V(s,b) of MDP given state and budget
❏ A variety of uses (value/spend tradeoffs, online allocation)
❏ Aim: find structure in continuous dimension b
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Structure in BMDP Value Functions
❏ Result 1: For all s, VF is concave, non-decreasing in budget
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Structure in BMDP Value Functions
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❏ Result 1: For all s, VF is concave, non-decreasing in budget
❏ Result 2 (finite-horizon): VF is piecewise linear, concave (PWLC)

❏ Finite number of useful (deterministic) budget levels
❏ Randomized policies achieve “interpolation” between points
❏ Simple dynamic program finds finite representation (i.e., PWL segments)
❏ Complexity: representation can grow exponentially
❏ Simple pruning gives excellent approximations with few PWL segments



BMDPs: Finite deterministic useful budgets
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BMDPs: Finite deterministic useful budgets
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                has finitely many useful budget levels b (for any i, t)

❏ “Next budget used”

❏ Has cost: 

❏ Has value: 

i
j

j’



Budgeted MDPs: PWLC with Randomization
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Budgeted MDPs: PWLC with Randomization
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❏ Take union over actions, prune dominated budgets
❏ Gives natural DP algorithm

❏ Randomized spends (actions) improve expected value
❏ PWLC rep’n (convex hull) of deterministic VF

❏ A simple greedy approach gives 
Bellman backups of stochastic 
value functions



Budgeted MDPs: Intuition behind DP
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Budgeted MDPs: Intuition behind DP
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Finding Q-values:

❏ Assign incremental 
budget to successor 
states in decr. order 
of slope of V(s), or 
“bang-per-buck”

❏ Weight by transition 
probability

❏ Ensures finitely many 
PWLC segments



Finding VF (stochastic policies):

❏ Take union of all Q-functions, remove 
dominated points, obtain convex hull

Budgeted MDPs: Intuition behind DP
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Approximation
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❏ Simple pruning scheme for approx. 
❏ Budget gap between adjacent points small 
❏ Slopes of two adjacent segments close
❏ Some combination (product of gap, delta)



Approximation
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❏ Simple pruning scheme for approx. 
❏ Budget gap between adjacent points small 
❏ Slopes of two adjacent segments close
❏ Some combination (product of gap, delta)

❏ Integrate pruning directly into convex 
hull algorithm

❏ Error bounds derivable (computable)
❏ Hybrid scheme seems to work best

❏ Aggressive pruning early
❏ Cautious pruning later
❏ Exploit contraction properties of MDP
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Policy Implementation and Spend Variance
❏ Policy execution somewhat subtle
❏ Must track (final) budget mapping (from each state

❏ Must implement spend “assumed” at next reached state
❏ Essentially “solves” CMDP for all budget levels

❏ Variance in actual spend may be of interest
❏ Recall we satisfy budget in expectation only
❏ Variance can be computed exactly during DP algorithm (expectation of 

variance over sequence of multinomials)



❏ Synthetic 15-state MDP (search/sales funnel)
❏ States reflect interest in general, advertiser, competitor(s)
❏ 5 actions (ad intensity) with varying costs

❏ Optimal VF (horizon 50):

Budgeted MDPs: Some illustrative results
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❏ “MDP” derived from advertiser data
❏ 3.6M “touchpoint” trajectories (28 distinct events)
❏ VOMC model/mixture learned
❏ 452K states / 1470 states; hypothesized actions, synthetic costs
❏ Unsatisfying  models: not too controllable (opt. policies mostly by no-ops)

Budgeted MDPs: Some illustrative results
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❏ “MDP” derived from advertiser data
❏ 3.6M “touchpoint” trajectories (28 distinct events)
❏ VOMC model/mixture learned
❏ 452K states / 1470 states; hypothesized actions, synthetic costs
❏ Unsatisfying  models: not too controllable (opt. policies mostly by no-ops)

❏ Large model (aggr. prun.): 11.67 segs/state;  1168s/iteration

Budgeted MDPs: Some illustrative results
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Online Budget Allocation
❏ Collection of U users each with her own MDP

❏ For simplicty, assume a single MDP
❏ But each user i is in state s[i] of MDP M[i]
❏ State of joint MDP: |S|-vector of user counts

❏ Advertiser has maximum budget B
❏ What is optimal use of budget?
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Online Budget Allocation
❏ Optimal VFs, policies for user-level BMDPs used to allocate budget

❏ Motivated by Meuleau et al. (1998) weakly coupled model
❏ Online budget allocation problem (BAP):
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Online Budget Allocation
❏ Optimal VFs, policies for user-level BMDPs used to allocate budget

❏ Motivated by Meuleau et al. (1998) weakly coupled model
❏ Online budget allocation problem (BAP):

❏ Solution is optimal assuming “expected budget” commitment
❏ Not truly optimal: no recourse across users
❏ Equivalent to: allocate budget; once fixed, “solve” CMDP, implement policy
❏ Alternative (later): dynamic budget reallocation (DBRA)
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Solving the Budget Allocation Problem
❏ Multi-item version of multiple-choice knapsack (MCKP)

❏ Sinha, Zoltners OR79 analyze MCKP as MIP
❏ LP relaxation solvable with greedy alg. using “bang-per-buck” metric
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Online Allocation: Illustrative Results
❏ Fast GBA allows quick determination (ms.) of sweet spot in spend

❏ Can directly plot budget-value trade-off curves
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Alternative Methods
❏ Greedy budget allocation (GBA)
❏ Dynamic budget reallocation (DBRA)  (see Meuleau et al. (1998))

❏ Perform GBA at each stage, take immediate optimal action
❏ Observe new state (or each user), re-allocate remaining budget using GBA
❏ Allows for recourse, budget re-assignment;  Reduces odds of overspending 

❏ Static user budget (SUB)
❏ Allocate fixed budget to each user using GBA at initial state

❏ Ignore next-state:budget mapping, enact policy using remaining user budget
❏ No overspending possible

❏ Uniform budget allocation (UBA)
❏ Assign each user the same budget B/M;   solve one CMDP per state (no BMDP)
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Online Allocation: Illustrative Results
❏ 15-state synth. MDP, 1000 users (all at initial state)

❏ Variance in per-user spend high (e.g., last row: 28.7% of users oversp. >50%)
❏ But average across population close to budget
❏ DBRA: “guarantees” budget constraint, and can offer some recourse
❏ Note: UBA and GBA identical if all users start at same state
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Online Allocation: Illustrative Results
❏ 15-state synth. MDP, 1000 users (spread over 12 non-term. states)

❏ GBA exploits BMDP solution to make tradeoffs across users
❏ UBA has no information to differentiate high-value vs. low-value states
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Online Allocation: Illustrative Results
❏ 452K-state synth. MDP, 1000 users (across 50 initial states)

❏ Results more mixed since MDP not very “controllable” (quite random)
❏ UBA (uniform allocation to all users, as if BMDP solution were not available at 

allocation time, but CMDP solution per-state is available)
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Next Steps
❏ Deriving genuine MDP models from advertiser data

❏ Reallocation helps very little with VOMC-MDP (due to hypothesized actions)
❏ Large MDPs (feature-based states, actions)
❏ Parameterized models, mixtures, ...
❏ The reinforcement learning setting (unknown model)
❏ Extensions:

❏ Partial (including periodic) observability
❏ Censored observations
❏ Limited controllability
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Applications to Social Choice
❏ Much of SC involves allocation of resources to population

❏ E.g., how to best determine distribution of resources to different area of public 
policy (health care, education, infrastructure)

❏ Best use of allocated resources depends on “user-level” MDPs 
❏ Especially true in dynamic/sequential domains with constrained capacity, e.g.,  

smart grid, constrained medical facilities, other public facilities/infrastructure
❏ User’s preferences for particular policies highly variable

❏ Use of BMDPs can play a valuable role in assessing tradeoffs:
❏ Allocation of resources across users within a policy domain
❏ Allocation of resources across domains
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