
On Elections with Robust Winners

Dmitry Shiryaev, Lan Yu, Edith Elkind

Abstract

We study the sensitivity of election outcomes to small changes in voters’ preferences. We
assume that a voter may err by swapping two adjacent candidates in his vote; we would like to
check whether the election outcome would remain the same given up to δ errors. We describe
polynomial-time algorithms for this problem for all scoring rules as well as for the Condorcet
rule. We are also interested in identifying elections that are maximally robust with respect
to a given voting rule. We define the robustness radius of an election with respect to a given
voting rule as the maximal number of errors that can be made without changing the election
outcome; the robustness of a voting rule is defined as the robustness radius of the election that
is maximally robust with respect to this rule. We derive bounds on the robustness of various
voting rules, including Plurality, Borda, and Condorcet.

1 Introduction
Voting provides a convenient method for preference aggregation in heterogeneous groups of agents:
the group members report how they order the available alternatives (from the most preferred one
to the least preferred one), and a voting rule is used to select a winner. There is a wide variety of
voting rules that can be used for this purpose, with each of these rules encoding a certain approach
to aggregating the preferences of the group members. Clearly, for a voting rule to work as intended,
it has to be the case that every voter can reliably submit a ranking that fully reflects his opinion of
the available alternatives. However, it is not realistic to assume that this is always the case.

Indeed, there are two main reasons for submitting an erroneous vote. First, the voters may
be unable to invest sufficient time and resources in investigating the properties of all the available
alternatives, and, as a result, they may err by ordering fairly similar alternatives in a way that deviates
from the one they would have chosen if they were to study their options in more detail. Second,
voters can make mistakes when filling out their ballots; again, while they are unlikely to rank their
top alternative last, they may inadvertently swap adjacent alternatives.

Thus, we may wonder if an outcome of a given election would have remained the same if each
vote was a perfect reflection of the respective voter’s preferences. Of course, the answer to this
question depends on the observed election outcome: if the two most successful candidates are close
to being tied, it is quite plausible that the error-free outcome would have been different, but if
the current winner leads by a significant margin, the election outcome is likely to reflect the true
collective opinion. In other words, given an election, it is natural to ask how robust its outcome is,
given that our perception of the voters’ preferences may be noisy.

In this paper, we study this question for several voting rules, namely, the class of all scoring rules
and the Condorcet rule, under the assumption that an “elementary” mistake that a voter (or a vote
recording device) can make is to swap two adjacent alternatives in the vote; in recording a given vote,
several such mistakes can be made consecutively. This approach is motivated by a classic model of
noise used in the study of preferences, which is known as the Mallows noise model [7]. However,
in contrast to the Mallows model, we do not assume that mistakes follow a particular distribution.
Rather, we are interested in the worst-case scenario, i.e., whether the election result could have
been different if we were to deviate by δ swaps of adjacent candidates from the observed preference
profile. Thus, we measure the distance between elections using the classic swap distance [3] (also
known as the inversion distance, the bubble-sort distance, or the Kemeny distance), and we ask
whether all elections within a given distance bound δ from the observed election E have the same
outcome as E.

We remark that this computational problem can be viewed as the destructive version of the well-
studied swap bribery problem [4] with unit costs. In more detail, in the (constructive version of)
the swap bribery problem it is assumed that an external party wants to make a specific candidate
the election winner, and bribes the voters to change their preferences; each voter has a price for
swapping every pair of candidates in his vote, and the question is whether the external party can
achieve its goal given a certain bribery budget. In the destructive version of this problem (which,
to the best of our knowledge, has not been considered in the literature), the briber’s goal would be
to prevent a specific candidate from winning; clearly, this is equivalent to our question under the
assumption that all swaps have the same cost.

We are also interested in understanding the structure of elections whose outcome is maximally
robust with respect to a given voting rule, i.e., those whose winner is most resilient to swaps of
adjacent candidates. Formally for a given voting rule F , we define the robustness radius robF (E, c)
of an electionE with respect to a candidate c as the smallest number of swaps that have to be applied
to E to ensure that c is not the (unique) winner of E under F . The robustness of a voting rule F
for a given number of voters n and a given number of candidates m is then defined as the maximal
robustness radius, over all n-voter m-candidate elections and all candidates in these elections. This
quantity measures the maximum resilience of a voting rule to errors in reported preferences and may
vary quite substantially from one voting rule to another: for instance, our results show that the Borda
rule is considerably more robust than the Condorcet rule.

Our Results We show that our computational problem admits polynomial-time algorithms for all
scoring rules and the Condorcet rule. Further, we obtain essentially matching upper and lower
bounds on the robustness of several classes of scoring rules, including such prominent scoring rules
as Plurality and Borda. Determining the robustness of the Condorcet rule turns out to be more
difficult: while we provide non-trivial upper and lower bounds for this quantity, there is still a gap
that remains to be closed. Interestingly, we show that an election that is (almost) maximally robust
with respect to many scoring rules is provably non-optimal for the Condorcet rule.

Related Work Procaccia et al. [8] also consider robustness of voting rules to swaps of adjacent
candidates. However, their approach differs from ours in several important aspects. First, they
measure the robustness of a given election as a fraction of swaps that leave the outcome unchanged
(they also extend this definition to fixed-length chains of swaps), i.e., while our model of noise is
adversarial, theirs is random. Second, Procaccia et al. are interested in minimally robust elections,
while we focus on elections that are maximally robust. Indeed, while the goal of Procaccia et al. is
to understand which voting rules are most resilient to errors (or, viewed from a different perspective,
least sensitive to changes in voters’ preferences), and thus a worst-case approach is appropriate, our
aim is to understand which features of a preference profile guarantee that a given voting rule will
output the desired result, even in the presence of mistakes. Unsurprisingly, our conclusions are also
very different from those of Procaccia et al.: in our framework, Borda turns out to be extremely
robust, while Plurality is rather fragile, whereas in the model of Procaccia et al. the opposite is true.
Finally, we provide efficient algorithms for computing the robustness radius under many voting
rules; in contrast, the results of Procaccia et al. are non-algorithmic in nature.

Our work is also closely related to (and shares some of the motivation) with the recent work
by Xia [9] on the margin of victory of voting rules. Indeed, Xia explores essentially the same
algorithmic question, but for a different model of errors. Namely, he asks if the election results
would have remained the same if up to δ voters were to change their vote arbitrarily. Thus, our papers
differ in their notion of an elementary error, or, equivalently, in their approach to measuring distance
between elections: while the underlying notion of distance for our work is the swap distance, for [9]
it is the Hamming distance. In other words, while we study the destructive version of the swap
bribery problem [4], paper [9] studies the destructive version of the original bribery problem [5]1.

1To be precise, the margin of victory problem studied in [9] differs from destructive bribery with unit costs in its handling
of ties, but the two problems are nevertheless very similar; see the discussion in [9].

While our approach is based on a more fine-grained notion of errors than that of [9], we do not
claim that it is generally superior: rather, for either approach there is a range of scenarios where
it is more suitable than the other. In particular, the swap distance-based model seems more attrac-
tive when voters make mistakes due to imperfect introspection or errors in recording their vote,
while the Hamming distance-based approach is more appealing when mistakes are due to (potential)
malfunctioning of the vote-recording device (which is the motivation put forward in [9]).

We remark that both in our model and in the model of [9] the associated algorithmic question is
easy for all scoring rules, but, apart from this, the contribution of the two papers is incomparable:
there are several voting rules studied in [9], but not in our work (though we intend to study these
voting rules in the future), but, on the other hand, Xia does not consider the Condorcet rule (he does,
however, prove NP-hardness results for several voting rules that are refinements of the Condorcet
rule). Also, Xia focuses on the algorithmic aspect of the problem only, while a significant (and per-
haps the most mathematically interesting) part of our contribution is the study of the combinatorial
question of robustness of voting rules; we believe that this question would be just as interesting to
study in the model of [9], and propose it as a direction for future work.

The rest of this paper is organized as follows. After introducing our notation and basic definitions
in Section 2, we formally define the problems we intend to study (Section 3). Sections 4 and 5
present our results for scoring rules and the Condorcet rule, respectively. We conclude in Section 6.

2 Preliminaries
An election is a pair E = (C,R), where C is a set of candidates, or alternatives, and R =
(R1, . . . , Rn) is a preference profile, with each Ri, i = 1, . . . , n, being a linear order over C;
we will sometimes write �i in place of Ri. We will refer to the elements ofR as votes: Ri is is the
vote of the i-th voter in the election (C,R). We denote the number of votes in a preference profile
R by |R|. We say that a voter i prefers a ∈ C to b ∈ C if a �i b. We denote the candidate ranked
by voter i in position j by c(j, Ri). Conversely, we denote the position of a candidate cj in the i-th
vote by pos(cj , Ri). We will sometimes identify C with the set [m] = {1, . . . ,m}. We denote the
space of all n-voter m-candidate elections by En,m.

Given an election E = (C,R), a candidate a is said to win the pairwise election against b if
more than half of the voters prefer a to b; if exactly half of the voters prefer a to b, then a is said
to tie his pairwise election against b. A candidate a ∈ C is said to be the Condorcet winner of the
election E = (C,R) if he beats every other candidate in their pairwise election.

Given two votes R and R′ over a set of candidates C, the swap distance between R and R′,
denoted by dswap(R,R′), is the number of swaps of adjacent candidates needed to transform R
into R′, or, equivalently, the number of pairs (a, b) ∈ C × C such that in R candidate a is ranked
above candidate b, but in R′ candidate b is ranked above candidate a. Given two n-voter elections
E = (C,R) and E′ = (C,R′) over the same set of candidates C, the swap distance between them,
denoted by dswap(E,E′), is given by dswap(E,E′) =

∑
i=1,...,n dswap(Ri, R

′
i).

A voting correspondence (in what follows, we will use the terms voting correspondence and
voting rule interchangeably) is a mapping F that given an election E = (C,R) outputs a non-
empty set of candidatesW = F(E) ⊆ C; the candidates inW are called the winners of the election
E under the voting rule F . We will now define the voting rules that will be considered in this paper.

Scoring rules. Every vector of non-negative reals α = (α1, . . . , αm) that satisfies α1 ≥ · · · ≥ αm
corresponds to a scoring rule Fα, which is defined for m-candidate elections only. Under this rule,
each candidate in an election E = (C,R) with |C| = m receives αi points from every voter
that ranks him in position i; the Fα-score of a candidate c in E (denoted by sα(E, c)) is the total
number of points that c receives in E. The winners under Fα are the candidates with the highest
Fα-score. The vector (α1, . . . , αm) is called the scoring vector that corresponds to the scoring rule

Fα. As we are interested in asymptotic complexity results, we will consider families of scoring
rules {Fαm}m≥1, where αm = (αm1 , . . . , α

m
m) and αm1 ≥ · · · ≥ αmm. We require these families

to be polynomial-time computable, i.e., we assume that for each m ≥ 1 and each i = 1, . . . ,m
the number αmi is a non-negative integer given in binary, and, moreover, there is a polynomial-
time algorithm that can output αmi given m and i. There are several prominent voting rules that
correspond to families of scoring rules. In particular, Plurality is the family of scoring rules given
by αm1 = 1, αmi = 0 for all m ≥ 1 and all i = 2, . . . ,m, Veto is the family of scoring rules given by
αmm = 0, αmi = 1 for all m ≥ 1 and all i = 1, . . . ,m− 1, Borda is the family of scoring rules given
by αmi = m − i for all m ≥ 1 and all i = 1, . . . ,m, and k-approval is the family of scoring rules
such that for eachm ≥ 1 it holds that αmi = 1 for i = 1, . . . , k and αmi = 0 for all i = k+1, . . . ,m,

The Condorcet rule. Under the Condorcet rule, if the election has a Condorcet winner, he is the
(unique) election winner; otherwise, the set of winners isC. We remark that it is more common (see,
e.g., [2]) to say that in the latter case the election has no winners. However, in the social choice liter-
ature it is standard to require (as we do) that a voting rule outputs a non-empty winner set for every
election, so we have modified the definition of the Condorcet rule to satisfy this requirement. Since
in this paper we focus on the unique winner variant of our computational problem (see Section 3
for formal definitions), these two definitions are essentially equivalent. However, for the non-unique
variant of our problem this is no longer the case; we discuss this issue in detail in Section 5.

In what follows, we abbreviate the Plurality rule to FP , the Borda rule to FB, k-approval to Fk,
and the Condorcet rule to FC .

3 Our Model
We will now present the two questions that will be the focus of this paper.

Definition 3.1. Given a voting rule F , an instance of F-UC DESTRUCTIVE SWAP BRIBERY (here
“UC” stands for “unit cost”) is given by an election E = (C,R), a candidate c ∈ C, and a
parameter δ ∈ Z+. It is a “yes”-instance if F(E) = {c}, but there exists an election E′ = (C,R′)
with dswap(E,E′) ≤ δ such that F(E′) 6= {c}. Otherwise, it is a “no”-instance.

We remark that in Definition 3.1 we consider the unique winner version of our problem, i.e., we
require c to be the unique winner of the original election, and we seek a modified election for which
this is no longer the case. Alternatively, one could consider the non-unique winner version of the
problem, where c is required to be one of the election winners, and the goal is to find an election
in which c is not an election winner at all. It is not hard to verify that the dynamic programming
algorithm for scoring rules presented in Section 4 can be modified to work for the non-unique winner
version of our problem. However, for the Condorcet rule the relationship between the two variants
of the problem is more complicated (see Section 5). We chose to focus on the unique winner version
of our problem since it provides a better match for the intuition behind the Condorcet rule.

Definition 3.2. Given a voting rule F , an election E = (C,R) and a candidate c ∈ C, the robust-
ness radius of E with respect to c under F , denoted by robF (E, c), is the smallest value of δ such
that there exists an election E′ = (C,R′) with dswap(E,E′) ≤ δ such that F(E′) 6= {c}.

Clearly, robF (E, c) ≥ 0 and robF (E, c) = 0 if and only if c is not the unique winner of E
under F . Moreover, since the swap distance between any pair of n-voter m-candidate elections is at
most δm,n = nm(m−1)

2 , we have robF (E, c) ≤ δm,n for every E ∈ En,m.
Given a voting rule, we would like to understand the structure of the elections that have the

maximum robustness radius with respect to this rule. Thus, overloading notation, we define the
robustness of a voting rule F as a function

robF (m,n) = max{robF (E, c) | E = (C,R) ∈ En,m, c ∈ C}.

In what follows, we will investigate the complexity of UC DESTRUCTIVE SWAP BRIBERY and
prove upper and lower bounds of robF (m,n) for several families of scoring rules as well as the
Condorcet rule.

4 Scoring Rules
We start by describing a simple dynamic programming algorithm that efficiently solves UC DE-
STRUCTIVE SWAP BRIBERY for any polynomial-time computable family of scoring rules. We then
describe a simpler and faster algorithm for the Borda rule.

Theorem 4.1. The problem {Fαm}m≥1-UC DESTRUCTIVE SWAP BRIBERY is in P for any
polynomial-time computable family of scoring rules {Fαm}m≥1.

Proof. Fix a scoring vector α = (α1, . . . , αm). We will describe an algorithm that given (a) an
election E = (C,R) ∈ En,m that has a unique winner c under Fα and (b) a positive integer δ,
determines whether there exists an election E′ with dswap(E,E′) ≤ δ such that Fα(E′) 6= {c}.
The running time of our algorithm will be polynomial in n, m, log δ and logα1. Clearly, this
implies the statement of the theorem.

Consider an election E = (C,R) ∈ En,m. Suppose that c is the unique winner of E. For each
a ∈ C \ {c}, we will check whether there exists an election Ea with dswap(E,Ea) ≤ δ such that
in Ea the Fα-score of a is at least as high as that of c; we output “yes” if the answer is positive
for at least one a ∈ C \ {c}. Given an election E′ = (C,R′) and a candidate a ∈ C \ {c}, let
def(E′, a) = max{0, sα(E′, c)− sα(E′, a)}; we will refer to the quantity def(E′, a) as the deficit
of a in E′. Thus, our goal is find an election Ea within a distance δ from E such that the deficit of
a in Ea is 0.

We start by considering a variant of this problem where we are only allowed to modify a single
vote Ri ∈ R. Suppose that we are allowed to make at most d swaps in Ri. Let z(i, d) be the
maximum reduction in a’s deficit that can be obtained in this manner. Clearly, we cannot benefit
from swaps that do not involve a or c. Thus, we should use our d swaps to move a upwards or
to move c downwards (or both), and it remains to decide how many swaps to allocate to each of
these actions; this can be determined by considering all possible splits. More precisely, for each
d′ = 0, . . . , d, we consider the vote Ri(d′) obtained by first shifting c by d′ positions downwards in
Ri and then shifting a by d−d′ positions upwards in the resulting vote; among these d+1 votes, we
pick one that reduces a’s deficit as much as possible, and let z(i, d) be the corresponding reduction
in a’s deficit.

We are now ready to describe the dynamic programming algorithm for our problem. For each
d = 0, . . . , δ and each i = 0, . . . , n, let N(i, d) be the smallest deficit of a over all elections at swap
distance at most d from E that differ from E in the first i votes only. The quantities N(i, d) can be
computed as follows. Clearly, for every d = 0, . . . , δ, N(0, d) is simply a’s deficit in the original
election E, which is straightforward to compute. Further, we have

N(i, d) = max

{
0, min
d′=0,...,d

(N(i− 1, d− d′)− z(i, d′))
}

for all d = 0, . . . , δ and all i = 1, . . . , n. Indeed, we simply have to find an optimal way of splitting
d swaps between the i-th vote and the first i− 1 votes; the best way to use the d′ swaps allocated to
the i-th vote is given by z(i, d′). Thus, the quantities N(i, d) can be computed inductively starting
from i = 0. Once we have computed N(n, δ), it remains to check if N(n, δ) = 0; if yes, we have
succeeded in finding an election at distance at most δ from E where a’s score is at least as high as
that of c.

For some scoring rules, the algorithm given in the proof of Theorem 4.1 can be simplified. In
particular, this is the case for the Borda rule. Indeed, under this rule each upwards swap involving a

but not c, as well as each downwards swap involving c but not a, reduces a’s deficit by 1; the most
“profitable” swaps are the ones that involve both a and c, as they reduce a’s deficit by 2. Thus, our
optimal strategy is to maximize the number of “super-profitable” swaps. This observation allows us
to simplify our algorithm as follows. We first consider the listR′ ⊆ R of all votes where c is ranked
above a. We re-order the votes in this list according to the number of candidates ranked between c
and a, from the smallest to the largest (breaking ties arbitrarily). We then process the votes in R′
one by one. In each vote, we swap c downwards until it is swapped with a. If we have processed
all votes in R′, and we still have some swaps available, we allocate them arbitrarily to swapping c
downwards or swapping a upwards in any vote in R where this can be done. Clearly, this approach
maximizes the number of swaps that reduce the deficit by 2, and is therefore optimal.

We now move on to the study of robustness of scoring rules. We first provide a simple upper
bound that applies to all “reasonable” voting rules. We then show that for the Borda rule this bound
is essentially tight.

We say that a voting rule F is unanimity-consistent if in every election E where some candidate
c is ranked first by all voters it holds that c is a winner of E under F . Note that all voting rules
considered in this paper (and, more broadly, all common voting rules) are unanimity-consistent.

Theorem 4.2. For any unanimity-consistent voting rule F we have robF (m,n) ≤ nm
2 .

Proof. Consider an election E = (C,R) ∈ En,m, and let c be a winner of E under F . For every
candidate a ∈ C \ {c}, let ra be the number of swaps required to get a into the top position in each
vote inR; note that by unanimity consistency performing these ra swaps would make a an election
winner. We have ∑

a∈C\{c}

ra ≤ n(1 + 2 + . . .+ (m− 1)) =
nm(m− 1)

2
.

As |C \{c}| = m−1, by the pigeonhole principle there exists some a ∈ C \{c} such that ra ≤ nm
2 .

Hence, robF (m,n) ≤ nm
2 .

Interestingly, for the Borda rule this bound is essentially tight.

Theorem 4.3. We have robFB(m,n) = nm
2 +O(n+m).

Proof. The upper bound follows immediately from Theorem 4.2. For the lower bound, consider an
election E = (C,R) ∈ En,m, where C = {c1, . . . , cm} and R consists of bn/2c votes of the form
c1 � c2 � . . . � cm and dn/2e votes of the form c1 � cm � . . . � c2. In this election c1 is the
unique Borda winner, and his Borda score is n(m − 1). On the other hand, consider a candidate ci
with i > 1. His Borda score in E is (m− i)bn2 c+ (i− 2)dn2 e = nm

2 +O(n+m).
Now, consider a minimal sequence of swaps that transforms E into an election E′ where ci

is a Borda winner. Each swap decreases the difference between the score of c1 and that of ci by
at most one unless this swap involves both c1 and ci (in which case it decreases the difference in
their scores by 2); however, there can be at most n swaps of the latter type. Therefore, the total
number of swaps required to make ci an election winner is at least nm2 + O(n + m), and therefore
robFB(m,n) ≥ nm

2 +O(n+m).

Next, we consider the k-approval rule with k ≥ m/2. We will use the following construction.
Given a voteR over a candidate setC of sizem, we say thatR′ is obtained fromR by the downwards
shift if c(1, R′) = c(m,R) and for each j = 2, . . . ,m it holds that c(j, R′) = c(j − 1, R). For
instance, by applying the downwards shift to the vote c1 � . . . � cm−1 � cm we obtain the vote
cm � c1 � . . . � cm−1. We say that an election (C,R) ∈ En,m is an (R,n,m)-typhoon if
n = mα for some α ∈ N, R1 = R, for each i = 2, . . . ,m the vote Ri is obtained from the vote
Ri−1 by the downwards shift, and for each j = 1, . . . , α − 1 and each i = 1, . . . ,m it holds that

Rmj+i = Ri. Further, we say that an election (C,R) ∈ En,m is a (c,R′, n,m)-lidded typhoon if
c ∈ C, n = (m − 1)α for some α ∈ N, R′ is a vote over C \ {c}, and R is obtained from the
(R′, n,m− 1)-typhoon by inserting c into the top position of each vote inR′.

Theorem 4.4. For k ≥ m
2 we have robFk

(m,n) = n(m−k)2
2m +O(n+m).

Proof. For the upper bound, consider an election E = (C,R) ∈ En,m that has some candidate c as
its unique k-approval winner. Consider a candidate a ∈ C \ {c}. To ensure that c in not the unique
winner of E, it suffices to swap a into the top k positions in each vote. Let ra denote the number of
swaps needed to place a into top k positions in every vote. We have∑

a∈C\{c}

ra ≤ n(1 + 2 + . . .+ (m− k)) =
n(m− k)(m− k + 1)

2
.

As |C \ {c}| = m− 1, by the pigeonhole principle there exists some a ∈ C \ {c} such that

ra ≤
n(m− k)(m− k + 1)

2(m− 1)
=
n(m− k)2

2m
+O(n+m),

which establishes our upper bound.
For the lower bound, we provide a proof for the case n = α(m − 1) for some α ∈ N. Our

proof can be extended to the case where m − 1 does not divide n; we omit the details due to space
constraints.

Let R′ be a vote over the candidate set {c2, . . . , cm} given by c2 � . . . � cm, and let (C,R) be
the (c1, R

′, n,m− 1)-lidded typhoon. Clearly, c1 is the unique winner of (C,R) under k-approval.
Fix a candidate ci with i > 1, and consider a minimal sequence of swaps that makes ci a k-approval
winner. Clearly, the only useful swaps are the ones that shift c1 out of top k positions or ones that
shift ci into top k positions. Shifting ci into top k positions requires at most m − k swaps, while
shifting c1 out of top k positions requires k swaps, and by our choice of k we have k ≤ m − k.
Thus, an optimal sequence of swaps that makes ci a k-approval winner is to shift him into top k
positions in every vote. Since ci appears in each of the bottom m− k positions exactly α times, the
total number of swaps required is

α
(m− k)(m− k + 1)

2
= n

(m− k)(m− k + 1)

2(m− 1)
=
n(m− k)2

2m
+O(n+m).

We conclude that robFk
(m,n) ≥ n(m− k)2/(2m) +O(n+m).

For k-approval with k ≤ m/2, the argument in the proof of Theorem 4.4 no longer applies.
Specifically, while we conjecture that lidded typhoons are maximally robust for small values of k as
well, it is no longer the case that to make some non-top-ranked candidate a an election winner it is
optimal to only perform swaps that shift a into the top k positions. Indeed, for small values of k it
may be easier to move the top-ranked candidate out of the top k positions. We will now show that
this is indeed the case for the Plurality rule.

Theorem 4.5. For m ≥ 6, we have n− 1− n
m−1 ≤ robFP (m,n) ≤ n− d n

m−1e.

Proof. For the upper bound, consider an election E = (C,R) ∈ En,m and suppose that c1 is the
unique Plurality winner of E. Then c1’s Plurality score is at most n. On the other hand, by the
pigeonhole principle there exists a candidate a ∈ C \ {c} that is ranked in top two positions at
least d n

m−1e times. Thus, by using at most d n
m−1e swaps we can ensure that a’s Plurality score

is at least d n
m−1e. Observe that at this point the Plurality score of c is at most n − d n

m−1e, so
using additional n − 2d n

m−1e swaps, we can reduce its Plurality score to at most d n
m−1e. Thus,

robFP (m,n) ≤ n− d n
m−1e.

For the lower bound, suppose first that n = α(m − 1) for some α ∈ N. Let (C,R) be the
(c1, R

′, n,m)-lidded typhoon, where R′ is an arbitrary preference order over C \ {c1}. Among all
minimum-length sequences of swaps which ensure that c1 is not the unique election winner under
Plurality, pick one which swaps c1 out of the top position in the maximum number of votes, and let
ci, i > 1, be a winner of the resulting election E′. Let N1 be the set of voters in E′ that rank c1 first,
let Ni be the set of voters in E′ that rank ci first, and let N ′ = N \ (Nc ∪Ni) be the set of all other
voters; we have |Ni| ≥ |N1|.

We have N ′ 6= ∅, since otherwise we would have |Ni| ≥ n/2, and for m ≥ 6 the cost of
swapping ci into the top position in n/2 votes exceeds n. Therefore, we have |Ni| = |N1|. Indeed,
if |Ni| > |N1|, we could shorten our swap sequence by not making the swaps in some vote in N ′:
in the resulting election it would still be the case that |Ni| ≥ |N1|. Now, suppose that |Ni| > α.
Then we had to perform at least two swaps in at least one vote in Ni. Consider a modified sequence
of swaps that performs no swaps in this vote (so that it still ranks c1 first), but swaps c1 out of the
top position in two votes in N1. The length of this modified sequence is at most that of the original
sequence, it also ensures that ci’s Plurality score is at least as high as that of c1, and it swaps c1
out of the top position in a higher number of votes, a contradiction with our choice of the swap
sequence. It follows that |Ni| = |N1| = α, which implies that the length of our swap sequence is at
least n− α = n− n

m−1 .
It is easy to generalize this argument to the case where m − 1 does not divide n to obtain a

slightly weaker lower bound of n− 1− n
m−1 ; we omit the details.

It is instructive to compare the bounds obtained in Theorems 4.3, 4.4, and 4.5. Perhaps not
surprisingly, among all k-approval rules with k ≥ m/2, the m/2-approval rule is the most robust,
and Veto is the least robust. It is interesting to note that Borda is about four times more robust that
m/2-approval and m/2 times more robust than Plurality; also Plurality is considerably more robust
than Veto.

5 The Condorcet Rule
In this section, we show that UC DESTRUCTIVE SWAP BRIBERY remains easy for the Condorcet
rule; however, deriving good bounds on robFC (m,n) requires quite a bit of effort.

Theorem 5.1. The problem FC-UC DESTRUCTIVE SWAP BRIBERY is in P.

Proof. Consider an instance of FC-UC DESTRUCTIVE SWAP BRIBERY given by an election E =
(C,R), a candidate c ∈ C and a non-negative integer δ. Suppose that c is the Condorcet winner of
E. Similarly to the proof of Theorem 4.1, for every candidate a ∈ C \ {c} we check if there exists
an election Ea with dswap(E,Ea) ≤ δ such that a beats or ties c in their pairwise election. It is not
hard to see that we can use essentially the same algorithm as for the Borda rule: that is, we order the
votes where a is ranked below c according to the distance between c and a (from the smallest to the
largest) and process these votes one by one, shifting c downwards to appear just below a; we do this
until we exhaust our swap budget. We return “yes” if in the end of this process a beats or ties c in
their pairwise election.

We remark that the proof of Theorem 5.1 does not extend to the the co-winner version of the FC-
UC DESTRUCTIVE SWAP BRIBERY problem. Indeed, suppose that c is a co-winner of an election
E. Then the nearest election where c is not a co-winner is one where some other candidate is the
(unique) Condorcet winner. Thus, given an electionE with no Condorcet winners (where, according
to our definition of the Condorcet rule, all candidates are the election winners), solving the co-
winner version of FC-UC DESTRUCTIVE SWAP BRIBERY is essentially the problem of computing
the winners of E under the Dodgson rule (recall that under this rule, the winners are the candidates
who can be made the Condorcet winners by the smallest number of swaps of adjacent candidates).

The latter problem is known to be computationally hard [1, 6]. In fact, we can use the results of [1, 6]
to show that the co-winner version of FC-UC DESTRUCTIVE SWAP BRIBERY is computationally
hard as well. We do not present the formal proof of this result, as we do not find the co-winner
version of FC-UC DESTRUCTIVE SWAP BRIBERY intuitively appealing, and therefore we do not
think that this hardness result is informative.

We will now present our upper and lower bounds on the robustness of the Condorcet rule.
It will be convenient to prove bounds on robFC (m+ 1, n) rather than robFC (m,n); our results

are not affected by this change, since they involve an error term than is linear in n + m. First, we
will restate the problem of computing robFC (m + 1, n) as an optimization problem. Given a set
S ⊆ N, let L(S) denote the sum of the smallest d |S|2 e numbers in S. Then, given an election (C,R)
with |R| = n, the quantity L({pos(c,Ri) | i ∈ [n]}) is the sum of the lowest dn/2e positions in
which candidate c appears inR. We can now reformulate our problem as follows.

Lemma 5.2. We have robFC (m+ 1, n) = max(C,R)∈En,m
minc∈C L ({pos(c,Ri) | i ∈ [n]}).

Proof. The proof of Theorem 5.1 shows that for every election E′ = (C ′,R′) ∈ En,m+1 and every
cj ∈ C ′ we have

robFC (E
′, cj) = min

c6=cj
L ({max{0,pos(c,R′i)− pos(cj , R

′
i)} | i ∈ [n]}) .

Indeed, to ensure that cj is not the unique winner of E′ under the Condorcet rule, we need to make
cj tie with or lose to some other candidate c 6= cj , i.e., c has to be ranked higher than cj in at least
dn/2e votes. For each c ∈ C ′ \{cj}, the number of swaps needed to make c appear above cj in vote
i is max{0,pos(c,R′i) − pos(cj , R

′
i)}, and to minimize the total number of swaps for c, we take

the dn/2e votes for which we need the smallest number of swaps. Finally, we choose a candidate
c ∈ C ′ \ {cj} for which the required number of swaps is the smallest.

Now, consider an election E′ = (C ′,R′) ∈ En,m+1 and a candidate cj ∈ C ′. Let Ej =
(C ′,Rj) be the election obtained by moving cj to the top of each vote in E′ (and not changing the
relative order of the remaining candidates). We can simplify the expression for robFC (E

j , cj), since
we have pos(cj , R

j
i) = 1 and pos(c,Rji) > pos(cj , R

j
i) for all i ∈ [n] and all c ∈ C ′ \ {cj}. Thus,

we obtain
robFC (E

j , cj) = min
c6=cj

L({pos(c,Rji)− 1 | i ∈ [n]}).

On the other hand, it is not hard to see that robFC (E
′, cj) ≤ robFC (E

j , cj). Thus, when com-
puting robFC (m+ 1, n), we only need to consider elections where some candidate cj is ranked first
in every vote; denote the set of all such elections by Ejm+1,n. Note also that the identity of this
candidate does not matter. Now, take an election Ej = (C ′,Rj) ∈ Ejm+1,n, let C = C ′ \ {cj} and
consider an election E = (C,R) ∈ En,m obtained by removing cj from each vote in Ej . Note that
any election over C can be obtained in this way.

For every c ∈ C we have L({pos(c,Ri) | i ∈ [n]}) = L({pos(c,Rji) − 1 | i ∈ [n]}).
Consequently,

robF (m+ 1, n) = max
(C,R)∈En,m

min
c∈C

L({pos(c,Ri) | i ∈ [n]}).

From now on, to simplify notation, we identify the candidate set C with [m] and let sj =
L({pos(j, Ri) | i ∈ [n]}) for each candidate j ∈ [m]. By Lemma 5.2, it suffices to find upper and
lower bounds on maxE∈En,m

minj∈[m] sj . The next theorem provides a lower bound.

Theorem 5.3. For every m,n ∈ N there exists an election E = (C,R) ∈ En,m such that sj ≥
1
6mn+O(m+ n) for every candidate j ∈ [m].

Proof. We start by giving the proof for the case m = 3k, n = 6` for some k, ` ∈ N.
For each j = 1, . . . , k, we place the candidates j, m − 2j + 1, and m − 2j + 2 in positions j,

m− 2j + 1, and m− 2j + 2 in each vote so that each of them appears 2` times in each position:

j : j . . . j m− 2j + 1 . . .m− 2j + 1 m− 2j + 2 . . .m− 2j + 2
m− 2j + 1 : m− 2j + 2 . . .m− 2j + 2 j . . . j m− 2j + 1 . . .m− 2j + 1
m− 2j + 2 : m− 2j + 1 . . .m− 2j + 1︸ ︷︷ ︸

2`

m− 2j + 2 . . .m− 2j + 2︸ ︷︷ ︸
2`

j . . . j︸ ︷︷ ︸
2`

Clearly, this results in a valid profile over [m]. For instance, form = n = 6 we obtain the following
profile: 

1 1 5 5 6 6
2 2 3 3 4 4
4 4 2 2 3 3
3 3 4 4 2 2
6 6 1 1 5 5
5 5 6 6 1 1


In such an election, for every j ∈ {1, . . . , k} we have

sj = j × 2`+ (m− 2j + 1)× ` = m`+ ` =
1

6
mn+O(m+ n).

By symmetry, sj = sm−2j+1 = sm−2j+2. Therefore, sj = 1
6mn+O(m+ n) for all j ∈ [m].

We will now consider the general case, i.e., we drop the assumption that m is divisible by 3 and
n is divisible by 6. First, we fill in the top 3bm3 c rows and the first 6bn6 c columns of the profile with
3bm3 c candidates as described above. Then we complete each of these 6bn6 c columns by an arbitrary
permutation of the remaining candidates. Each remaining column can be an arbitrary vote over [m].
It is not difficult to adapt the proof for the special case m = 3k, n = 6` to show that the theorem
holds for this profile.

Combining Theorem 5.3 with Lemma 5.2, we obtain robF (m+ 1, n) ≥ 1
6mn+O(m+ n) and

hence
robF (m,n) ≥ 1

6
(m− 1)n+O(m+ n) =

1

6
mn+O(m+ n).

Now we consider the upper bound.

Theorem 5.4. For any E ∈ En,m there exists a candidate j such that sj ≤ λmn + O(m + n) for
any constant λ > (

√
3− 1)/4.

Proof. Fix λ > (
√

3− 1)/4 and suppose for the sake of contradiction that sj > λmn+O(m+ n)
for each j ∈ [m]. Given an election E = (C,R) ∈ En,m, we construct an m × n matrix M(R) as
follows. The j-th row of M(R) lists all n positions in which candidate j occurs in the n votes, in
non-decreasing order. Below is an example of a 3×4 profileR and its corresponding matrixM(R).

R =

1 2 3 3
2 3 2 2
3 1 1 1

 M(R) =

1 3 3 3
1 2 2 2
1 1 2 3


By the definition of M(R), each number between 1 and m (which denotes a position in a vote)

appears exactly n times inM(R). Moreover, sj is simply the sum of the leftmost ` = dn2 e entries of
the j-th row inM(R). Let S denote the submatrix formed by the first ` columns ofM(R), and let Σ
denote the sum of all entries of S. We will derive upper and lower bounds on Σ. For λ > (

√
3−1)/4

the lower bound will exceed the upper bound, leading to a contradiction.

As we have assumed that sj > λmn+O(m+ n), a lower bound is immediate:

Σ =

m∑
i=1

sj > λm2n+O(m2 +mn).

The upper bound requires much more work. Let a be the smallest entry of the `-th column of
M(R), and let i0 be the index of its row. All entries to the left of a do not exceed a, so si0 ≤ `a.
On the other hand, our assumption implies si0 > λmn+O(m+ n), so we get a lower bound on a:
a > 2λm+O(m+n

n).
Note that each entry of M(R) that is not in S is at least a. Therefore, all entries that are smaller

than a have to appear in S, and each number between 1 and a−1 has to appear exactly n times. The
sum of these numbers is

Σ1 =

a−1∑
i=1

i · n =
1

2
a2n+O(mn).

Let Σ2 = Σ − Σ1; Σ2 is the sum of all entries of S that are greater than or equal to a. We will
now derive an upper bound on Σ2, which will imply an upper bound on Σ.

LetN≥k denote the number of entries in S that are greater than or equal to k. We will first obtain
a general upper bound on N≥k. Observe that entries with value k appear in at least dN≥k

` e rows,
and each entry in these rows that does not appears in S is greater than or equal to k. Hence the total
number of entries that are greater than or equal to k is at least N≥k (in S) plus (n − `)dN≥k

` e (not
in S). On the other hand, there are exactly (m− k + 1)n entries that are greater than or equal to k,
so we get

N≥k ≤
(m− k + 1)n

1 + n−`
`

= (m− k + 1)`.

In total there are m` entries in S, which include the n(a− 1) entries that are smaller than a. We
want an upper bound for the sum of the remaining m`−n(a− 1) entries. To maximize Σ2, the best
way to fill up the remaining entries is to setN≥k = (m−k+1)` by using entries k = m,m−1, . . .
until we run out of entries. More specifically, we put in ` entries of value m,m − 1, . . . , 2a − 1,
respectively, and after that the entries left are negligible, since there are at most a − 1 of them (as
` ≤ (n+ 1)/2) and the order of their sum is O(m2)). Therefore,

Σ2 ≤
m∑

i=2a−1
i·`+O(m2) =

1

2
(m+2a−1)(m−2a+2)`+O(m2) =

1

2
(m2−4a2)

n

2
+O(m2+mn).

Combining Σ1 and Σ2, we obtain

Σ = Σ1 + Σ2 ≤
1

4
(2a2 +m2 − 4a2)n+O(m2 +mn) =

1

4
(m2 − 2a2)n+O(m2 +mn),

which, by the lower bound on a, can be upper-bounded as

1

4
(m2 − 2 · 4λ2m2)n+O(m2 +mn) =

1

4
(1− 8λ2)m2n+O(m2 +mn).

The lower bound on Σ exceeds this upper bound when λm2n > 1
4 (1 − 8λ2)m2n, i.e., 8λ2 +

4λ− 1 > 0, which holds for λ > (
√

3− 1)/4.

Combining Theorem 5.4 with Lemma 5.2, we obtain robFC (m+ 1, n) ≤ λmn+O(m+n) and
hence robFC (m,n) ≤ λ(m − 1)n + O(m + n) = λmn + O(m + n) for every λ > (

√
3 − 1)/4.

Thus, we have

mn

6
+O(m+ n) ≤ robFC (m,n) ≤ (

√
3− 1

4
+ ε)mn+O(m+ n)

for every ε > 0. We have 1/6 ≈ 0.167 and (
√

3− 1)/4 ≈ 0.183, i.e., there is a small gap between
our lower and upper bounds. Closing this gap is a natural direction for future work. We remark
that our bounds indicate than the Condorcet rule is considerably less robust than the Borda rule, but
more robust thanm/2-approval. Also, it is interesting to note that the lidded typhoon is not the most
robust election with respect to the Condorcet rule.

6 Conclusions and Future Work
We have introduced the notions of robustness radius of an election and robustness of a voting rule.
We have provided efficient algorithms for computing the robustness radius of a given election with
respect to scoring rules and the Condorcet rule, and we have provided bounds on the robustness
of several voting rules, including Plurality, Borda, k-approval for k ≥ m/2 and the Condorcet
rule. It would be interesting to see if our algorithmic results for destructive swap bribery can be
extended to voting rules not considered in this paper (such as, e.g., Copeland and Maximin) and to
the general cost version of this problem. Similarly, a natural research direction would be to analyze
the robustness of other voting rules.

We remark that the robustness notions introduced in this paper are defined in terms of the swap
distance. However, one can define and study them for other distances over elections, such as the
Hamming distance or the footrule distance. In particular, one might be able to use the techniques
developed by Xia [9] in order to study robustness of voting rules with respect to the Hamming
distance.

Acknowledgments This research was supported by National Research Foundation (Singapore) un-
der grant 2009-08. We thank Arkadii Slinko and Piotr Faliszewski for useful discussions.

References
[1] J. Bartholdi, C. Tovey, and M. Trick. Voting schemes for which it can be difficult to tell who won the

election. Social Choice and Welfare, 6(2):157–165, 1989.

[2] J. Bartholdi, C. Tovey, and M. Trick. How hard is it to control an election? Mathematical and Computer
Modeling, 16(8/9):27–40, 1992.

[3] M. M. Deza and E. Deza. Encyclopedia of Distances. Springer, 2009.

[4] E. Elkind, P. Faliszewski, and A. Slinko. Swap bribery. In SAGT’09, pages 299–310, 2009.

[5] P. Faliszewski, E. Hemaspaandra, and L. Hemaspaandra. How hard is bribery in elections? Journal of AI
Research, 35:485–532, 2009.

[6] E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Exact analysis of Dodgson elections: Lewis Carroll’s
1876 voting system is complete for parallel access to NP. Journal of the ACM, 44(6):806–825, 1997.

[7] C. L. Mallows. Non-null ranking models. Biometrica, 44:114–130, 1957.

[8] A. D. Procaccia, J. S. Rosenschein, and G. A. Kaminka. On the robustness of preference aggregation in
noisy environments. In AAMAS’07, pages 416–422, 2007.

[9] L. Xia. Computing the margin of victory for various voting rules. In ACM EC’12, 2012.

Dmitry Shiryaev, Lan Yu, Edith Elkind
School of Physical and Mathematical Sciences
Nanyang Technological University, Singapore
Email: SHIR0010@ntu.edu.sg,YULA0001@ntu.edu.sg,eelkind@ntu.edu.sg

