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Abstra
t

This paper provides a �rst insight into 
ost sharing rules for the 
ontinuous knapsa
k

problem. Assuming a set of divisible items with weights from whi
h a knapsa
k

with a 
ertain weight 
onstraint is to be �lled, di�erent su
h (
lasses of) rules are

dis
ussed. Those - based on individual approvals of the items - optimally �ll the

knapsa
k and share the 
ost of the knapsa
k among the individuals. Using various

reasonable properties of 
ontinuous knapsa
k 
ost sharing rules, we provide three


hara
terization results.

1 Introdu
tion

Cost allo
ation in 
ombinatorial optimization problems has been intensively dis
ussed in

re
ent years (see [14℄ for a summary). The major fo
us has been on the minimum 
ost

spanning tree problem, the earliest and most widely investigated 
ost sharing problem in

this area (e.g. [3℄, [4℄, [10℄). There the interest lies mainly in the fair division of the 
ost

of 
reating a network in whi
h ea
h agent is 
onne
ted dire
tly or indire
tly to a sour
e.

A se
ond emphasis has been on s
heduling and queuing problems, i.e., on the problem of

optimally pro
essing jobs of di�erent lengths or weights on a single server (e.g. [8℄, [12℄,

[13℄).

The above problem of �nding minimum 
ost spanning trees has a major advantage among


ombinatorial optimization problems. Its optimal solution 
an be found in polynomial time.

Only then, i.e., in the 
ase of �nding su
h an optimal solution �qui
kly�, does it seem to

make sense to talk about fairly sharing the 
osts, be
ause otherwise any 
hanges to the

setting 
ould make it impossible to �nd the new 
ost allo
ation in reasonable time. The

fo
us 
ould only be on �xed solutions.

Among the 
ombinatorial optimization problems, the knapsa
k problem is 
on
erned with

e�
iently �lling a weight-restri
ted knapsa
k with items from a set of items with possi-

bly di�erent weights and pro�ts. E�
ien
y in that respe
t means maximizing some pro�t

fun
tion based on the items' pro�ts. In 
ase of indivisible items, this problem is typi
ally

NP-hard. One ex
eption is the 
ontinuous knapsa
k problem in whi
h the items are divisible

and therefore the solution 
ould 
ontain a 
ertain fra
tion of one item.

In usual 
ost sharing problems su
h as the bankrupt
y problem ([1℄, [16℄) or the minimum


ost spanning tree problem, �obje
tive� preferen
es su
h as 
osts or 
laims play a major role

in determining a fair 
ost allo
ation. This will be di�erent in our framework, where we fo
us

on the approval or disapproval of 
ertain items by individuals ([5℄). The so
ial welfare of a

set of items is simply de�ned by the total number of approvals for the single items in the

set ([6℄). This 
ould be seen as a �rst step towards using (binary) preferen
e information in

determining a fair 
ost allo
ation.

The setting used in this paper 
an be summarized as follows: we start with a 
ertain

knapsa
k (a 
apa
ity, time interval, et
.) and a set of items over whi
h individuals have

1

We are greatful to Ulri
h Pfers
hy, Daniel E
kert and three anonymous referees for their 
omments on

a previous version of this paper.



binary preferen
es. Ea
h of the items has a (possibly di�erent) weight. First, the goal is to

�ll the knapsa
k su
h that so
ial welfare, (i.e., the sum of approvals) is maximized. Then

the attempt is to fairly divide the 
ost of the knapsa
k (or maintaining the 
apa
ity, or

using the time) among the individuals.

As an example 
onsider a multi-national resear
h proje
t that has some pre-determined


ost. Spa
e and/or time 
onstraints might limit the number of resear
hers (out of a pool

of potential 
andidates) that 
an parti
ipate. In addition, the possible 
andidates might be

for
ed to use the provided resour
e for their spe
i�
 resear
h for di�erent amounts of time.

The potential �nan
ing 
ountries of the resear
h proje
t might approve and disapprove of

di�erent resear
hers. The question now is how to sele
t the set of resear
hers and how to

distribute the 
ost among the parti
ipating 
ountries.
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In prin
iple we are 
on
erned with sharing the 
ost of a sele
ted set of non-rival items that

provides di�erent utilities or payo�s to the individuals. Cost allo
ation aspe
ts in su
h a

binary knapsa
k problem have been 
onsidered before by Dror [9℄ and 
ertain rules su
h as

the Shapley value or the equal 
harge method have been suggested. In this paper we want

to introdu
e and 
hara
terize (a family of) possibly interesting 
ontinuous knapsa
k 
ost

sharing rules.

The following se
tion establishes the formal framework, de�nes the 
ontinuous knapsa
k

problem, and introdu
es reasonable properties of 
ontinuous knapsa
k 
ost sharing rules.

Se
tion 3 �rst introdu
es a whole family of su
h rules and then fo
uses on two rules of whi
h


hara
terization results are provided. Se
tion 4 
on
ludes the paper.

2 Preliminaries

Let N = {1, . . . , n} denote a set of individuals, and I = {1, . . . ,m} a set of items. With

ea
h item j ∈ I, we asso
iate a positive weight wj ∈ R+. The weights are summarized by

the ve
tor ω ∈ R
m
+ , where the j-th entry ωj 
orresponds to wj .

Ea
h individual i ∈ N partitions the set I into a set Ai of items she approves of and a set

of items she disapproves of. For i ∈ N , the ve
tor representation ai ∈ {0, 1}m turns out to

be useful, where the j-th entry ai,j = 1 if individual i approves of item j, and ai,j = 0 if i
disapproves of j. These ve
tors are 
aptured by means of an n×m matrix A, whose rows

orrespond to the ve
tors ai; i.e., A = (ai,j)i∈N , j∈I .

A⊖ ai denotes the matrix resulting from A by deleting the row 
orresponding to ai. Let B
be a k ×m matrix for some k ∈ N. For some b ∈ {0, 1}m, B ⊕ b is the (k + 1)×m matrix


reated by 
on
atenating to B a (k + 1)-st row β and setting β = b.
For j ∈ I, let Nj be the set of individuals of N who approve of j, i.e., Nj = {i ∈ N : j ∈ Ai}.
The value pj of item j ∈ I is de�ned as the number of individuals that approve of j. Formally,

pj := |{i ∈ N : j ∈ Ai}| = |Nj |.

Given a 
apa
ity 
onstraint (or weight bound) W , we 
an represent a knapsa
k 
ost sharing

problem as the quadruple (N , A, ω,W ). A solution to this problem assigns to ea
h individual

a 
ost share. However, one of the major problems in this 
ombinatorial optimization exer
ise

is its 
omputational 
omplexity, i.e., �nding an optimal knapsa
k is NP-hard. Hen
e, we

need to restri
t ourselves to a spe
ial setting of the knapsa
k problem. Therefore we assume

the items to be divisible, i.e., a solution may 
ontain fra
tions of (at most) one item. This

is 
alled the 
ontinuous knapsa
k problem introdu
ed in the following subse
tion.
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2.1 The 
ontinuous knapsa
k

The following de�nition introdu
es a well-known optimization problem:

De�nition 2.1 (Continuous Knapsa
k Problem)

Given a set I = {1, . . . ,m} of items, and, for ea
h j ∈ I, positive real numbers pj and wj ,
the 
ontinuous knapsa
k problem is the following problem:

3

max
∑

j∈I pjxj
s.t.

∑

j∈I wjxj ≤W

xj ∈ [0, 1]

It is known that the 
ontinuous knapsa
k problem 
an be solved in polynomial time (see [11℄).

In what follows, we assume that the items are sorted in a way su
h that

p1
w1

>
p2
w2

> . . . >
pm
wm

(1)

Note that in pra
ti
e, the stri
t inequalities in (1) are not a limitation, sin
e these may

always be rea
hed by arbitrarily small �perturbations� of the weights or by modifying the

a

ura
y of measurement. In theory (
ompare [11℄), inequality (1) ensures that the unique

solution the entity 
hooses is determined by

xj :=











1 for j = 1, . . . , s− 1
1
ws

(W −
∑s−1
i=1 wi) for j = s

0 for j > s

(2)

where s is de�ned by

s−1
∑

j=1

wj < W and

s
∑

j=1

ws ≥W

The 
orresponding obje
tive fun
tion value z is given by z =
∑

j∈I pjxj =
∑s−1

j=1 pj +
ps
ws

(W −
∑s−1
i=1 wi).

Item s is 
alled split item.
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For an optimal solution X = (x1, x2, . . . , xm), we abbreviate

X+ = {j ∈ I : xj > 0} = {1, . . . , s}. In what follows, and in order to simplify notation,

xj is identi�ed with its value in the optimal solution of the 
onsidered 
ontinuous knapsa
k

problem.

2.2 Dividing a 
ontinuous knapsa
k

Let the quadruple (N , A, ω,W ) be given. From the previous se
tion we know that a solution


an be 
al
ulated in polynomial time. Now, the goal is to divide the 
ost of the optimally

pa
ked knapsa
k among the individuals in a fair manner. In that respe
t, we �rst have to

determine the 
ost of the knapsa
k. In this paper, we assume that every unit of weight

imposes a 
ost of one, and therefore the total 
ost of the knapsa
k is equal to the weight

3

In our approa
h we will fo
us on maximizing a sort of utilitarian so
ial welfare given by the sum

of approvals. This might, however, not be the only way to implement a fair solution. More egalitarian

approa
hes 
ould also be 
onsidered at that stage.
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onstraintW . However, dividing then the weight wj byW for ea
h j ∈ I and settingW = 1
does not 
hange the stru
ture of the problem (and, in parti
ular, the optimal solutions of

the 
orresponding 
ontinuous knapsa
k problems are identi
al). Thus, in the major part of

the paper it is assumed that W = 1. In that 
ase, the 
ontinuous knapsa
k 
ost sharing

problem is denoted by the triple (N , A, ω), and we refer to the 
orresponding 
ontinuous

knapsa
k problem as the pair (A,ω).

In general, a 
ontinuous knapsa
k 
ost sharing rule is a fun
tion φ : (N , A, ω,W ) → R
n
+.

The i-th entry φi of φ is interpreted as the share of the 
ost that individual i has to 
arry.

In the following we de�ne some desirable properties for a 
ontinuous knapsa
k 
ost sharing

rule, trying to 
apture 
ertain aspe
ts of fairness.

Properties of 
ost sharing rules.

The �rst requirement � frequently used in the literature in various 
ontexts � is that the

total 
ost of the knapsa
k should be allo
ated exa
tly.

E�
ien
y: A 
ost allo
ation rule φ is e�
ient, if

∑n

i=1 φi(N , A, ω,W ) =W .

For the sake of readability, the remaining properties (ex
ept additivity) are de�ned for the


ase W = 1. However, the de�nitions 
oin
ide with the ones for the general 
ase.

The se
ond property, widely used e.g. in s
heduling problems ([13℄), represents the idea that

voters should not bene�t from �splitting� into several voters with disjoint sets of approved

items (or, the other way round, in 
ase their approved items are disjoint, �merging� into a

single voter). At the same time, the remaining voters should not be disadvantaged if 
ertain

voters �split up� (or �merge�). In prin
iple this should prevent the 
reation of fake identities,

i.e., the individual possibility to manipulate the fair division pro
ess.

5

To illustrate the idea of splitting, let voter i approve of items 1, 2, 3. Repla
ing voter i by
voters ij approving of item j only, 1 ≤ j ≤ 3, should have the result that the sum of the


ost shares of the three voters ij has to be equal to the 
ost share of voter i in the original

problem. In the following de�nition, given a set of individuals N ′
, A′

i′ refers to the set of

approved items of i′ ∈ N ′
(and a′i′ denotes the 
orresponding ve
tor of approvals).

Split-proofness: Let i ∈ N . Let N ′ = (N \ {i}) ∪ {i1, . . . , ir}, su
h that sets A′
iℓ

form a

partition of Ai, i.e.,
⊎r

ℓ=1A
′
iℓ
= Ai. Let A

′ = A⊕ (a′i1 ⊕ . . .⊕ a′ir )⊖ ai.
A 
ost allo
ation rule φ is 
alled split-proof, if

• φi(N , A, ω) =
∑|Ai|

j=1 φij (N
′, A′, ω) and

• φh(N
′, A′, ω) ≤ φh(N , A, ω) for all h ∈ N \ {i}

Remark. Note that for a split-proof rule φ, the �rst of the above 
onditions implies that

∑

h∈N\{i} φh(N , A, ω) =
∑

h∈N\{i} φh(N
′, A′, ω). Thus, the mild se
ond 
ondition implies

that φh(N
′, A′, ω) = φh(N , A, ω) holds for all h ∈ N \ {i}. To see this, assume that the

share of an individual h be
omes stri
tly smaller in problem (N ′, A′, ω). Then, for at least
one h′ ∈ N \ {j} we must have φh′(N ′, A′, ω) > φh′(N , A, ω), in 
ontradi
tion to the above

de�nition.

Sin
e ea
h of the following two properties refers to an instan
e (N , A, ω), for the sake of

brevity we write φi instead of φi(N , A, ω) for i ∈ N .
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The �rst property re�e
ts the 
ompelling idea, well-known in the literature, that the 
ost

allo
ation should not depend on the label of the individual.

Anonymity: Let i, i′ ∈ N . A 
ost allo
ation rule φ is 
alled anonymous, if (Ai = Ai′ ⇒
φi = φi′).

The se
ond requirement is similar to the usual dummy-property. It states that an individual

who only approves of items not in the optimal solution, should not be 
harged. A �totally

unhappy� individual should not be for
ed to 
arry the knapsa
k or 
ontribute to its 
osts.

Dummy: If xj = 0 for all j ∈ Ai, then φi = 0.

The following property applies non-manipulability arguments to situations in whi
h pairs of

individuals, that only approve of one single item, try to improve their situation by swit
hing

their approvals. It requires their 
ost shares to be exa
tly the same, i.e., providing absolutely

no in
entive to get involved into su
h swit
hes.

Swit
h-proofness: Given (N , A, ω), let Ai = {j}, Ai′ = {j′} with xj = xj′ = 1. Let

(N , Ã, ω) with ãh = ah for all h ∈ N \ {i, i′} and ãf = ag for f, g ∈ {i, i′}, f 6= g. Then

φk(N , A, ω) = φk(N , Ã, ω) for all k ∈ N .

A further reasonable property requires the division pro
ess to be independent of a possible

sequential stru
ture, i.e., if the knapsa
k is divided into two di�erent and smaller knapsa
ks

that together have exa
tly the same weight 
onstraint as before, then applying the sharing

rule to ea
h of the smaller knapsa
ks separately should lead to the same total 
ost share as

applying the rule to the original knapsa
k. This property will be 
alled additivity and has

been used, e.g., by [7℄ w.r.t. rights problems.

Additivity: Let W (1),W (2) ∈ R+ with W (1) +W (2) = 1. Let φ(1) = φ(N , A, ω,W (1)), and
let X(1)

be the optimal solution of (A,ω,W (1)). Let Ã = (ãij)i∈N ,j∈I su
h that, for i ∈ N ,

ãij = 0 if x
(1)
j = 1 and ãij = aij otherwise.

In addition, let ω̃ ∈ R
m
+ su
h that ω̃j = (1 − x

(1)
j )ωj for j ∈ X

(1)
+ with 0 < x

(1)
j < 1, and

ω̃j = ωj otherwise. Let φ
(2) = φ(N , Ã, ω̃,W (2)). Then, φ is additive, if φ = φ(1) + φ(2).

The �nal property is 
on
erned with the 
hanges in the 
ost shares given a minimal weight-


hange of a non-split item 
ontained in the optimal solution of the 
ontinuous knapsa
k

problem, keeping the remaining weights un
hanged. It is ex
lusively 
on
erned with situ-

ations in whi
h everyone approves of exa
tly one item. A minimal weight 
hange in that

respe
t is one in whi
h the optimal solution does not 
hange, i.e., the set of items in the

optimal solution before and after the weight 
hange is identi
al.

De�nition 2.2 Given (N , A, ω), let X be an optimal solution of the 
ontinuous knapsa
k

problem (A,ω) with X+ = {1, . . . , s} and xs < 1. For some j < s, let w̃j < wj and

ω̃ = (w1, . . . , wj−1, w̃j , wj+1, . . . , wm).

We 
all w̃j insigni�
antly smaller than wj , if for the optimal solution X̃ of (A, ω̃), we have

X̃+ = X+.

Now, let the weight of j insigni�
antly de
rease in the sense of the above de�nition, and

let ea
h individual approve of exa
tly one item. Then, weight-monotoni
ity states that all

those that approve of the item that be
ame insigni�
antly smaller should fa
e a de
rease

in their 
ost share relative to the 
hange in the value of the obje
tive fun
tion. The formal

de�nition of this 
ondition is as follows:

Weight-monotoni
ity: Let w̃j be insigni�
antly smaller than wj . Then, for all i ∈ N with

Ai = {j}, φi(N ,A,ω̃)
φi(N ,A,ω) = z

z̃
, where z̃ denotes the obje
tive fun
tion value of the optimal

solution of (A, ω̃).



3 Chara
terizations

In what follows, we 
onsider a 
ontinuous knapsa
k 
ost sharing problem (N , A, ω) where (as
previously) X with X+ = {1, . . . , s} 
orresponds to the optimal solution of the 
ontinuous

knapsa
k problem (A,ω).

We now want to investigate, whether 
ertain 
ombinations of the previous properties 
an

be used to determine spe
i�
 reasonable 
ost sharing rules. Our �rst result establishes a full

des
ription of the family of e�
ient rules, that satis�es the dummy property, split-proofness

and swit
h-proofness. As a se
ond result, we present the 
hara
terization of a spe
ial repre-

sentative of this family by adding weight-monotoni
ity. Finally, a 
hara
terization of another

reasonable 
ost sharing rule is given.

Theorem 3.1 The e�
ient rules that satisfy the dummy property, split-proofness and

swit
h-proofness are exa
tly the fun
tions φc with 0 ≤ c ≤ 1∑
i<s

pi
, de�ned by ( ∀i ∈ N )

φci (N , A, ω) = c ·
∑

j∈Ai

xj + 1Ai
(s) ·

1− cz

ps

Proof. First, we show that φci ≥ 0 holds for all i ∈ N , i.e., φc is indeed a 
ost sharing rule.

Sin
e c ≥ 0 holds, we obviously have φci ≥ 0 for i with s /∈ Ai. If s ∈ Ai, then

φci =
∑

j∈Ai\{s}
xjc+ xsc+

1−cz
ps

=
∑

j∈Ai\{s}
xjc+ xsc+ (

1−c
∑s−1

i=1 pi−cpsxs

ps
)

=
∑

j∈Ai\{s}
xjc+ (

1−c
∑s−1

i=1 pi
ps

)

Due to c ≥ 0, we have
∑

j∈Ai\{s}
xjc ≥ 0; in addition, 1 − c

∑s−1
i=1 pi ≥ 0 holds be
ause of

c ≤ 1∑s−1
i=1 pi

. Thus, φci ≥ 0 holds in the 
ase s ∈ Ai as well.

Now, it is shown that ea
h of the axioms is satis�ed by the proposed rule.

The dummy property is obviously satis�ed. Now, 
onsider

∑

i∈N φci =
∑

i∈N c
∑

j∈Ai
xj +

∑

i∈N 1Ai
(s) 1

ps
(1 − cz) = c

∑

i∈N

∑

j∈Ai
xj +

1
ps
(1 − cz)

∑

i∈N 1Ai
(s). Sin
e item j is ap-

proved by exa
tly pj individuals of N , it holds that

∑

i∈N

∑

j∈Ai
xj =

∑

j∈I pjxj = z, and
∑

i∈N 1Ai
(s) = ps. Hen
e,

∑n
i=1 φ

c
i = cz + 1

ps
(1 − cz)ps = 1, whi
h proves e�
ien
y.

For a �xed i ∈ N , let (N ′, A′, ω) be as des
ribed in the de�nition of split-proofness. Note

that the optimal solution X ′
of (A′, ω) is also the optimal solution of (A,ω), and the re-

spe
tive obje
tive fun
tion values z′ and z 
oin
ide. Thus,

r
∑

ℓ=1

φciℓ(N
′, A′, ω) =

r
∑

ℓ=1

(c
∑

j∈A′

iℓ

xj+1A′

iℓ

(s)
1

ps
(1−cz)) = c

r
∑

ℓ=1

∑

j∈A′

iℓ

xj+
1

ps
(1−cz)

r
∑

ℓ=1

1A′

iℓ

(s)

By 
onstru
tion,

∑r
ℓ=1

∑

j∈A′

iℓ

xj =
∑

j∈Ai
xj , and

∑r
ℓ=1 1A

′

iℓ

(s) = 1Ai
(s). Hen
e,

∑r

ℓ=1 φ
c
iℓ
(N ′, A′, ω) = c

∑

j∈Ai
xj + 1Ai

(s) 1
ps
(1− cz) = φci (N , A, ω). I.e., φc is split-proof.

For swit
h-proofness, let Ai = {j} and Ai′ = {j′} su
h that xj = xj′ = 1. Let Ã be

built from A be
ause i and i′ �swit
h� their items (as in the de�nition of swit
h-proofness).

Then, φk(N , A, ω) = c = φk(N , Ã, ω) for k ∈ {i, i′}, sin
e the optimal solutions of (A,ω)
and (Ã, ω) 
oin
ide. The latter fa
t obviously implies φk(N , A, ω) = φk(N , Ã, ω) for all

k ∈ N \ {i, i′} as well.

On the other hand, assume there is a rule ψ that satis�es the stated 
onditions. Now in

order to 
reate the new instan
e (N ′, A′, ω) from (N , A, ω), repla
e ea
h voter i with the



voters i1, . . . , i|Ai| su
h that |A′
iℓ
| = 1 for ea
h 1 ≤ ℓ ≤ |Ai| and

⋃|Ai|
ℓ=1 A

′
iℓ
= Ai. Be
ause of

split-proofness, we know that

|Ai|
∑

ℓ=1

ψiℓ(N
′, A′, ω) = ψi(N , A, ω) (3)

holds for ea
h i ∈ N .

Obviously, the optimal solutions of (A,ω) and (A′, ω) 
oin
ide; let X be su
h an optimal

solution, with X+ = {1, . . . , s}. Note that the obje
tive fun
tion value is given by

z = p1x1 + . . . psxs = p1 + . . . ps−1 + psxs

First, we show that ψ is anonymous. Let i, j ∈ N with Ai = Aj . Starting with instan
e

(N ′, A′, ω), 
reate instan
e (N ′, Ã′, ω) by applying a �swit
h� between the individuals ik
and jk, k ∈ {1, . . . , |Ai|}, i.e., Ã′

g = A′
h holds for g, h ∈ {ik, jk}. Now, swit
h-proofness

and the fa
t that ψ is a fun
tion imply ψik(N , A′, ω) = ψik(N , Ã′, ω) = ψjk(N , A′, ω) for

all k ∈ {1, . . . , |Ai|}. Thus, ψi(N , A, ω) =
∑|Ai|
ℓ=1 ψiℓ(N

′, A′, ω) =
∑|Ai|

ℓ=1 ψjℓ(N
′, A′, ω) =

ψj(N , A, ω) is satis�ed; i.e., ψ is anonymous.

Let i, i′ ∈ N ′
with A′

i = {j}, A′
i′ = {j′} and j, j′ < s. Then, perform a swit
h between i

and i′ and 
all the new instan
e (N ′, A∗, ω). Be
ause of split-proofness, we 
an assume that

the last two rows of ea
h A and A∗

orrespond to a′i and a

′
i′ (in the same order). Note that

in A∗
, the row a′i displays A

∗
i′ and the row a′i′ displays A

∗
i respe
tively. Thus, sin
e ψ is

a fun
tion, we must have ψi(N ′, A′, ω) = ψi′(N ′, A∗, ω). However, swit
h proofness yields

that ψi′(N
′, A′, ω) = ψi′(N

′, A∗, ω). Hen
e, we must have ψi(N
′, A′, ω) = ψi′(N

′, A′, ω).
Therefore, for some c ≥ 0, ψg′(N ′, A′, ω) = c must hold for all g′ ∈ N ′

with A′
g′ = {h′} and

xh′ = 1.
Anonymity together with the dummy property implies that, for some cs, c ∈ R+ ∪ {0},

ψi′(N
′, A′, ω) =











cs if Ai′ = {s}

c if Ai′ = {j′ : j′ < s}

0 otherwise

(4)

E�
ien
y yields

1 =
∑

i′∈N ′

ψi′ (N
′, A′, ω) =

∑

i′∈N ′

s

ψi′ +
∑

j<s

∑

i′∈N ′

j

ψi′ (5)

Note that, by 
onstru
tion, for ea
h j ∈ I, |N ′
j | = pj . Equation (5) 
an hen
e be rewritten

as

1 = pscs + c · (p1 + p2 + . . .+ ps−1) (6)

Re
all that z = p1+p2+ . . .+ps−1+xsps, or, equivalently,
∑s−1
i=1 pi = z−xsps. Substituting

the last equality in (6), we get

1− pscs = c(z − xsps)
⇔ cs = 1−cz

ps
+ xsc

(7)

With (3) and (4), we get ψi(N , A, ω) =
∑|Ai|

ℓ=1 ψiℓ(N
′, A′, ω) =

∑

j∈Ai\{s}
xjc+ cs · 1Ai

(s).

With (7), this yields

ψi(N , A, ω) =

{

∑

j∈Ai
xjc if s 6∈ Ai

∑

j∈Ai
xjc+

1−cz
ps

if s ∈ Ai



Analogously to the beginning of the proof, it follows that 0 ≤ c ≤ 1∑
i<s

pi
must hold for ψ

to be a 
ost sharing rule. Therewith, ψ = φc. �

A representative of the above family of rules is derived from the idea, that a voter's 
ost

share should ex
lusively depend on the total number of the items in the optimal knapsa
k

she approves of, relative to the total number of approvals for the entire knapsa
k (in ea
h


ase taking fra
tional values into a

ount

6

). In parti
ular, if someone likes twi
e as many

items (in
luded as a whole) from the knapsa
k than another individual, then she should

also be given a 
ost share twi
e as high. Obviously this 
ost sharing rule is not 
on
erned

with weights of items or number of approvals for one spe
i�
 item. Formally, this rule 
an

be de�ned as follows:

De�nition 3.1 Given a problem (N , A, ω), the simple proportional 
ontinuous knapsa
k


ost sharing rule is de�ned as (∀i ∈ N)

φsoli (N , A, ω) =

∑

j∈Ai
xj

z

The rule φsol 
an be 
hara
terized as follows.

Theorem 3.2 φsoli (N , A, ω) is the only e�
ient and split-proof rule that satis�es dummy,

swit
h-proofness, and weight-monotoni
ity.

Proof. φsol belongs to the family φc (setting c = 1
z
. Hen
e, due to Theorem 3.1, it is

su�
ient to show that φsol is the only among the rules φc that satis�es weight-monotoni
ity.

It is easy to verify that φsol satis�es weight-monotoni
ity. To proof the other dire
tion,

we follow the argumentation of the above proof. Consider instan
e (N ′, A′, ω) (of the above
proof) and assume xs < 1. De
rease the weight of item j from wj insigni�
antly to w̃j for

some j < s su
h that x′s = 1 in the optimal solution X̃ (with obje
tive fun
tion value z̃ of

(A′, ω̃), where (N ′, A′, ω̃) denotes this new instan
e). Call the new shares (a

ording to (4))

c′s and c
′
; note that due to x′s = 1, with analogous arguments as in the proof of Theorem 3.1,

from swit
h-proofness we get c′s = c′.
From e�
ien
y, we thus get 1 = psc

′
s+c

′ ·(p1+p2+ . . .+ps−1) = c′(p1+p2+ . . .+ps) = c′ · z̃.

Therewith, c′ = 1
z̃
. Weight-monotoni
ity, however, implies

ψi(N
′,A′,ω)

ψi(N ′,A′,ω̃) = c′

c
= z

z̃
for i ∈ N ′

with Ai = {j}. Hen
e, c = 1
z
follows. Thus, ψ 
orresponds to φc with c = 1

z
, i.e., ψ = φsol. �

The above rule puts its fo
us purely on the proportion of individual approvals to total ap-

provals. This might seem unreasonable or ine�
ient in 
ertain situations for two reasons:

First, where extensive weight di�eren
es between the single items 
an be observed, a rule

being sensitive to weights and weight 
hanges might be preferable. Se
ond, the more individ-

uals approve of a 
ertain item in the knapsa
k, the lower should probably be their 
ost share,

if one assumes a non-rival good whose 
ost it imposes on the knapsa
k does not depend on

the number of approvals. Hen
e, if we repla
e swit
h-proofness and weight-monotoni
ity

with additivity, we 
hara
terize a rule, that takes into a

ount the �ine�
ien
y�

wj

pj
of item

j ∈ I dire
tly. The 
ost sharing rule is de�ned as follows:

De�nition 3.2 Given a problem (N , A, ω), the weight-and-approval-based proportional 
on-
tinuous knapsa
k 
ost sharing rule is de�ned as (∀i ∈ N)

φei (N , A, ω) =
∑

j∈Ai

wj
pj
xj

6

I.e, if a fra
tion of an item is in
luded in the knapsa
k, then only the respe
tive fra
tion of the approval

is taken into a

ount.



The rule φe 
an be 
hara
terized as follows:

Theorem 3.3 φei (N , A, ω) is the only e�
ient and split-proof rule that satis�es dummy,

anonymity, as well as additivity.

Proof. For readability, we write φ instead of φe within this proof. We �rst show that all

these axioms are satis�ed by φ.
∑

i∈N

φi =
∑

i∈N

∑

j∈Ai

wj
pj
xj =

∑

j∈I

∑

i∈Nj

wj
pj
xj =

∑

j∈I

pj
wj
pj
xj =

∑

j∈I

wjxj

However, the last sum in the above expression 
orresponds to 1 be
ause X is an optimal

solution of (A,ω); thus, φ is e�
ient.

Split-proofness, dummy and anonymity are obviously satis�ed.

For additivity, let W (1),W (2) ∈ R+ with W (1) + W (2) = 1. Note that xj = 0 implies

x
(1)
j = 0 and x

(2)
j = 0. Thus, it is su�
ient to 
onsider the items {1, . . . , s}. By 
onstru
tion,

X
(1)
+ = {1, ..., ℓ} for some ℓ ≤ s.

Case 1: x
(1)
ℓ = 1. By 
onstru
tion, this means that there is no voter that approves of any of

the items {1, ..., ℓ} in instan
e (N , Ã, ω̃,W (2)). Thus, x
(2)
j = 0 for all 1 ≤ j ≤ ℓ. Vi
e versa,

we have x
(1)
j = 0 and x

(2)
j = xj for all j ∈ {ℓ + 1, . . . , s}. In addition, w̃j = wj holds for

j ∈ {ℓ+ 1, . . . , s}. Hen
e, φ
(1)
i + φ

(2)
i =

∑

j∈Ai

wj

pj
x
(1)
j +

∑

j∈Ai

w̃j

pj
x
(2)
j =

∑

j∈Ai

wj

pj
xj = φi.

Case 2: 0 < x
(1)
ℓ < 1. Then, in instan
e (N , Ã, ω̃,W (2)), ea
h of the items {1, . . . , ℓ − 1}

has zero approvals. Thus the ranking analogous to (1) (restri
ted to the remaining items) is

pℓ
w̃ℓ

>
pℓ+1

w̃ℓ+1
> . . . >

ps
w̃s

> . . . >
pm
w̃m

be
ause the number of approvals of these items remains un
hanged, and only the weight of

item ℓ has de
reased (
ompared to the original instan
e).

Case 2a: ℓ 6= s. By the 
hoi
e of xs and w̃ℓ, W
(2) =

∑s−1
k=ℓ w̃ℓ + xsws must hold. Thus,

X
(2)
+ = {ℓ, ℓ+ 1, . . . , s}, and x

(2)
ℓ = . . . = x

(2)
s−1 = 1 and x

(2)
s = xs. As in the above 
ase, by


onstru
tion for all ℓ + 1 ≤ j ≤ s we have w̃j = wj . Note that for j 6= ℓ, x
(1)
j + x

(2)
j = xj .

Thus, if ℓ /∈ Ai, we get

φ
(1)
i + φ

(2)
i =

∑

j∈Ai

wj
pj
x
(1)
j +

∑

j∈Ai

w̃j
pj
x
(2)
j =

∑

j∈Ai

wj
pj

(x
(1)
j + x

(2)
j ) =

∑

j∈Ai

wj
pj
xj = φi (8)

Let ℓ ∈ Ai. By 
onstru
tion, w̃ℓ = (1− x
(1)
ℓ )wℓ. With x

(2)
ℓ = 1, analogously to equation (8)

we get

φ
(1)
i + φ

(2)
i =

∑

j∈Ai\{ℓ}
wj

pj
(x

(1)
j + x

(2)
j ) + wℓ

pℓ
x
(1)
ℓ + w̃ℓ

pℓ
x
(2)
ℓ

=
∑

j∈Ai\{ℓ}
wj

pj
xj +

wℓ

pℓ
x
(1)
ℓ + wℓ

pℓ
(1− x

(1)
ℓ )

=
∑

j∈Ai

wj

pj
xj

= φi

Case 2b: ℓ = s. For 1 ≤ j ≤ s− 1, we thus have x
(1)
j = xj = 1 and x

(2)
j = 0.

By 
onstru
tion, w̃s = (1 − x
(1)
s )ws and W (2) = (xs − x

(1)
s )ws. Hen
e, x

(2)
s = 1

w̃s
W (2) =

1
w̃s

(xs − x
(1)
s )ws =

xs−x
(1)
s

1−x
(1)
s

. As a 
onsequen
e,

ws
ps
x(1)s +

w̃s
ps
x(2)s =

ws
ps

(

x(1)s + (1− x(1)s )
xs − x

(1)
s

1− x
(1)
s

)

=
ws
ps
xs



Therewith, φ
(1)
i + φ

(2)
i =

∑

j∈Ai

wj

pj
xj = φi holds in this 
ase as well. I.e., φ is additive.

Assume there is a rule ψ that satis�es e�
ien
y, split-proofness, dummy, anonymity, as well

as additivity. As in the above proofs, 
reate a new problem (N ′, A′, ω) from (N , A, ω) by
repla
ing ea
h voter i with the voters i1, . . . , i|Ai| su
h that |A′

iℓ
| = 1 for ea
h 1 ≤ ℓ ≤ |Ai|

and

⋃|Ai|
ℓ=1 A

′
iℓ
= Ai. Sin
e ψ is split-proof, we get

|Ai|
∑

ℓ=1

ψiℓ(N
′, A′, ω) = ψi(N , A, ω) for all i ∈ N (9)

Sin
e ψ is e�
ient and split-proof,

1 =
∑

i∈N

ψi(N , A, ω) =
∑

i∈N

|Ai|
∑

ℓ=1

ψiℓ(N
′, A′, ω) =

∑

k∈I

∑

i∈Nk

ψi(N
′, A′, ω) (10)

Be
ause ψ is anonymous, it holds that for ea
h j ∈ I, ψi(N ′, A′, ω) = ψi′(N ′, A′, ω) =: δj
for i, i′ ∈ Nj . Due to the dummy property, we have

δj = 0 ∀j > s (11)

Thus, (10) is equivalent to

1 =

s
∑

j=1

pj · δj (12)

In what follows, we make use of additivity. In the �rst step, let W (1) = w1 and W (2) =
∑s−1

j=2 wj+wsxs. Then, the optimal solution of (A′, ω,W (1)) is given by pa
king item 1 in the

knapsa
k, i.e., x
(1)
1 = 1 and x

(1)
j = 0 for j > 1. Anonymity implies that, for j ∈ I, there are

δ
(1)
j , δ

(2)
j ∈ R+ su
h that δ

(1)
j = ψi(N ′, A′, ω,W (1)) and δ

(2)
j = ψi(N ′, Ã′, ω̃,W (2)) for i ∈ Nj .

Clearly, δ
(1)
j = 0 if j ≥ 2 be
ause of the dummy property. Hen
e, anonymity and e�
ien
y

imply p1δ
(1)
1 = w1, and thus δ

(1)
1 = w1

p1
. By 
onstru
tion, in instan
e (N , A′, ω̃,W (2)), there

is no voter who approves of item 1. By the dummy property, this means δ
(2)
1 = 0. Be
ause

of additivity, we have

δ1 = δ
(1)
1 + δ

(2)
1 =

w1

p1
(13)

In the se
ond step, let W (1) = w1 +w2 and W (2) =
∑s−1

j=3 wj +wsxs. The optimal solution

of (A′, ω,W (1)) is x
(1)
1 = x

(1)
2 = 1 and x

(1)
j = 0 for j > 2. The dummy property yields

δ
(1)
j = 0 for j > 2. This fa
t and e�
ien
y imply

w1 + w2 = p1δ
(1)
1 + p2δ

(1)
2 (14)

Note that there is no voter who approves of one of the items {1, 2} in instan
e

(N , A′, ω̃,W (2)). Thus, δ
(2)
j = 0 for j ∈ {1, 2}; be
ause of additivity, this means δj = δ

(1)
j

for j ∈ {1, 2}. In parti
ular, with δ1 = w1

p1
(see (13)), this turns equation (14) into

w1 + w2 = p1
w1

p1
+ p2δ2

⇔ δ2 = w2

p2



Repeating this argumentation, after a total of s − 1 steps we have δk = wk

pk
for all 1 ≤

k ≤ s − 1. Considering the instan
e (N , A′, ω), from (12) we know that 1 =
∑s

k=1 pkδk
holds (due to e�
ien
y). Thus, we have 1 =

∑s−1
k=1 wk + psδs. On the other hand, 1 =

∑s−1
k=1 wk+wsxs holds be
ause of the 
hoi
e of xs (see 2). Combining the two last equalities

yields psδs = wsxs, and thus δs =
wsxs

ps
. With (11), we have

δj =











wj

pj
for j < s

ws

ps
xs for j = s

0 for j > s

Hen
e, equation (9) and the de�nition of δj imply ψi(N , A, ω) =
∑

j∈Ai

wj

pj
xj . I.e., ψ and

φe 
oin
ide. �

4 Con
lusion

In this paper we have investigated 
ost sharing w.r.t. the 
ontinuous knapsa
k problem. In-

stead of 
osts or 
laims, we used the number of approvals to determine the optimal solution.

To share the 
osts of the knapsa
k, we �rst introdu
ed a whole family of 
ost sharing rules,

and then provided expli
it 
hara
terizations of two parti
ular rules. The �rst rule assumed

ea
h item in the knapsa
k to impose the same 
ost, and made the individuals pay purely

relative to their number of approved items. An interesting question in that respe
t would

be to analyse the in
entives to state one's true preferen
es. The se
ond rule, however, was

aware of both, the weight of the items in the knapsa
k and the number of individuals that

approve of ea
h item. It seems absolutely reasonable that those individuals who almost ex-


lusively approve of items in the knapsa
k and/or approve of heavier items in the knapsa
k

should 
arry a larger share of the 
ost. Based on various reasonable properties for 
ontin-

uous knapsa
k 
ost sharing rules, we provided 
hara
terization results for the two solution

methods. Of 
ourse, the rules dis
ussed in this paper are perhaps of an obvious kind, not

taking too mu
h 
are of the step of �nding the optimal solution. However, many exten-

sions seem possible and of interest for future resear
h. On the one hand, further di�erent -

and probably less obvious - sharing rules 
ould be introdu
ed and analysed. On the other

hand, more preferen
e information, su
h as 
omplete individual rankings, and - in addition

- di�erent types of obje
tive fun
tions 
ould be used in the pro
ess of �nding the optimal

solution.
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