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Abstract

This paper provides a first insight into cost sharing rules for the continuous knapsack
problem. Assuming a set of divisible items with weights from which a knapsack
with a certain weight constraint is to be filled, different such (classes of) rules are
discussed. Those - based on individual approvals of the items - optimally fill the
knapsack and share the cost of the knapsack among the individuals. Using various
reasonable properties of continuous knapsack cost sharing rules, we provide three
characterization results.

1 Introduction

Cost allocation in combinatorial optimization problems has been intensively discussed in
recent years (see [14] for a summary). The major focus has been on the minimum cost
spanning tree problem, the earliest and most widely investigated cost sharing problem in
this area (e.g. [3], [4], [10]). There the interest lies mainly in the fair division of the cost
of creating a network in which each agent is connected directly or indirectly to a source.
A second emphasis has been on scheduling and queuing problems, i.e., on the problem of
optimally processing jobs of different lengths or weights on a single server (e.g. [8], [12],

[13]).

The above problem of finding minimum cost spanning trees has a major advantage among
combinatorial optimization problems. Its optimal solution can be found in polynomial time.
Only then, i.e., in the case of finding such an optimal solution “quickly”, does it seem to
make sense to talk about fairly sharing the costs, because otherwise any changes to the
setting could make it impossible to find the new cost allocation in reasonable time. The
focus could only be on fixed solutions.

Among the combinatorial optimization problems, the knapsack problem is concerned with
efficiently filling a weight-restricted knapsack with items from a set of items with possi-
bly different weights and profits. Efficiency in that respect means maximizing some profit
function based on the items’ profits. In case of indivisible items, this problem is typically
NP-hard. One exception is the continuous knapsack problem in which the items are divisible
and therefore the solution could contain a certain fraction of one item.

In usual cost sharing problems such as the bankruptcy problem ([1], [16]) or the minimum
cost spanning tree problem, “objective” preferences such as costs or claims play a major role
in determining a fair cost allocation. This will be different in our framework, where we focus
on the approval or disapproval of certain items by individuals ([5]). The social welfare of a
set of items is simply defined by the total number of approvals for the single items in the
set ([6]). This could be seen as a first step towards using (binary) preference information in
determining a fair cost allocation.

The setting used in this paper can be summarized as follows: we start with a certain
knapsack (a capacity, time interval, etc.) and a set of items over which individuals have

1We are greatful to Ulrich Pferschy, Daniel Eckert and three anonymous referees for their comments on
a previous version of this paper.



binary preferences. Each of the items has a (possibly different) weight. First, the goal is to
fill the knapsack such that social welfare, (i.e., the sum of approvals) is maximized. Then
the attempt is to fairly divide the cost of the knapsack (or maintaining the capacity, or
using the time) among the individuals.

As an example consider a multi-national research project that has some pre-determined
cost. Space and/or time constraints might limit the number of researchers (out of a pool
of potential candidates) that can participate. In addition, the possible candidates might be
forced to use the provided resource for their specific research for different amounts of time.
The potential financing countries of the research project might approve and disapprove of
different researchers. The question now is how to select the set of researchers and how to
distribute the cost among the participating countries.?

In principle we are concerned with sharing the cost of a selected set of non-rival items that
provides different utilities or payoffs to the individuals. Cost allocation aspects in such a
binary knapsack problem have been considered before by Dror [9] and certain rules such as
the Shapley value or the equal charge method have been suggested. In this paper we want
to introduce and characterize (a family of) possibly interesting continuous knapsack cost
sharing rules.

The following section establishes the formal framework, defines the continuous knapsack
problem, and introduces reasonable properties of continuous knapsack cost sharing rules.
Section 3 first introduces a whole family of such rules and then focuses on two rules of which
characterization results are provided. Section 4 concludes the paper.

2 Preliminaries

Let N = {1,...,n} denote a set of individuals, and I = {1,...,m} a set of items. With
each item j € I, we associate a positive weight w; € Ry. The weights are summarized by
the vector w € R, where the j-th entry w; corresponds to w;.

Each individual ¢ € N partitions the set I into a set A; of items she approves of and a set
of items she disapproves of. For i € N, the vector representation a; € {0,1}™ turns out to
be useful, where the j-th entry a; ; = 1 if individual ¢ approves of item j, and a; ; = 0 if ¢
disapproves of j. These vectors are captured by means of an n x m matrix A, whose rows
correspond to the vectors a;; i.e., A = (a;j)ien, jer-

A S a; denotes the matrix resulting from A by deleting the row corresponding to a;. Let B
be a k x m matrix for some k£ € N. For some b € {0,1}", B® b is the (k + 1) x m matrix
created by concatenating to B a (k + 1)-st row 3 and setting 5 = b.

For j € I, let Nj be the set of individuals of N' who approve of j, i.e., N; = {i e N : j € A;}.
The value p; of item j € I is defined as the number of individuals that approve of j. Formally,

pii=HieN:jeAif| =Nl

Given a capacity constraint (or weight bound) W, we can represent a knapsack cost sharing
problem as the quadruple (N, A,w, W). A solution to this problem assigns to each individual
a cost share. However, one of the major problems in this combinatorial optimization exercise
is its computational complexity, i.e., finding an optimal knapsack is NP-hard. Hence, we
need to restrict ourselves to a special setting of the knapsack problem. Therefore we assume
the items to be divisible, i.e., a solution may contain fractions of (at most) one item. This
is called the continuous knapsack problem introduced in the following subsection.

2A “fraction” of a researcher could be seen as a part-time worker.



2.1 The continuous knapsack

The following definition introduces a well-known optimization problem:

Definition 2.1 (Continuous Knapsack Problem)

Given a set I = {1,...,m} of items, and, for each j € I, positive real numbers p; and w;,
the continuous knapsack problem is the following problem:>

maxzjelpjzj
s.t. Zje[ W; T4 S w
T; € [0,1]

It is known that the continuous knapsack problem can be solved in polynomial time (see [11]).
In what follows, we assume that the items are sorted in a way such that

>—>...>

b P2 Pm (1)
w1 wWao W

Note that in practice, the strict inequalities in (1) are not a limitation, since these may
always be reached by arbitrarily small “perturbations” of the weights or by modifying the
accuracy of measurement. In theory (compare [11]), inequality (1) ensures that the unique
solution the entity chooses is determined by

1 forj=1,...,s—1
xj = w%(W_Zf;l w;) forj=s (2)
0 for j > s

where s is defined by

s—1 s
ij < W and Zws >W
=1 =1

The corresponding objective function value z is given by z = Ejejpjzj = Z;;ipj +
. -1

Pe(W = 32500 wi).-

Item s is called split item.* For an optimal solution X = (x1,2,...,2,,), we abbreviate

Xy ={jel:z; >0} ={1,...,s}. In what follows, and in order to simplify notation,
x; is identified with its value in the optimal solution of the considered continuous knapsack
problem.

2.2 Dividing a continuous knapsack

Let the quadruple (N, A,w, W) be given. From the previous section we know that a solution
can be calculated in polynomial time. Now, the goal is to divide the cost of the optimally
packed knapsack among the individuals in a fair manner. In that respect, we first have to
determine the cost of the knapsack. In this paper, we assume that every unit of weight
imposes a cost of one, and therefore the total cost of the knapsack is equal to the weight

3Tn our approach we will focus on maximizing a sort of utilitarian social welfare given by the sum
of approvals. This might, however, not be the only way to implement a fair solution. More egalitarian
approaches could also be considered at that stage.

4Note that possibly zs = 1 holds in the optimal solution. That is, the split item s is not necessarily
“split”, i.e., 0 < s < 1 need not hold.



constraint W. However, dividing then the weight w; by W for each j € I and setting W =1
does not change the structure of the problem (and, in particular, the optimal solutions of
the corresponding continuous knapsack problems are identical). Thus, in the major part of
the paper it is assumed that W = 1. In that case, the continuous knapsack cost sharing
problem is denoted by the triple (N, A,w), and we refer to the corresponding continuous
knapsack problem as the pair (A4, w).

In general, a continuous knapsack cost sharing rule is a function ¢ : (N, A,w, W) — R’.
The i-th entry ¢; of ¢ is interpreted as the share of the cost that individual ¢ has to carry.

In the following we define some desirable properties for a continuous knapsack cost sharing
rule, trying to capture certain aspects of fairness.

Properties of cost sharing rules.

The first requirement — frequently used in the literature in various contexts — is that the
total cost of the knapsack should be allocated exactly.

Efficiency: A cost allocation rule ¢ is efficient, if Y7 | ¢;(N, A,w, W) = W.

For the sake of readability, the remaining properties (except additivity) are defined for the
case W = 1. However, the definitions coincide with the ones for the general case.

The second property, widely used e.g. in scheduling problems ([13]), represents the idea that
voters should not benefit from “splitting” into several voters with disjoint sets of approved
items (or, the other way round, in case their approved items are disjoint, “merging” into a
single voter). At the same time, the remaining voters should not be disadvantaged if certain
voters “split up” (or “merge”). In principle this should prevent the creation of fake identities,
i.e., the individual possibility to manipulate the fair division process.’

To illustrate the idea of splitting, let voter ¢ approve of items 1,2,3. Replacing voter i by
voters ¢; approving of item j only, 1 < j < 3, should have the result that the sum of the
cost shares of the three voters i; has to be equal to the cost share of voter ¢ in the original
problem. In the following definition, given a set of individuals N/, A/, refers to the set of
approved items of ¢ € N’ (and a}, denotes the corresponding vector of approvals).

Split-proofness: Let i € N. Let N' = (N \ {i}) U {i1,...,ir}, such that sets A] form a
partition of A;, ie., Wy_; Aj, = A;. Let A' = A& (af, & ... S a} ) S a.
A cost allocation rule ¢ is called split-proof, if

o (N, Aw) =316 (W, A,w) and
o ¢, (N, A, w) < ¢, (N, A,w) for all h € N\ {i}

Remark. Note that for a split-proof rule ¢, the first of the above conditions implies that
DoheN\{i} (N, A,w) = Phean (it On (N, A’,w). Thus, the mild second condition implies
that ¢, (N’, A,w) = ¢, (N, A,w) holds for all h € N\ {i}. To see this, assume that the
share of an individual h becomes strictly smaller in problem (N’, A’;w). Then, for at least
one h' € N\ {j} we must have ¢, (N, A" ,w) > ¢, (N, A,w), in contradiction to the above
definition.

Since each of the following two properties refers to an instance (N, A,w), for the sake of
brevity we write ¢; instead of ¢;(N, A,w) for i € N.

5Tt has to be added though, that the property is probably less compelling in this setting compared to
scheduling problems, as fake identities are not allowed to overlap with their (sets of) approvals.



The first property reflects the compelling idea, well-known in the literature, that the cost
allocation should not depend on the label of the individual.

Anonymity: Let 1,7/ € N. A cost allocation rule ¢ is called anonymous, if (4; = Ay =
bi = dir).
The second requirement is similar to the usual dummy-property. It states that an individual

who only approves of items not in the optimal solution, should not be charged. A “totally
unhappy” individual should not be forced to carry the knapsack or contribute to its costs.

Dummy: If x; =0 for all j € A;, then ¢; = 0.

The following property applies non-manipulability arguments to situations in which pairs of
individuals, that only approve of one single item, try to improve their situation by switching
their approvals. It requires their cost shares to be exactly the same, i.e., providing absolutely
no incentive to get involved into such switches.

Switch-proofness: Given (N, A,w), let A; = {j}, Av = {j'} with z; = z;; = 1. Let
(N, A,w) with ap = ay, for all h € N'\ {i,i'} and af = a, for f,g € {i,i'}, f # g. Then
N, A w) = o (N, A,w) for all k € N.

A further reasonable property requires the division process to be independent of a possible
sequential structure, i.e., if the knapsack is divided into two different and smaller knapsacks
that together have exactly the same weight constraint as before, then applying the sharing
rule to each of the smaller knapsacks separately should lead to the same total cost share as
applying the rule to the original knapsack. This property will be called additivity and has
been used, e.g., by [7] w.r.t. rights problems.

Additivity: Let WO W € Ry with WO 4+ W® = 1. Let ¢() = ¢V, A,w, W), and
let X(!) be the optimal solution of (A,w, W), Let A = (@;;)ienjer such that, for i € N,
ai; = 0 if :cgl) =1 and a;; = a;; otherwise.

In addition, let @ € R such that @; = (1 — :cgl))wj for j € XJ(rl) with 0 < :cgl) < 1, and
©; = wj otherwise. Let ¢ = ¢(N, A, 0, W®?). Then, ¢ is additive, if ¢ = (V) + ).
The final property is concerned with the changes in the cost shares given a minimal weight-
change of a non-split item contained in the optimal solution of the continuous knapsack
problem, keeping the remaining weights unchanged. It is exclusively concerned with situ-
ations in which everyone approves of exactly one item. A minimal weight change in that
respect is one in which the optimal solution does not change, i.e., the set of items in the
optimal solution before and after the weight change is identical.

Definition 2.2 Given (N, A,w), let X be an optimal solution of the continuous knapsack
problem (A,w) with X1 = {1,...,s} and z, < 1. For some j < s, let w; < w; and
W= (wl,. .. ,wj,l,lf)j,wj+1,.. .,wm).

We call w; insignificantly smaller than w;, if for the optimal solution X of (A, @), we have
X, =X..

Now, let the weight of j insignificantly decrease in the sense of the above definition, and
let each individual approve of exactly one item. Then, weight-monotonicity states that all
those that approve of the item that became insignificantly smaller should face a decrease
in their cost share relative to the change in the value of the objective function. The formal
definition of this condition is as follows:

Weight-monotonicity: Let w; be insignificantly smaller than w;. Then, for all ¢ € N with
A; = {4}, % = %, where Z denotes the objective function value of the optimal
solution of (A, ).



3 Characterizations

In what follows, we consider a continuous knapsack cost sharing problem (N, A, w) where (as
previously) X with X = {1,...,s} corresponds to the optimal solution of the continuous
knapsack problem (A, w).

We now want to investigate, whether certain combinations of the previous properties can
be used to determine specific reasonable cost sharing rules. Our first result establishes a full
description of the family of efficient rules, that satisfies the dummy property, split-proofness
and switch-proofness. As a second result, we present the characterization of a special repre-
sentative of this family by adding weight-monotonicity. Finally, a characterization of another
reasonable cost sharing rule is given.

Theorem 3.1 The efficient rules that satisfy the dummy property, split-proofness and
switch-proofness are exactly the functions ¢¢ with 0 < ¢ < > , defined by (Vie N)

1—cz
Ps

SN, Aw) =c- Z xj + 1a,(s)

JEA;

Proof. First, we show that ¢ > 0 holds for all ¢ € N, i.e., ¢° is indeed a cost sharing rule.
Since ¢ > 0 holds, we obviously have ¢ > 0 for ¢ with s ¢ A;. If s € A;, then

—eS T pi—cpsws
O = Tieani et met 58 = Pieang et met (TSR
2 jeAn{s) zje+ (* 6271 )

Due to ¢ > 0, we have ZjeAi\{s} xzjc > 0; in addition, 1 — ch;ll p; > 0 holds because of
c< % Thus, ¢§ > 0 holds in the case s € A4; as well.

iz1 pi
Now, it is shown that each of the axioms is satisfied by the proposed rule.

The dummy property is obviously satisfied. Now, consider » ;cn ¢F = > icn €D jca, Tj +
DN ]lAi(s)pis(l —C2) = CYien Djen, Ti T pis(l —¢2) Y ien 14, (s). Since item j is ap-
proved by exactly p; individuals of NV, it holds that > ;.\ > c 4, 75 = 25 ;c; Pja; = 2, and
>ien 1a,(s) = ps. Hence, 37" | ¢§ = cz + p%(l — ¢2)ps = 1, which proves efficiency.

For a fixed i € N, let (N, A’,w) be as described in the definition of split-proofness. Note
that the optimal solution X’ of (A’,w) is also the optimal solution of (4,w), and the re-
spective objective function values z’ and z coincide. Thus,

Z¢C N, A w Z Z :I:J—HIA/ s)—(1—cz) —cz Z zj+—(1—cz Z]lA s)

=1 ]EA’ = IJEA’

By comstruction, >y > ic4 xj = Do ica, @y, and Doy 1]1A’ (s) = 1a,(s). Hence,
iy

S 95, N A w) = ed e a, wy + La (s )ps (1 —c2) = ¢S(N, A, ) Le., ¢¢ is split-proof.
For switch-proofness, let A4; = {j} and Ay = {j’} such that z; = z;; = 1. Let A be
built from A because i and i’ “switch” their items (as in the definition of switch-proofness).
Then, ¢p(N,A,w) = ¢ = gp(N,A,w) for k € {i,i}, since the optimal solutions of (A,w)
and (A,w) coincide. The latter fact obviously implies ¢ (N, A,w) = ¢ (N, A,w) for all
ke N\ {i,i} as well.

On the other hand, assume there is a rule ¢ that satisfies the stated conditions. Now in
order to create the new instance (N', A’,w) from (N, A,w), replace each voter i with the



voters iy,...,i4, such that |A} | =1 for each 1 </ < |A;| and U‘[il‘ Aj, = A;. Because of

split-proofness, we know that

|As|
Zwie(vaAlvw) :wi(NaAvw) (3)
=1
holds for each i € N.
Obviously, the optimal solutions of (A4,w) and (A’,w) coincide; let X be such an optimal
solution, with X = {1,...,s}. Note that the objective function value is given by

Z=Pp1T1+...PsTs =P1+ ...Ps—1 T DsZTs

First, we show that ¢ is anonymous. Let ¢,j € N with A; = A;. Starting with instance
(N7, A’,w), create instance (N7, A’,w) by applying a “switch* between the individuals iy,
and ji, k € {1,...,|Ail}, ie., fl’g = Aj, holds for g,h € {iy,jrx}. Now, switch-proofness
and the fact that 1 is a function imply v;, (N, A',w) = ¥, (N, A", w) = 1;, (N, A", w) for
all k€ {1,...,|A;|}. Thus, (N, A,w) = S 0, (W, A w) = S ws (V7 4 w) =
(N, A,w) is satisfied; i.e., ¢ is anonymous.

Let 4,i' € N” with A; = {j}, A}, = {j'} and j,j' < s. Then, perform a switch between i
and 7' and call the new instance (N’, A*, w). Because of split-proofness, we can assume that
the last two rows of each A and A* correspond to a} and a/, (in the same order). Note that
in A*, the row a; displays A*;; and the row a), displays A*; respectively. Thus, since 1 is
a function, we must have ¥;(N’, A", w) = ¢y (N', A*,w). However, switch proofness yields
that (N, A" w) = ¥y (N', A*,w). Hence, we must have 1;(N’, A", w) = ¢y (N, A, w).
Therefore, for some ¢ > 0, ¥4 (N', A’,w) = ¢ must hold for all ¢’ € N with A}, = {r'} and
zp = 1.

Anonymity together with the dummy property implies that, for some c;,c € Ry U {0},

cs if Ay = {s}
bW, A w) = e if Ay = {5 s § < 5) (4)
0 otherwise

Efficiency yields

1= Z i (N, A w) = Z T/Ji/JrZ Z Yy (5)

i'eN’ i'eN! J<s i'eN]

Note that, by construction, for each j € I, |J\fj’| = p;. Equation (5) can hence be rewritten
as
l=pscs+c-(pr+p2+...+ps—1) (6)

Recall that z = p1 +pa+...+ps—1+xsps, Or, equivalently, Zf:_ll Pi = z—TgPs. Substituting
the last equality in (6), we get

1—pses = — LsPs

P S S @
S Ps S

With (3) and (4), we get (N, A,w) = |€1111| Vi, N, A w) = szAi\{S} zjc+ cs - 1a,(s).

With (7), this yields

l—cz :
> jea, Tict+ = if s € A;



Analogously to the beginning of the proof, it follows that 0 < ¢ < = L -, must hold for 9
i<s

to be a cost sharing rule. Therewith, ¢ = ¢°. a

A representative of the above family of rules is derived from the idea, that a voter’s cost
share should exclusively depend on the total number of the items in the optimal knapsack
she approves of, relative to the total number of approvals for the entire knapsack (in each
case taking fractional values into account®). In particular, if someone likes twice as many
items (included as a whole) from the knapsack than another individual, then she should
also be given a cost share twice as high. Obviously this cost sharing rule is not concerned
with weights of items or number of approvals for one specific item. Formally, this rule can
be defined as follows:

Definition 3.1 Given a problem (N, A,w), the simple proportional continuous knapsack
cost sharing rule is defined as (Vi € N)

ZjeAi Ty

z

¢ (N, A w) =

The rule ¢* can be characterized as follows.

Theorem 3.2 ¢3°/(N, A,w) is the only efficient and split-proof rule that satisfies dummy,
switch-proofness, and weight-monotonicity.

Proof. ¢°°! belongs to the family ¢° (setting ¢ = % Hence, due to Theorem 3.1, it is
sufficient to show that ¢*° is the only among the rules ¢¢ that satisfies weight-monotonicity.
It is easy to verify that ¢*° satisfies weight-monotonicity. To proof the other direction,
we follow the argumentation of the above proof. Consider instance (N', A’,w) (of the above
proof) and assume z; < 1. Decrease the weight of item j from w; insignificantly to @, for
some j < s such that 2/, = 1 in the optimal solution X (with objective function value Z of
(A’, @), where (N, A’, &) denotes this new instance). Call the new shares (according to (4))
¢ and ¢; note that due to z/, = 1, with analogous arguments as in the proof of Theorem 3.1,
from switch-proofness we get ¢, = ¢'.

From efficiency, we thus get 1 = psc.,+¢' - (p1+p2+...+ps—1) = (p1+p2+...+ps) = -Z.
Therewith, ¢’ = % Weight-monotonicity, however, implies % = %/ =ZforieN'
with A; = {j}. Hence, c = % follows. Thus, ¢ corresponds to ¢¢ with ¢ = 1, i.e., ¢ = ¢°.. O

z?

The above rule puts its focus purely on the proportion of individual approvals to total ap-
provals. This might seem unreasonable or inefficient in certain situations for two reasons:
First, where extensive weight differences between the single items can be observed, a rule
being sensitive to weights and weight changes might be preferable. Second, the more individ-
uals approve of a certain item in the knapsack, the lower should probably be their cost share,
if one assumes a non-rival good whose cost it imposes on the knapsack does not depend on
the number of approvals. Hence, if we replace switch-proofness and weight-monotonicity
with additivity, we characterize a rule, that takes into account the “inefficiency” 1;—; of item
j € I directly. The cost sharing rule is defined as follows:

Definition 3.2 Given a problem (N, A,w), the weight-and-approval-based proportional con-
tinuous knapsack cost sharing rule is defined as (Vi € N)
wj

Qﬁ(NaA’w) = Z Ty

JEA; Pj

61.e, if a fraction of an item is included in the knapsack, then only the respective fraction of the approval
is taken into account.



The rule ¢° can be characterized as follows:

Theorem 3.3 ¢S(N, A,w) is the only efficient and split-proof rule that satisfies dummy,
anonymity, as well as additivity.

Proof. For readability, we write ¢ instead of ¢¢ within this proof. We first show that all
these axioms are satisfied by ¢.

Z‘bl ZZ_% ZZ_% ZPJ—% Zwﬂj

iEN iEN JEA; JEI iEN; jeI jeI

However, the last sum in the above expression corresponds to 1 because X is an optimal

solution of (A,w); thus, ¢ is efficient.

Split-proofness, dummy and anonymity are obviously satisfied.

For additivity, let W) W@ ¢ R, with W) + W® = 1. Note that z; = 0 implies
(1

z;’ =0and £C§-2) = 0. Thus, it is sufficient to consider the items {1, ..., s}. By construction,

Xg_l) ={1,...,¢} for some ¢ < s.

Case 1: xél) = 1. By construction, this means that there is no voter that approves of any of

the items {1,..., £} in instance (N, Ao, W®). Thus, x§.2) =0 for all 1 < j < £. Vice versa,

we have :cg ) = 0 and :cg ) = xzj for all j € {£+1,...,s}. In addition, @; = w; holds for

. 2 w4 1 ’U~Jj 2 _ w4 _
je{t+1,...,s}. Hence, qﬁl(. ) ‘151(' ) =Y iea, p—j:cg ) +D e, p—j:cg ) =D iea, ot = O
Case 2: 0 < zgl) < 1. Then, in instance (N, A, &, W®), each of the items {1,...,¢ — 1}
has zero approvals. Thus the ranking analogous to (1) (restricted to the remaining items) is
Doy Bl o 5By S Pm
Wy Wo4-1 Wg W
because the number of approvals of these items remains unchanged, and only the weight of
item ¢ has decreased (compared to the original instance).
Case 2a: { # s. By the choice of x, and @, W® = S35} iy + z,ws must hold. Thus,
Xf) ={¢,¢+1,...,s}, and :z:f) =...= xf)l =1 and :1322) = x,. As in the above case, by
(@)
€T
J

construction for all £+ 1 < j < s we have @; = w;. Note that for j # ¢, :C§-1) = ;.

Thus, if £ ¢ A;, we get
1 2 wj (1 2
) Y CLSLED o VRPN
jea, v jeA, jea; Pi jea; Pi
Let ¢ € A;. By construction, w, = (1 — xél))wg. With xf) = 1, analogously to equation (8)
we get

(1 (2 wj ¢.(1) (2 wy (1) (2
o+ = 2 jeAnis E( 2 +x(1))) o W (11)765% |
> jea, \O P i pery s +pr(l—xy )
JEA: pj o T
Case 2b: £ =s. For 1 < j <s—1, we thus have zgl) =z;=1and :c§2) =0.
By construction, @, = (1 — z{”)w, and W® = (z, — 2{")w,. Hence, z{? = Z W =

@Ls(x - :Egl))ws =

o
””15—51 As a consequence,

N )
sy Do _ s (xg) - zgm&) s

s Ps Ps 1— 2 Ps



Therewith, ¢§1> + ¢§2) =5, . w—;x] = ¢; holds in this case as well. Le., ¢ is additive.

Assume there is a rule 1) that satisfies efficiency, split-proofness, dummy, anonymity, as well
as additivity. As in the above proofs, create a new problem (N’ A’ w) from (N, A,w) by
replacing each voter ¢ with the voters i1, ...,44, such that |A] | =1 for each 1 < £ < [4;]

and U‘[ill‘ A}, = A;. Since ¢ is split-proof, we get

| Ail
S, (W, A w) = (N, Aw) forall i € N (9)

(=1

Since 9 is efficient and split-proof,

| Al
1= Z 1/}1'(/\/-7‘4’“) = Z Zﬂ’n (vaAlvw) = Z Z "/)i(N/ﬂAlﬂw) (10)
1N €N (=1 kel ieNy

Because ¢ is anonymous, it holds that for each j € I, ;(N', A", w) = Yy (N, A", w) =: §;
for 4,7 € Nj. Due to the dummy property, we have

5;=0Vj>s (11)

Thus, (10) is equivalent to

1= p;-4; (12)
j=1

In what follows, we make use of additivity. In the first step, let W) = w; and W® =
Zj;; w;+wszs. Then, the optimal solution of (4’, w, W) is given by packing item 1 in the
knapsack, i.e., xgl) =1and xg-l) =0 for j > 1. Anonymity implies that, for j € I, there are
6{", 8% € Ry such that 81" = ¢ (N7, A',w, WD) and 61 = (N, A", 0, W) for i € N;.
Clearly, 551) = 0 if 7 > 2 because of the dummy property. Hence, anonymity and efficiency

imply plégl) = wy, and thus 5%1) = %. By construction, in instance (N, A’,&, W®), there
is no voter who approves of item 1. By the dummy property, this means 5%2) = 0. Because
of additivity, we have

w

5 =6 4457 =22 (13)

4!
In the second step, let W) = wy 4wy and W3 = Zj;; wj + wsxs. The optimal solution
of (A,w, W) is :cgl) = zgl) =1 and :cgl) = 0 for 7 > 2. The dummy property yields
5§1) =0 for j > 2. This fact and efficiency imply

wi + wg = p15£1) =+ p25él) (14)

Note that there is no voter who approves of one of the items {1,2} in instance
(N, A", &, W®). Thus, 55.2) = 0 for j € {1,2}; because of additivity, this means §; = 5;1)
for j € {1,2}. In particular, with 6; = 1 (see (13)), this turns equation (14) into

witwy = pryt+pads

= 62 = p2



Repeating this argumentation, after a total of s — 1 steps we have d; = w—: for all 1 <

k < s — 1. Considering the instance (N, A’,w), from (12) we know that 1 = > _| pidk

holds (due to efficiency). Thus, we have 1 = z;i wg + psds. On the other hand, 1 =

ZZ; wy +wsxs holds because of the choice of x5 (see 2). Combining the two last equalities
yields psds = wszxs, and thus §, = %. With (11), we have

Z—j forj <s
0; = ;’;zs for j =s
0 for j > s
Hence, equation (9) and the definition of ¢; imply ¢;(N, A,w) = ZjeA, %zj. Ie., ¥ and
i Pj
¢° coincide. |

4 Conclusion

In this paper we have investigated cost sharing w.r.t. the continuous knapsack problem. In-
stead of costs or claims, we used the number of approvals to determine the optimal solution.
To share the costs of the knapsack, we first introduced a whole family of cost sharing rules,
and then provided explicit characterizations of two particular rules. The first rule assumed
each item in the knapsack to impose the same cost, and made the individuals pay purely
relative to their number of approved items. An interesting question in that respect would
be to analyse the incentives to state one’s true preferences. The second rule, however, was
aware of both, the weight of the items in the knapsack and the number of individuals that
approve of each item. It seems absolutely reasonable that those individuals who almost ex-
clusively approve of items in the knapsack and/or approve of heavier items in the knapsack
should carry a larger share of the cost. Based on various reasonable properties for contin-
uous knapsack cost sharing rules, we provided characterization results for the two solution
methods. Of course, the rules discussed in this paper are perhaps of an obvious kind, not
taking too much care of the step of finding the optimal solution. However, many exten-
sions seem possible and of interest for future research. On the one hand, further different, -
and probably less obvious - sharing rules could be introduced and analysed. On the other
hand, more preference information, such as complete individual rankings, and - in addition
- different types of objective functions could be used in the process of finding the optimal
solution.
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