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Abstract

A central task in multiagent resource allocation, which provides mechanisms to allocate (bun-

dles of) resources to agents, is to maximize social welfare. We assume resources to be indi-

visible and nonshareable and agents to express their utilities over bundles of resources, where

utilities can be represented in the bundle form, the k-additive form, and as straight-line pro-

grams. We study the computational complexity of social welfare optimization in multiagent

resource allocation, where we consider utilitarian and egalitarian social welfare and social

welfare by the Nash product. We prove that exact social welfare optimization by the Nash

product is DP-complete for the bundle and the 3-additive form, where DP is the second level

of the boolean hierarchy over NP. For utility functions represented as straight-line programs,

we show NP-completeness for egalitarian social welfare optimization and social welfare opti-

mization by the Nash product. Finally, we show that social welfare optimization by the Nash

product in the 1-additive form is hard to approximate, yet we also give fully polynomial-time

approximation schemes for egalitarian and Nash product social welfare optimization in the

1-additive form with a fixed number of agents.

1 Introduction

Multiagent resource allocation (MARA) deals with distributing resources to agents that have prefer-

ences over (bundles of) resources. These resources are assumed to be indivisible and nonshareable.

Agents express their preferences by means of utility functions. Hence, every given allocation of

resources to agents induces a vector of utilities that can be aggregated to a single value, the social

welfare of this allocation. There are different notions of social welfare, ranging from the well-

known utilitarian social welfare to egalitarian social welfare, to compromises between these two

notions such as the Nash product and generalizations thereof (k-rank dictator functions, etc.).

In a bit more detail, utilitarian social welfare sums up the agents’ individual utilities in a given

allocation, thus providing a useful measure of the overall—and also of the average—benefit for

society. For instance, in a combinatorial auction the auctioneer’s aim is to maximize the auction’s

revenue (i.e., the sum of the prizes paid for the items auctioned), no matter which agent can realize

which utility.

In contrast, egalitarian social welfare gives the utility of the agent who is worst off in a given

allocation, which provides a useful measure of fairness in cases where the minimum needs of all

agents are to be satisfied. For example, think of distributing humanitarian aid items (such as food,

medical aid, blankets, tents, etc.) among the needy population in a disaster area (e.g., an area hit by

an earthquake or a tsunami). Guaranteeing every survivor’s continuing survival is the primary goal

in such a scenario, and it is best captured by the notion of egalitarian social welfare.

As mentioned above, the Nash product, the product of the agents’ utilities, can be seen as a com-

promise between these two approaches. On the one hand, it has the (strict) monotonicity property of

utilitarian social welfare because an increase in any agent’s utility leads to an increase of the Nash

product (provided all agents have positive utility). On the other hand, the Nash product increases
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as well when reducing inequitableness among agents by redistributing utilities, thereby providing a

measure of fairness. Looking at the ordering that is induced by the allocations, the “social welfare

ordering,” Moulin [15] presents further beneficial properties of the Nash product. For example, the

Nash product is uniquely characterized by independence of individual scale of utilities,2 i.e., even if

different “currencies” are used to measure the agents’ utilities, the social welfare ordering remains

unaffected.

All these notions of social welfare have in common that they seek to model that a high value

of social welfare implies well-being among the society of agents (that is, for the group as a whole).

Thus, the goal is to find allocations that maximize social welfare. How difficult is this task? The

main purpose of this paper is to find answers to this question—for various central notions of so-

cial welfare, for distinct ways of representing utility functions, and for different ways of modeling

MARA problems.

Although resource allocation problems are important for human agents as well, we are mostly

concerned with (autonomous) software agents having individual utilities and acting in a shared en-

vironment (e.g., in a multiagent system). Therefore, it is of particular interest to study the com-

putational complexity of MARA problems and to tackle computational hardness results by means

of approximation algorithms. We present NP-completeness results for decision problems associ-

ated with egalitarian and Nash product social welfare optimization, and DP-completeness results

for decision problems associated with Nash product social welfare optimization. We complement

our results on the computational complexity of MARA decision problems by proving that the Nash

product social welfare optimization problem is hard to approximate in the 1-additive form. For a

fixed number of agents, we also give fully polynomial-time approximation schemes for egalitarian

and of Nash product social welfare optimization in the 1-additive form.

This paper is organized as follows: In Section 2, we formalize the MARA framework that we

have adopted from the profound survey by Chevaleyre et al. [5], and we introduce the needed back-

ground from complexity theory, including the perhaps lesser known complexity class DP, as well

as some basic notions of approximation theory. Then, in Section 3, we briefly survey related work

to see the context of our results. In Section 4 we present computational complexity results for the

decision versions related to social welfare optimization, and in Section 5 we are concerned with ap-

proximability of social welfare optimization. In Section 6, we summarize our results and conclude

with some open questions.

2 Preliminaries

2.1 Multiagent Resource Allocation Settings

We adopt the framework for multiagent resource allocation described in the survey by Chevaleyre

et al. [5]. Let A = {a1,a2, . . . ,an} be a set of n agents and let R = {r1,r2, . . . ,rm} be a set of

m indivisible and nonshareable resources (i.e., each resource is assigned as a whole and can be

assigned to only one agent). Subsets of R are called bundles of resources.

Every agent associates utility to every bundle of resources by specifying a utility function

ui : 2R → F, where 2R denotes the power set of R and F is a numerical set (such as the set N of

nonnegative integers, the set Z of integers, the set Q of rational numbers, and the set Q+ of nonneg-

ative rational numbers). The idea behind utility functions mapping bundles of resources rather than

single resources to values in F is that agents might be willing to pay either more or less for a bundle

than the sum of their utilities for this bundle’s single items. For example, owning a pair of matching

shoes is likely to be more valuable to an agent than the sum of the values each single shoe has for

this agent. On the other hand, an agent who is willing to bid on 100 identical items might expect

2Similarly, utilitarian social welfare is characterized by independence of individual zeros of utilities: A constant shift of

an agent’s utility function does not change the social welfare ordering.



some discount and so has less utility for the bundle of 100 items than 100 times the utility assigned

to a single item.

Let U = {u1,u2, . . . ,un} be the set of the agents’ utility functions. A triple (A,R,U) is called a

multiagent resource allocation setting (a MARA setting, for short).

A concrete distribution of resources to agents is an allocation. Formally, for a given MARA

setting (A,R,U), an allocation is a mapping

X : A → 2R

with
⋃

ai∈A X(ai) = R (i.e., every resource is given to some agent) and X(ai)∩X(a j) = /0 for any two

distinct agents ai and a j (i.e., no resources are given to multiple agents). The set of all allocations

for a MARA setting (A,R,U) is denoted by ΠA,R and has cardinality nm. We use the shorthand ui(X)
to denote the utility ui(X(ai)) agent ai can realize in allocation X because we assume agents not to

be interested in externalities.

2.2 Representations of Utility Functions

Utility functions can be given in different ways, and the representation form potentially affects the

complexity of the corresponding problems. We consider the following representation forms for

utility functions:

1. The bundle form: A utility function u : 2R → F is in bundle form if it is represented by a list

of pairs (R′,u(R′)) for any bundle R′ ⊆ R, omitting pairs with zero utility. This representation

form is “fully expressive” (i.e., every utility function can be described in bundle form), but its

drawback is a potentially exponential representation size in the number of resources.

2. The k-additive form, for some fixed positive integer k: A utility function u : 2R → F is in

k-additive form if for each bundle T ⊆ R with ‖T‖ ≤ k, there is a unique coefficient αT ∈ F

such that for every bundle R′ ⊆ R the following holds:

u(R′) = ∑
T⊆R′,‖T‖≤k

αT .

Sometimes we write (T, ℓ) for the coefficient αT = ℓ. This coefficient expresses the “syner-

getic” value of some agent owning all the resources in T . This representation form is fully

expressive only if k is large enough. On the other hand, choosing k to be relatively small

allows for a relatively succinct representation of utility functions. Originally, Grabisch [11]

defined the k-additive form. However, in multiagent resource allocation it was proposed for

representing utilities by Chevaleyre et al. [6, 7] and, independently, in combinatorial auctions

by Conitzer et al. [8].

3. Straight-line program representation: Informally, a straight-line program is a topologically

sorted list of gates of a boolean circuit C that takes as input an m-dimensional binary vector

and outputs s bits. Interpreting the input vector as a bundle of resources R′ and the output as the

binary representation of u(R′), we can say that C (or a corresponding straight-line program)

represents utility function u.

Formally (see, e.g., [9]), an (m,s)-combinational logic network is a directed graph with m

input nodes (β1, . . . ,βm) of in-degree 0, s output nodes (γs−1, . . . ,γ0) of out-degree 0, and gate

nodes of in-degree at most 2 and out-degree at least 1. A gate node represents one of the

common boolean operations (∧,∨,¬). An input to the nodes (β1, . . . ,βm) can be interpreted

as a vector of length m and vice versa. Hence, every input vector β induces3 an output vector

3Every bit at a gate node is induced as usual: If a is a gate node with a 2-ary boolean operation σ , then the bit induced at

a is b1σb2, provided that (b1,a) and (b2,a) are edges of the graph, σ is a binary operation, and by b1 and b2 we mean the

induced bits at nodes b1 and b2. For the boolean operation ¬, the definition is analogous.



C(β ), where we denote by C(β )i the i-th least significant bit of C(β ). Let R = {r1, . . . ,rm},

let u : 2R → N be a utility function and C an (m,s) combinational logic network. Denote by

βS the characteristic vector that has for every j ∈ {1, . . . ,m} the j-th coordinate equal 1 if and

only if r j ∈ S for some S ⊆ R. Utility function u is realized by C if for every S ⊆ R with binary

vector βS the following holds:

u(S) =
s−1

∑
i=0

2i ·C(βS)i.

The advantages of straight-line programs are mainly the efficiency of evaluation (linear time

in the number of nodes) and its conciseness, which is supported by the following result by

Pippenger and Fischer [22] and Schnorr [27].

Fact 1 Let f : {0,1}m →{0,1}s. If there exists a deterministic Turing machine that computes

f in time T , then there exists a straight-line program of O(T logT ) lines that computes f as

well.

In multiagent resource allocation, utility representations by straight-line programs were intro-

duced by Dunne et al. [9].

2.3 Measures of Social Welfare

The notion of social welfare is a tool to assess and rank allocations based on specific measures of

quality. Thus, different allocations might be “the best allocation,” depending on the notion of social

welfare that is employed. We will study the following notions of social welfare.

Definition 2 For a MARA setting (A,R,U) and an allocation X ∈ ΠA,R, define

1. the utilitarian social welfare of X as swu(X) = ∑
ai∈A

ui(X);

2. the egalitarian social welfare of X as swe(X) = min
ai∈A

{ui(X)};

3. the Nash product of X as swN(X) = ∏
ai∈A

ui(X).

4. As an additional notation, for S ∈ {u,e,N}, denote the maximum utilitarian/egalitarian/ Nash

product social welfare of a MARA setting M = (A,R,U) (or of a problem instance that con-

tains a MARA setting M) by

maxS(M) = max{swS(X) |X ∈ ΠA,R}.

We write max(M) for maxS(M) when S is clear from context.

2.4 Problems Modeling Social Welfare Optimization

We are now ready to formally define the problems modeling social welfare optimization in mul-

tiagent resource allocation. We start with the decision problems. For F ∈ {N,Z,Q+,Q} and

form∈ {bundle}∪{k-add |k ≥ 1}∪{SLP}, where k-add abbreviates “k-additive” and SLP “straight-

line program,” define:

F-NASH PRODUCT SOCIAL WELFARE OPTIMIZATIONform

Given: A MARA setting M = (A,R,U), where form indicates how every ui : 2R → F in U is

represented, and a threshold t ∈ F.

Question: Is there an allocation X ∈ ΠA,R such that swN(X)≥ t?



We abbreviate this problem by F-NPSWOform (sometimes omitting the prefix “F-”). The

exact version of this problem is denoted by F-EXACT NASH PRODUCT SOCIAL WELFARE

OPTIMIZATIONform (or, for short, by F-XNPSWOform) and asks, given a MARA setting M =
(A,R,U) and a target t ∈ F, whether maxN(M) = t.

The corresponding problems for utilitarian and egalitarian social welfare can be defined analo-

gously and are abbreviated by F-USWOform and F-ESWOform, respectively.

Apart from decision problems we also consider the corresponding three maximization problems,

one for each type of social welfare. For example, the maximization problem for utilitarian social

welfare is formally defined as follows:

F-MAXIMUM UTILITARIAN SOCIAL WELFAREform

Input: A MARA setting M = (A,R,U), where form indicates how every ui : 2R → F in U is

represented.

Output: maxu(M).

As a shorthand, write F-MAX-USWform. Based on swe and swN , F-MAXIMUM EGALITAR-

IAN SOCIAL WELFAREform (or F-MAX-ESWform) and F-MAXIMUM NASH PRODUCT SOCIAL

WELFAREform (or F-MAX-NPSWform) are defined accordingly.

2.5 Some Background on Complexity Theory and Approximation Theory

We assume basic knowledge of complexity theory, in particular of the complexity classes P, NP,

and coNP, of central notions such as (polynomial-time many-one) reducibility (denoted by ≤
p
m ),

hardness and completeness of a problem for a complexity class with respect to ≤
p
m , etc. (see, e.g.,

the textbooks by Garey and Johnson [10], Papadimitriou [20], and Rothe [25]).

Papadimitriou and Yannakakis [21] introduced the complexity class DP, which consists of the

differences of any two NP-problems. DP is the second level of the boolean hierarchy over NP and it

is widely assumed that NP and coNP are both strictly contained in DP.

Typical DP problems are UNIQUE SATISFIABILITY (“Does a given boolean formula have ex-

actly one satisfying assignment?”) and exact variants of optimization problems such as the exact

version of the TRAVELING SALESPERSON PROBLEM (EXACT-TSP): “Given a graph and an inte-

ger t, does a shortest traveling salesperson tour have length exactly t?” Intuitively, this problem

is potentially harder than the usual TSP because both an NP problem (“Does there exist a tour of

length at most t, i.e., is the minimum tour length at most t?,” which is the usual TSP) and a coNP

problem (“Do all tours have length at least t, i.e., is the minimum tour length at least t?”) have to

be solved to solve EXACT-TSP, which is complete for DP.

Turning to approximation theory, we define approximation algorithms for maximization prob-

lems and polynomial-time approximation schemes. Then we discuss reducibilities to prove inap-

proximability results.

Definition 3 (α-approximation algorithm) Let Π be a maximization problem and α : N→ (0,1).
An α-approximation algorithm A for Π is a polynomial-time algorithm such that for each instance

x of Π,

val(A(x))≥ α(|x|) ·OPT(x),

where val(A(x)) denotes the value of a solution produced by A on input x and where OPT(x) denotes

the value of an optimal solution for x.

The approximation factor α might be a constant function such as 1− ε for some ε , 0 < ε < 1,

or a function of the input size, such as 1/logn and 1/nc for some c > 0.



Definition 4 (FPTAS) A maximization problem Π has a fully polynomial-time approximation

scheme (FPTAS) if for each ε , 0 < ε < 1, there exists a (1− ε)-approximation algorithm Aε for Π,

where the running time is polynomial in 1/ε as well.

One approach to prove inapproximability for a maximization problem is to find an α-gap-

introducing reduction from an NP-complete problem.

Definition 5 (α-gap-introducing reduction) Let A ⊆ Σ∗ be an NP-complete problem, Π be a max-

imization problem, and let α : N→ [0,1] be a polynomial-time computable function of the input size.

An α-gap-introducing reduction from A to Π is given by two polynomial-time computable functions

f and g such that for each x ∈ Σ∗,

1. g(x) is an instance of Π,

2. if x ∈ A then OPT(g(x))≥ f (x), and

3. if x 6∈ A then OPT(g(x))< α(|x|) · f (x).

Note that an α-approximation algorithm B for a maximization problem Π that has an α-gap-

introducing reduction from an NP-complete problem A implies x ∈ A if and only if the value of the

solution B(g(x)) is at least α(|x|) · f (x). Hence, there can be no α-approximation algorithm for Π,

unless P = NP.

Definition 6 (L-reduction) Let Π1 and Π2 be some maximization problems. An L-reduction from

Π1 to Π2 is given by two polynomial-time computable functions f and g and two parameters α
and β such that for each instance x of Π1,

1. y = f (x) is an instance of Π2,

2. OPT(y)≤ α ·OPT(x), and

3. for each solution s2 for y of value v2, s1 = g(s2) is a solution for x of value v1 such that

OPT(x)− v1 ≤ β · (OPT(y)− v2).

Having an L-reduction from maximization problem Π1 to Π2 with parameters α ,β and an

(1− ε)-approximation algorithm for Π2 implies a (1−αβε)-approximation algorithm for Π1 by

invoking f on the instance x of Π1 to get an instance y of Π2, then running the approximation al-

gorithm for Π2 on y and, at last, translating the solution back via g. Note that if Π1 does not admit

a (1− ε)-approximation algorithm and reduces to Π2 with parameters α = β = 1 then Π2 cannot

have a (1− ε)-approximation algorithm either.

For more background on approximation theory, see, e.g., the textbook by Vazirani [28] and the

survey by Arora and Lund [1].

3 Related Work

The first paper concerned with classifying MARA problems in terms of their complexity is due to

Chevaleyre et al. [6], see also [7]. They showed that the decision problem associated with util-

itarian social welfare optimization is NP-complete for both the bundle and the k-additive form.

Dunne et al. [9] proved that the problem remains NP-complete if utility functions are represented by

straight-line programs. For further results on the complexity of fair allocation problems, we refer to

Bouveret’s thesis [3].

Roos and Rothe [24] proved NP-completeness for egalitarian social welfare optimization and

social welfare optimization by the Nash product for the bundle form and for the k-additive form.



Table 1: Complexity of decision problems for (exact) social welfare optimization. Key: NP-c means

“NP-complete” and DP-c means “DP-complete.”

Social Welfare Bundle Reference k-Additive Reference

Utilitarian NP-c Chevaleyre et al. [7] NP-c, k ≥ 2 Chevaleyre et al. [7]

Egalitarian NP-c Roos & Rothe [24] NP-c, k ≥ 1
Roos & Rothe [24] and

Lipton et al. [14]

Nash Product NP-c
Roos & Rothe [24] and

NP-c, k ≥ 1 Roos & Rothe [24]
Ramezani & Endriss [23]

Exact Utilitarian
DP-c Roos & Rothe [24] DP-c, k ≥ 2 Roos & Rothe [24]

Exact Egalitarian

Exact Nash Product DP-c Theorem 7 DP-c, k ≥ 3 Theorem 8

Social Welfare SLP Reference

Utilitarian NP-c Dunne et al. [9]

Egalitarian
NP-c Theorem 11

Nash Product

In addition, they proved DP-completeness for exact utilitarian and exact egalitarian social wel-

fare optimization for both representation forms. Lipton et al. [14] provided a reduction to prove

NP-hardness of finding a minimum-envy allocation (i.e., an allocation X that minimizes the envy

maxi, j{0,ui(X(a j))− ui(X(ai))}). This reduction proves NP-hardness of the decision problem as-

sociated with egalitarian social welfare optimization as well. Independently of the result of Roos

and Rothe [24], Ramezani and Endriss [23] proved the same NP-completeness result of Nash prod-

uct social welfare optimization for the bundle form. Previous completeness results are summed up

together with our results in Table 1.

Known approximability and inapproximability results in multiagent resource allocation have

been surveyed recently in [19].

4 Complexity of Decision Problems Associated with Social Wel-

fare Optimization

4.1 Utilities in the Bundle Form and the k-Additive Form

Roos and Rothe [24] conjectured that exact social welfare optimization by the Nash product is

DP-complete for the bundle form and for the k-additive form. We confirm their conjecture in the

affirmative.

It might be tempting to think that hardness for the decision problem associated with utilitarian

social welfare optimization directly transfers to that for the Nash product by the straightforward

reduction that maps utilities of value k to 2k (cf. [23]). Note that not the exponential blow-up of

the numbers encoding utilities causes a problem here, since the reduction from SET PACKING that

Chevaleyre et al. [7] define to show NP-hardness of Q-USWObundle yield instances with utilities

zero or one only. However, the reason for why this reduction doesn’t work for the bundle form is

that utilities of value zero that are omitted in the instances for utilitarian social welfare need to be

encoded by the value 20 = 1 in the resulting instance for the Nash product. In the worst case, this

causes an exponential increase in the size of the instance constructed, and thus the reduction is not



polynomial-time.

Relatedly, another reason for why Nash product and utilitarian social welfare are not equivalent

is that if we make the plausible assumption that the empty bundle has utility zero for everyone, the

Nash product is trivially zero when there are fewer resources than agents (which implies that at least

one agent must remain empty-handed), while utilitarian social welfare is not in that case.

Theorem 7 Q+-XNPSWObundle is DP-complete.

Theorem 8 For each k ≥ 3, Q+-XNPSWOk-add is DP-complete.

The proofs of Theorems 7 and 8 are omitted due to space limitations. In order to prove DP-

hardness for Q+-XNPSWObundle, we need the following lemma by Chang and Kadin [4], who

provided a sufficient condition for DP-hardness. It makes use of the definition of AND2.

Definition 9 Let L ⊆ Σ∗ be a decision problem. L has AND2 if there exists a polynomial-time

computable function f such that for all strings x,y ∈ Σ∗, it holds that

x ∈ L∧ y ∈ L ⇐⇒ f (x,y) ∈ L.

Lemma 10 (Chang and Kadin [4]) Let L ⊆ Σ∗ be a decision problem. If L is both NP-hard and

coNP-hard and has AND2, then L is DP-hard.

We roughly present the idea of the proofs of Theorems 7 and 8. First, note that the proof of

NP-hardness of Q+-XNPSWObundle (see [24]) in fact proves coNP-hardness of this problem as

well, and this reduction produces MARA settings, where the agents’ utility functions take on binary

values only. Since this is a special case of Q+-XNPSWObundle, hardness results carry over. To apply

Lemma 10, it remains to show that any two instances can be merged in the sense of AND2. Note

that trivial merging of two Q+-XNPSWObundle instances fails to prove AND2: Consider instances

M1 and M2 with target t1 and t2, respectively, with t1 < t2. Both instances are no-instances in that M1

overachieves, i.e., max(M1)> t1, and M2 underachieves, i.e., max(M2)< t2. However, the maximum

of each instance equals the target of the other instance, that is, max(M1) = t2 and max(M2) = t1. If

we trivially merged both instances, we would have a yes-instance with a greatest Nash product of

t1 ·t2, the target of the merger. Therefore, we preprocess both input instances with a polynomial-time

algorithm.

4.2 Utilities Represented by Straight-Line Programs

When utilities are represented by straight-line programs, we prove NP-completeness for egalitarian

social welfare optimization and social welfare optimization by the Nash product. This helps to com-

plete the picture for the complexity of social welfare optimization problems with straight-line pro-

gram representation of utility functions, which Dunne et al. [9] initiated by their NP-completeness

result for utilitarian social welfare optimization.

Theorem 11 Q-ESWOSLP and Q+-NPSWOSLP are NP-complete.

Proof. Membership in NP is easy to see. To show NP-hardness, we reduce from the NP-complete

problem MAX3SAT, which is formally defined as follows:

MAX3SAT

Given: A boolean formula ϕ in 3-CNF (i.e., in conjunctive normal form with three literals per

clause) and k ≥ 2.

Question: Is there an assignment to the variables of ϕ such that at least k clauses are satisfied?



Let ϕ =
m
∧

i=1

(z1
i ∨ z2

i ∨ z3
i ) be a given boolean formula in 3-CNF, where z

j
i , 1 ≤ i ≤ m and

j ∈ {1,2,3}, is a literal of some variable v ∈ V = {v1, . . . ,vn}. Define A = {a1,a2} and

R = {r1, . . . ,rn,rn+1, . . . ,r2n}. We say a bundle S ⊆ R or its corresponding vector αS =
(x1, . . . ,xn,xn+1, . . . ,x2n) is valid if

n
∧

i=1

XOR(xi,xn+i) =
n
∧

i=1

(¬xi ∧ xn+i)∨ (xi ∧¬xn+i) = 1,

i.e., XOR denotes the boolean exclusive-or operation. Define a1’s utility function as

u1(S) =

{

number of satisfied clauses in ϕ by S if S is valid

0 otherwise

and a2’s utility function as

u2 ≡

{

m if we reduce to the egalitarian social welfare

1 if we reduce to social welfare by the Nash product.

Write

u1(αS) =

(

n
∧

i=1

XOR(xi,xn+i)

)

·
m

∑
i=1

(z1
i ∨ z2

i ∨ z3
i ),

where we replace4 z
j
i by the corresponding value of xk, k ∈ {1, . . . ,n}, if z

j
i is a positive literal of xk;

otherwise (that is, if z
j
i is a negated variable) we replace it by the value of xn+k, k ∈ {1, . . . ,n}. By

Proposition 1, we know there is an SLP of polynomial size that represents u1.

Now consider a 3-CNF formula ϕ whose maximum number of satisfied clauses is k for some

assignment A : X →{0,1}. Assignment A induces an assignment vector αS = (A(v1), . . . ,A(vn),1−
A(v1), . . . ,1−A(vn)). By definition, αS is valid and a1’s utility is exactly k. The remaining resources

go to a2. Because a2’s utility can be ignored, the social welfare is a1’s utility, that is, the maximum

number of satisfied clauses in ϕ .

For the other direction, note that we reduced from a legal 3-CNF formula. So there is an as-

signment that satisfies at least one clause. Hence, a1 realizes a utility of at least one. Now let

k ≥ 1 be the maximum social welfare of this instance. By definition, u1(S) = k for some valid

αS = (x1, . . . ,xn,xn+1, . . . ,x2n). Truncating αS by dropping the last n coordinates yields an assign-

ment that satisfies k clauses. ❑

5 Approximability of Social Welfare Optimization

In the previous section, we have shown that the decision versions of certain social welfare optimiza-

tion problems are intractable: either NP-complete for the standard problem that asks whether a given

threshold of social welfare can be reached or exceeded in a given MARA setting, or DP-complete

for the exact variant. It is natural to ask whether the optimization problems corresponding to these

decision problems are intractable as well, or whether they allow efficient approximation schemes.

Known approximability and inapproximability results in multiagent resource allocation have

been surveyed recently in [19]. Here we prove some novel results not included there. The first one

is an inapproximability result about social welfare optimization by the Nash product for 1-additive

utilities. We prove this result by a reduction from the well-known NP-complete problem EXACT

COVER BY THREE SETS, which is defined as follows:

4Because we have a boolean circuit, we actually insert an edge (xk,o
q
p), where o

q
p, p ∈ {1, . . . ,m}, q ∈ {1,2}, denotes the

∨-gate that is responsible for z
j
i in clause p.



EXACT COVER BY THREE SETS (X3C)

Given: A finite set B with ‖B‖ = 3n and a collection C = {S1, . . . ,Sm} of 3-element subsets

of B.

Question: Does there exist a subcollection C′ ⊆C such that every element of B occurs in exactly

one of the sets in C′?

Theorem 12 Assuming P 6= NP, MAX-NPSW1-add cannot be approximated within a factor of 2/3+
ε for any ε > 0.

Proof. Let (B,C) with ‖B‖ = 3n and C = {S1, . . . ,Sm} be an instance of X3C. Without loss of

generality, assume that m ≥ n. Construct an instance M = (A,R,U) of Q+-MAX-NPSW1-add as

follows. Let A be a set of m agents, where agent ai corresponds to Si, and let R = B∪D be a set of

2n+m resources. That is, there are 3n “real” resources that correspond to the 3n elements of B, and

there are m−n “dummy” resources in D. Define the agents’ utilities as follows. For each ai ∈ A and

each r j ∈ R, let

ui(r j) =











1/3 if r j ∈ Si

1 if r j ∈ D

0 otherwise.

Also, define ui( /0) = 0 for all i, 1 ≤ i ≤ m.

Suppose that (B,C) is a yes-instance of X3C. Then there exists a set I ⊆ {1, . . . ,m}, ‖I‖ = n,

such that Si ∩S j = /0 for all i, j ∈ I, i 6= j, and
⋃

i∈I Si = B. Hence, we assign the bundle Si to agent ai

for each i ∈ I, and the dummy resources to the m−n remaining agents. This allocation maximizes

the Nash product social welfare, which now is at least 1. Furthermore, the sum of all agents’ utilities

is at most m. Hence, the product of the agents’ individual utilities is maximal if and only if all agents

have the same utility, which exactly equals 1.

Conversely, if (B,C) is a no-instance of X3C, we show that the maximum Nash product social

welfare is at most 2/3. Obviously, the sum of all agents’ utilities is at most m− 1/3 in this case. The

Nash product social welfare reaches the maximal value iff the utilities of the agents are as balanced

as possible. The best allocation that satisfies this property is the following. Dummy resources

are distributed to m− n agents, n− 1 agents get the n− 1 disjoint bundles from (S1, . . . ,Sm), and

the last agent is assigned the remaining bundle which has utility of at most 2/3. This implies that

maxN(M)≤ 2/3. Therefore, an approximation algorithm with a factor better than 2/3 will distinguish

the “yes” and “no” instances of X3C. ❑

Theorem 12 shows that MAX-NPSW1-add cannot have a PTAS unless P = NP. This result also

holds for MAX-ESW1-add due to Bezáková and Dani [2]. However, we show that there is an FPTAS

for this problem whenever the number of agents is fixed, using a technique that was also used to give

an FPTAS for a variety of scheduling problems (see [26] and [13]). We assume that for any agent

ai, the utility function ui is nonnegative and ui( /0) = 0. The proof is omitted as well.

Theorem 13 Both MAX-NPSW1-add and MAX-ESW1-add admit an FPTAS for any fixed number

of agents.

Coming back to the straight-line program representation of utility functions, notice that the re-

duction in the proof of Theorem 11 is an L-reduction with parameters α = β = 1. There is a one-

to-one correspondence between assignments of variables and assignments of resources to the first

agent, where the maximum number of satisfied clauses equals the social welfare after the reduction.

By setting the utility function of the second agent to the constant zero-function, we have a reduction

with the same properties for the utilitarian case. Using the inapproximability result for Max3SAT

by Håstad [12], we conclude:



Corollary 14 Q-MAX-USWSLP, Q-MAX-ESWSLP, Q+-MAX-NPSWSLP are NP-hard to approx-

imate within a factor of 7/8+ ε for every ε > 0.

6 Conclusions

We have classified the decision versions of social welfare optimization problems for egalitarian and

Nash product social welfare (for utilities represented by straight-line programs) and the exact variant

for Nash product social welfare (for utilities in the bundle form and in the k-additive form) in terms of

computational complexity. In addition, we have shown new approximability and inapproximability

results for utilitarian, egalitarian, and Nash product social welfare. As interesting open problems for

future work, we mention the study of complexity and approximability of social welfare optimization

problems for different representation forms, improving approximation algorithms, and identifying

tractable cases of restricted problem variants.
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