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Abstract

Most work on manipulation assumes that all preferences are known to the manipulators. How-
ever, in many settings elections are open and sequential, and manipulators may know the al-
ready cast votes but may not know the future votes. We introduce a framework, in which
manipulators can see the past votes but not the future ones, to model online coalitional manip-
ulation of sequential elections, and we show that in this setting manipulation can be extremely
complex even for election systems with simple winner problems. Yet we also show that for
some of the most important election systems such manipulation is simple in certain settings.
This suggests that when using sequential voting, one shouldpay great attention to the details
of the setting in choosing one’s voting rule.
Among the highlights of our classifications are: We show that, depending on the size of the
manipulative coalition, the online manipulation problem can be complete for each level of the
polynomial hierarchy or even for PSPACE. And we obtain the most dramatic contrast to date
between the nonunique-winner and unique-winner models: Online weighted manipulation for
plurality is in P in the nonunique-winner model, yet is coNP-hard (constructive case) and NP-
hard (destructive case) in the unique-winner model.

1 Introduction

Voting is a widely used method for preference aggregation and decision-making. In particular,
strategicvoting (ormanipulation) has been studied intensely in social choice theory (starting with
the celebrated work of Gibbard [Gib73] and Satterthwaite [Sat75]) and, in the rapidly emerging area
of computationalsocial choice, also with respect to its algorithmic properties and computational
complexity (starting with the seminal work of Bartholdi, Tovey, and Trick [BTT89]; see the recent
surveys by Faliszewski et al. [FP10, FHH10, FHHR09]). This computational aspect is particularly
important in light of the many applications of voting in computer science, ranging from meta-search
heuristics for the internet [DKNS01], to recommender systems [GMHS99] and multiagent systems
in artificial intelligence (see the survey by Conitzer [Con10]).

Most of the previous work on manipulation, however, is concerned with voting where the ma-
nipulators know the nonmanipulative votes. Far less attention has been paid (see the related work
below) to manipulation in the midst of elections that are modeled as dynamic processes.

We introduce a novel framework for online manipulation, where voters vote in sequence and the
current manipulator, who knows the previous votes and whichvoters are still to come but does not
know their votes, must decide—right at that moment—what the“best” vote to cast is. So, while other
approaches to sequential voting are game-theoretic, stochastic, or axiomatic in nature (again, see the
related work), our approach to manipulation of sequential voting is shaped by the area of “online
algorithms” [BE98], in the technical sense of a setting in which one (for us, each manipulative voter)
is being asked to make a manipulation decision just on the basis of the information one has in one’s
hands at the moment even though additional information/system evolution may well be happening
down the line. In this area, there are different frameworks for evaluation. But the most attractive one,
which pervades the area as a general theme, is the idea that one may want to “maxi-min” things—
one may want to take the action that maximizes the goodness ofthe set of outcomes that one can
expect regardless of what happens down the line from one time-wise. For example, if the current
manipulator’s preferences are Alice> Ted> Carol> Bob and if she can cast a (perhaps insincere)
vote that ensures that Alice or Ted will be a winner no matter what later voters do, and there is no



vote she can cast that ensures that Alice will always be a winner, this maxi-min approach would say
that that vote is a “best” vote to cast.

It will perhaps be a bit surprising to those familiar with online algorithms and competitive anal-
ysis that in our model of online manipulation we will not use a(competitive)ratio. The reason is
that voting commonly uses anordinal preference model, in which preferences are total orders of the
candidates. It would be a severely improper step to jump fromthat to assumptions about intensity
of preferences and utility, e.g., to assuming that everyonelikes hernth-to-least favorite candidate
exactlyn times more than she likes her least favorite candidate.

Related Work. Conitzer and Xia [XC10a] (see also the related paper by Desmedt and Elkind
[DE10]) define and study the Stackelberg voting game (also quite naturally called, in an earlier paper
that mostly looked at two candidates, the roll-call voting game [Slo93]). This basically is an elec-
tion in which the voters vote in order,and the preferences are common knowledge—everyone knows
everyone else’s preferences, everyone knows that everyoneknows everyone else’s preferences, and
so on out to infinity. Their analysis of this game is fundamentally game-theoretic; with such com-
plete knowledge in a sequential setting, there is preciselyone (subgame perfect Nash) equilibrium,
which can be computed from the back end forward. Under their work’s setting and assumptions,
for bounded numbers of manipulators manipulation is in P, but we will show that in our model even
with bounded numbers of manipulators manipulation sometimes (unless P= NP) falls beyond P.

The interesting “dynamic voting” work of Tennenholtz [Ten04] investigates sequential voting,
but focuses on axioms and voting rules rather than on coalitions and manipulation. Much heavily
Markovian work studies sequential decision-making and/ordynamically varying preferences (see
[PP11] and the references therein); our work in contrast is nonprobabilistic and focused on the com-
plexity of coalitional manipulation. Also somewhat related to, but quite different from, our work
is the work on possible and necessary winners. The seminal paper on that is due to Konczak and
Lang [KL05], and more recent work includes [XC08, BHN09, BBF10, Bet10, BD10, CLM+12,
BR12]; the biggest difference is that those are, loosely, one-quantifier settings, but the more dy-
namic setting of online manipulation involves numbers of quantifiers that can grow with the input
size. Another related research line studies multi-issue elections [XC10b, XCL10, XCL11, XLC11];
although there the separate issues may run in sequence, eachissue typically is voted on simultane-
ously and with preferences being common knowledge.

2 Preliminaries

Elections. A (standard, i.e., simultaneous) election(C,V) is specified by a setC of candidates and
a listV, where we assume that each element inV is a pair(v, p) such thatv is a voter name andp is
v’s vote. How the votes inV are represented depends on the election system used—we assume, as is
required by most systems, votes to be total preference orders overC. For example, ifC= {a,b,c},
a vote of the formc> a> b means that this voter (strictly) prefersc to a anda to b.

We introduce election snapshots to capture sequential election scenarios as follows. LetC be a
set of candidates and letu be (the name of) a voter. Anelection snapshot for C and uis specified
by a tripleV = (V<u,u,Vu<) consisting of all voters in the order they vote, along with, for each
voter beforeu (i.e., those inV<u), the vote she cast, and for each voter afteru (i.e., those inVu<),
a bit specifying if she is part of the manipulative coalition(to which u always belongs). That is,
V<u =((v1, p1),(v2, p2), . . . ,(vi−1, pi−1)), where the voters namedv1,v2, . . . ,vi−1 (including perhaps
manipulators and nonmanipulators) have already cast theirvotes (preference orderp j being cast
by v j ), andVu< = ((vi+1,xi+1),(vi+2,xi+2), . . . ,(vn,xn)) lists the names of the voters still to cast
their votes, in that order, and wherex j = 1 if v j belongs to the manipulative coalition andx j = 0
otherwise.



Scoring Rules. A scoring rulefor m candidates is given by a scoring vectorα = (α1,α2, . . . ,αm)
of nonnegative integers such thatα1 ≥ α2 ≥ ·· · ≥ αm. For an election(C,V), each candidatec∈C
scoresαi points for each vote that ranksc in the ith position. Letscore(c) be the total score of
c ∈ C. All candidates scoring the most points are winners of(C,V). Some of the most popular
voting systems arek-approval(especiallyplurality, aka 1-approval) andk-veto(especiallyveto, aka
1-veto). Theirm-candidate,m≥ k, versions are defined by the scoring vectors(1, . . . ,1︸ ︷︷ ︸

k

,0, . . . ,0︸ ︷︷ ︸
m−k

) and

(1, . . . ,1︸ ︷︷ ︸
m−k

,0, . . . ,0︸ ︷︷ ︸
k

). Whenm is not fixed, we omit the phrase “m-candidate.”

Manipulation. The(standard) weighted coalitional manipulation problem[CSL07],E -Weighted-
Coalitional-Manipulation (abbreviated byE -WCM), for any election systemE is defined as follows:
Given a candidate setC, a listSof nonmanipulative voters each having a nonnegative integer weight,
a list T of the nonnegative integer weights of the manipulative voters (whose preferences overC are
unspecified), withS∩T = /0, and a distinguished candidatec∈ C, can the manipulative votesT be
set such thatc is a (or the)E winner of(C,S∪T)?

Asking whetherc can be made “a winner” is called the nonunique-winner model and is the
model of all notions in this paper unless mentioned otherwise. If one asks whetherc can be made a
“one and only winner,” that is called the unique-winner model. We also use theunweightedvariant,
where each vote has unit weight, and writeE -UCM as a shorthand. Note thatE -UCM with asingle
manipulator (i.e.,‖T‖ = 1 in the problem instance) is the manipulation problem originally studied
in [BTT89, BO91]. Conitzer, Sandholm, and Lang [CSL07] alsointroduced thedestructivevariants
of these manipulation problems, where the goal is not to makec win but to ensure thatc is not a
winner, and we denote the corresponding problems byE -DWCM andE -DUCM. Finally, we write
E -WC6= /0M, E -UC6= /0M, E -DWC6= /0M, andE -DUC6= /0M to indicate that the problem instances are
required to have a nonempty coalition of manipulators.

Complexity-Theoretic Background. We assume the reader is familiar with basic complexity-
theoretic notions such as the complexity classes P and NP, the class FP of polynomial-time com-
putable functions, polynomial-time many-one reducibility (≤p

m), and hardness and completeness
with respect to≤p

m for a complexity class.
Meyer and Stockmeyer [MS72] and Stockmeyer [Sto76] introduced and studied the polynomial

hierarchy, PH=
⋃

k≥0 Σp
k , whose levels are inductively defined byΣp

0 = P andΣp
k+1 = NPΣp

k , and
their co-classes,Πp

k = coΣp
k for k≥ 0. They also characterized these levels by polynomially length-

bounded alternating existential and universal quantifiers. PNP is the class of problems solvable
in deterministic polynomial time with access to an NP oracle, and PNP[1] is the restriction of PNP

where only one oracle query is allowed. Note that P⊆ NP∩coNP⊆ NP∪coNP⊆ PNP[1] ⊆ PNP ⊆
Σp

2∩Πp
2 ⊆Σp

2∪Πp
2 ⊆PH⊆PSPACE, where PSPACE is the class of problems solvable in polynomial

space. Thequantified boolean formula problem, QBF, is a standard PSPACE-complete problem.
Define QBFk (Q̃BFk) to be the restriction of QBF with at mostk quantifiers that start with∃ (∀) and
then alternate between∃ and∀, and we assume that each∃ and∀ quantifies over a set of boolean
variables. For eachk≥ 1, QBFk is Σp

k -complete and̃QBFk is Πp
k-complete.

Proofs omitted due to space limitations can be found in the technical report version [HHR12a].

3 Our Model of Online Manipulation

The core of our model of online manipulation in sequential voting is what we call themagnifying-
glass moment, namely, the moment at which a manipulatoru is the one who is going to vote, is
aware of what has happened so far in the election (and which voters are still to come, but in general



not knowing what they want, except in the case of voters, if any, who are coalitionally linked tou).
In this moment,u seeks to “figure out” what the “best” vote to cast is. We will call the information
available in such a moment anonline manipulation setting(OMS, for short) and define it formally
as a tuple(C,u,V,σ ,d), whereC is a set of candidates;u is a distinguished voter;V = (V<u,u,Vu<)
is an election snapshot forC andu; σ is the preference order of the manipulative coalition to which
u belongs; andd ∈ C is a distinguished candidate. Given an election systemE , define the prob-
lem online-E -Unweighted-Coalitional-Manipulation (abbreviated by online-E -UCM), as follows:
Given an OMS(C,u,V,σ ,d) as described above, does there exist some vote thatu can cast (assum-
ing support from the manipulators coming afteru) such that no matter what votes are cast by the
nonmanipulators coming afteru, there exists somec∈C such thatc≥σ d andc is anE winner of
the election? By “support from the manipulators coming after u” we mean thatu’s coalition partners
coming afteru, when they get to vote, will use their then-in-hand knowledge of all votes up to then
to helpu reach her goal: By a joint effortu’s coalition can ensure that theE winner set will always
include a candidate liked by the coalition as much as or more thand, even when the nonmanipu-
lators take their strongest action so as to prevent this. Note that this candidate,c in the problem
description, may be different based on the nonmanipulators’ actions. (Nonsequential manipulation
problems usually focus on whether a single candidate can be made to win, but in our setting, this
“that person or better” focus is more natural.) For the case of weighted manipulation, each voter
also comes with a nonnegative integer weight. We denote thisproblem by online-E -WCM.

We write online-E -UCM[k] in the unweighted case and online-E -WCM[k] in the weighted case
to denote the problem when the number of manipulators fromu onward is restricted to be at mostk.

Our corresponding destructive problems are denoted by online-E -DUCM, online-E -DWCM,
online-E -DUCM[k], and online-E -DWCM[k]. In online-E -DUCM we ask whether the given current
manipulatoru (assuming support from the manipulators after her) can casta vote such that no matter
what votes are cast by the nonmanipulators afteru, no c ∈ C with d ≥σ c is anE winner of the
election, i.e.,u’s coalition can ensure that theE winner set never includesd or any even more hated
candidate. The other three problems are defined analogously.

Note that online-E -UCM generalizes the original unweighted manipulation problem with a sin-
gle manipulator as introduced by Bartholdi, Tovey, and Trick [BTT89]. Indeed, their manipulation
problem in effect is the special case of online-E -UCM when restricted to instances where there
is just one manipulator, she is the last voter to cast a vote, and d is the coalition’s most preferred
candidate. Similarly, online-E -WCM generalizes the (standard) coalitional weighted manipulation
problem (for nonempty coalitions of manipulators). Indeed, that traditional manipulation problem
is the special case of online-E -WCM, restricted to instances where only manipulators comeafteru
andd is the coalition’s most preferred candidate. If we take an analogous approach except withd
restricted now to being the most hated candidate of the coalition, we generalize the corresponding
notions for the destructive cases. We summarize these observations as follows.

Proposition 1 For each election systemE , it holds that (1) E -UC6= /0M ≤p
m online-E -UCM,

(2) E -WC6= /0M ≤p
m online-E -WCM, (3) E -DUC6= /0M ≤p

m online-E -DUCM, and
(4) E -DWC6= /0M ≤p

m online-E -DWCM.

Corollary 2 below follows immediately from the above proposition.

Corollary 2 (1) For each election systemE such that the (unweighted) winner problem is solv-
able in polynomial time, it holds thatE -UCM ≤

p
m online-E -UCM. (2) For each election sys-

tem E such that the weighted winner problem is solvable in polynomial time, it holds that
E -WCM ≤p

m online-E -WCM. (3) For each election systemE such that the winner problem is
solvable in polynomial time, it holds thatE -DUCM ≤p

m online-E -DUCM. (4) For each election
systemE such that the weighted winner problem is solvable in polynomial time, it holds that
E -DWCM ≤p

m online-E -DWCM.



We said above that, by default, we will use thenonunique-winner modeland all the above prob-
lems are defined in this model. However, we will also have someresults in theunique-winner
model, which will, here, sharply contrast with the correspondingresults in the nonunique-winner
model. To indicate that a problem, such as online-E -UCM, is in the unique-winner model, we write
online-E -UCMUW and ask whether the current manipulatoru (assuming support from the manipu-
lators coming after her) can ensure that there exists somec∈C such thatc≥σ d andc is the unique
E winnerof the election.

4 General Results

Theorem 3 (1) For each election systemE whose weighted winner problem can be solved in poly-
nomial time,1 the problemonline-E -WCM is in PSPACE. (2) For each election systemE whose
winner problem can be solved in polynomial time, the problemonline-E -UCM is in PSPACE.
(3) There exists an election systemE with a polynomial-time winner problem such that the problem
online-E -UCM is PSPACE-complete. (4) There exists an election systemE with a polynomial-time
weighted winner problem such that the problemonline-E -WCM is PSPACE-complete.

PROOF. The proof of the first statement (which is analogous to the proof of the first statement in
Theorem 4) follows from the easy fact that online-E -WCM can be solved by an alternating Turing
machine in polynomial time, and thus, due to the characterization of Chandra, Kozen, and Stock-
meyer [CKS81], by a deterministic Turing machine in polynomial space. The proof of the second
case is analogous.

We construct an election systemE establishing the third statement. Let(C,u,V,σ ,d) be a given
input.E will look at the lexicographically least candidate name inC. Letc represent that name string
in some fixed, natural encoding.E will check if c represents atiered boolean formula, by which
we mean one whose variable names are all of the formxi, j (which really means a direct encoding
of a string, such as “x4,9”); the i, j fields must all be positive integers. Ifc does not represent such
a tiered formula, everyone loses on that input. Otherwise (i.e., if c represents a tiered formula),
let width be the maximumj occurring as the second subscript in any variable name (xi, j ) in c, and
let blocksbe the maximumi occurring as the first subscript in any variable name inc. If there
are fewer thanblocksvoters inV, everyone loses. Otherwise, if there are fewer than 1+2 ·width
candidates inC, everyone loses (this is so that each vote will involve enough candidates that it can
be used to set all the variables in one block). Otherwise, if there exists somei, 1 ≤ i ≤ blocks,
such that for noj does the variablexi, j occur inc, then everyone loses. Otherwise, order the voters
from the lexicographically least to the lexicographicallygreatest voter name. If distinct voters are
allowed to have the same name string (e.g., John Smith), we break ties by sorting according to the
associated preference orders within each group of tied voters (second-order ties are no problem,
as those votes are identical, so any order will have the same effect). Now, the first voter in this
order will assign truth values to all variablesx1,∗, the second voter in this order will assign truth
values to all variablesx2,∗, and so on up to theblocksth voter, who will assign truth values to all
variablesxblocks,∗.

How do we get those assignments from these votes? Consider a vote whose total order overC is
σ ′ (and recall that‖C‖ ≥ 1+2·width). Removec from σ ′, yieldingσ ′′. Let c1 <σ ′′ c2 <σ ′′ · · ·<σ ′′

c2·width be the 2·width least preferred candidates inσ ′′. We build a vector in{0,1}width as follows:
Theℓth bit of the vector is 0 if the string that namesc1+2(ℓ−1) is lexicographically less than the string
that namesc2ℓ, and this bit is 1 otherwise.

Let bi denote the vector thus built from theith vote (in the above ordering), 1≤ i ≤ blocks. Now,
for each variablexi, j occurring inc, assign to it the value of thejth bit of bi , where 0 representsfalse

1We mention in passing here, and henceforward we will not explicitly mention it in the analogous cases, that the claim
clearly remains true even when “polynomial time” is replaced by the larger class “polynomial space.”



and 1 representstrue. We have now assigned all variables ofc, soc evaluates to eithertrueor false.
If c evaluates totrue, everyone wins, otherwise everyone loses. This completes the specification of
the election systemE . E has a polynomial-time winner problem, as any boolean formula, given an
assignment to all its variables, can easily be evaluated in polynomial time.

To show PSPACE-hardness, we≤p
m-reduce the PSPACE-complete problem QBF to the problem

online-E -UCM. Let y be an instance of QBF. We transformy into an instance of the form

(∃x1,1,x1,2, . . . ,x1,k1)(∀x2,1,x2,2, . . . ,x2,k2) · · · (Qℓ xℓ,1,xℓ,2, . . . ,xℓ,kℓ)

[Φ(x1,1,x1,2, . . . ,x1,k1,x2,1,x2,2, . . . ,x2,k2, . . . ,xℓ,1,xℓ,2, . . . ,xℓ,kℓ)]

in polynomial time, whereQℓ = ∃ if ℓ is odd andQℓ = ∀ if ℓ is even, thexi, j are boolean variables,Φ
is a boolean formula, and for eachi, 1≤ i ≤ ℓ, Φ contains at least one variable of the formxi,∗. This
quantified boolean formula is≤p

m-reduced to an instance(C,u,V,σ ,c) of online-E -UCM as follows:

1. C contains a candidate whose name,c, encodesΦ, and in additionC contains 2·
max(k1, . . . ,kℓ) other candidates, all with names lexicographically greater thanc—for speci-
ficity, let us say their names are the 2·max(k1, . . . ,kℓ) strings that immediately followc in
lexicographic order.

2. V containsℓ voters, 1,2, . . . , ℓ, who vote in that order, whereu= 1 is the distinguished voter
and all odd voters belong tou’s manipulative coalition and all even voters do not. The voter
names will be lexicographically ordered by their number, 1 is least andℓ is greatest.

3. The manipulators’ preference orderσ is to like candidates in the opposite of their lexico-
graphic order. In particular,c is the coalition’s most preferred candidate.

This is a polynomial-time reduction. It follows immediately from this construction and the definition
of E thaty is in QBF if and only if(C,u,V,σ ,c) is in online-E -UCM.

To prove the last statement, simply letE be the election system that ignores the weights of the
voters and then works exactly as the previous election system. ❑

The following theorem shows that for bounded numbers of manipulators the complexity crawls
up the polynomial hierarchy. The theorem’s proof is based onthe proof given above, except we
need to use the alternating quantifier characterization dueto Meyer and Stockmeyer [MS72] and
Stockmeyer [Sto76] for the upper bound and to reduce from theΣp

2k-complete problem QBF2k rather
than from QBF for the lower bound.

Theorem 4 Fix any k≥ 1. (1) For each election systemE whose weighted winner problem can be
solved in polynomial time, the problemonline-E -WCM[k] is in Σp

2k. (2) For each election systemE
whose winner problem can be solved in polynomial time, the problemonline-E -UCM[k] is in Σp

2k.
(3) There exists an election systemE with a polynomial-time winner problem such that the problem
online-E -UCM[k] is Σp

2k-complete. (4) There exists an election systemE with a polynomial-time
weighted winner problem such that the problemonline-E -WCM[k] is Σp

2k-complete.

Note that the (constructive) online manipulation problemsconsidered in Theorems 3 and 4 are
about ensuring that the winner set always contains some candidate in theσ segment stretching
from d up to the top-choice. Now consider “pinpoint” variants of these problems, where we ask
whether the distinguished candidated herself can be guaranteed to be a winner (for nonsequential
manipulation, that version indeed is the one commonly studied). Denote thepinpoint variant of,
e.g., online-E -UCM[k] by pinpoint-online-E -UCM[k]. Since our hardness proofs in Theorems 3
and 4 make all or no one a winner (and as the upper bounds in these theorems also can be seen to
hold for the pinpoint variants), they establish the corresponding completeness results also for the
pinpoint cases. We thus have completeness results for PSPACE andΣp

2k for eachk≥ 1. What about
the classesΣp

2k−1 andΠp
k , for eachk ≥ 1? We can get completeness results for all these classes



by defining appropriate variants of online manipulation problems. Let OMP be any of the online
manipulation problems considered earlier, including the pinpoint variants mentioned above. Define
freeform-OMP to be just as OMP, except we no longer require the distinguished voteru to be part
of the manipulative coalition—u can be in or can be out, and the input must specify, foru and
all voters afteru, which ones are the members of the coalition. The question offreeform-OMP is
whether it is true that for all actions of the nonmanipulators at or afteru (for specificity as to this
problem: ifu is a nonmanipulator, it will in the input come with a preference order) there will be
actions (each taken with full information on cast-before-them votes) of the manipulative coalition
members such that their goal of making some candidatec with c≥σ d (or exactlyd, in the pinpoint
versions) a winner is achieved. Then, whenever Theorem 4 establishes aΣp

2k or Σp
2k-completeness

result for OMP, we obtain aΠp
2k+1 or Πp

2k+1-completeness result for freeform-OMP and fork = 0
manipulators we obtainΠp

1 = coNP or coNP-completeness results. Similarly, the PSPACE and
PSPACE-completeness results for OMP we established in Theorem 3 also can be shown true for
freeform-OMP.

On the other hand, if we define a variant of OMP by requiring thefinal voter to always be a
manipulator, the PSPACE and PSPACE-completeness results for OMP from Theorem 3 remain true
for this variant; theΣp

2k andΣp
2k-completeness results for OMP from Theorem 4 change toΣp

2k−1 and
Σp

2k−1-completeness results for this variant; and the aboveΠp
2k+1 andΠp

2k+1-completeness results
for freeform-OMP change toΠp

2k andΠp
2k-completeness results for this variant,k≥ 1.

Finally, as an open direction (and related conjecture), we define for each of the previously con-
sidered variants of online manipulation problems afull profile version. For example, for a given
election systemE , fullprofile-online-E -UCM[k] is the function problem that, given an OMSwith-
out any distinguished candidate,(C,u,V,σ), returns a length‖C‖ bit-vector that for each candidate
d ∈ C says if the answer to “(C,u,V,σ ,d) ∈ online-E -UCM[k]?” is “yes” (1) or “no” (0). The
function problem fullprofile-pinpoint-online-E -UCM[k] is defined analogously, except regarding
pinpoint-online-E -UCM[k].

It is not hard to prove, as a corollary to Theorem 4, that:

Theorem 5 For each election systemE whose winner problem can be solved in polynomial time,
(1) fullprofile-online-E -UCM[k] is in FPΣp

2k[O(logn)], the class of functions computable in polynomial
time given Turing access to aΣp

2k oracle withO(logn) queries allowed on inputs of size n, and

(2) fullprofile-pinpoint-online-E -UCM[k] is in FP
Σp

2k
tt , the class of functions computable in polyno-

mial time given truth-table access to aΣp
2k oracle.

We conjecture that both problems are complete for the corresponding class under metric reduc-
tions [Kre88], for suitably defined election systems with polynomial-time winner problems.

If the full profile version of an online manipulation problemcan be computed efficiently, we
clearly can also easily solve each of the decision problems involved by looking at the corresponding
bit of the length‖C‖ bit-vector. Conversely, if there is an efficient algorithm for an online manip-
ulation decision problem, we can easily solve its full profile version by running this algorithm for
each candidate in turn. Thus, we will state our later resultsonly for online manipulation decision
problem.

Proposition 6 Let OMP be any of the online manipulation decision problems defined above. Then
fullprofile-OMP is in FP if and only ifOMP is in P.

5 Results for Specific Natural Voting Systems

The results of the previous section show that, simply put, even for election systems with polynomial-
time winner problems, online manipulation can be tremendously difficult. But what aboutnatural
election systems? We will now take a closer look at importantnatural systems. We will show that



online manipulation can be easy for them, depending on whichparticular problem is considered, and
we will also see that the constructive and destructive casescan differ sharply from each other and
that it really matters whether we are in the nonunique-winner model or the unique-winner model.

Theorem 7 (1) online-plurality-WCM (and thus also online-plurality-UCM) is in P.
(2) online-plurality-DWCM (and thus alsoonline-plurality-DUCM) is in P.

Theorem 7 refers to problems in the nonunique-winner model.By contrast, we now show that
online manipulation for weighted plurality voting in theunique-winnermodel is coNP-hard in the
constructivecase and is NP-hard in thedestructivecase. This is perhaps the most dramatic, broad
contrast yet between the nonunique-winner model and the unique-winner model, and is the first such
contrast involving plurality. The key other NP-hardness versus P result for the nonunique-winner
model versus the unique-winner model is due to Faliszewski,Hemaspaandra, and Schnoor [FHS08],
but holds only for (standard) weighted manipulation for Copelandα elections (0< α < 1) with
exactly three candidates; for fewer than three both cases there are in P and for more than three
both are NP-complete. In contrast, the P results of Theorem 7hold for all numbers of candidates,
and the NP-hardness and coNP-hardness results of Theorem 8 hold whenever there are at least two
candidates.

Theorem 8 (1) The problemonline-plurality-DWCMUW is NP-hard, even when restricted to only
two candidates (and this also holds when restricted to three, four, ... candidates). (2) The problem
online-plurality-WCMUW is coNP-hard, even when restricted to only two candidates (and thisalso
holds when restricted to three, four, ... candidates).

PROOF. For the first statement, we prove NP-hardness of online-plurality-DWCMUW by a reduction
from the NP-complete problem Partition: Given a nonempty sequence(w1,w2, . . . ,wz) of positive
integers such that∑z

i=1wi = 2W for some positive integerW, does there exist a setI ⊆ {1,2, . . . ,z}
such that∑i∈I wi = W? Let m≥ 2. Given an instance(w1,w2, . . . ,wz) of Partition, construct an
instance({c1, . . . ,cm},u1,V,c1 > c2 > · · ·> cm,c1) of online-plurality-DWCMUW such thatV con-
tainsm+ z− 2 votersv1, . . . ,vm−2,u1, . . . ,uz who vote in that order. For 1≤ i ≤ m− 2, vi votes
for ci and has weight(m−1)W− i, and for 1≤ i ≤ z, ui is a manipulator of weight(m−1)wi . If
(w1,w2, . . . ,wz) is a yes-instance of Partition, the manipulators can give(m− 1)W points to both
cm−1 andcm, and zero points to the other candidates. Socm−1 andcm are tied for the most points
and there is no unique winner. On the other hand, the only way to avoid having a unique winner in
our online-plurality-DWCMUW instance is if there is a tie for the most points. The only candidates
that can tie arecm−1 andcm, since all other pairs of candidates have different scores modulom−1. It
is easy to see thatcm−1 andcm tie for the most points only if they both get exactly(m−1)W points.
It follows that(w1,w2, . . . ,wz) is a yes-instance of Partition.

For the second part, we adapt the above construction to yielda reduction from Partition to the
complement of online-plurality-WCMUW. Given an instance(w1,w2, . . . ,wz) of Partition, construct
an instance({c1, . . . ,cm}, û,V,c1 > c2 > · · ·> cm,cm) of online-plurality-WCMUW such thatV con-
tainsm+ z−1 votersv1, . . . ,vm−2, û,u1, . . . ,uz who vote in that order. For 1≤ i ≤ m−2, vi has the
same vote and the same weight as above,û is a manipulator of weight 0, and for 1≤ i ≤ z, ui has the
same weight as above, but in contrast to the case above,ui is now a nonmanipulator. By the same
argument as above, it follows that(w1,w2, . . . ,wz) is a yes-instance of Partition if and only if the
nonmanipulators can ensure that there is no unique winner, which in turn is true if and only if the
manipulator can not ensure that there is a unique winner. ❑

Theorem 9 For each scoring ruleα = (α1, . . . ,αm), online-α-WCM is in P if α2 = αm and is
NP-hard otherwise.

Theorem 10 For each k,online-k-approval-UCM andonline-k-veto-UCM are inP.



PROOF. Consider 1-veto. Given an online-1-veto-UCM instance(C,u,V,σ ,d), the best strat-
egy for the manipulators fromu onward (letn1 denote how many of these there are) is to mini-
mize maxc<σ d score(c). Let n0 denote how many nonmanipulators come afteru. We claim that
(C,u,V,σ ,d) is a yes-instance if and only ifd is ranked last inσ or there exists a threshold
t such that (1)∑c<σ d(maxscore(c)⊖ t) ≤ n1 (so those manipulators can ensure that all can-
didates ranked<σ d score at mostt points), where “⊖” denotes proper subtraction (x⊖ y =
max(x− y,0)) andmaxscore(c) is c’s score when none of the voters fromu onward vetoc, and
(2) ∑c≥σ d(maxscore(c)⊖ (t −1)) > n0 (so those nonmanipulators cannot prevent that some candi-
date ranked≥σ d scores at leastt points).

For 1-veto under the above approach, in each situation wherethe remaining manipulators can
force success against all actions of the remaining nonmanipulators,u (right then as she moves) can
set herand all future manipulators’ actionsso as to force success regardless of the actions of the
remaining nonmanipulators. Fork-approval andk-veto,k≥ 2, that approach provably cannot work
(as will be explained right after this proof); rather, we sometimes need later manipulators’ actions
to be shaped by intervening nonmanipulators’ actions. Still, the following P-time algorithm, which
works for all k, tells whether success can be forced. As a thought experiment, for each voterv
from u onwards in sequence do this: Order the candidates in{c|c≥σ d} from most to least current
approvals, breaking ties arbitrarily, and postpend the remaining candidates ordered from least to
most current approvals. Letℓ bek for k-approval and‖C‖−k for k-veto. Cast the voter’sℓ approvals
for the firstℓ candidates in this order ifv is a manipulator, and otherwise for the lastℓ candidates
in this order. Success can be forced against perfect play if and only if this P-time process leads to
success. ❑

In the above proof we said that the approach for 1-veto (in which the current manipulator can
set her and all future manipulators’ actions so as to force success independent of the actions of
intervening future nonmanipulators) provably cannot workfor k-approval andk-veto,k ≥ 2. Why
not? Consider an OMS(C,u,V,σ ,d) with candidate setC = {c1,c2, . . . ,c2k}, σ being given by
c1 >σ c2 >σ · · · >σ c2k, andd = c1. So,u’s coalition wants to enforce thatc1 is a winner. Sup-
pose thatv1 has already cast her vote, now it’sv2 = u’s turn, and the order of the future voters is
v3,v4, . . . ,v2 j , where allv2i, 2≤ i ≤ j, belong tou’s coalition, and allv2i−1 do not. Suppose thatv1

was approving of thek candidates inC1 ⊆ {c2,c3, . . . ,c2k}, ‖C1‖ = k. Thenu must approve of the
k candidates inC1, to ensure thatc1 draws level with the candidates inC1 and none of these can-
didates can gain another point. Next, suppose that nonmanipulatorv3 approves of thek candidates
in C3 ⊆ {c2,c3, . . . ,c2k}, ‖C3‖ = k. Thenv4, the next manipulator, must approve of all candidates
in C3, to ensure thatc1 draws level with the candidates inC3 and none of these candidates can gain
another point. This process is repeated until the last nonmanipulator,v2 j−1, approves of the candi-
dates inC2 j−1 ⊆ {c2,c3, . . . ,c2k}, ‖C2 j−1‖ = k, andv2 j , the final manipulator, is forced to counter
this by approving of all candidates inC2 j−1, to ensure thatc1 is a winner. This shows that there can
be arbitrarily long chains such that the action of each manipulator afteru depends on the action of
the preceding intervening nonmanipulator.

We now turn to online weighted manipulation for veto when restricted to three candidates. We
denote this restriction of online-veto-WCM by online-veto|3-WCM.

Theorem 11 online-veto|3-WCM is PNP[1]-complete.

Dropping the restriction to three candidates, we obtain thefollowing result, which places
this problem far below the general PSPACE bound from earlierin this paper. Immediately
from Theorems 10 and 12, we have that the full profile variantsof online-k-veto-UCM and
online-k-approval-UCM are in FP and that fullprofile-online-veto-WCM is in FPNP.

Theorem 12 online-veto-WCM is in PNP.



6 Uncertainty About the Order of Future Voters

So far, we have been dealing with cases where the order of future voters was fixed and known.
But what happens if the order of future voters itself is unknown? Even here, we can make claims.
To model this most naturally, our “magnifying-glass moment” will focus not on one manipulator
u, but will focus at a moment in time when some voters are still to come (as before, we know
who they are and which are manipulators; as before, we have a preference orderσ , and know
what votes have been cast so far, and have a distinguished candidated). And the question our
problem is asking is: Is it the case that our manipulative coalition can ensure that the winner set
will always included or someone liked more thand with respect toσ (i.e., the winner set will have
nonempty intersection with{c ∈ C| c ≥σ d}), regardless of what order the remaining voters vote
in. We will call this problem theschedule-robust online manipulation problem, and will denote it
by SR-online-E -UCM. (We will add a “[1,1]” suffix for the restriction of thisproblem to instances
when at most one manipulator and at most one nonmanipulator have not yet voted.) One might
think that this problem captures both aΣp

2 and aΠp
2 issue, and so would be hard for both classes.

However, the requirement of schedule robustness tames the problem (basically what underpins that
is simply that exists-forall-predicate implies forall-exists-predicate), bringing it intoΣp

2. Further,
we can prove, by explicit construction of such a system, thatfor some simple election systems this
problem is complete forΣp

2.

Theorem 13 (1) For each election systemE whose winner problem is inP, SR-online-E -UCM
is in Σp

2. (2) There exists an election systemE , whose winner problem is inP, such that
SR-online-E -UCM (indeed, evenSR-online-E -UCM[1,1]) is Σp

2-complete.

7 Conclusions and Open Questions

We introduced a novel framework for online manipulation in sequential voting, and showed that
manipulation there can be tremendously complex even for systems with simple winner problems.
We also showed that among the most important election systems, some have efficient online manip-
ulation algorithms but others (unless P= NP) do not. It will be important to, complementing our
work, conduct typical-case complexity studies. Also, we have extended the scope of our investiga-
tion by studying online control [HHR12c, HHR12b] and will doso by studying online bribery in
appropriate models.
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