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Abstract

Most work on manipulation assumes that all preferencesrave/k to the manipulators. How-
ever, in many settings elections are open and sequent@imamipulators may know the al-
ready cast votes but may not know the future votes. We inteduframework, in which
manipulators can see the past votes but not the future anemdel online coalitional manip-
ulation of sequential elections, and we show that in thisreemanipulation can be extremely
complex even for election systems with simple winner protde Yet we also show that for
some of the most important election systems such manipulégisimple in certain settings.
This suggests that when using sequential voting, one shgaydyreat attention to the details
of the setting in choosing one’s voting rule.

Among the highlights of our classifications are: We show,tdapending on the size of the
manipulative coalition, the online manipulation probleamnde complete for each level of the
polynomial hierarchy or even for PSPACE. And we obtain theshalbamatic contrast to date
between the nonunique-winner and unique-winner modelin®weighted manipulation for
plurality is in P in the nonunique-winner model, yet is coN&d (constructive case) and NP-
hard (destructive case) in the unique-winner model.

1 Introduction

Voting is a widely used method for preference aggregatiah @ecision-making. In particular,
strategicvoting (or manipulatior) has been studied intensely in social choice theory (ataxtiith
the celebrated work of Gibbard [Gib73] and SatterthwaitgTS]) and, in the rapidly emerging area
of computationakocial choice, also with respect to its algorithmic proiesrand computational
complexity (starting with the seminal work of Bartholdi,vigy, and Trick [BTT89]; see the recent
surveys by Faliszewski et al. [FP10, FHH10, FHHRO09]). Thimputational aspect is particularly
important in light of the many applications of voting in couater science, ranging from meta-search
heuristics for the internet [DKNSO01], to recommender syst¢GMHS99] and multiagent systems
in artificial intelligence (see the survey by Conitzer [CO})1

Most of the previous work on manipulation, however, is caned with voting where the ma-
nipulators know the nonmanipulative votes. Far less atieritas been paid (see the related work
below) to manipulation in the midst of elections that are gled as dynamic processes.

We introduce a novel framework for online manipulation, veheoters vote in sequence and the
current manipulator, who knows the previous votes and wihdthrs are still to come but does not
know their votes, must decide—right at that moment—whathlest” vote to castis. So, while other
approaches to sequential voting are game-theoretic,astichor axiomatic in nature (again, see the
related work), our approach to manipulation of sequentiting is shaped by the area of “online
algorithms” [BE98], in the technical sense of a setting inaklone (for us, each manipulative voter)
is being asked to make a manipulation decision just on this bathe information one has in one’s
hands at the moment even though additional informatiotésy®volution may well be happening
down the line. In this area, there are different framewookefaluation. But the most attractive one,
which pervades the area as a general theme, is the idea thatanwant to “maxi-min” things—
one may want to take the action that maximizes the goodnehke skt of outcomes that one can
expect regardless of what happens down the line from onewiise For example, if the current
manipulator’s preferences are AliceTed > Carol> Bob and if she can cast a (perhaps insincere)
vote that ensures that Alice or Ted will be a winner no matteatater voters do, and there is no



vote she can cast that ensures that Alice will always be aavjihis maxi-min approach would say
that that vote is a “best” vote to cast.

It will perhaps be a bit surprising to those familiar with ior@ algorithms and competitive anal-
ysis that in our model of online manipulation we will not usécampetitive)ratio. The reason is
that voting commonly uses andinal preference model, in which preferences are total ordeitseof t
candidates. It would be a severely improper step to jump fiteahto assumptions about intensity
of preferences and utility, e.g., to assuming that everyiies hernth-to-least favorite candidate
exactlyn times more than she likes her least favorite candidate.

Related Work. Conitzer and Xia [XC10a] (see also the related paper by Ddsmaed Elkind
[DE10]) define and study the Stackelberg voting game (alge gaturally called, in an earlier paper
that mostly looked at two candidates, the roll-call votiragrge [SI093]). This basically is an elec-
tion in which the voters vote in ordeand the preferences are common knowledge—everyone knows
everyone else’s preferences, everyone knows that evekypomes everyone else’s preferences, and
so on out to infinity Their analysis of this game is fundamentally game-thégrefth such com-
plete knowledge in a sequential setting, there is precisety/(subgame perfect Nash) equilibrium,
which can be computed from the back end forward. Under theikis setting and assumptions,
for bounded numbers of manipulators manipulation is in Pywsuwill show that in our model even
with bounded numbers of manipulators manipulation somegtifanless P- NP) falls beyond P.

The interesting “dynamic voting” work of Tennenholtz [TefjGnvestigates sequential voting,
but focuses on axioms and voting rules rather than on coaditand manipulation. Much heavily
Markovian work studies sequential decision-making andigramically varying preferences (see
[PP11] and the references therein); our work in contrasbigonobabilistic and focused on the com-
plexity of coalitional manipulation. Also somewhat reldt®, but quite different from, our work
is the work on possible and necessary winners. The semipairma that is due to Konczak and
Lang [KLO5], and more recent work includes [XC08, BHN09, BEF- Bet10, BD10, CLM 12,
BR12]; the biggest difference is that those are, looselg-guantifier settings, but the more dy-
namic setting of online manipulation involves numbers ofmfifiers that can grow with the input
size. Another related research line studies multi-isseetiens [XC10b, XCL10, XCL11, XLC11];
although there the separate issues may run in sequenceseaetltypically is voted on simultane-
ously and with preferences being common knowledge.

2 Preliminaries

Elections. A (standard, i.e., simultaneous) electi@@, V) is specified by a s& of candidates and
a listV, where we assume that each element iis a pair(v, p) such thaw is a voter name ang s
V's vote. How the votes iW are represented depends on the election system used—wesassUis
required by most systems, votes to be total preferenceooderC. For example, iC = {a,b,c},
a vote of the fornt > a > b means that this voter (strictly) prefer$o a anda to b.

We introduce election snapshots to capture sequentigi@iescenarios as follows. L& be a
set of candidates and latbe (the name of) a voter. Aglection snapshot for C andis specified
by a tripleV = (Vy,u,Vu<) consisting of all voters in the order they vote, along withi, €ach
voter beforeu (i.e., those irv.), the vote she cast, and for each voter aftér.e., those invy,.),
a bit specifying if she is part of the manipulative coalitiito which u always belongs). That is,
Veou=((v1,p1), (V2,P2), ..., (Vi—1, Pi—1)), where the voters name, v, ..., vi_1 (including perhaps
manipulators and nonmanipulators) have already cast toéirs (preference ordgs; being cast
by vj), andVuc = ((Vi41,%i+1), (Vit2,X+2),- .., (Vn,Xn)) lists the names of the voters still to cast
their votes, in that order, and whexe= 1 if v; belongs to the manipulative coalition ard= 0
otherwise.



Scoring Rules. A scoring rulefor m candidates is given by a scoring vectore (a1, oz, ..., 0m)
of nonnegative integers such treat > a, > --- > am. For an electioffC,V), each candidatec C
scoresa; points for each vote that ranksin the ith position. Letscorgc) be the total score of
c € C. All candidates scoring the most points are winnerg@fV). Some of the most popular
voting systems ark-approval(especiallyplurality, aka 1-approval) anki-veto(especiallywetq aka
1-veto). Theim-candidatem > k, versions are defined by the scoring vecidrs. ., 1,0,...,0) and
k m—k

(1,...,1,0,...,0). Whenmis not fixed, we omit the phrasetcandidate.”

—— ——
m—k k

Manipulation. The(standard) weighted coalitional manipulation probl¢@5L07], £-Weighted-
Coalitional-Manipulation (abbreviated l#+WCM), for any election syster# is defined as follows:
Given a candidate s€, a listSof nonmanipulative voters each having a nonnegative imtegeght,
a listT of the nonnegative integer weights of the manipulative oferhose preferences overare
unspecified), wittSNT = 0, and a distinguished candidate C, can the manipulative votés be
set such that is a (or the)8” winner of (C,SUT)?

Asking whetherc can be made “a winner” is called the nonunique-winner model ia the
model of all notions in this paper unless mentioned othexwlisone asks whethercan be made a
“one and only winner,” that is called the unique-winner mioifée also use thanweightedvariant,
where each vote has unit weight, and witeJCM as a shorthand. Note th&tUCM with asingle
manipulator (i.e.||T|| = 1 in the problem instance) is the manipulation problem aadly studied
in [BTT89, BO91]. Conitzer, Sandholm, and Lang [CSLO07] dlsnoduced thalestructivevariants
of these manipulation problems, where the goal is not to ncaké but to ensure that is not a
winner, and we denote the corresponding problemg&ywWCM and&-DUCM. Finally, we write
&-WCM, £-UC oM, &-DWC_9M, and &£-DUC M to indicate that the problem instances are
required to have a nonempty coalition of manipulators.

Complexity-Theoretic Background. We assume the reader is familiar with basic complexity-
theoretic notions such as the complexity classes P and ERlélss FP of polynomial-time com-
putable functions, polynomial-time many-one reducipili), and hardness and completeness
with respect to<h, for a complexity class.

Meyer and Stockmeyer [MS72] and Stockmeyer [Sto76] intoediand studied the polynomial
hierarchy, PH= UyoZF, whose levels are inductively defined B = P andsf, , = NP%, and
their co-classeﬂ',lf = COZE for k > 0. They also characterized these levels by polynomiallgtien
bounded alternating existential and universal quantifig?” is the class of problems solvable
in deterministic polynomial time with access to an NP oraaled P'PlYl is the restriction of BP
where only one oracle query is allowed. Note that RPN coNPC NPUcoNPC PNPIL ¢ pNP ¢
z5nnf csHunf C PHC PSPACE, where PSPACE is the class of problems solvable ympotial
space. Theuantified boolean formula probler®BF, is a standard PSPACE-complete problem.
Define QBK (QAB/Fk) to be the restriction of QBF with at molsguantifiers that start with (v) and
then alternate betweehandV, and we assume that eaghandV quantifies over a set of boolean
variables. For eack> 1, QBF is ZE-compIete an(ﬁBka is I'Ilf-complete.

Proofs omitted due to space limitations can be found in tblertieal report version [HHR12a].

3 Our Model of Online Manipulation

The core of our model of online manipulation in sequentidingis what we call thenagnifying-
glass momentamely, the moment at which a manipulatois the one who is going to vote, is
aware of what has happened so far in the election (and whighsare still to come, but in general



not knowing what they want, except in the case of voters,yf amo are coalitionally linked ta).
In this momentu seeks to “figure out” what the “best” vote to cast is. We willl tlae information
available in such a moment amline manipulation settinfOMS for short) and define it formally
as a tuplgC,u,V, 0,d), whereC is a set of candidates;is a distinguished vote¥ = (Vy,u,Vy<)
is an election snapshot f@andu; o is the preference order of the manipulative coalition toakihi
u belongs; andl € C is a distinguished candidate. Given an election systendefine the prob-
lem online<£-Unweighted-Coalitional-Manipulation (abbreviated hyline-5-UCM), as follows:
Given an OMSC,u,V, g,d) as described above, does there exist some voteltteat cast (assum-
ing support from the manipulators coming aftgrsuch that no matter what votes are cast by the
nonmanipulators coming after there exists some < C such that >, d andc is an& winner of
the election? By “support from the manipulators comingrafteve mean thati's coalition partners
coming after, when they get to vote, will use their then-in-hand knowkedgall votes up to then
to helpu reach her goal: By a joint effort's coalition can ensure that tiewinner set will always
include a candidate liked by the coalition as much as or ntuad, even when the nonmanipu-
lators take their strongest action so as to prevent this.e Mwit this candidates in the problem
description, may be different based on the nonmanipuladct®ns. (Nonsequential manipulation
problems usually focus on whether a single candidate candmero win, but in our setting, this
“that person or better” focus is more natural.) For the cdsseighted manipulation, each voter
also comes with a nonnegative integer weight. We denotgtbislem by onlines’-WCM.

We write online€-UCMIK] in the unweighted case and onligeWCMIK] in the weighted case
to denote the problem when the number of manipulators framward is restricted to be at mdst

Our corresponding destructive problems are denoted by@#liDUCM, online<-DWCM,
online<€-DUCM[K], and online£-DWCM[K]. In online<-DUCM we ask whether the given current
manipulatoiu (assuming support from the manipulators after her) caneceste such that no matter
what votes are cast by the nonmanipulators aftemno c € C with d >, c is an& winner of the
election, i.e.y’s coalition can ensure that tl2winner set never includabsor any even more hated
candidate. The other three problems are defined analogously

Note that onlines-UCM generalizes the original unweighted manipulatiorgbem with a sin-
gle manipulator as introduced by Bartholdi, Tovey, and RfBTT89]. Indeed, their manipulation
problem in effect is the special case of onli#glelJCM when restricted to instances where there
is just one manipulator, she is the last voter to cast a votgdas the coalition’s most preferred
candidate. Similarly, onliné>-WCM generalizes the (standard) coalitional weighted ipalaition
problem (for nonempty coalitions of manipulators). Indetba@t traditional manipulation problem
is the special case of onling-WCM, restricted to instances where only manipulators cafteru
andd is the coalition’s most preferred candidate. If we take aal@yous approach except with
restricted now to being the most hated candidate of thetamgliwe generalize the corresponding
notions for the destructive cases. We summarize these\atigers as follows.

Proposition 1 For each election systers’, it holds that (1) £-UC.yM <h online-&-UCM,
(2) &-WC,M <k online&-WCM, (3) &-DUC,M <k online&-DUCM,  and
(4) £&-DWC_oM <f online-&-DWCM.

Corollary 2 below follows immediately from the above projpios.

Corollary 2 (1) For each election syste#i such that the (unweighted) winner problem is solv-
able in polynomial time, it holds thaf-UCM <k online&-UCM. (2) For each election sys-
tem & such that the weighted winner problem is solvable in polyiabrime, it holds that
&-WCM <P online&-WCM. (3) For each election systedi such that the winner problem is
solvable in polynomial time, it holds that-DUCM <}, online-£-DUCM. (4) For each election
systemé& such that the weighted winner problem is solvable in polyiabtime, it holds that
&-DWCM <f, online-&-DWCM.



We said above that, by default, we will use thenunique-winner modaind all the above prob-
lems are defined in this model. However, we will also have soeselts in theunique-winner
mode] which will, here, sharply contrast with the correspondiagults in the nonunique-winner
model. To indicate that a problem, such as onlif®&}CM, is in the unique-winner model, we write
online<€-UCMyyw and ask whether the current manipulaiqassuming support from the manipu-
lators coming after her) can ensure that there exists sonfé such that >, d andc is the unique
& winnerof the election.

4 General Results

Theorem 3 (1) For each election syste#fi whose weighted winner problem can be solved in poly-
nomial time! the problemonline-&€-WCM is in PSPACE (2) For each election systeri whose
winner problem can be solved in polynomial time, the probtartine-&-UCM is in PSPACE

(3) There exists an election systéhwith a polynomial-time winner problem such that the problem
online&-UCM is PSPACEcomplete. (4) There exists an election systemith a polynomial-time
weighted winner problem such that the probleniine-&-WCM is PSPACEcomplete.

PrROOFE The proof of the first statement (which is analogous to tltepof the first statement in
Theorem 4) follows from the easy fact that onligeWCM can be solved by an alternating Turing
machine in polynomial time, and thus, due to the chara@#gom of Chandra, Kozen, and Stock-
meyer [CKS81], by a deterministic Turing machine in polynalnspace. The proof of the second
case is analogous.

We construct an election systefhestablishing the third statement. L(€ u,V, g,d) be a given
input. & will look at the lexicographically least candidate nam€irLetc represent that name string
in some fixed, natural encoding’ will check if c represents &ered boolean formula, by which
we mean one whose variable names are all of the fgrnfwhich really means a direct encoding
of a string, such asxsg”); thei, j fields must all be positive integers. dfdoes not represent such
a tiered formula, everyone loses on that input. Otherwige, (if ¢ represents a tiered formula),
let width be the maximunj occurring as the second subscript in any variable naqmg i ¢, and
let blocksbe the maximum occurring as the first subscript in any variable name.inlf there
are fewer tharblocksvoters inV, everyone loses. Otherwise, if there are fewer than2t width
candidates i, everyone loses (this is so that each vote will involve emocandidates that it can
be used to set all the variables in one block). Otherwisehefd exists someg 1 <i < blocks
such that for ng does the variablg j occur inc, then everyone loses. Otherwise, order the voters
from the lexicographically least to the lexicographicajhgatest voter name. If distinct voters are
allowed to have the same name string (e.g., John Smith), aaklires by sorting according to the
associated preference orders within each group of tiedrs@dsecond-order ties are no problem,
as those votes are identical, so any order will have the sdfeet}e Now, the first voter in this
order will assign truth values to all variablzs., the second voter in this order will assign truth
values to all variableg, ., and so on up to thblocksh voter, who will assign truth values to all
variables|ockss-

How do we get those assignments from these votes? Considée avliose total order ov€ris
o’ (and recall thafiC|| > 1+ 2- width). Removec from @’, yielding a”. Letcy <gn Cop <gn - <gn
Cawidgth be the 2 width least preferred candidatesdrf. We build a vector in{0, 1} as follows:
The/th bit of the vector is O if the string that names ,,_1) is lexicographically less than the string
that namesg,,, and this bit is 1 otherwise.

Letb; denote the vector thus built from tité vote (in the above ordering),<i < blocks Now,
for each variable; ; occurring inc, assign to it the value of thigh bit of bj, where O representalse

1We mention in passing here, and henceforward we will notieitlgl mention it in the analogous cases, that the claim
clearly remains true even when “polynomial time” is repthbg the larger class “polynomial space.”



and 1 representsue. We have now assigned all variablescpSoc evaluates to eitharue or false
If c evaluates tdrue, everyone wins, otherwise everyone loses. This completesgecification of
the election systenff. & has a polynomial-time winner problem, as any boolean foajggiven an
assignment to all its variables, can easily be evaluatedlynpmial time.

To show PSPACE-hardness, wé-reduce the PSPACE-complete problem QBF to the problem
online<5-UCM. Lety be an instance of QBF. We transfognmto an instance of the form

(IX1,1,X12, .- X1k ) (VX2,1, %22, -+, X2 k) = (Qr Xe 1, X025+, Xe k,)
(DXL, 1,X1,2, -+ s XLy > X2,1,X2,2,5 -+ X2 g - - s X0, 1, X025+ -5 Xt K, )]

in polynomial time, wher&, = 3 if £ is odd andQ, =V if Zis even, the j are boolean variable®
is a boolean formula, and for eaghl <i < ¢, @ contains at least one variable of the foxm. This
quantified boolean formula ish-reduced to an instan¢€, u,V, o, ¢) of online<-UCM as follows:

1. C contains a candidate whose namg, encodes®, and in additionC contains 2
max(ky, .. .,k;) other candidates, all with names lexicographically gnegianc—for speci-
ficity, let us say their names are therBax(ky, ..., k) strings that immediately followe in
lexicographic order.

2.V containg/ voters, 12, ..., ¢, who vote in that order, whene= 1 is the distinguished voter
and all odd voters belong tds manipulative coalition and all even voters do not. Theevot
names will be lexicographically ordered by their numbes [east and is greatest.

3. The manipulators’ preference orderis to like candidates in the opposite of their lexico-
graphic order. In particulagis the coalition’s most preferred candidate.

This is a polynomial-time reduction. It follows immediatétom this construction and the definition
of & thaty is in QBF if and only if(C,u,V, g,c) is in online<-UCM.

To prove the last statement, simply l&tbe the election system that ignores the weights of the
voters and then works exactly as the previous election gyste O

The following theorem shows that for bounded numbers of maators the complexity crawls
up the polynomial hierarchy. The theorem’s proof is basedhenproof given above, except we
need to use the alternating quantifier characterizationtdeyer and Stockmeyer [MS72] and
Stockmeyer [Sto76] for the upper bound and to reduce frorﬁﬂg@omplete problem QBJ; rather
than from QBF for the lower bound.

Theorem 4 Fix any k> 1. (1) For each election syste# whose weighted winner problem can be
solved in polynomial time, the problemnline-&-WCMIK] is in ng. (2) For each election syste#
whose winner problem can be solved in polynomial time, tiodlpmonline £-UCM[K] is in ng.

(3) There exists an election systéhwith a polynomial-time winner problem such that the problem
online&-UCMIK] is ng-complete. (4) There exists an election syst@mwith a polynomial-time
weighted winner problem such that the problentine-&-WCM[K] is =5, -complete.

Note that the (constructive) online manipulation problerossidered in Theorems 3 and 4 are
about ensuring that the winner set always contains someidztedn theo segment stretching
from d up to the top-choice. Now consider “pinpoint” variants oés$le problems, where we ask
whether the distinguished candidatderself can be guaranteed to be a winner (for nonsequential
manipulation, that version indeed is the one commonly stlidi Denote theinpoint variant of,

e.g., online#-UCMIK] by pinpoint-online$-UCMIK]. Since our hardness proofs in Theorems 3
and 4 make all or no one a winner (and as the upper bounds ia thesrems also can be seen to
hold for the pinpoint variants), they establish the coroegfing completeness results also for the
pinpoint cases. We thus have completeness results for PESBAGZSk for eachk > 1. What about

the classeg)h, , andNp, for eachk > 1? We can get completeness results for all these classes



by defining appropriate variants of online manipulationbpeons. Let OMP be any of the online
manipulation problems considered earlier, including timpgint variants mentioned above. Define
freeform-OMP to be just as OMP, except we no longer requieedibtinguished voteu to be part
of the manipulative coalition-s-can be in or can be out, and the input must specify,uf@and
all voters afteru, which ones are the members of the coalition. The questidreeform-OMP is
whether it is true that for all actions of the nonmanipulatat or afteru (for specificity as to this
problem: ifu is a nonmanipulator, it will in the input come with a prefecerorder) there will be
actions (each taken with full information on cast-befdrerh votes) of the manipulative coalition
members such that their goal of making some candiclati¢h ¢ > d (or exactlyd, in the pinpoint
versions) a winner is achieved. Then, whenever Theoremablesttes &5, or =5, -completeness
result for OMP, we obtain Elgk+1 or H2pk+l-completeness result for freeform-OMP and kot 0
manipulators we obtailﬁlf = coNP or coNP-completeness results. Similarly, the PSPAGE a
PSPACE-completeness results for OMP we established inr€he8 also can be shown true for
freeform-OMP.

On the other hand, if we define a variant of OMP by requiringfthal voter to always be a
manipulator, the PSPACE and PSPACE-completeness resul@MP from Theorem 3 remain true
for this variant; theh, andz}, -completeness results for OMP from Theorem 4 changd to, and
5 _1-completeness results for this variant; and the atiafje ; and M5, ,-completeness results
for freeform-OMP change tB15, andrn5, -completeness results for this variaktz 1.

Finally, as an open direction (and related conjecture), gfend for each of the previously con-
sidered variants of online manipulation problemfut profile version. For example, for a given
election systen®’, fullprofile-online<-UCMIK] is the function problem that, given an OM@th-
outany distinguished candidat, u,V, o), returns a lengthiC|| bit-vector that for each candidate
d € C says if the answer to(C,u,V,0,d) € online<-UCMI[K?" is “yes” (1) or “no” (0). The
function problem fullprofile-pinpoint-onliné>-UCM[K] is defined analogously, except regarding
pinpoint-online&£-UCMIK].

It is not hard to prove, as a corollary to Theorem 4, that:

Theorem 5 For each election syste#i whose winner problem can be solved in polynomial time,

(1) fullprofile-online £-UCMIK] is in FPE(2(0an] | the class of functions computable in polynomial
time given Turing access to ﬁgk oracle with &(logn) queries allowed on inputs of size n, and

p
(2) fullprofile-pinpointonline-&-UCMIK] is in FPtZZK, the class of functions computable in polyno-
mial time given truth-table access ta4, oracle.

We conjecture that both problems are complete for the cporeding class under metric reduc-
tions [Kre88], for suitably defined election systems withypomial-time winner problems.

If the full profile version of an online manipulation problezan be computed efficiently, we
clearly can also easily solve each of the decision problexrwdved by looking at the corresponding
bit of the length||C|| bit-vector. Conversely, if there is an efficient algorithar &n online manip-
ulation decision problem, we can easily solve its full pefiersion by running this algorithm for
each candidate in turn. Thus, we will state our later resuity for online manipulation decision
problem.

Proposition 6 Let OMP be any of the online manipulation decision problems defirya. Then
fullprofile-OMPis in FPif and only ifOMPis in P.

5 Results for Specific Natural Voting Systems

The results of the previous section show that, simply pnder election systems with polynomial-
time winner problems, online manipulation can be tremestpodifficult. But what abounhatural
election systems? We will now take a closer look at importeattiral systems. We will show that



online manipulation can be easy for them, depending on whacticular problem is considered, and
we will also see that the constructive and destructive caaediffer sharply from each other and
that it really matters whether we are in the nonunique-winmedel or the unique-winner model.

Theorem 7 (1) onlineplurality-WCM (and thus also online-plurality-UCM) is in P.
(2) online-plurality-DWCM (and thus als@nlineplurality-DUCM) is in P.

Theorem 7 refers to problems in the nonunique-winner moBglcontrast, we now show that
online manipulation for weighted plurality voting in theique-winnemodel is coNP-hard in the
constructivecase and is NP-hard in tliestructivecase. This is perhaps the most dramatic, broad
contrast yet between the nonunique-winner model and thrigienvinner model, and is the first such
contrast involving plurality. The key other NP-hardnesssus P result for the nonunique-winner
model versus the unique-winner model is due to Faliszewikinaspaandra, and Schnoor [FHS08],
but holds only for (standard) weighted manipulation for Elapd elections (0< a < 1) with
exactly three candidates; for fewer than three both casae tre in P and for more than three
both are NP-complete. In contrast, the P results of Theor&wld for all numbers of candidates,
and the NP-hardness and coNP-hardness results of Theoreld &henever there are at least two
candidates.

Theorem 8 (1) The problenonline-plurality-DWCMy,,y, is NP-hard, even when restricted to only
two candidates (and this also holds when restricted to thi@ar, ... candidates). (2) The problem
online-plurality-WCMy,,y is coNR-hard, even when restricted to only two candidates (anddlse
holds when restricted to three, four, ... candidates).

PROOF For the first statement, we prove NP-hardness of onlineafity-DWCM;,, by a reduction
from the NP-complete problem Partition: Given a nonemptusece(ws,Ws, ..., W;) of positive
integers such that?_, w; = 2W for some positive integél/, does there exist a skt {1,2,...,z}
such thatyjc,wi = W? Letm> 2. Given an instancéw;,ws,...,w;,) of Partition, construct an
instance({cy,...,Cm},Us,V,C1 > C2 > -+ > €y, C1) Of online-plurality-DWCM,,, such tha/ con-
tainsm+ z— 2 votersvy,...,Vm_2,U1,...,U, Who vote in that order. For £ i < m-2, v; votes
for ¢ and has weightm— 1)W —i, and for 1<i < z u; is a manipulator of weightm— 1)w;. If
(wy,Wo,...,W;) is @ yes-instance of Partition, the manipulators can gme- 1)W points to both
Cm-1 andcy, and zero points to the other candidates.cgo; andcy, are tied for the most points
and there is no unigque winner. On the other hand, the only waydid having a unique winner in
our online-plurality-DWCM),, instance is if there is a tie for the most points. The only édaies
that can tie are,_; andcp, since all other pairs of candidates have different scodutom— 1. It

is easy to see thaf, 1 andcy, tie for the most points only if they both get exactiy— 1)W points.
It follows that (w1, ws, ..., w;) is a yes-instance of Partition.

For the second part, we adapt the above construction to gieddiuction from Partition to the
complement of online-plurality-WCMM|y. Given an instancéwy,ws,...,w;) of Partition, construct
an instancé{cy,...,cm},0,V,c1 > Cc2 > - -- > Cm,Cm) Of online-plurality-WCM_,,, such tha¥/ con-
tainsm+ z— 1 votersvy,...,Vm_2,0, U1, ...,U; who vote in that order. For £ i <m-—2,v; has the
same vote and the same weight as ab@vga manipulator of weight 0, and fordi < z, u; has the
same weight as above, but in contrast to the case abpignow a nonmanipulator. By the same
argument as above, it follows théw,, wo, ..., w;) is a yes-instance of Partition if and only if the
nonmanipulators can ensure that there is no unique winrféchwn turn is true if and only if the
manipulator can not ensure that there is a unique winner. O

Theorem 9 For each scoring rulea = (as,...,0m), onlinea-WCM is in P if a, = ayn and is
NP-hard otherwise.

Theorem 10 For each konlinek-approvalUCM andonlinek-veto UCM are in P.



PrROOF Consider 1-veto. Given an online-1-veto-UCM instari€eu,V, o,d), the best strat-
egy for the manipulators frora onward (letn; denote how many of these there are) is to mini-
mize max.,qScorgc). Let ng denote how many nonmanipulators come afterWe claim that
(C,u,V,0,d) is a yes-instance if and only il is ranked last ino or there exists a threshold

t such that (1)y.. q(maxscoréc) ©t) < m (so those manipulators can ensure that all can-
didates ranked<, d score at most points), where &” denotes proper subtractiox ¢y =
max(x — y,0)) and maxscoréc) is c's score when none of the voters framonward vetoc, and

(2) 3> d(maxscoréc) © (t — 1)) > ng (so those nonmanipulators cannot prevent that some candi-
date ranked> d scores at leastpoints).

For 1-veto under the above approach, in each situation wthereemaining manipulators can
force success against all actions of the remaining nonro&atigrs,u (right then as she moves) can
set herand all future manipulators’ actionso as to force success regardless of the actions of the
remaining nonmanipulators. Flrapproval ank-veto,k > 2, that approach provably cannot work
(as will be explained right after this proof); rather, we sgimes need later manipulators’ actions
to be shaped by intervening nonmanipulators’ actionsl, 8i# following P-time algorithm, which
works for allk, tells whether success can be forced. As a thought expetirfftereach votew
from u onwards in sequence do this: Order the candidaté¢s|io >4 d} from most to least current
approvals, breaking ties arbitrarily, and postpend theaining candidates ordered from least to
most current approvals. Lébek for k-approval and|C|| — k for k-veto. Cast the voteréapprovals
for the first¢ candidates in this order if is a manipulator, and otherwise for the ldstandidates
in this order. Success can be forced against perfect playdifoaly if this P-time process leads to
success. O

In the above proof we said that the approach for 1-veto (irctvitthe current manipulator can
set her and all future manipulators’ actions so as to foroeess independent of the actions of
intervening future nonmanipulators) provably cannot wiankk-approval andk-veto,k > 2. Why
not? Consider an OM$C,u,V, 0,d) with candidate se€ = {c;,Cy,...,Cx}, 0 being given by
C1 >¢ C2 >¢ -+ >¢ Cx, andd = c¢;. So,u’s coalition wants to enforce that is a winner. Sup-
pose that/; has already cast her vote, now i¥s = u’s turn, and the order of the future voters is
V3,V4, ..., Vo), Where allvy;, 2 <i < j, belong tou's coalition, and allv,i_1 do not. Suppose thaj
was approving of th& candidates itc; C {cp,C3,...,Cx}, ||C1]| = k. Thenu must approve of the
k candidates irC;, to ensure that; draws level with the candidates @ and none of these can-
didates can gain another point. Next, suppose that nonmlatdovs approves of th& candidates
in C3 C {c2,Cs,...,Cx}, |Cs|| = k- Thenvy, the next manipulator, must approve of all candidates
in Cs, to ensure that; draws level with the candidates @ and none of these candidates can gain
another point. This process is repeated until the last naiputator,v,;_1, approves of the candi-
dates inCpj_1 C {C,C3,...,Cx}, [|Coj—1]| = k, andvsj, the final manipulator, is forced to counter
this by approving of all candidates @p; 1, to ensure that; is a winner. This shows that there can
be arbitrarily long chains such that the action of each maatpr afteru depends on the action of
the preceding intervening nonmanipulator.

We now turn to online weighted manipulation for veto wheririeted to three candidates. We
denote this restriction of online-veto-WCM by online-vgid/CM.

Theorem 11 onlinevetoz-WCM is PNPU-complete.

Dropping the restriction to three candidates, we obtain ftilewing result, which places
this problem far below the general PSPACE bound from eaitiethis paper. Immediately
from Theorems 10 and 12, we have that the full profile variaftonlinek-veto-UCM and
onlinek-approval-UCM are in FP and that fullprofile-online-vetc@M is in FP'P,

Theorem 12 onlinevetoWCM is in PNP.



6 Uncertainty About the Order of Future Voters

So far, we have been dealing with cases where the order afefwnters was fixed and known.
But what happens if the order of future voters itself is unkn® Even here, we can make claims.
To model this most naturally, our “magnifying-glass moniesill focus not on one manipulator
u, but will focus at a moment in time when some voters are giilcéme (as before, we know
who they are and which are manipulators; as before, we havefarpnce ordeo, and know
what votes have been cast so far, and have a distinguishéidesed). And the question our
problem is asking is: Is it the case that our manipulativditoa can ensure that the winner set
will always included or someone liked more thahwith respect tas (i.e., the winner set will have
nonempty intersection witkic € C| ¢ >4 d}), regardless of what order the remaining voters vote
in. We will call this problem theschedule-robust online manipulation probleamd will denote it
by SR-online£-UCM. (We will add a “[1,1]” suffix for the restriction of thiproblem to instances
when at most one manipulator and at most one nonmanipulat@ hot yet voted.) One might
think that this problem captures botE§ and ar) issue, and so would be hard for both classes.
However, the requirement of schedule robustness tamesdabéem (basically what underpins that
is simply that exists-forall-predicate implies foralliste-predicate), bringing it intdg. Further,
we can prove, by explicit construction of such a system, fitrasome simple election systems this
problem is complete faz}.

Theorem 13 (1) For each election syste# whose winner problem is iR, SRonline&-UCM
is in 5. (2) There exists an election systefy whose winner problem is i, such that
SRonline&-UCM (indeed, eveSRonline-s-UCM(1, 1]) is Z5-complete.

7 Conclusions and Open Questions

We introduced a novel framework for online manipulation @ggential voting, and showed that
manipulation there can be tremendously complex even fdesyswith simple winner problems.
We also showed that among the most important election sgstsyme have efficient online manip-
ulation algorithms but others (unless=PNP) do not. It will be important to, complementing our
work, conduct typical-case complexity studies. Also, weehextended the scope of our investiga-
tion by studying online control [HHR12c, HHR12b] and will do by studying online bribery in
appropriate models.
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