On the Complexity of Voting Manipulation under
Randomized Tie-Breaking

Svetlana Obraztsova Yair Zick Edith Elkind

Abstract

Computational complexity of voting manipulation is one of the most actively studied topics in
the area of computational social choice, starting with the groundbreaking work of Bartholdi
et al. [2]. Most of the existing work in this area, including that of Bartholdi et al., implicitly
assumes that whenever several candidates receive the top score with respect to the given vot-
ing rule, the resulting tie is broken according to a lexicographic ordering over the candidates.
In this paper, we explore an equally appealing method of tie-breaking, namely, selecting the
winner uniformly at random among all tied candidates. We show that under this method of
breaking ties, all scoring rules, the Bucklin rule and Plurality with Runoff remain easy to ma-
nipulate; however, finding a manipulative vote becomes NP-hard for Copeland and Maximin.
We extend some of our easiness results to elections with multiple winners. We show that if the
number of winners is small, then manipulation is in P for all scoring rules, and it is in P for
k-Approval for any number of winners.

1 Introduction

Whenever a group of agents have to make a joint decision, the agents’ opinions need to be aggregated
in order to identify a suitable course of action. This applies both to human societies and to groups
of autonomous agents; the entities that the agents need to select from vary from political leaders to
song contest winners and joint plans. The standard way to aggregate preferences is by asking the
agents to vote over the available candidates: each agent ranks the candidates, and a voting rule, i.e.,
a mapping from collective rankings to candidates, is used to select the winner.

In most preference aggregation settings, each agent wants his most favorite alternative to win,
irrespective of other agents’ preferences. Thus, he may try to manipulate the voting rule, i.e., to
misrepresent his preferences in order to obtain an outcome that he ranks higher than the outcome of
the truthful voting. Indeed, the famous Gibbard—Satterthwaite theorem [9, 15] shows that whenever
the agents have to choose from 3 or more alternatives, every reasonable voting rule is manipulable,
i.e., for some collection of voter’s preferences some voter can benefit from lying about his ranking.
This is bad news, as the manipulator may exercise undue influence over the election outcome, and a
lot of research effort has been invested in identifying voting rules that are more resistant to manipu-
lation than others, as measured by the fraction of manipulable profiles or the algorithmic complexity
of manipulation (see [7] for an overview).

Many common voting rules operate by assigning scores to candidates, so that the winner is the
candidate with the highest score. Now, in elections with a large number of voters and a small number
of candidates there is usually only one candidate that obtains the top score. However, this does
not necessarily hold when the alternative space is large, as may be the case when, e.g., agents in a
multiagent system use voting to decide on a joint plan of action [6]. If, nevertheless, a single outcome
needs to be selected, such ties have to be broken. In the context of manipulation this means that the
manipulator should take the tie-breaking rule into account when choosing his actions. Much of the
existing literature on voting manipulation circumvents the issue by assuming that the manipulator’s
goal is to make some distinguished candidate p one of the election winners, or, alternatively, the
unique winner. The former assumption can be interpreted as a tie-breaking rule that is favorable to
the manipulator, i.e., given a tie that involves p, always selects p as the winner; similarly, the latter
assumption corresponds to a tie-breaking rule that is adversarial to the manipulator. In fact, most of

the existing algorithms for finding a manipulative vote work for any tie-breaking rule that selects the
winner according to a given ordering on the candidates; the two cases considered above correspond
to this order being, respectively, the manipulator’s preference order or its inverse.

However, till recently, an equally appealing approach to tie-breaking, namely, selecting the win-
ner among all tied candidates uniformly at random, has been rarely studied. Two exceptions to this
pattern that we are aware of are [11] and [5]; however, [11] does not deal with manipulation at all,
while [5] considers a very different model of manipulation. Perhaps one of the reasons for this is
that under randomized tie-breaking the outcome of the election is a random variable, so it is not
immediately clear how to compare two outcomes: is having your second-best alternative as the only
winner preferable to the lottery in which your top and bottom alternatives have equal chances of
winning?

We deal with this issue by augmenting the manipulator’s preference model: we assume that the
manipulator assigns a numeric utility to all candidates, and his goal is to vote so as to maximize
his expected utility, where the expectation is computed over the random choices of the tie-breaking
procedure; this approach is standard in the social choice literature (see, e.g., [10]) and has also been
used in [5]. We show that in this model all scoring rules are easy to manipulate; this is also the
case for Bucklin (both for its classic and simplified versions). On the other hand, we prove that
manipulation under randomized tie-breaking is hard for Maximin and Copeland. We complement
these hardness results by identifying a natural assumption on the manipulator’s utility function that
makes Maximin easy to manipulate. We also analyze the complexity of manipulation for three
voting rules that compute the winners using a multi-step procedure, namely, Plurality with Runoff,
STV, and Ranked Pairs. Thus, we provide an essentially complete picture of the complexity of
manipulating common voting rules under randomized tie-breaking (see Table 1 in the end of the
paper). Finally, we explore the complexity of manipulation when voters need to choose several
winners. We show that for the k-Approval voting rule, multi-winner manipulation is in P; moreover,
if the number of winners to be selected is small (i.e., bounded by a constant), then manipulating an
election under any scoring rule is also in P.

Some of the results that appear in this paper were previously published in [14] and [13]; however,
the material in Section 5 is new.

2 Preliminaries

An election is given by a set of candidates C' = {c1,...,¢n} and a vector R = (Ry,..., R,),
where each R;, i = 1,...,n, is a linear order over C'; R; is called the preference order (or, vote) of
voter ¢. We denote the space of all linear orderings over C by £(C'). The vector R = (Ry,...,Ry)
is called a preference profile. For readability, we will sometimes denote R; by >;. When a >; b for
some a,b € C, we say that voter ¢ prefers a to b. We denote by r(c;, R;) the rank of candidate c; in
the preference order R;: 7(c;, R;) = [{c € C'| ¢ =; ¢;}| + 1.

A voting rule F is a mapping that, given a preference profile R over C, outputs a candidate
¢ € C; we write ¢ = F(R). Many classic voting rules, such as the ones defined below, are, in fact,
voting correspondences, i.e., they map a preference profile R to a non-empty subset .S of C'. Voting
correspondences can be transformed into voting rules using tie-breaking rules.

A tie-breaking rule for an election (C,R) is a mapping 7' = T'(R, S) that for any S C C,
S # (), outputs a candidate ¢ € S. We say that a tie-breaking rule T is lexicographic with respect to
a preference ordering >~ over C'if for any preference profile R over C' and any S C C' it selects the
most preferred candidate from S with respect to >, i.e., we have T'(S) = cif and only if ¢ > a for
alla € S\ {c}.

A composition of a voting correspondence F and a tie-breaking rule 7" is a voting rule T o F
that, given a preference profile R over C, outputs T'(R, F(R)). Clearly, T o F is a voting rule and
ToF(R) € F(R).

Voting Rules We now describe the voting rules (correspondences) considered in this paper. For all
rules that assign scores to the candidates the winners are the candidates with the highest scores.

Scoring rules: Any vector « = (a, ..., qp,) € R™ with ay > ... > «, defines a scoring rule
F«. Under this rule, each voter grants «; points to the candidate it ranks in the ¢-th position;
the score of a candidate is the sum of the scores it receives from all voters. The vector « is
called a scoring vector. A well-known example of a family of scoring rules is Borda, given
by ™ = (m—1,...,1,0); another example is k-Approval, where a candidate gets one point
for each voter that ranks him in the top & positions. 1-Approval is also known as Plurality.

Bucklin: Let k&* be the smallest & such that the k-approval score of some ¢ € C is atleast |[n/2]+1;
we say that k£* is the Bucklin winning round. Given a candidate ¢ € C, his Bucklin score is
his k*-approval score. Under the simplified Bucklin rule, candidates whose Bucklin score is
at least |[n/2| + 1 are the winners, while under Bucklin, winners are those with the highest
Bucklin score.

Copeland: We say that a candidate a wins a pairwise election against b if more than half of the
voters prefer a to b; if exactly half of the voters prefer a to b, then a is said to tie his pairwise
election against b. Given a rational value « € [0, 1], under the Copeland® rule each candidate
gets 1 point for each pairwise election he wins and « points for each pairwise election he ties.

Maximin: For every pair of candidates ¢,d € C, we set s(¢,d) = |{i | ¢ =; d}|. The Maximin
score of a candidate ¢ € C'is given by mingec ¢} s(c, d); that is, ¢’s Maximin score is the
number of votes he gets in his worst pairwise election.

Plurality with Runoff and STV: Under the STV rule, the election proceeds in rounds; in each
round, the candidate with the lowest Plurality score is eliminated, and candidates’ scores
are recomputed. The winner is the candidate that survives till the last round. Plurality with
Runoff can be thought of as a compressed version of STV: we first select two candidates
with the highest Plurality scores, and then output the winner of the pairwise election between
them. Note that these definitions are somewhat ambiguous, as several candidates may have
the lowest/highest Plurality score; we will comment on this issue in Section 4.

3 The Model

Given a preference profile R over a candidate set C and a preference order L over C, let (R_;, L) be
the preference profile obtained from R by replacing R; with L. We say that a voter ¢ € {1,...,n}
can successfully manipulate an election (C,R) with respect to a voting rule F if F(R_;, L) =
F(R). We will now explain how to extend this definition to voting correspondences under the
assumption that ties are broken uniformly at random.

Given a voting correspondence F and an election (C, R), suppose that F(C,R) = S, where
|S| > 1. Suppose that we select the winner uniformly at random, i.e., every candidate in S has
the same chance of being selected. In this case, knowing the manipulator’s preference ordering is
not sufficient to determine his optimal strategy. For example, suppose that the manipulator prefers
a to b to ¢, and by voting strategically he can change the output of F from b to {a,c}. It is not
immediately clear if this manipulation is beneficial. Indeed, if the manipulator strongly prefers a,
but is essentially indifferent between b and c, then the answer is probably positive, but if he strongly
dislikes ¢ and slightly prefers a to b, the answer is likely to be negative (of course, this also depends
on the manipulator’s risk attitude).

Thus, to model this situation appropriately, we need to know the utilities that the manipulator
assigns to all candidates. Under the assumption of risk neutrality, the manipulator’s utility for a set
of candidates is equal to his expected utility when a candidate is drawn from this set uniformly at

random, or, equivalently, to his average utility for a candidate in this set. Since we are interested in
computational issues, we assume that all utilities are positive integers given in binary.
Formally, given a set of candidates C, we assume that the manipulator is endowed with a utility
function v : C — N. This function can be extended to sets of candidates by setting u(S) =
1
Kl Y ecs u(c) forany S C C.

3.1 Single-Winner Elections

We now define the manipulation problem in the single-winner case. As all voting rules considered
in this paper are anonymous, we can fix any voter as the manipulator. In what follows, it will be
convenient to assume that the manipulator is voter n.

Definition 3.1. An instance of the F-RANDMANIPULATION problem is a tuple (E,u,q), where
E = (C,R) is an election, u : C — N is the manipulator’s utility function such that u(c) > u(c’)
if and only if ¢ >, ¢, and q is a non-negative rational number. It is a “yes”-instance if there exists
a vote L such that w(F(R_y, L)) > q and a “no”-instance otherwise.

The optimization version of /-RANDMANIPULATION is defined similarly. We remark that F-
RANDMANIPULATION is in NP for any polynomial-time computable voting correspondence F:
it suffices to guess the manipulative vote L, determine the set S = F(R_,, L), and compute the
average utility of the candidates in S.

3.2 Multi-Winner Elections

There are settings where voters elect more than one candidate. In that case, £ members of C will
be named the winners, or the elected committee. There are many voting rules that are designed
specifically for this setting and aim to select the candidates that best represent the voters (see e.g.
Chamberlin and Courant [3]). However, in this paper, we will focus on using scoring rules for the
purpose of manipulation; this approach is reasonable when voting is used to select the finalists of a
contest, or to allocate grants or fellowships (see, for example the work by Meir et al. [12]). Given a
scoring rule, if we want to elect a committee of size /, it is natural to choose the ¢ candidates with
the highest score. However, we may still need to break ties. Suppose, for instance, that / = 3 and we
have two candidates whose score is 10 and two candidates whose score is 9. Clearly, the candidates
whose score is 10 should be elected no matter what, but we need to choose one of the candidates
whose score is 9, e.g., by tossing a fair coin. We will now explain how to formalize this approach.

Fix a scoring rule 7, with & = (a1, ..., ;) and an election £ = (C, R) with |C| = m. Given
a candidate ¢ € C, let s.. denote c’s score in E under F,. We say that candidates c and ¢’ are on the
same [evel if s, = s.. There are p < m levels, denoted Hy, ..., Hy; we set s(HJ) to be the score
of the candidates in H;, and assume that s(H;) > ... > s(Hp). Let W = nglHq. If |W;| < ¢,
then the tie-breaking rule does not apply to ;. Formally, let jo = max{j | |W;| < ¢} and set
W = Wj,. The set W is called the confirmed set: these are the candidates who will definitely be
in the elected committee. The set P = Hj is called the pending set: these are the candidates to
which we must apply the tie-breaking rule. Note that |H;| > ¢ implies W = () and P = Hj, and
[W| = ¢ implies P = {). For single-winner elections ({ = 1) we obtain P = () if |H;| = 1, and
P = H; otherwise. The randomized tie-breaking rule operates by choosing ¢’ = ¢ —|W| candidates
from the set P uniformly at random.

We assume that the manipulator’s utility is additive, i.e., if a committee S C C' is elected, his
utility is given by Y s u(c) = [S|u(S). Let T (P) denote the random variable that takes values
in the space of all s-subsets of P, with each subset being equally likely. Given a variable &, let E[¢]
denote its expectation. Then the manipulator’s utility in £ (under truthful voting) is

S @) +E[Y ue),

ceWw c€Ty (P)

where ¢/ = ¢ — |W]|.

We are now ready to define the computational problem that is associated with manipulating
a multi-winner election under randomized tie-breaking with respect to a scoring rule F,, o =
(a1,...am). We will refer to this problem as F,-RANDMULTIMANIPULATION. An instance of
this problem is given by an election E = (C, R) with |C| = m, a committee size ¢, the manipulator’s
utility function w : C' — N, which satisfies u(c) > w(¢’) if and only if ¢ >, ¢/, and a non-negative
rational number q. It is a “yes”-instance if there exists a vote L such that the manipulator’s utility in
(C,(R_n, L)) is at least ¢ and a “no”-instance otherwise.

4 Single-Winner Elections

We begin by analyzing the family of scoring rules. We observe that for any scoring rule, manipula-
tion is easy under randomized tie-breaking.

Theorem 4.1. For any scoring vector a« = (1, . .., 0y,) Fo-RANDMANIPULATION is in P.

Theorem 4.1 can be obtained as a corollary of Theorem 5.2 in Section 5 (see [14] for a direct
proof). It implies that for scoring rules, assuming that ties are broken uniformly at random does not
increase the complexity of manipulation compared to lexicographic tie-breaking.

Similarly, both the classic and the simplified versions of the Bucklin rule can be manipulated in
polynomial time; the proof is omitted due to space constraints.

Theorem 4.2. Bucklin-RANDMANIPULATION and simplified Bucklin-RANDMANIPULATION are
in P.

In contrast, if we break ties uniformly at random, manipulation under Maximin becomes NP-
hard. In fact, our hardness result holds even for a fairly simple utility function: Let w be the
Maximin winner prior to the manipulators vote; if we set u(w) = 0, u(c) = 1 forc € C \ {w},
then Maximin-RANDMANIPULATION becomes NP-complete. The proof is omitted due to space
constraints.

Theorem 4.3. Maximin-RANDMANIPULATION is NP-complete.

While Maximin-RANDMANIPULATION is NP-complete in general, there is an efficient algo-
rithm for this problem assuming that the manipulator’s utility function has special structure. Specifi-
cally, recall that in the model of [2] the manipulator’s goal is to make a specific candidate p a winner.
This suggests that the manipulator’s utility can be modeled by setting u(p) = 1, u(c) = 0 for all
c € C\ {p}. We will now show that for such utilities, Maximin-RANDMANIPULATION is in P.

Theorem 4.4. If the manipulator’s utility function is given by u(p) = 1, u(c) = 0 forc € C'\ {p},
Maximin-RANDMANIPULATION is in P.

Proof. Consider an election E = (C, R) with the candidate set C' = {cy, ..., ¢y, } and recall that n
is the manipulating voter. In this proof, we denote by s(c;) the Maximin score of a candidate ¢; € C
in the election E' = (C, R'), where R’ = R_,,. Let s = max,,cc s(¢;).

For any ¢; € C, the manipulator’s vote increases the score of ¢; either by 0 or by 1. Thus, if
s(p) < s — 1, the utility of the manipulator will be 0 irrespective of how he votes.

Now, suppose that s(p) = s — 1. The manipulator can increase the score of p by 1 by ranking
p first. Thus, his goal is to ensure that after he votes (a) no other candidate gets s + 1 point and (b)
the number of candidates in C' \ {p} with s points is as small as possible. Similarly, if s(p) = s,
the manipulator can ensure that p gets s 4+ 1 points by ranking him first, so his goal is to rank the
remaining candidates so that in C'\ {p} the number of candidates with s 4+ 1 points is as small as
possible. We will now describe an algorithm that works for both of these cases.

We construct a directed graph G with the vertex set C' that captures the relationship among the
candidates. Namely, we have an edge from ¢; to ¢; if there are s(c;) votes in R’ that rank c; above

¢;. Observe that, by construction, each vertex in G has at least one incoming edge. We say that ¢;
is a parent of c; in G whenever there is an edge from ¢; to ¢;. We remark that if the manipulator
ranks one of the parents of ¢; above c¢; in his vote, then ¢;’s score does not increase. We say that a
vertex ¢; of G is purple if s(¢;) = s(p) + 1, red if s(¢;) = s(p) and ¢; # p, and green otherwise;
note that by construction p is green. Observe also that if s(p) = s, there are no purple vertices in the
graph. We will say that a candidate c; is dominated in an ordering L (with respect to) if at least
one of ¢;’s parents in G appears before c; in L. Thus, our goal is to ensure that the set of dominated
candidates includes all purple candidates and as many red candidates as possible.

Our algorithm is based on a recursive procedure A, which takes as its input a graph H with a
vertex set U C C' together with a coloring of U into green, red and purple; intuitively, U is the set
of currently unranked candidates. It returns “no” if the candidates in U cannot be ranked so that
all purple candidates in U are dominated by other candidates in U with respect to . Otherwise, it
returns an ordered list L of the candidates in U in which all purple candidates are dominated, and a
set S consisting of all red candidates in U that remain undominated in L with respect to H.

To initialize the algorithm, we call A(G). The procedure A(H) is described below (Algo-
rithm 1). We claim that A(G) outputs “no” if and only if no matter how the manipulator votes, some
candidate in C'\ {p} gets s(p) + 2 points. Moreover, if A(G) = (L, S) and the set S contains r red
candidates, then for any vote of the manipulator that ensures that all candidates in C'\ {p} have at
most s(p) + 1 points there are at least red candidates with s(p) + 1 points. We will split the proof
of this claim into several lemmas, whose proofs are omitted.

Lemma 4.5. At any point in the execution of the algorithm, if A(H) = (L, S), then each candidate
inU \ S is dominated in H.

We are now ready to prove that our algorithm correctly determines whether the manipulator can
ensure that no candidate gets more than s(p) + 1 points.

Lemma 4.6. The algorithm outputs “no” if and only if for any vote L there is a purple candidate
that is undominated.

It remains to show that the set .S output by the algorithm contains as few candidates as possible.

Lemma 4.7. At any point in the execution of Algorithm 1, if A(H) = (L, S), then in any ordering
of the candidates in U in which each purple vertex in U is dominated, at least | S| red vertices in U
are undominated.

Combining Lemma 4.6 and Lemma 4.7, we conclude that Algorithm 1 outputs (L, S), then L is
the optimal vote for the manipulator and if Algorithm 1 outputs “no”, then the manipulator’s utility
is 0 no matter how he votes. Also, it is not hard to see that Algorithm 1 runs in polynomial time. [

We remark that Theorem 4.4 has recently been extended to utility functions that assign utility
of 1 to a constant number of candidates and utility of O to all other candidates (see [17]).

For the Copeland rule, RANDMANIPULATION is also NP-hard. To show this, we give a reduc-
tion from the INDEPENDENT SET problem [8] (proof omitted due to space constraints).

Theorem 4.8. Copeland“-RANDMANIPULATION is NP-complete for any rational o € [0, 1].

Some common voting rules, such as, e.g., STV, do not assign scores to candidates; rather, they
are defined via multi-step procedures. When one computes the winner under such rules, ties may
have to be broken during each step of the procedure. A natural approach to winner determination
under such rules is to use the parallel universes tie-breaking [4]: a candidate c is an election winner
if the intermediate ties can be broken so that c is a winner after the final step. Thus, any such rule
defines a voting correspondence in the usual way, and hence the corresponding RANDMANIPULA-
TION problem is well-defined. In this paper we consider three rules in this class, namely, Plurality
with Runoff, STV, and Ranked Pairs (we use the definition in [4]).

Algorithm 1: A(H)

L« 0
if H contains p then
| L« [pl: H <+ H\{p}:
while H contains a candidate c that is green or has a parent that has already been ranked in
the input graph H do
L L+ L:c); H<+ H\{c};
// :: 1s the string append operation.
if H = () then
| return (L, 0);

if there is a purple candidate in H with no parents in H then
L return “no’”’;

if there is a red candidate c in H with no parents in H then
H' < H with ¢ colored green;
OUT + A(H");
if OUT =“no” then
L return “no”
(L', 8"+ OoUT;
return (L::L/, S" U {c}).

Let T" be some cycle in H;

// At this point in the algorithm, each vertex of H has a
parent, thus there is a cycle in H

Collapse T

// i.e., (a) replace T with a single vertex t, and (b) for
each y¢7T, add an edge (t,y) if H contained an edge (z,y) for
some ¢ €T and add an edge (y,t) if H contained a vertex z
with (y,z) € H

if T" contains at least one red vertex then

L color ¢ red;

else
| color ¢ purple;
H' « H after the contraction;
OUT + A(H");
if OUT = “no” then
L return “no’”’;
(L',S8") «+ OoUT;
if t € S’ then
// t must be red, so T contains a red vertex
Let ¢ be some red vertex in 7;
Let L be an ordering of the vertices in T’ that starts with c and follows the edges of T';

Let L” be the list obtained from L’ by replacing ¢ with L;

| return (L:L", (S \ {t}) U{c}).

else

// t¢8S, so by Lemma 4.5 t is dominated in H’
Let a be a parent of ¢ that precedes it in L’;

Let c be some child of a that appears in T’
Let L be an ordering of the vertices in T’ that starts with c and follows the edges of T';

Let L" be the list obtained from L’ by replacing ¢ wish L
return (L::L",S").

W/

7)/
ﬂ X,

X’ Wi

Figure 1: Proof of Theorem 5.1

Proposition 4.9. Plurality with Runoff-RANDMANIPULATION is in P.

‘We omit the proof of Proposition 4.9 due to space constraints; briefly, the main idea of the proof
is that the best manipulative vote can be found by placing some candidate first and then ranking the
remaining candidates according to their utility.

However, for STV and Ranked Pairs, RANDMANIPULATION is NP-hard. The proof of this fact
hinges on an observation that allows us to inherit hardness results from the standard model of voting
manipulation. Recall that F~-COWINNERMANIPULATION is the computational problem of deciding
whether given an election E = (C, R) the manipulator can make a specific candidate p € C one of
the election winners under a voting correspondence .

Proposition 4.10. For any voting correspondence F, the problem F-COWINNERMANIPULATION
many-one reduces to F-RANDMANIPULATION.

Since for STV and Ranked Pairs COWINNERMANIPULATION is known to be NP-hard (see,
respectively, [1] and [16]), we obtain the following corollary.

Corollary 4.11. STV-RANDMANIPULATION and Ranked Pairs-RANDMANIPULATION are NP-
hard.

5 Multi-Winner Elections

We now discuss the complexity of manipulating multi-winner elections when ties are broken uni-
formly at random.

We begin by analyzing the k-Approval voting correspondence. It turns out that k-Approval-
RANDMULTIMANIPULATION can be decided in polynomial time.

Theorem 5.1. k-Approval-RANDMULTIMANIPULATION is in P.

Proof. Consider the election (C,R_,,), and let P’ and W' be, respectively, the pending set and the
confirmed set in this election. Set X’ = C \ (P’ UW'). Let s be the lowest k-Approval score
among the candidates in W’ (set s = +oo0 if W’ = (), let s~ be the highest k-Approval score
among the candidates in X’ (set s~ = —oo if X’ = {)), and let s be the k-Approval score of the
candidates in P’ (if P’ = (), s remains undefined). Let W’ C W’ be the set of candidates whose
k-Approval score is s, and let X C X’ be the set of candidates whose k-Approval score is s ;
also, set W\ = W'\ W’ and X’ = X'\ X|. Note that s~ < s, and if P’ # (), we have
sT<s<st.

Let E be the election obtained after the manipulator votes, and suppose that in £ the confirmed
set is W and the pending set is P; also, set X = C'\ (W U P). We will now argue that, no matter
how the manipulator votes, we have Wg_ C Wand X’ C X, i.e., points allocated to candidates in
er U X’ do not affect the election outcome. Indeed, in F the score of every candidate in l/V’+ will

be at least s + 1, and there can be at most [W'| < £ candidates with such score, so every candidate
in W' will end up in W. Further, in £ the score of every candidate in X’ will be at most s~, and
there are at least |P’| + [WW'| > ¢ candidates whose score is at least s~ + 1, so the score of s~ will
be insufficient for being placed in P.

Now, suppose that the manipulator has decided to approve k., candidates in YW’ . Then, to max-
imize his utility, he has to approve k,, candidates in YW with the highest utility. A similar argument
works for P’ and X' _’F As for the candidates in Wﬁr U X’ , it does not matter which ones he chooses
to approve, since, as argued above, his vote will not change the status of these candidates. Thus, the
outcome of the election is completely determined by a triple of non-negative integers (k.,, kp, kz),
where k., k,,, and k,, are, respectively, the number of candidates in W'’ , P’, and X’ that the manipu-
lator approves. Hence, the manipulator can go over all triples of integers (ky,, kp, kz) € {0, ..., k}3,
and, for each triple, check if it corresponds to a valid vote and compute the expected utility that he
obtains from approving k,, highest-utility candidates from W' , k,, highest-utility candidates from
P’, and k, highest-utility candidates from X , and distributing the remaining points (if any) among
the rest of the candidates. The manipulator can then check if the expected utility from the best such
triple is at least . Clearly, (k,,, k,, k) corresponds to a valid vote if and only if

¢ 0<ky < W],
¢ 0 <k, <[P,

o 0 <k, <|X}

,and
e 0<k—ky—ky—ky <|X |+ W,

and the manipulator’s expected utility from any such vote can be computed in time O(k). Thus, the
overall running time of our algorithm is O(k%). Since we can assume that k¥ < m, this running time
is polynomial in the input size. O

We now show that when the size of the committee, ¢, is bounded by a constant, then F,-
RANDMULTIMANIPULATION is in P for any scoring rule F,,. This immediately implies the single
winner case discussed in Section 4.

Theorem 5.2. F,-RANDMULTIMANIPULATION is in P when ¢ is bounded by a constant.

Proof. Fix a scoring rule F,, with a scoring vector &« = a3 > ... > ay,, and an election (C, R) with
|C| = m, and lets = (s1,...,Smn) be the vector of the candidates’ scores in (C, R_,,). For each
k < ¢ and each subset W), C C of size k, we check if the manipulator can vote so that the confirmed
set is W If this is indeed the case, we find the best set of £ — k pending winners for this choice
of W; that is, we identify a set Py, with |P;| > ¢ — k such that after the manipulator’s vote the
confirmed set is Wy, the (identical) scores of the candidates in P}, are strictly less than those of any
¢ € W, and the manipulator’s expected utility from Py, is maximized. Notice that the requirement
|Pi| > € — k is necessary; otherwise, P, U W, are the confirmed winners, which contradicts our
objective of having W, as the confirmed winners. We then compute the manipulator’s expected
utility from having the candidates in W, as the confirmed winners and the candidates in Py, as the
pending winners, and select a triple (k, Wy, Pj,) that maximizes the manipulator’s expected utility.
The candidate set C' has at most Zf;zl (7:) € O(m") subsets of size at most ¢; thus, it remains to
show that for each subset of size at most ¢ the procedure described in the previous paragraph can be
implemented in polynomial time. Fix a k& < ¢ and a set Wj,. First, we pick k entries of «; these are
the scores that we will assign to candidates in Wj. There are (') = O(m’) ways of choosing such
a set of scores; we go over all possible choices. We then order the candidates in Wy, by decreasing
order of scores under s, and assign the lowest among the selected k scores to the first candidate, the
second lowest to the second candidate and so on. If VW, can be made confirmed winners under some
assignment of the k scores selected, then in particular they can be made confirmed winners under

this assignment. Now, let Hy, ..., H, be the levels of the candidates in C' \ ;. We renumber the
candidates in C'\ W so that forall i € 1,...,p — 1, all candidates in H; are before the candidates
in H; 1. Given a level H;, we order the candidates in H; so that if ¢, ¢’ € H; and the manipulator

prefers ¢ to ¢/, then ¢’ precedes c. Let o = {a,,...,a; _, } be the remaining m — k scores that
the manipulator needs to assign; we assume o;;, < ... < ;.
We assign o, , ..., &, to Hy in that order. Similarly, we assign o ;115 Qg 4y, 1O

Hy and so on until all scores are assigned. This assignment, denoted o, ensures that at each level,
the manipulator’s favorite candidates from that level receive the highest scores. Let ® be the highest
score of any candidate in C'\ Wy, under 0. Observe that for every score assignment to candidates
in C'\ W) the score of some candidate in C'\ W, after the manipulator’s vote is at least ®. Thus, if
® is greater than or equal to the score of some ¢ € Wy, then W, cannot be made confirmed winners
using this score assignment, and we proceed to check a different assignment of scores to WWj,. Thus,
from now one we assume that the score of each candidate in Wj, is greater than ®. Let Py be the set
of candidates whose score is ® after submitting oy. We can try to modify o in order to increase the
manipulator’s utility, by swapping some candidates in the vote. Note that reassigning scores given
to members of Py will either result in a non-tied outcome, or decrease the manipulator’s expected
utility from the set of tied candidates. Indeed, suppose that a candidate ¢ € Py received a score
of 8 and now receives a higher score (3’; this increases his score to be strictly more than ®. If this
results in a strictly higher utility for the manipulator, this means that the manipulator can strictly
increase his utility by greedily assigning the highest scores in o’ to the candidates he prefers the
most, with no ties formed. On the other hand, if we assign a lower score to ¢, this means that some
other candidate in a higher level receives a higher score, and the same argument applies. Thus, any
swap we make will only involve candidates not in Py. However, note that the manipulator’s utility
is unaffected by candidates whose score is less than ®. Thus, for any candidate ¢ not in Py, we can
just check if there is some score that will give him a total score of ®. If such ¢ € (C'\ Wx) \ Po
exists, and adding c to Py increases the manipulator’s expected utility, we can add c to Py. Having
done so for each candidate, we denote the resulting set by P;. We claim that P; is indeed the set of
pending candidates we require. However, it is not guaranteed that |P;| > ¢ — k. If it is, then we are
done. Otherwise, there are two cases.

Case 1: Given Wj, and the scores we assign W, it is impossible to find a score assignment such
that WV, are confirmed winners.

Case 2: Even if there is a set P, of pending winners, there is a set P’ of candidates of size exactly
£ — k such that the manipulator’s utility from W U P’ is at least his expected utility from
having W as the confirmed winners and P, as the pending winners.

Observe that both cases imply that if |P;| < £—k we can just move on to another score assignment to
W\, and ignore the current assignment: it is either impossible to have W, as the confirmed winners,
or there is another candidate set with the same utility that can be made confirmed winners and will
be found in some other iteration. We must show that indeed one of these two cases holds.

If neither case holds, there exists a vote o’ such that if the manipulator submits ¢’, the set of
confirmed winners is W, the set of pending winners is Py, and for any set P’ C C' \ W), such that
|P’| = £ — k and the set Wy, U'P’ is a feasible set of winners it holds that the manipulator’s expected
utility from having W as the confirmed winners and Py, as the pending winners is greater than his
utility from Wy, U P’.

First, consider the case where both confirmed and pending candidates get a total score of more
than ® points. Let ¢;,,...,cj_, be the manipulator’s most preferred ¢ — k candidates in Py; by

assumption, we must have that the manipulator’s expected utility from P’ is at most Zf;]; u(cj,).
Let S be the set consisting of these £ — k candidates and Wj,. Consider any candidate ¢; € S and
suppose the manipulator grants ;- points to ¢;. The score of ¢; after the manipulator votes is strictly
more than @; thus j' < j. Weset S’ = {¢;s € C' | a; is assigned to some ¢; under o’}

Now, consider the vote obtained from o by swapping the votes given to c; and its corresponding
candidate c;,. Observe that some candidates can be in two such swaps—once acting as c¢; and once
as c;;—in this case we begin from the swap which uses the candidate as c; and afterwards we use
the candidate who was put on his place for the next swap. All candidates in C'\ S\ S " do not have
their scores changed, so they still get at most ® points; more importantly, all candidates in S now
get strictly more than ® points. Further, all candidates in S’ \ S get less than ® points. Thus, in
this case S are the confirmed winners and the manipulator’s expected utility is at least as high as
that from having W, as the confirmed winners and Py, as the pending winners, a contradiction. The
other case is when the candidates in W, have more than ¢ points, but the candidates in Py, have
exactly ® points. This case is handled similarly; we omit the details due to space constraints. O

6 Conclusions

Implementing a randomized tie-breaking rule proves to be an interesting new direction in compu-
tational social choice. Some voting rules (such as scoring rules and Bucklin) remain manipulable
when employing randomized tie-breaking; however, computational barriers to manipulation arise
for Copeland and Maximin. We also show that the target committee size does not affect the com-
plexity of manipulating k-Approval, and procedures for choosing a constant-size committee that are
based on scoring rules are manipulable as well.

While the picture for the single winner case is fairly complete, some problems in the multi-
winner case remain open. For example, it is unclear whether F,-MULTIRANDMANIPULATION
remains in P if the size of the committee is unbounded, apart from the special case shown here for
k-Approval. Moreover, the effects of randomized tie-breaking on coalitional manipulation are also
unclear. While the hardness results shown in our work immediately imply hardness for coalitional
manipulation under the same voting rules, the easiness results do not easily generalize.

To conclude, tie-breaking rules strongly influence the manipulability of elections; even when
they do not induce hardness of manipulation, the techniques required in order to manipulate under
randomized tie-breaking are quite different from those employed for lexicographic tie-breaking.
This suggests that the choice of a tie-breaking rule is an important aspect of designing a good voting
system and should not be ignored.

P NP-hard
Single-Winner (¢ = 1) | Plurality w/Runoff Copeland

Maximin (restricted) Maximin (general)

Simplified Bucklin STV

Classic Bucklin Ranked Pairs
Multi-Winner (¢ > 1) | Scoring Rules (for constant)

k-Approval

Table 1: Complexity of RANDMANIPULATION and MULTIRANDMANIPULATION for classic vot-
ing rules.

References

[1] J. J. Bartholdi and J. B. Orlin. Single transferable vote resists strategic voting. Social Choice
and Welfare, 8(4):341-354, 1991.

[2] J. J. Bartholdi, C. Tovey, and M. Trick. The computational difficulty of manipulating an elec-
tion. Social Choice and Welfare, 6(3):227-241, 1989.

[3] J. R. Chamberlin and P. N. Courant. Representative deliberations and representative deci-
sions: Proportional representation and the borda rule. The American Political Science Review,
77(3):718-733, 1983.

[4] V. Conitzer, M. Rognlie, and L. Xia. Preference functions that score rankings and maximum
likelihood estimation. In IJCAI’09, pages 109-115, 2009.

[5] Y. Desmedt and E. Elkind. Equilibria of plurality voting with abstentions. In ACM EC’10,
pages 347-356, 2010.

[6] E. Ephrati and J. Rosenschein. A heuristic technique for multi-agent planning. Annals of
Mathematics and Artificial Intelligence, 20(1-4):13-67, 1997.

[7] P. Faliszewski and A. Procaccia. AI’s war on manipulation: Are we winning? Al Magazine,
31:53-64, 2010.

[8] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company, 1979.

[9] A. Gibbard. Manipulation of voting schemes. Econometrica, 41(4):587-601, 1973.

[10] A. Gibbard. Manipulation of schemes that mix voting and chance. Econometrica, 45:665-681,
1977.

[11] N. Hazon, Y. Aumann, S. Kraus, and M. Wooldridge. Evaluation of election outcomes under
uncertainty. In AAMAS’08, pages 959-966, 2008.

[12] R. Meir, A. Procaccia, J. Rosenschein, and A. Zohar. Complexity of strategic behavior in
multi-winner elections. Journal of Artificial Intelligence Research, 33:149—-178, September
2008.

[13] S. Obraztsova and E. Elkind. On the complexity of voting manipulation under randomized
tie-breaking. In IJCAI’11, pages 319-324, 2011.

[14] S. Obraztsova, E. Elkind, and N. Hazon. Ties matter: Complexity of voting manipulation
revisited. In AAMAS’11, pages 71-79, 2011.

[15] M. Satterthwaite. Strategy-proofness and Arrow’s conditions: Existence and correspondence
theorems for voting procedures and social welfare functions. Journal of Economic Theory,
10(2):187-217, 1975.

[16] L. Xia, M. Zuckerman, A. Procaccia, V. Conitzer, and J. Rosenschein. Complexity of un-
weighted coalitional manipulation under some common voting rules. In IJCAI'09, pages 348—
352, 2009.

[17] M. Zuckerman and J. Rosenschein. Manipulation with randomized tie-breaking under Max-
imin (extended abstract). In AAMAS’12, pages 1315-1317, 2012.

Svetlana Obraztsova, Yair Zick, Edith Elkind

School of Physical and Mathematical Sciences

Nanyang Technological University, Singapore

Email: svet0001, yair0001l@e.ntu.edu.sqg;eelkind@ntu.edu.sg

