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Abstract

In computational social choice, the complexity of changingthe outcome of elections via ma-
nipulation, bribery, and various control actions, such as adding or deleting candidates or voters,
has been studied intensely. Endriss et al. [13, 14] initiated the complexity-theoretic study of
problems related to judgment aggregation. We extend their results on manipulation to a whole
class of judgment aggregation procedures, and we obtain stronger results by considering not
only the classical complexity (NP-hardness) but the parameterized complexity (W[2]-hardness)
of these problems with respect to natural parameters. Furthermore, we introduce and study the
closely related concepts of bribery and control in judgmentaggregation. In particular, we study
the complexity of changing the outcome of such procedures via control by adding, deleting, or
replacing judges.

1 Introduction

Decision-making processes are often susceptible to various types of interference. In social choice
theory and in computational social choice, ways of influencing the outcome of elections—such
as manipulation, bribery, and control—have been studied intensely, with a particular focus on the
complexity of the related problems (see, e.g., the early work of Bartholdi et al. [2, 1, 3] and the
recent surveys and bookchapters by Faliszewski et al. [21, 18], Brandt et al. [5], and Baumeister
et al. [4]). In particular, (coalitional)manipulation[2, 1, 7] refers to (a group of) strategic voters
casting their votes insincerely to reach their desired outcome; inbribery [17, 20] an external agent
seeks to reach her desired outcome by bribing (without exceeding a given budget) some voters to
alter their votes; and incontrol [3, 23, 16] an external agent (usually called the “Chair”) seeks to
change the structure of an election (e.g., by adding/deleting/partitioning either candidates or voters)
in order to reach her desired outcome.

Decision-making mechanisms or systems that are susceptible to strategic behavior, be it from the
agents involved as in manipulation or from external authorities or actors as in bribery and control,
are obviously not desirable, as that undermines the trust wehave in these systems. We therefore have
a strong interest in accurately assessing how vulnerable a system for decision-making processes is
to these internal or external influences. Unfortunately, inmany concrete settings of social choice,
“perfect” systems are impossible to exist. For example, theGibbard–Satterthwaite theorem says
that no reasonable voting system can be “strategyproof” [22, 29] (see also the generalization by
Duggan and Schwartz [11]), many natural voting systems are not “immune” to most or even all of
the standard types of control [3, 23, 16], and Dietrich and List [9] give an analogue of the Gibbard–
Satterthwaite theorem in judgment aggregation. To avoid this obstacle, a common approach in
computational social choice is to apply methods from theoretical computer science to show that
undesirable strategic behavior is blocked, or at least hindered, by the corresponding task being a
computationally intractable problem.

Here we focus on judgment aggregation, which is an importantframework for collective
decision-making. In a judgment aggregation process, we seek to find a collective judgment set from
given individual judgment sets over a set of possibly logically interconnected propositions. For fur-
ther information on judgment aggregation, we refer the reader to the surveys by List and Puppe [26]
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and by List [25]. This paper follows up the study of manipulation in judgment aggregation initiated
by Endriss et al. [14] and it is the first to study bribery and control in judgment aggregation.

In particular, Endriss et al. [13, 14], defined the winner determination problem and the manip-
ulation problem in judgment aggregation and studied their complexity for two important judgment
aggregation rules. We extend their complexity-theoretic investigation for manipulation and also in-
troduce various bribery problems in judgment aggregation.Furthermore, we introduce and motivate
three types of control in judgment aggregation (namely, control by adding, deleting, or replacing
judges), and study their computational complexity. These problems are each closely related to the
corresponding problems in voting, yet are specifically tailored to judgment aggregation scenarios.

2 Formal Framework

We follow and extend the judgment aggregation framework described by Endriss et al. [14].
Let PSbe the set of all propositional variables andLPS the set of propositional formulas built

from PS, where the following connections can be used in their usual meaning: disjunction (∨),
conjunction (∧), implication (→), equivalence (↔), and the boolean constants 1 and 0. To avoid
double negations, let∼α denote the complement ofα, i.e., ∼α = ¬α if α is not negated, and
∼α = β if α = ¬β . The judges have to judge over all formulas in theagendaΦ, which is a finite,
nonempty subset ofLPS without doubly negated formulas. The agenda is required to be closed
under complementation, i.e.,∼α ∈ Φ if α ∈ Φ. A judgment set for an agendaΦ is a subsetJ ⊆ Φ.
It is said to be anindividual judgment setif it is the set of propositions in the agenda accepted by
an individual judge. Acollective judgment setis the set of propositions in the agenda accepted by
all judges as the result of a judgment aggregation procedure. A judgment setJ is completeif for
all α ∈ Φ, α ∈ J or ∼α ∈ J; it is complement-freeif for no α ∈ Φ, α and∼α are inJ; and it is
consistentif there is an assignment that makes all formulas inJ true. If a judgment set is complete
and consistent, it is obviously complement-free. ByJ (Φ) we denote the set of all complete and
consistent subsets ofΦ.

The famous doctrinal paradox [24] in judgment aggregation shows that if the majority rule is
used, the collective judgment set can be inconsistent even if all individual judgment sets are con-
sistent. One way of circumventing the doctrinal paradox is to impose restrictions on the agenda.
Endriss et al. [13] studied the question of whether one can guarantee for a specific agenda that the
outcome is always complete and consistent. They established necessary and sufficient conditions
on the agenda to satisfy these criteria, and they studied thecomplexity of deciding whether a given
agenda satisfies these conditions. They also showed that deciding whether an agenda guarantees a
complete and consistent outcome for the majority rule is an intractable problem.

Endriss et al. [14] studied the winner and manipulation problem for two specific judgment ag-
gregation procedures that always guarantee consistent outcomes. In the premise-based procedure,
this is achieved by applying the majority rule only to the premises of the agenda, and then to derive
the outcome for the conclusions from the outcome of the premises. We will study the complexity of
manipulation and control also for the more general class of premise-based quota rules as defined by
Dietrich and List [8].

Definition 1 (Premise-based Quota Rule)The agendaΦ is divided into two disjoint subsetsΦ =
Φp ⊎Φc, whereΦp is the set of premises andΦc is the set of conclusions. We assume bothΦp

andΦc to be closed under complementation. The premisesΦp are again divided into two disjoint
subsets,Φp = Φ1⊎Φ2, such that eitherϕ ∈ Φ1 and∼ϕ ∈ Φ2, or ∼ϕ ∈ Φ1 andϕ ∈ Φ2. For each
literal ϕ ∈ Φ1, define a quota qϕ ∈Q, 0≤ qϕ < 1. The quota for the literalsϕ ∈ Φ2 is q′ϕ = 1−qϕ .

A premise-based quota rule is then defined to be a function PQR: J (Φ)n → 2Φ such that, for



Φ = Φp⊎Φc, each profileJ = (J1, . . . ,Jn) is mapped to the judgment set

PQR(J) =△q∪{ϕ ∈ Φc | △q |= ϕ}, where

△q = {ϕ ∈ Φ1 | ‖{i | ϕ ∈ Ji}‖> nqϕ}∪{ϕ ∈ Φ2 | ‖{i | ϕ ∈ Ji}‖> ⌈nq′ϕ −1⌉}.

To guarantee complete and consistent outcomes for this procedure, it is enough to require thatΦ
is closed under propositional variables and thatΦp consists of all literals. The number of affirmations
needed to be in the collective judgment set is⌊nqϕ + 1⌋ for literals ϕ ∈ Φ1 and⌈nq′ϕ⌉ for literals
ϕ ∈ Φ2. Note that⌊nqϕ +1⌋+ ⌈nq′ϕ⌉= n+1 ensures that eitherϕ ∈ PQR(J) or ∼ϕ ∈ PQR(J) for
everyϕ ∈ Φ. Note that the quotaqϕ = 1 for a literalϕ ∈ Φ1 is not allowed here, asn+1 affirmations
were then needed forϕ ∈ Φ1 to be in the collective judgment set, which is impossible. However,
qϕ = 0 is allowed, as in that caseϕ ∈ Φ1 needs at least one affirmation and∼ϕ ∈ Φ2 needsn
affirmations, which is possible. In the special case ofuniform premise-based quota rules, there is
one quotaq for every literal inΦ1, and the quotaq′ = 1−q for every literal inΦ2. We will focus
on such rules and denote them byUPQRq. Forq= 1/2 and the case of an odd number of judges, we
obtain the premise-based procedure defined by Endriss et al.[14], and we will denote it byPBP.

Furthermore, we will consider yet another variant of premise-based procedure, which was in-
troduced by Dietrich and List [8] and is calledconstant premise-based quota ruleand is defined by
CPQR(J) =△′

q∪{ϕ ∈ Φc | △′
q |= ϕ}. Here, the number of affirmations needed to be in the set△′

q
is a fixed constant. Thusqϕ ∈N, 0≤ qϕ < n, and△′

q = {ϕ ∈ Φ1 | ‖{i | ϕ ∈ Ji}‖> qϕ}∪{ϕ ∈ Φ2 |
‖{i | ϕ ∈ Ji}‖> q′ϕ}. Again, to ensure that for everyϕ ∈Φ, eitherϕ ∈CPQR(J) or∼ϕ ∈CPQR(J),
we require thatqϕ +q′ϕ = n−1 for all ϕ ∈ Φ1. The uniform variant,UCPQRq, is defined analo-
gously. If the number of judges who take part in the process isfixed, both classes represent the same
judgment aggregation procedures. However, we will study control problems where the number of
judges can vary. The constant premise-based quotan can then be seen as an upper bound on the
highest number of judges possibly participating in the process. This definition is closely related to
(a simplified version of) a referendum. Suppose that there isa fixed number of possible participants
who are allowed to go to the polls, and there is a fixed number ofaffirmations needed for a cer-
tain decision, independent of the number of people who are actually participating. Of course, this
number may depend on the number of possible participants, for example 20% of them.

3 Motivation for Control in Judgment Aggregation

We study three types of control for judgment aggregation. Sofar control has been studied exten-
sively for voting systems (see, e.g., [3, 23, 4, 16]), where control is normally perceived as dishonest
and thus as an undesired behavior. Therefore, this researchfocuses on finding ways to avoid it.
Looking at real-world examples, this point of view is not always justified; in fact, some “control”
attempts may be justified by fairly decent considerations (e.g., excluding children from elections is
some reasonable kind of exerting control). Nevertheless, one is well advised to be aware of con-
trol attempts, since their objective is indeed frequently enough abusive (e.g., excluding voters from
elections based on racial or gender grounds, as is still common in certain countries, is abusive and
unacceptable). If control is generally possible, one way ofcircumventing it is to study the compu-
tational complexity of the underlying decision problems. If it turns out to be NP-hard, the desired
control action can, in general, not be performed in polynomial time, unless P= NP. For practical
purposes, showing hardness in appropriate typical-case models is even more useful, but also more
challenging [28]. As motivation for studying control in judgment aggregation, we will now illus-
trate the three different control types for judgment aggregation considered in this paper with some
examples from the American jury trial system and international arbitration.

Adding Judges: This first control type is analogous to control by adding voters in elections.
An example for this control setting can be found in the field ofinternational arbitration, which is
becoming increasingly important as an alternative disputeresolution method to litigations conducted



by national courts. Parties of arbitration proceedings maychoose to entrust a single arbitrator with
deciding their dispute. They might, however, also opt for the appointment of several arbitrators and
thereby control the arbitral decision-making process by adding judges.2 Mostly they do so because
they feel that due to the complicated nature of the matter or for some other reason, a tribunal with
several arbitrators is better suited to arbitrate their case. Their action may also be motivated by the
hope of being able to appoint an arbitrator sympathetic to their arguments.

Deleting judges:Also very natural is the problem of control by deleting judges as it is a com-
monly applied method in both jury trials and international arbitration. The empaneling procedure
of a jury for a trial is basically a control process via deleting judges and works roughly as follows.
First, a certain number of potential jurors is summoned at the place of trial. In the next stage of
the selection procedure, all or part of them are subjected tothe so-called “voir dire” process, i.e., a
questioning by the trial judge and/or the attorneys aiming to obtain information about their person.
Admittedly, the purpose of collecting this information is to determine whether they can be impar-
tial, which is a well-justified purpose; but again, attorneys may use it for another reason, namely to
indoctrinate prospective jurors laying a foundation for arguments they later intend to make. Driven
by good or bad intentions, the lawyers may then challenge jurors for cause, that is, by arguing that
and for what reason the juror in question is impartial. The trial judge decides over the attorneys’
challenges for cause, moreover she may excuse further jurors due to social hardship. Finally, the
lawyers may challenge a limited number of potential jurors peremptorily, i.e., without having to jus-
tify their reason for doing so. Peremptory challenges are legitimate and useful means of eliminating
such jurors that are either presumably biased but the bias cannot be proved to the extent necessary
for challenging them for cause, or are for some other reason undesirable. Because their use does not
require any explanation, such challenges can also be easilyabused; especially until the introduction
of the Batson rule, peremptory challenges were often exercised in discriminatory ways, mostly on
racial grounds, violating the equal protection rights of jurors. As we can see, deleting judges/jurors
is a central part of the empaneling procedure. However, since the total number of jurors is fixed, a
new juror needs to be appointed for each deleted juror, whichmotivates the next scenario.

Replacing judges: Control by replacing judges is used in international arbitration when the
parties successfully challenge an arbitrator leading to her disqualification and the subsequent ap-
pointment of a substitute arbitrator. The institution of challenge is designed to serve as a tool for
parties of arbitral proceedings to remove arbitrators posing a possible threat to the integrity of the
proceedings. It may be based on several grounds; arbitrators are most commonly challenged because
of doubts regarding their impartiality or independence.3 Challenges are, however, occasionally used
as “black art” or “guerrilla tactics” with a view to achieve dishonest purposes, such as eliminating
arbitrators that are likely to render an unfavorable award or to delay the proceedings to evade, or at
least postpone, an anticipated defeat.

Control by replacing judges can be seen as a combined action of control by deleting judges and
control by adding judges. For a related general model in voting theory, we refer to the work of
Faliszewski et al. [19] on “multimode control attacks.”

4 Problem Definitions

Bribery problems in voting theory, as introduced by Faliszewski et al. [17] (see also, e.g., [12, 20]),
model scenarios in which an external actor seeks to bribe some of the voters to change their votes
such that a distinguished candidate becomes the winner of the election. In judgment aggregation it
is not the case that one single candidate wins, but there is a decision for every formula in the agenda.

2See, for instance, Articles 37–40 of the ICSID Convention and Rules 1–4 of the ICSID Arbitration Rules, Articles 11–12
of the ICC Arbitration Rules, or Articles 7–10 of the UNCITRAL Arbitration Rules.

3For rules regarding the challenge, disqualification, and replacement of arbitrators, see Articles 56–58 of the ICSID
Convention, Rules 9–11 of the ICSID Arbitration Rules, Articles 14–15 of the ICC Arbitration Rules, and Articles 12–14 of
the UNCITRAL Arbitration Rules.



So the external actor might seek to obtain exactly his or her desired collective outcome by bribing
the judges, or he or she might be interested only in the desired outcome of some formulas inΦ. The
exact bribery problem is then defined as follows for a given aggregation procedureF .

F -EXACT BRIBERY

Given: An agendaΦ, a profileT ∈ J (Φ)n, a consistent and complement-free judgment setJ
(not necessarily complete) desired by the briber, and a positive integerk.

Question: Is it possible to change up tok individual judgment sets inT such that for the resulting
new profileT′ it holds thatJ ⊆ F(T′)?

Note that ifJ is a complete judgment set then the question is whetherJ = F(T′).
Since in the case of judgment aggregation there is no winner,we also adopt the approach Endriss

et al. [14] used to define the manipulation problem in judgment aggregation. In their definition,
an outcome (i.e., a collective judgment set) is more desirable for the manipulator if its Hamming
distance to the manipulator’s desired judgment set is smaller, where for an agendaΦ the Hamming
distanceH(J,J′) between two complete and consistent judgment setsJ,J′ ∈J (Φ) is defined as the
number of positive formulas inΦ on whichJ andJ′ differ. The formal definition of the manipulation
problem in judgment aggregation is as follows, for a given aggregation procedureF.

F -MANIPULATION

Given: An agendaΦ, a profileT ∈ J (Φ)n−1, and a consistent and complete judgment setJ
desired by the manipulator.

Question: Does there exist a judgment setJ′ ∈ J (Φ) such thatH(J,F(T,J′))< H(J,F(T,J))?

A specific judgment aggregation procedure is calledstrategyproofif a manipulator can never
benefit from reporting an insincere preference. Now, we can give the formal definition of bribery in
judgment aggregation, where the briber seeks to obtain a collective judgment set having a smaller
Hamming distance to the desired judgment set, then the original outcome has. In bribery scenarios,
we extend the above approach of Endriss et al. [14] by allowing that the desired outcome for the
briber may be an incomplete (albeit consistent and complement-free) judgment set. This reflects
a scenario where the briber may be interested only in some part of the agenda. The definition
of Hamming distance is extended accordingly as follows. LetΦ be an agenda,J ∈ J (Φ) be a
complete and consistent judgment set, andJ′ ⊆ Φ be a consistent and complement-free judgment
set. TheHamming distance H(J,J′) between J and J′ is defined as the number of formulas fromJ′

on whichJ does not agree:H(J,J′) = ‖{ϕ | ϕ ∈ J′∧ϕ 6∈ J}‖. Observe that ifJ′ is also complete,
this extended notion of Hamming distance coincides with thenotion Endriss et al. [14] use.

F -BRIBERY

Given: An agendaΦ, a profileT ∈ J (Φ)n, a consistent and complement-free judgment setJ
(not necessarily complete) desired by the briber, and a positive integerk.

Question: Is it possible to change up tok individual judgment sets inT such that for the resulting
new profileT′ it holds thatH(F(T′),J)< H(F(T),J)?

Faliszewski et al. [20] introduced microbribery for votingsystems. We adopt their notion so as
to apply to judgment aggregation. In microbribery for judgment aggregation, if the briber’s budget
is k, he or she is not allowed to change up tok entire judgment sets but instead can change up to
k premise entries in the given profile (the conclusions changeautomatically if necessary). We will
denote this problem byF -M ICROBRIBERY, and the exact variant byF -EXACT M ICROBRIBERY.

We will now formally define the underlying decision problemsfor the complexity-theoreticstudy
of control in judgment aggregation, closely related to the corresponding problems in elections. For
a given judgment aggregation procedureF, the problem of control by adding judges is defined as
follows:



F -CONTROL BY ADDING JUDGES

Given: An agendaΦ, complete profilesT ∈J (Φ)n andS∈J (Φ)‖S‖, a positive integerk, and
a consistent and complement-free judgment setJ (not necessarily complete).

Question: Is there a subsetS′ ⊂ S, ‖S′‖ ≤ k, such thatH(J,F(T∪S′))< H(J,F(T))?

If we consider the variantF-EXACT CONTROL BY ADDING JUDGES, we ask if there is a subset
S′ ⊂ S, ‖S′‖ ≤ k, such thatJ ⊆ F(T ∪S′).

Control by deleting judges is defined as follows for a given judgment aggregation procedureF:

F -CONTROL BY DELETING JUDGES

Given: An agendaΦ, a complete profileT ∈ J (Φ)n, a positive integerk, and a consistent and
complement-free judgment setJ (not necessarily complete).

Question: Is there a subsetT′ ⊂ T with ‖T′‖ ≤ k such thatH(J,F(T \T′))< H(J,F(T))?

The exact variant is defined analogously to the case of addingjudges.
The new control problem we introduce here is specific to judgment aggregation. It considers the

case where some judges may be replaced (see our motivating examples in Section 3):

F -CONTROL BY REPLACING JUDGES

Given: An agendaΦ, complete profilesT ∈J (Φ)n andS∈J (Φ)‖S‖, a positive integerk, and
a consistent and complement-free judgment setJ (not necessarily complete).

Question: Are there subsetsT′ ⊂ T andS′ ⊂ S, with ‖T′‖= ‖S′‖ ≤ k such that

H(J,F((T \T′)∪S′))< H(J,F(T))?

DefineF -EXACT CONTROL BY REPLACING JUDGES analogously to the exact variants of the
adding and deleting judges problems. To study the computational complexity of adding, deleting,
and replacing judges, we adopt the terminology introduced in [3] for control problems in voting
and adapt it to judgment aggregation. LetF be an aggregation procedure and letC be a given
control type.F is said to beimmuneto control byC if it is never possible for an external person to
successfully control the judgment aggregation procedure via C -control. F is said to besusceptible
to control byC if it is not immune.F is said to beresistantto control byC if it is susceptible and
the corresponding decision problem is NP-hard.F is said to bevulnerableto control byC if it is
susceptible and the corresponding decision problem is in P.

We assume that the reader is familiar with the basic conceptsof complexity theory and with
complexity classes such as P and NP; see, e.g., [27]. Downey and Fellows [10] introducedpa-
rameterizedcomplexity theory; in their framework it is possible to do a more fine-grained multi-
dimensional complexity analysis. In particular, NP-complete problems may be easy (i.e., fixed-
parameter tractable) with respect to certain parameters confining the seemingly unavoidable combi-
natorial explosion. If this parameter is reasonably small,a fixed-parameter tractable problem can be
solved efficiently in practice, despite its NP-hardness. Formally, aparameterized decision problem
is a setL ⊆ Σ∗ ×N, and we say it isfixed-parameter tractable(FPT) if there is a constantc such
that for each input(x,k) of sizen= |(x,k)| we can determine in timeO( f (k) ·nc) whether(x,k) is
in L, wheref is a function depending only on the parameterk. The main hierarchy of parameterized
complexity classes is: FPT= W[0]⊆ W[1]⊆ W[2]⊆ ·· · ⊆ W[ℓ]⊆ XP.

In our results, we will focus on only the class W[2], which refers to problems that are con-
sidered to be fixed-parameter intractable. In order to show that a parameterized problem is W[2]-
hard, we will give a parameterized reduction from the W[2]-complete problemk-DOMINATING SET

(see [10]). We say that a parameterized problemA parameterized reducesto a parameterized prob-
lemB if each instance(x,k) of A can be transformed in timeO(g(k) · |x|c) (for some functiong and



some constantc) into an instance(x′,k′) of B such that(x,k) ∈ A if and only if (x′,k′) ∈ B, where
k′ = g(k). Note thatg(k)≡ c may also be a constant function not depending onk.

In our proofs we will make use of three different problems. First, we will use the NP-complete
problem EXACT COVER BY 3-SETS (X3C for short), where an instance consists of a given set
X = {x1, . . . ,x3m} and a collectionC = {C1, . . . ,Cn} of 3-element subsets ofX, and the question
is whether there is anexact cover for X, i.e., a subcollectionC′ ⊆ C such that every element ofX
occurs in exactly one member ofC′. We will also use the DOMINATING SET problem, where we are
given a graphG= (V,E) and a positive integerk, and the question is whether there is adominating
set for G of size at most k, i.e., whether there is a subsetV ′ ⊆V, ‖V‖ ≤ k, such that for eachv∈V,
eitherv ∈ V ′ or there is aw ∈ V ′ with {v,w} ∈ E. DOMINATING SET is NP-complete and, when
parameterized by the upper boundk on the size of the dominating set, its parameterized variant
(denoted byk-DOMINATING SET, to be explicit) is W[2]-complete [10]. Finally, we will also use
the following problem for our parameterized complexity results:

OPTIMAL LOBBYING

Given: An m×n 0-1 matrixL (whose rows represent the voters, whose columns represent the
referenda, and whose 0-1 entries represent No/Yes votes), apositive integerk≤ m, and a
target vectorx∈ {0,1}n.

Question: Is there a choice ofk rows in L such that by changing the entries of these rows the
resulting matrix has the property that, for eachj , 1≤ j ≤ n, the j th column has a strict
majority of ones (respectively, zeros) if and only if thej th entry of the target vectorx of
The Lobby is one (respectively, zero)?

OPTIMAL LOBBYING has been introduced and, parameterized by the numberk of rows The
Lobby can change, shown to be W[2]-complete by Christian et al. [6] (see also [15] for a more
general framework and more W[2]-hardness results).

Note that a multiple referendum as in OPTIMAL LOBBYING can be seen as the special case of
a judgment aggregation scenario where the agenda is closed under complementation and proposi-
tional variables and contains only premises and where the majority rule is used for aggregation. For
illustration, consider the following simple example of a multiple referendum. Suppose the citizens
of a town are asked to decide by a referendum whether two projects,A andB (e.g., a new hospital
and a new bridge), are to be realized. Suppose the building contractor (who, of course, is interested
in being awarded a contract for both projects) sets some money aside to attempt to influence the
outcome of the referenda, by bribing some of the citizens without exceeding this budget. Observe
that anPBP-EXACT BRIBERY instance with only premises in the agenda and with a completede-
sired judgment setJ is nothing other than an OPTIMAL LOBBYING instance, whereJ corresponds
to The Lobby’s target vector.4 Requiring the citizens to give their opinion only for the premisesA
andB of the referendum and not for the conclusion (whether both projects are to be realized) again
avoids the doctrinal paradox. Again, the citizens might also vote strategically in these referenda.
Both projects will cost money, and if both projects are realized, the amount available for each must
be reduced. Some citizens may wish to support some project, say A, and may be unhappy with
reducing the amount forA due to both projects being realized. They might even prefer none of the
projects being realized over onlyB being realized. For them it is natural to consider the possibility
of reporting insincere votes (provided they know how the others will vote); this may turn out to be
more advantageous for them, as then they can possibly prevent that both projects are realized.

4Although exact bribery in judgment aggregation generalizes optimal lobbying in the sense of Christian et al. [6] (whichis
different from bribery in voting, as defined by Faliszewski et al. [17]), we will use the term “bribery” rather than “lobbying”
in the context of judgment aggregation.



5 Results

We start by extending the result of Endriss et al. [14] thatPBP-MANIPULATION is NP-complete.
We study a parameterized version of the manipulation problem and establish a W[2]-hardness result
with respect to the uniform premise-based quota rule. Due tospace restrictions all proofs except one
will be omitted.

Theorem 2 For each rational quota q,0 ≤ q < 1 and for any fixed number n≥ 3 of judges,
UPQRq-MANIPULATION is W[2]-hard when parameterized by the maximum number of changes
in the premises needed in the manipulator’s judgment set.

Since the reduction is from the NP-complete problem DOMINATING SET, NP-completeness of
UPQRq-MANIPULATION , 0≤ q < 1, for any fixed numbern ≥ 3 of judges follows immediately
from the proof of Theorem 2. Note that NP-hardness ofUPQRq-MANIPULATION could have also
been shown by a modification of the proof of Theorem 2 in [14], but this reduction would not be
appropriate to establish W[2]-hardness, since the corresponding parameterized versionof SAT is
not known to be W[2]-hard.

As mentioned above, studying the case of a fixed total number of judges is very natural. The
second parameter we have considered for the manipulation problem in Theorem 2 is the “maximum
number of changes in the premises needed in the manipulator’s judgment set.” Hence this theorem
shows that the problem remains hard even if the number of premises the manipulator can change is
bounded by a fixed constant. This is also very natural, since the manipulator may wish to report a
judgment set that is as close as possible to his or her sincerejudgment set, because for a completely
different judgment set it might be discovered too easily that he was judging strategically.

In contrast to the hardness results stated in Theorem 2, the following proposition shows that,
depending on the agenda, there are cases in which manipulation for UPQRq, 0≤ q< 1, is outright
impossible, and thusUPQRq-MANIPULATION is trivially in P.

Proposition 3 If the agenda contains only premises then UPQRq, 0≤ q< 1, is strategyproof.

NP-completeness forUPQRq-MANIPULATION with a fixed number of judges, which is stated
in Theorem 2, implies that there is little hope to find a polynomial-time algorithm for the general
problem even when the number of participating judges is fixed. However, Proposition 3 tells us that
if the agenda is simple and contains no conclusions,UPQRq is even strategyproof.

Now we will study the complexity of various bribery problemsfor the premise-based procedure
PBP, i.e., UPQR1/2 for an odd number of judges. We will establish NP-completeness for bribery,
microbribery, and exact microbribery, and a W[2]-hardness result for exact bribery with respect to a
natural parameter. We start with bribery.

Theorem 4 PBP-BRIBERY is NP-complete, even when the total number of judges (n≥ 3 odd) or
the number of judges that can be bribed is a fixed constant.

Next, we turn to microbribery. Here the briber can change only up to a fixed number of entries
in the individual judgment sets. We again prove NP-completeness when the number of judges or the
number of microbribes allowed is a fixed constant.

Theorem 5 PBP-M ICROBRIBERY is NP-complete, even when the total number of judges (n≥ 3
odd) or the number of microbribes allowed is a fixed constant.

Theorem 6 PBP-EXACT BRIBERY is W[2]-hard when parameterized by the number of judges that
can be bribed.



This result follows from the fact that OPTIMAL LOBBYING is a special case ofPBP-EXACT

BRIBERY. Note that W[2]-hardness with respect to any parameter directly implies NP-hardness for
the corresponding unparameterized problem, soPBP-EXACT BRIBERY is also NP-complete; all
(unparameterized) problems considered here are easily seen to be in NP.

Theorem 7 PBP-EXACT M ICROBRIBERY is NP-complete, even when the total number of judges
(n≥ 3 odd) or the number of microbribes allowed is a fixed constant.

As for the manipulation problem, Theorems 4, 5, and 7 are concerned with a fixed number of
judges. It turns out that even in this case BRIBERY, M ICROBRIBERY, and EXACT M ICROBRIBERY

are NP-complete forPBP. Furthermore, we consider the case of a fixed number of judgesallowed to
bribe forPBP-BRIBERY, the corresponding parameter for its exact variant, and thecase where the
number of microbribes allowed is a fixed constant forPBP-M ICROBRIBERY and its exact variant.
Both parameters concern the budget of the briber. Since the briber aims at spending as little money
as possible, it is also natural to consider these cases. But again, NP-completeness was shown even
when the budget is a fixed constant and in one case W[2]-hardness for this parameter, so bounding
the budget does not help to solve the problem easily. Although the exact microbribery problem
is computationally hard in general for the aggregation procedurePBP, there are some interesting
naturally restricted instances where it is computationally easy.

Theorem 8 If the desired judgment set J is complete or if the desired judgment set is incomplete but
contains all of the premises or only premises, then PBP-EXACT M ICROBRIBERY is in P.

In the last part of this section we study control in judgment aggregation. In the manipulation
and bribery problems studied in this paper the number of participating judges is constant and hence
uniform premise-based quota rules and uniform constant premise-based quota rules describe the
same judgment aggregation procedures. However, this is notthe case if the number of participating
judges isnot fixed, as in control by adding or deleting judges. For the uniform premise-based quota
rule the number of affirmations needed to be in the collectivejudgment set varies with the number
of judges, whereas for the constant premise-based quota rule the number of affirmations remains
the same regardless of the number of judges participating. Since the number of participating judges
varies for both control by adding and by deleting judges, we study these problems with respect to
both judgment aggregation procedures.

We will first consider the uniform constant premise-based quota rule and show NP-hardness of
UCPQRq for control by adding and by deleting judges in the Hamming distance based and in the
exact variant.

Theorem 9 For each admissible value of q, UCPQRq is resistant toCONTROL BY ADDING

JUDGESand toEXACT CONTROL BY ADDING JUDGES.

Theorem 10 For each admissible value of q, UCPQRq is resistant toCONTROL BY DELETING

JUDGESand toEXACT CONTROL BY DELETING JUDGES.

Now we turn to the results for the uniform premise-based quota rule in the case of control by
adding and by deleting judges. Here we only considerUPQR1/2, which equals the premise-based
procedurePBPdefined by Endriss et al. [14] for an odd number of judges. We show NP-hardness
for control by adding and by deleting judges in both problem variants.

Theorem 11 UPQR1/2 is resistant toEXACT CONTROL BY ADDING JUDGESand toCONTROL BY

ADDING JUDGES.

Proof. Membership in NP is obvious for both problems. Again, we showNP-hardness for
UPQR1/2-EXACT CONTROL BY ADDING JUDGES only and UPQR1/2-CONTROL BY ADDING



JUDGES at the same time, by a reduction from the NP-complete problemX3C. Given an X3C
instance(X,C) with X = {x1, . . . ,x3m} andC= {C1, . . . ,Cn}, define the following judgment aggre-
gation scenario. The agendaΦ contains{α0,α1, . . . ,α3m} and their negations. The quota is1/2 for
every positive literal. The profile of the individual judgment sets initially taking part in the pro-
cess isT = (T1, . . . ,Tm+1) with T1 = {α0,α1, . . . ,α3m}, Ti = {¬α0,α1, . . . ,α3m}, 2 ≤ i ≤ m, and
Tm+1 = {¬α0,¬α1, . . . ,¬α3m}. The profile of the judges who can be added isS= (S1, . . . ,Sn) with
Si = {α0,α j ,¬αℓ | x j ∈ Ci ,xℓ 6∈ Ci ,1 ≤ j, ℓ ≤ 3m}. The maximum number of judges fromS who
can be added ism. The desired outcome of the external person isJ = {α0,α1, . . . ,α3m}. Then it
holds, that there is a profileS′ ⊆ S, ‖S′‖ ≤ m, such thatH(J,F(T ∪S′)) < H(J,F(T)) if and only
if there is an exact cover for the given X3C instance. The collective judgment set forUPQR1/2(T)
is {¬α0,α1, . . . ,α3m}. Observe thatH(J,F(T)) = 1, since the only difference lies inα0. Hence,
F(T ∪S′)) must be exactlyJ, and the reduction will hold for both problems at hand.

(⇐) Assume that there is an exact coverC′ ⊆ C for the given X3C instance(X,C). Then the
profile S′ contains those judgesSi with Ci ∈ C′. The total number of judges is then 2m+1. The
number of affirmations needed to be in the collective judgment set is strictly greater thanm+(1/2),
so m+ 1 affirmations are needed. Note thatα0 gets one affirmation from the judges inT andm
affirmations from the judges inS′. Everyαi , 1≤ i ≤ 3m, getsm affirmations from the judges inT
and one affirmation from a judge inS′. Hence, the collective judgment set isJ, as desired.

(⇒) Assume that there is a profileS′ with ‖S′‖ ≤ m such thatUPQR1/2(T ∪S′) = J. Since
α0 is contained in the collective judgment set it must receive enough affirmations of the judges in
S′. Adding less thanm new affirmations forα0 is not enough, sincem−1 ≤ (2m)(1/2), but since
(2m+1)(1/2)<m+1,mnew affirmations are enough. As above, if there is a total number of 2m+1
judges then the number of affirmations needed for a positive formula to be in the collective judgment
set ism+ 1. Since theαi , 1≤ i ≤ 3m, receive onlym affirmations fromT, they must all get one
additional affirmation fromS′. Since‖S′‖ ≤ m and every judge affirms of exactly four formulas,
includingα0, the setsCi corresponding to the judges inS′ must form an exact cover for the given
X3C instance. ❑

One important point regarding the proof of Theorem 11 is thatthe agenda contains only premises.
For UPQR1/2-EXACT CONTROL BY DELETING JUDGES, the proof of Theorem 12 below also es-
tablishes NP-hardness even if the agenda contains only premises. By contrast, in Proposition 3
we showed that if the agenda contains only premises thenUPQRq is strategyproof (thus,UPQRq-
MANIPULATION is in P) for each rational quotaq, 0≤ q < 1, and in Theorem 5 we showed that
UPQR1/2-EXACT M ICROBRIBERY is also in P if the desired judgment set contains only premises.

Theorem 12 UPQR1/2 is resistant toEXACT CONTROL BY DELETING JUDGESandCONTROL BY

DELETING JUDGES.

In contrast toUPQR1/2-CONTROL BY ADDING JUDGES it remains open whetherUPQR1/2-
CONTROL BY DELETING JUDGES is still NP-complete if the agenda contains only premises.

Unlike for manipulation and bribery, we have not been able toidentify natural restrictions for
which one of our NP-hard control problems can be solved in polynomial time.

Finally, we consider CONTROL BY REPLACING JUDGES. In contrast to the problems of control
by adding and by deleting judges, the number of judges here isconstant, just as in the corresponding
manipulation and bribery problems for judgment aggregation. Thus, there is no difference between
the uniform constant premise-based quota rule and the uniform premise-based quota rule. The fol-
lowing theorem implies NP-completeness for both classes ofrules.

Theorem 13 For each rational quota q,0 ≤ q < 1, UPQRq is resistant toEXACT CONTROL BY

REPLACING JUDGESandCONTROL BY REPLACING JUDGES.

To conclude, we mention some possible future research questions. First, we have introduced
some very natural control problems for judgment aggregation. Are there any others? Second, it



would be very interesting to complement our NP-hardness results by typical-case analyses, as has
been done for voting problems (see the survey [28]). Third, from all W[2]-hardness results we imme-
diately obtain the corresponding NP-hardness results, andsince all problems considered are easily
seen to be in NP, we have NP-completeness results. It remainsopen, however, whether one can
also obtain matching upper bounds in terms of parameterizedcomplexity. We suspect that all W[2]-
hardness results in this paper in fact can be strengthened toW[2]-completeness results. Finally, note
that we have considered only “constructive” control scenarios. For voting problems, constructive
control means that the Chair’s goal is to make some candidatewin, whereas “destructive” con-
trol [23] refers to making any other than the most hated candidate win the election. Constructive
control in judgment aggregation, however, means that we seek an outcomecloser to the desired out-
come, or exactly the desired outcome. Note that defining destructive variants of control by adding,
deleting, or replacing judges would thus lead to the same definitions as for their constructive coun-
terparts: We have an undesired (possibly partial) judgmentsetJ ∈J (Φ) and seek an outcome with
a smaller Hamming distance to the complement ofJ than from the original outcome to the com-
plement ofJ, but replacing the (partial) judgment setJ with its complement leads to essentially the
same question, as the complement of a partial judgment setJ is simply the negation of the formulas
in J. Therefore, it does not make sense to distinguish between constructive and desctructive control.

Acknowledgments: We thank the reviewers for helpful comments.
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[16] G. Erdélyi, L. Piras, and J. Rothe. The complexity of voter partition in Bucklin and fallback voting:
Solving three open problems. InProceedings of the 10th International Joint Conference on Autonomous
Agents and Multiagent Systems, pages 837–844. IFAAMAS, May 2011.

[17] P. Faliszewski, E. Hemaspaandra, and L. Hemaspaandra.How hard is bribery in elections?Journal of
Artificial Intelligence Research, 35:485–532, 2009.

[18] P. Faliszewski, E. Hemaspaandra, and L. Hemaspaandra.Using complexity to protect elections.Commu-
nications of the ACM, 53(11):74–82, 2010.

[19] P. Faliszewski, E. Hemaspaandra, and L. Hemaspaandra.Multimode control attacks on elections.Journal
of Artificial Intelligence Research, 40:305–351, 2011.

[20] P. Faliszewski, E. Hemaspaandra, L. Hemaspaandra, andJ. Rothe. Llull and Copeland voting computa-
tionally resist bribery and constructive control.Journal of Artificial Intelligence Research, 35:275–341,
2009.

[21] P. Faliszewski and A. Procaccia. AI’s war on manipulation: Are we winning?AI Magazine, 31(4):53–64,
2010.

[22] A. Gibbard. Manipulation of voting schemes.Econometrica, 41(4):587–601, 1973.

[23] E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Anyonebut him: The complexity of precluding an
alternative.Artificial Intelligence, 171(5–6):255–285, 2007.

[24] L. Kornhauser and L. Sager. Unpacking the court.Yale Law Journal, 96(1):82–117, 1986.

[25] C. List. The theory of judgment aggregation: An introductory review.Synthese. To appear.

[26] C. List and C. Puppe. Judgment aggregation: A survey. InP. Anand, P. Pattanaik, and C. Puppe, editors,
Oxford Handbook of Rational and Social Choice, chapter 19. Oxford University Press, 2009.

[27] C. Papadimitriou.Computational Complexity. Addison-Wesley, second edition, 1995.

[28] J. Rothe and L. Schend. Typical-case challenges to complexity shields that are supposed to protect elec-
tions against manipulation and control: A survey. InWebsite Proceedings of the Special Session on Com-
putational Social Choice at the 12th International Symposium on Artificial Intelligence and Mathematics,
January 2012.

[29] M. Satterthwaite. Strategy-proofness and Arrow’s conditions: Existence and correspondence theorems
for voting procedures and social welfare functions.Journal of Economic Theory, 10(2):187–217, 1975.

Dorothea Baumeister and Jörg Rothe
Institut für Informatik
Heinrich-Heine-Universität Düsseldorf
40225 Düsseldorf, Germany
Email:{baumeister,rothe}@cs.uni-duesseldorf.de
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