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Abstract

A common feature of the Hungarian, Irish, Spanish and Turkish higher education
admission systems is that the students apply for programmes and they are ranked
according to their scores. Students who apply for a programme with the same score
are in a tie. Ties are broken by lottery in Ireland, by objective factors in Turkey (such
as date of birth) and other precisely defined rules in Spain. In Hungary, however,
an equal treatment policy is used, students applying for a programme with the same
score are all accepted or rejected together. In such a situation there is only one
question to decide, whether or not to admit the last group of applicants with the
same score who are at the boundary of the quota. Both concepts can be described
in terms of stable score-limits. The strict rejection of the last group with whom a
quota would be violated corresponds to the concept of H-stable (i.e. higher-stable)
score-limits that is currently used in Hungary. We call the other solutions based on
the less strict admission policy as L-stable (i.e. lower-stable) score-limits. We show
that the natural extensions of the Gale-Shapley algorithms produce stable score-
limits, moreover, the applicant-oriented versions result in the lowest score-limits
(thus optimal for students) and the college-oriented versions result in the highest
score-limits with regard to each concept. When comparing the applicant-optimal H-
stable and L-stable score-limits we prove that the former limits are always higher for
every college. Furthermore, these two solutions provide upper and lower bounds for
any solution arising from a tie-breaking strategy. Finally we show that both the H-
stable and the L-stable applicant-proposing score-limit algorithms are manipulable.
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1 Introduction

Gale and Shapley [12] introduced a model and solution concept to solve the college ad-
missions problem fifty years ago. In their model they suppose that the students submit
preference lists containing the colleges they apply to, and each college ranks their applicants
in a strict order and also provides an upper quota. Based on the submitted preferences
a central body computes a fair solution. The fairness criterion they proposed is stability,
which essentially means that if an application is rejected then it must be the case that the
college must have filled its quota with applicants better than the our applicant’s concerned.
They gave an efficient method to find a stable matching and they proved that is actually
optimal for the students in that sense that no student can be admitted to a better college in
another stable matching. The Gale-Shapley algorithm has linear time implementation (see
e.g. Knuth ), which means that the running time of the algorithm is proportional to the
number of applications. Another attractive property of this matching mechanism, proved
by Roth , that it is strategy-proof for the students, i.e., no student can be admitted to any
better college by submitting false preferences.

Later, it turned out (Roth [16]) that the algorithm proposed by Gale and Shapley had
already been implemented in 1952 in the National Resident Matching Program and has
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been used since to coordinate junior doctor recruitment in the US. Moreover, the very
same method has been implemented recently in the Boston [4] and New York [3] high
school matching programs. However, college admissions are still organized in a completely
decentralized way in the US, with all its flaws, that is unraveling through early admissions
and the coordination problems caused by too many or not enough students admitted. See
some representative stories on American college admissions practices in the blog of Al Roth
[26].

There are many other countries where higher education admissions are more regulated,
but yet not centralized. In Russia, the common timetable of the admissions prevent the
unraveling and the use of ’original documents’ provide better coordination regarding the
number of students admitted, but yet the solution is far from being optimal.3 In the
UK, there is a common platform to manage the admissions by UCAS [27] but there is no
centralized matching mechanism, the decisions and actions of the users (students and higher
education institutions) are still decentralized.

Finally, there are some countries which do have centralized matching schemes for higher
education admissions. In particular, there are scientific papers on the Chinese [19, 20],
German [9, 18, 22], Hungarian [6, 7], Spanish [15], Turkish [5] schemes.4

The Chinese higher education admissions system is certainly the largest in the world,
with more that 20 million students enrolled in 2009 [20]. The system is based on a centralized
exam, called National College Entrance Examinations, which provides a score assigned to
each students and this induce a ranking of the students by universities. The matching process
(see [19]) is a kind of Boston-mechanism with some extra tweaks that makes the system
manipulable and controversial. The German clearinghouse for higher education admissions
deals only with a small segment of subjects (about 13,000 student from the total 500,000,
see [22]). The clearinghouse is a mixed system, in the first phase the Boston-mechanism
is used and in the second phase the college-proposing Gale-Shapley, so the process is not
incentive compatible [9, 18].

The Hungarian, Irish, Spanish and Turkish higher education matching schemes are all
based on a centralized scoring system. The Irish system has not been described yet in a
scientific paper to the best of our knowledge.5 In the other three countries students are
assigned a score with regard to each programme they applied to, these scores are coming
mainly from their grades and entrance exams. The scores of a student may differ at two
programmes, since when calculating the score of a student for a particular programme only
those subjects are considered which are relevant for that programme. The solution of the
admission processes are represented by the so-called score-limits, which are referred to as
’base scores’ in Turkey [5] and ’cutoff marks’ in Spain. The score-limit of a programme
means the lowest score that allows a student to be admitted to that programme. The score-

3Each applicant applies to at most five universities, but does not inform universities about her preferences
among them. Universities rank students using results of Unified State Exams. Two ’admission rounds’ are
organized that are similar to the first two steps of a deferred acceptance procedure. After the second step,
universities that still have empty seats are allowed to organize additional admissions.

4However, we shall note that regrettably these scientific papers deal only with some special features of
these systems (as we also do in this paper) so not all the aspects of these schemes are described. But
luckily, there is a new European research network, called Matching in Practice [25], one of whose aim is to
collect and describe current matching practices in Europe. So hopefully we will have a better picture and
understanding on the current practices, at least in Europe.

5From the information published at the website of the Central Applications Office [21] it seems that
the college-proposing Gale-Shapley algorithm is used in Ireland with some special features. One is that
students can apply for ’level 8’ and ’level 7/6’ courses simultaneously, and these applications are processed
separately, so a student may receive more than one offer at a time. There are deadlines for accepting offers
and if offers are rejected then further offers are made by the higher education institutions, so the mechanism
is somewhat decentralized. The tie-breaking is based on ’random-numbers’ assigned to students with regard
to each programme they applied for, so the ties are broken differently for different programmes involving
perhaps the same applicants.



limits together with the preferences of the students naturally induce a matching, where each
student is admitted to the first place on her list where she achieved the score-limit.

In Turkey [5] the ties are broken according to the date of birth of the students and
the college-proposing Gale-Shapley algorithm is used. In Spain the scoring method is fine
enough (the admission marks are from 5 to 14 with 3 decimal fractions, and some further
priority rules are also used), so ties are very unlikely. They use the applicant-proposing
Gale-Shapley algorithm with the special feature of limiting the length of the preference
lists, a setting that creates strategic issues that were studied in detail by Romero-Medina
[15] and Calsamiglia et al. [10].

In fact, in most applications where ties may occur, the programme coordinators break
these ties. In the high school matching schemes in New York [3] and Boston [4] lottery is
used for breaking ties. However, this may lead to suboptimal solutions as Erdil and Erkin
[11] pointed out, but according to the study by Abdulkadiroglu et al [1] this is the only way
to keep the mechanism strategy-proof. In the Scottish Foundation Allocation Scheme [24],
where the junior doctors are matched to hospitals, the organizers attempt to break the ties
in such a way that in the resulted matching as many doctors are allocated as possible (see
Irving and Manlove [14]).6

In contrast, in the Hungarian higher education admission scheme [23] the ties are not
broken, therefore the students applying for a particular programme with equal scores are
either all accepted or all rejected. We call this an equal treatment policy.

In particular, the ties are handled in the following way in Hungary. No quota may be
violated, so the last group of students with the same score, with whom the quota would
be exceeded, are all rejected. There is however an alternative policy that could be followed
where the quotas may be exceeded by the admission of the last group of students with the
same score, but only if there were unfilled places left otherwise.

As we will show in Section 3, both concepts can lead to matchings that satisfy special
stability conditions based on score-limits that we formalize in Section 2. We refer to the first,
more restrictive solution as H-stable (i.e., higher-stable) score-limits and we call the second,
more permissive solution L-stable (i.e., lower-stable) score-limits. Note that these stable
score-limit concepts generalize the original notion of stability by Gale and Shapley, since
they are equivalent to that if no tie occurs. In Section 4, we show how one can extend the
Gale-Shapley algorithm to find H-stable and L-stable score-limits. Moreover, in Section 5 we
prove that the applicant-oriented versions provide the minimal stable score-limits (therefore
they are the best possible solutions for the applicants), whilst the college-oriented versions
provide maximal stable score-limits (therefore, they are the worst possible solutions for the
applicants).

Furthermore, we show in Section 5 that comparing the H-stable and L-stable score-
limits, the L-stable score-limits are more favorable for the applicants as they are lower. In
particular, we show that no college can have a higher score-limit in the applicant-optimal
L-stable solution than in the applicant-optimal H-stable solution (and the same applies for
the applicant-pessimal solutions produced by the college-oriented versions). Interestingly,
we also show that the applicant-optimal solution produced after a tie-breaking is always
between these two kinds of solutions. Therefore the matchings corresponding to the H-
stable and L-stable score-limits may provide upper and lower bounds for every applicant
regarding her match in a scheme which uses any kind of tie-breaking strategy. Finally, in
Section 6 we give examples showing that neither the H-stable nor the L-stable version of

6In SFAS [24], applicants are ranked by NHS Education for Scotland in a so-called master list, in order
of score each applicant has a numerical score allocated partly on the basis of academic performance and
partly as a result of the assessment of their application form. The range of possible scores (approximately 40
100) is much smaller than the number of applicants (around 750 each year), so there are ties of substantial
length in the master list.



the applicant-oriented score-limit algorithm is strategy-proof. We conclude in Section 7.

2 The definition of stable score-limits

Let A = {a1, a2, . . . , an} be the set of applicants and C = {c1, c2, . . . , cm} be the set of
colleges, where qu denotes the quota of college cu. Let the ranking of the applicant ai be
given by a preference list P i, where cv >i cu denotes that cv precedes cu in the list, i.e. the
applicant ai prefers cv to cu. Let s

i
u be ai’s final score at college cu. Final scores are positive

numbers, as in practice the students with scores below a common minimum threshold are
rejected automatically (this minimum score is currently 200 in Hungary, and it applies for
every study).

The score-limits of the colleges are represented with a non-negative integer mapping
l : C → N. An applicant ai is admitted to a college cu if she achieves the score-limit at
college cu, and that is the first such place in her list, i.e. when siu ≥ l(cu), and siv < l(cv)
for every college cv such that cv >i cu.

If the score-limits l imply that applicant ai is allocated to college cu, then we set the
Boolean variable xi

u(l) = 1, and 0 otherwise. Let xu(l) =
∑

i x
i
u(l) be the number of

applicants allocated to cu under score-limits l.
Furthermore, let lu,t be defined as follows: lu,t(cu) = l(cu) + t and lu,t(cv) = l(cv) for

every v ̸= u. That is, we increase the score-limit of college cu by t (or decrease it if t is
negative), but we leave the other score-limits unchanged.

To introduce the H-stable and L-stable score-limits, first we define the corresponding
feasibility notions. Score-limits l are H-feasible if xu(l) ≤ qu for every college cu ∈ C. That
is, the number of applicants may not exceed the quota at any college. This means that the
last group of students with equal scores, with whom the quota would be exceeded, are all
rejected. Score-limits l are L-feasible if for every college cu ∈ C such that xu(l) ≥ qu it must
be the case that xu(l

u,1) < q. So the quotas may be exceeded at any college, but only with
the worst group of students who are admitted there with equal scores.

We say that score-limits l are H-stable (resp. L-stable) if l are H-feasible (L-feasible)
and for each college cu either l(cu) = 0 or lu,−1 are not H-feasible (resp. L-feasible). Thus
H-stability means that we cannot decrease the score-limit of any college without violating
its quota assuming that the others do not change their limits. L-stability means that no
college cu can admit a student if at least qu of its current assignees have a higher score, but
otherwise the score limits must be as small as possible. H-stability is the concept that is
currently applied in the Hungarian higher education matching scheme.

We note that if no tie occurs (i.e. every pair of applicants have different scores at each
college), then the two feasibility and stability conditions are the same and they are both
equivalent to the original stability concept defined by Gale and Shapley. The correspon-
dence between stable score-limits and stable matchings in case of strict preferences was first
observed by Balinski and Sönmez [5] in relation with the Turkish college admissions scheme
(where ties do not occur due to a tie-breaking strategy based on the age of the applicants).
Furthermore Azevedo and Leshno [2] have also used this observation in a general college
admissions model involving continuum number of students.

3 Stable score-limit algorithms

Both the H-stable and L-stable score-limit algorithms are natural extensions of the Gale–
Shapley algorithm. The only difference is that now, the colleges cannot necessarily select
exactly as many best applicants as their quotas allow, since the applicants may have equal
scores. If the scores of the applicants are all different at each college then these algorithms



are equivalent to the original one. In this section we will present the applicant-proposing
and the college-proposing score-limit algorithms. For simplicity we describe these algorithms
with regard to the H-stability concepts only and we add some information about the L-stable
versions in brackets whenever they differ from the H-stable versions.

College-oriented algorithms:

In the first stage of the algorithm, let us set the score-limit at each college independently to
be the smallest value such that, when all applicants are considered, the number of applicants
offered places does not exceed its quota (resp. may exceed the quota but only if without
the last tie of these students the quota is unfilled). Let us denote these score-limits by l1.
Obviously, there can be some applicants who are offered places by several colleges. These
applicants keep their best offer, and reject all the less preferred ones, moreover they also
cancel their less preferred applications.

In the subsequent stages, the colleges check whether their score-limits can be further
decreased, since some of their offers may have been rejected in the previous stage, hence
they look for new students to fill the empty places. So each college sets its score-limit
independently to be the least possible that keeps the solution H-feasible (resp. L-feasible)
considering their actual applications. If an applicant get a proposal from some new, better
college, then she accepts the best offer, at least temporarily, and rejects or cancels her other,
less preferred applications.

Formally, let lk be the score-limit after the k-th stage. In the subsequent stage, at
each college cu, the largest integer tu is chosen, such that tu ≤ lk(cu) and xu(l

u,−tu
k ) ≤ qu

(resp. if xu(l
u,−tu
k ) ≥ qu then xu(l

u,−tu+1
k ) < qu). That is, by decreasing its score-limit by

the largest score tu that keeps the solution H-feasible, i.e., where the number of applicants
offered a place by cu does not exceed its quota (resp. may exceed the quota but only if
without the last tie of these students the quota is unfilled), by supposing that all other
score-limits remained the same. For each college cu let lk+1(cu) := lu,−tu

k (cu) be the new
score-limit. Again, some applicants can be offered a place by more than one college, so
xu(lk+1) ≤ xu(l

u,−tu
k ). Obviously, the new score-limits remain feasible.

Finally, if no college can decrease its score-limit then the algorithm stops. The H-
stability (resp. L-stability) of the final score-limits is obvious by definition. Let us denote
the corresponding solutions of the H-stable and L-stable versions by lHC and lLC , respectively.

Applicant-oriented algorithms:

Let each applicant propose to her first choice in her list. If a college receives more appli-
cations than its quota, then let its score-limit be the smallest value such that the number
of provisionally accepted applicants does not exceed its quota (resp. may exceed the quota
but only if without the last tie of these students the quota is unfilled). We set the other
score-limits to be 0.

Let the score-limits after the k-th stage be lk. If an applicant has been rejected in the
k-th stage, then let her apply to the subsequent college in her list, say cu, where she achieves
the actual score-limit lk(cu), if there remains such a college in her list. Some colleges may
receive new proposals, so if the number of provisionally accepted applicants exceeds the
quota at a college (resp. exceeds the quota and without the last tie of these students the
quota is still filled), then it sets a new, higher score-limit lk+1(cu).

Again, for each such college cu, this is the smallest score-limit such that the number of
applicants offered a place by cu does not exceed its quota (resp. may exceed the quota but
only if without the last tie of these students the quota is unfilled), by supposing that all



other score-limits remained the same. This means that cu rejects all those applicants that
do not achieve this new limit.

The algorithm stops if there is no new application. The final score-limits are obviously
H-feasible (resp. L-feasible). The solution is also H-stable (resp. L-stable), because after
a score-limit has increased for the last time at a college, the rejected applicants get less
preferred offers during the algorithm. So if the score-limit in the final solution were decreased
by one for this college, then these applicants would accept the offer, and the solution would
not remain H-feasible (resp. L-feasible). Let us denote the corresponding solutions by the
H-stable and L-stable applicant-oriented versions by lHA and lLA, respectively. The following
result is therefore immediate.

Theorem 3.1. The score-limits lHC and lLC obtained by the college-oriented score-limit al-
gorithms are H-stable and L-stable, respectively. The score-limits lHA and lLA obtained by the
applicant-oriented score-limit algorithms are H-stable and L-stable, respectively.

4 Optimality of the outputs

It is easy to give an example to show that not only some applicants can be admitted by
preferred places in lHA as compared to lHC , but the number of admitted applicants can also
be larger in lHA (and the same applies for the L-stable setting). We say that score-limits l
are better than l∗ for the applicants if l ≤ l∗, i.e., if l(cu) ≤ l∗(cu) for every college cu. In
this case every applicant is admitted to the same or to a preferred college under score-limits
l than under l∗.

Theorem 4.1. Given a college admission problem with scores, lHC are the worst possible
and lHA are the best possible stable score-limits for the applicants, i.e. for any H-stable
score-limits l, lHA ≤ l ≤ lHC holds.

Proof. Suppose first for a contradiction that there exists a H-stable score-limit l∗ and a
college cu such that l∗(cu) > lHC (cu). During the college-oriented algorithm there must be
two consecutive stages with score-limits lk and lk+1, such that l∗ ≤ lk and l∗(cu) > lk+1(cu)
for some college cu.

Obviously, lu,−tu
k (cu) = lk+1(cu) by definition. Also, xu(l

u,−tu
k ) ≤ qu < xu(l

u,−1
∗ ), where

the first inequality holds by definition of tu, as we choose the new limit for college cu such
a way that the number of temporarily admitted applicants does not exceed its quota. The
second inequality holds by the H-stability of l∗. So there must be an applicant, say a1, who
is admitted to cu at lu,−1

∗ but not admitted to cu at lu,−tu
k .

On the other hand, the indirect assumption implies that lu,−tu
k (cu) = lk+1(cu) ≤ l∗(cu)−

1 = lu,−1
∗ (cu). Applicant a1 has a score of at least lu,−tu

k (cu), which is enough to be accepted

to cu, so she must be admitted to some college cv under lu,−tu
k (cu) which is preferred to cu.

Obviously a1 must be also admitted to cv under lk. But the H-stability of l∗ implies that
l∗(cv) > lk(cv), a contradiction.

To prove the other direction, we suppose for a contradiction that there exists H-stable
score-limits l∗ and a college cu such that l∗(cu) < lHA (cu). During the applicant-oriented
algorithm there must be two consecutive stages with score-limits lk and lk+1, such that
l∗ ≥ lk and l∗(cu) < lk+1(cu) for some college cu. At this moment, the reason for the
incrementation is that more than qu students are applying for cu with a score of at least
l∗(cu). This implies that one of these students, say ai, is not admitted to cu under l∗
(however she has a score of at least l∗(cu) there). So, by the H-stability of l∗, she must be
admitted to a preferred college, say cv under l∗. Consequently, ai must have been rejected
by cv in a previous stage of the algorithm, and that is possible only if l∗(cv) < lk(cv), a
contradiction.



Theorem 4.2. Given a college admission problem with scores, lLC are the worst possible
and lLA are the best possible L-stable score-limits for the applicants, i.e. for any L-stable
score-limits l, lLA ≤ l ≤ lLC holds.

Proof. Suppose first for a contradiction that there exist stable score-limits l∗ and a college
cu such that l∗(cu) > lLC(cu). During the college-oriented algorithm there must be two
consecutive stages with score-limits lk and lk+1, such that l∗ ≤ lk and l∗(cu) > lk+1(cu) for
some college cu.

This assumptions imply that xu(l
u,−tu+1
k ) < qu ≤ xu(l∗). Here, the first inequality holds

by the L-feasibility of lk+1, and the second inequality by the L-stability of l∗. At the same
time, by our assumption, l∗(cu) > lk+1(cu), so l∗(cu) ≥ lk+1(cu) + 1 = lu,−tu+1

k (cu).
From the two above statements it follows that there must be an applicant, say a1, who

has a score su(a1) ≥ l∗(cu) and is admitted to cu under l∗, but is not admitted to cu under
lu,−tu+1
k . So a1 must have a seat at some college cv under lu,−tu+1

k such that cv >a1 cu.
Obviously, a1 is also admitted to cv under lk. But a1 is not admitted to cv under l∗, therefore
lk(cv) < l∗(cv), a contradiction.

To prove the other direction, we suppose for a contradiction that there exist stable score-
limits l∗ and a college cu such that l∗(cu) < lLA(cu). During the applicant-oriented algorithm
there must be two consecutive stages with score-limits lk and lk+1, such that l∗ ≥ lk and
l∗(cu) < lk+1(cu) for some college cu.

At this moment, the reason for the incrementation is that more than qu students are
applying for cu with score at least l∗, and cu can choose a new score-limit lk+1(cu) =
lu,−tu
k (cu), where tu > l∗(cu)− lk(cu).

This implies that one of those students, who are admitted by cu under lk+1, say a1, is
not admitted to cu under l∗. However she has a score higher than score-limit l∗(cu) there.
So, by the L-stability of l∗, she must be admitted to a preferred college, say cv, under l∗.
Consequently, in the applicant-proposing procedure a1 must have been rejected by cv at
some previous stage, and that is possible only if l∗(cv) < lk(cv), a contradiction.

5 Comparison of the H-stable and L-stable versions

Intuitively it seems that the L-stable version of the algorithm is more applicant-friendly
than the H-stable version. It turns out that we can prove the following result.

Theorem 5.1. The score-limits obtained in the L-stable version of the applicants-oriented
procedure are always equal or lower than the score-limits obtained in the H-stable version of
the applicant-oriented procedure: i.e. lLA ≤ lHA .

Proof. Part I. Some colleges may have number of admitted students less than or equal to
their quota under lHA , i.e. qu−xu(l

H
A ) ≥ 0. Each college cu has a ”waiting” list of applicants,

who would prefer to be admitted to cu rather than to their currently assigned colleges.
Let us apply some random tie-breaking to the original preference relation of the colleges.

Each applicant ai will get a new score piu ≥ siu such that no two applicants will have the same
score at any college. Moreover, the new scores satisfy the following condition: if sju < siu,
then pju < siu. These piu scores are positive real numbers. For example, if there are three
applicants with scores s1u = s2u = 1, s3u = 2, the new scores might be p1u = 1, p2u = 1.5,
p3u = 2.

After that the following procedure is organized. If the number of applicants on cu
college’s waiting list is more than the number of empty seats then college cu sets it’s new
score-limit mH

A (cu) ≤ lHA (cu) equal to the score piu of the last admitted applicant in its



waiting list. Otherwise let mH
A (cu) = 0. Note that the new score-limits mH

A are non-
negative real numbers. This means that each college make offers to applicants from its
waiting list who fit the new score-limit.

Some applicants may receive more than one proposal. Each applicant accepts one, from
the most preferred college, and rejects the others. If there remain any empty seat in colleges
then the second step is organized in the same manner and so on. Thus essentially we
run a college-proposing deferred-acceptance procedure with regard to the new scores. At
the end of this procedure some new score-limits mR are achieved such that mR ≤ lHA by
construction. These new score-limits mR and the corresponding matching µR are stable (in
the Gale-Shapley sense) according to new strict preferences of colleges, also by construction.

Part II. For the strict preference profile and corresponding scores piu from Part I we
can organize applicant-proposing deferred acceptance procedure (which is, in case of strict
preferences, equivalent to both the H-stable and L-stable applicant-oriented algorithms).
The resulting matching µR

A is, of course, stable under strict preferences. Furthermore, we
can define score-limits mR

A that are equal to the score of the last accepted applicant if college
has no empty seats and to 0 otherwise. These score-limits mR

A must be the lowest among
all stable score-limits by the optimality theorem of Gale and Shapley. Therefore mR

A ≤ mR

in particular.
Part III. Now we deal with mR

A score-limits. Let us get back to the original weak order
preferences of the colleges and corresponding applicants’ scores siu. For each college with
xu(l

R
A) = qu we can construct a ”waiting” list of applicants, who prefer college cu to their

current matches under mR
A.

Let us now apply the L-feasibility concept. At the first stage each college sets it’s new
score-limit lRA(cu) ≤ mR

A(cu), that is the largest value, which allows to admit equal or more
than the quota under weak order preferences as L-feasibility prescribes. For example, if
there are two applicants with the same score siu, such that one of them is admitted to cu
under mR

A and the other is on the waiting list then we have to ’treat them equally’, so we
should lower the score-limit. Each college makes offers to these additional applicants.

Some applicants may receive more than one offer from colleges; in this case each applicant
chooses the most preferred college. After that if there is any college with number of admitted
applicants less than its quota then a new round starts. Each college chooses new, lower,
L-feasible limit, and so on. That is we run the college-proposing score-limit procedure
under L-stability. At the end, some new score-limits lL are achieved such that lL ≤ mR

A by
construction. These new score limits are L-feasible and L-stable, obviously.

Part IV. For each L-stable score-limit lL we know that lLA ≤ lL from Theorem 4.2, where
lLA are stable score-limits obtained by the L-stable applicant-oriented algorithm.

Now we can construct the following inequalities: lLA ≤ lL ≤ mR
A ≤ mR ≤ lHA . So we can

conclude that for any college admissions problem with score-limits the outcome by the L-
stable applicant-oriented algorithm is better for the applicants (i.e. yields lower score-limits)
than the outcome of the H-stable applicant-oriented algorithm.

Theorem 5.2. The score-limits obtained in the L-stable version of the college-oriented
procedure are always equal or lower than the score-limits obtained in the H-stable version of
the college-oriented procedure: i.e. lLC ≤ lHC .

Proof. Part I. Let us consider the lLC score-limits. Some colleges may have number of
admitted students more than or equal to their quota, xu(l

H
C ) ≥ qu.

Let us apply a random tie-breaking to the original preference relation of the colleges.
Each applicant ai gets a new score piu ≥ siu such that no two applicants have the same score
at any college, and these new scores do not contradict with the original ordering. Moreover,
if sju < siu, then pju < siu). These piu scores are positive real numbers.



After that the following procedure is organized. At the first stage each college sets its
new score-limit mL

C(cu) ≥ lLC(cu) such that according to the new scores piu the number of
applicants who fit this score-limit would be exactly qu. The new score-limits mL

C are non-
negative real numbers. Let mL

C(cu) be equal to 0 if the number of students admitted to
cu is less than cu’s quota and otherwise let mL

C(cu) be equal to the lowest score piu of any
admitted student.

Some applicants are rejected from colleges they were assigned under lLC . Each rejected
applicant then applies to the subsequent college in her list. Colleges receive new applications
and, if necessary, raise the limits so that number of accepted applicants are equal to their
quota. Some new applicants may be rejected, so a second round is organized in the same
manner and so on. Thus we run an applicant-proposing deferred-acceptance procedure with
respect to the perturbed strict preferences. At the end, some new score-limits mR are
obtained such that mR ≥ lLC by construction. These new score-limits are stable (in the
Gale-Shapley sense) according to the new strict preferences of colleges by construction.

Part II. For strict preference profile and corresponding scores piu from Part I we can
organize a college-oriented deferred-acceptance procedure. The resulting score-limits mR

C

are, of course, stable according to these strict preferences. Furthermore, the corresponding
score-limits must be the lowest among all stable score-limits [12]. So, mR

C ≥ mR.
Part III. Now we deal with mR

C score-limits. For each college cu, xu(l
R
A) ≤ qu holds under

mR
C . Each college cu with number of assigned students lower than its quota has score-limit

lRA(cu) = 0. Now we get back to the original weak order preferences of the colleges and
original applicants’ scores siu.

Let us now apply the H-feasibility concept. For each college we can construct a list
of applicants, who prefer college cu to their current matches under mR

C . After that the
following deferred acceptance procedure is organized. At the first stage each college sets it’s
new score-limit lRC(cu) ≥ mR

C(cu) that is the smallest value, which allows to admit equal or
less than the quota under weak order preferences as H-feasibility prescribes. Therefore some
colleges may reject applicants. Each rejected applicant applies to the next college in her list.
Colleges receive new applications and, if necessary, raise their score-limits in such a way that
the number of accepted applicants is less than or equal to their quota. Some applicants may
be rejected and a second round is organized in the same manner and so on. Thus we run
an applicant-proposing deferred-acceptance procedure with regard to H-stability. At the
end, each applicant is either accepted to some college or rejected by all acceptable colleges.
Some new score-limits lH are achieved such that lH ≥ mR

C by construction. These new
score-limits are H-feasible and H-stable, obviously.

Part IV. For each H-stable score-limit lH we know that lHC ≥ lH from theorem 4.1, where
lHC is a H-stable score-limit obtained by the applicant-oriented score-limit algorithm.

Now we can construct the following inequalities: lLC ≤ mR ≤ mR
C ≤ lH ≤ lHC . So we

can conclude that for any college admissions problem with score-limits the outcome by the
L-stable college-oriented algorithm is better for the applicants (i.e. yields lower score-limits)
than the outcome of the H-stable college-oriented algorithm.

Corollary 1. Applicant-optimal H-stable and L-stable scorelimits (lHA and lLA) are upper
and lower bounds (respectively) for scorelimits under any Pareto-optimal stable matching
with random tie-breaking.

6 Strategic issues

Here we give two examples showing that neither of the above described score-limit algorithms
is strategy-proof. The manipulability from the applicants’ side is only interesting in the case



of applicant-oriented algorithms, as the applicants may successfully manipulate the college-
oriented versions even for strict preferences (i.e., for scores with no ties). Therefore we only
consider the applicant-oriented versions in the examples below.

Example 1. Suppose that we have two colleges, cu and cv with one seat in each of them,
and two applicants s1 and s2 applying to both cu and cv with a preference towards cu and
with equal scores at both places. So the preference list of the colleges and students are as
follows.

a1 : cu, cv cu : (a1, a2)
a2 : cu, cv cv : (a1, a2)

Figure 1: An example for the manipulability of the H-stable applicant-proposing algorithm

Here the only stable solution is the empty matching (i.e., score-limits higher than the
scores of a1 and a2 at both colleges). However, if either of the students, say a1 withdraws her
application at cu then the unique H-stable solution (under falsified preferences) is matching
where a1 is allocated to cv and a2 is allocated to cu. So the manipulator (and actually the
other student also) would improve.

The following example is essentially the same as the one that Hatfield and Milgrom [13]
constructed in a different setting but for a similar purpose.

Example 2. Suppose that we have two colleges, cu and cv with one seat in each of them,
and three applicants a1, a2 and a3 applying to both cu and cv with the following scores,
s1u = 1, s2u = 1, s3u = 2, s1v = 3, s2v = 2 and s3v = 1. These can be described equivalently with
the preference lists below.

a1 : cu, cv cu : a3, (a1, a2)
a2 : cv, cu cv : a1, a2, a3
a3 : cv, cu

Figure 2: An example for the manipulability of the L-stable applicant-proposing algorithm

Here the only L-stable solution is the matching {(a1, cv), (a3, cu)} (i.e., with score-limits
l(cu) = 2 and l(cv) = 3). However, if a2 were to reverse her preferences with regard to
the two colleges then the L-stable applicant-oriented algorithm would produce the matching
{(a1, cu), (a2, cu), (a3, cv)}, where the manipulator (and actually both the two other appli-
cants) would improve.

7 Further notes

In this paper we studied the concept of stable score-limits for higher education admissions.
In particular we introduced and analyzed the notions of H-stability and L-stability when
ties occur, a situation currently present in the Hungarian scheme.

As future research, we would like to investigate the college admissions practices of other
countries, in particular those which have centralized systems based on score-limits. Re-
garding the Hungarian application, we would like to conduct an experiment with real data
and compute the four possible extreme stable score-limits, namely the applicant-optimal vs
applicant-pessimal score-limits under H-stability and L-stability. Finally, it would be also



interesting to see how these concepts can be used in other settings, e.g. what could be the
corresponding solutions for the Boston and New York high school matching programs.

Regarding the theoretical problems, we would like to investigate whether there is any
structure behind the H-stable and L-stable score-limits. It would be also worth to study
further the relation of solutions satisfying equal treatment policy and those produced by
tie-breaking strategies. For instance, one may can show some intuitive statements such
that finer scoring methods lead to solutions ’closer’ to the stable matchings obtained by
tie-breaking strategies, and finer scoring methods are ’harder’ to manipulate.
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[8] P. Biró, F. Klijn. Matching with Couples: a Multidisciplinary Survey. To appear in
International Game Theory Review, 2012.
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