Voting with Partial Information:
What Questions to Ask?

Ning Ding and Fangzhen Lin

Abstract

Voting is a way to aggregate individual voters’ preferences. Traditionally a voter’s preference
is represented by a total order on the set of candidates. However, sometimes one may not
have a complete information about a voter’s preference, and in this case, can only represent a
voter’s preference by a partial order. Given this framework, there has been work on computing
the possible and necessary winners of a (partial) vote. In this paper, we take a step further, look
at sets of questions to ask in order to determine the outcome of such a vote. Specifically, we
call a set of questions a deciding set for a candidate if the outcome of the vote for the candidate
is determined no matter how the questions are answered by the voters, and a possible winning
(losing) set if there is a way to answer these questions to make the candidate a winner (loser)
of the vote. We discuss some interesting properties about these sets of queries and prove
some complexity results about them under some well-known voting rules such as plurality and
Borda.

1 Introduction

Voting is a general way to aggregate preferences when a group of people need to make a common
decision but have disagreements on which decision to take. Voting is traditionally studied in game
theory and social choice theory. Recently it has attracted much attention in Al for various reasons,
see for example the survey [Chevaleyre et al., 2007].

Traditionally, a voter’s preference is assumed to be a complete linear order over possible can-
didates (outcomes,or alternatives). One can easily imagine situations where this assumption is too
strong, either because the voter herself cannot rank all of the possibilities linearly or because as an
observer, we do not have a complete knowledge about her preferences. In fact, one of the well-
known formalisms for representing agents’ preferences in Al, CP-nets [Boutilier ef al., 2004], as-
sumes agents’ preferences are partial-ordered. In the context of voting, there has been work in this
direction as well. Given a partial ordering for each voter, Konczak and Lang [2005] considered
the problem of deciding whether a candidate is a necessary winner and possible winner. A neces-
sary winner is a candidate who is always a winner in every possible completion of the given partial
preference profile, while a possible winner is one who is a winner in some of the completions.
The complexities of these two problems under a variety of voting rules, especially the so-called
positional scoring rules, have been extensively studied [Pini et al., 2007; Xia and Conitzer, 2011;
Betzler and Britta, 2010; Baumeister and Rothe, 2010]. More recently, Conitzer et al. [2011] con-
sidered a notion of manipulations in voting with partial information.

In this paper, we continue this line of work. Given a voting context consisting of a set of can-
didates, a set of voters, and for each voter, a partial order on the candidates, we consider in general
how much additional information is still needed in order to make a particular candidate a winner or
loser under a voting rule. If the candidate is already a necessary winner or a necessary loser, then
no additional information is needed. Otherwise, one may want to know which voter is crucial in
deciding the outcome, and for that voter what would be the important questions to ask. These are
obviously important issues to consider when doing voter preference solicitation, and should have
some interesting applications. For instance, in an election, a candidate’s team may want to know
that given what they already know about a group of people, whether more knowledge about their
voting preferences would make any differences to the outcome of the election.

This “additional information or knowledge” can come in many forms. Here we take it to be a set
of pair-wise comparison questions [Conitzer, 2009] of the following form: voter ¢, which candidate
do you prefer, a or b? We then consider sets of these questions that can settle the outcome for a
candidate. There are at least two possible approaches here. A cautious approach looks for a set of
questions such that no matter how these questions are answered by the voters will determine whether
the candidate will win or lose. We call such a set of queries a deciding set for the candidate. This
amounts to saying that as far as the candidate is concerned, if a question is not in a deciding set, then
this question is irrelevant and can be ignored. It is thus not surprising that there is a unique minimal
deciding set regardless of which voting rule to use.

The cautious approach makes sense when we want additional information that can decide the
outcome for the candidate in question. If we want additional information that would make the
candidate a winner (or a loser), then another notion may be more appropriate. Consider the case
when we want a candidate to be a winner. Here we may be interested in a set of questions for
which there are answers that would lead to the candidate being a winner (or loser), hoping that when
voters are asked about these questions they will either indeed answer them as expected or that we
can somehow influence them to answer them that way. We call such a set of questions a possible
winning (or losing) set for the candidate. As can be expected, minimal possible winning (or losing)
sets may not be unique. In contrast to our static notion of query sets, [Conitzer and Sandholm,
2002] defined the dynamic notion of elicitation tree and studied some basic problems related to that
concept.

The rest of the paper is organized as follows. We first review some basic notions of voting with
complete and partial information, and the notions of possible and necessary winners [Konczak and
Lang, 2005]. We then define our notions of deciding sets, possible winning sets, and possible losing
sets. We then prove some interesting properties about deciding sets, and consider how to compute
minimal deciding set under various votin g rules. We next do the same for possible winning sets,
and then conclude the paper.

2 Preliminaries

We assume a finite set N = {1, ..., n} for voters (players, or agents), and a finite set O for candidates
(outcomes, or alternatives). A preference ordering p; of a voter ¢ is a total (linear) order on O, and
a preference profile p is a tuple of preference orderings, one for each voter.

A voting rule (method) f is a function from preferences profiles to non-empty sets of outcomes.
For a preference profile p, f(p) is the set of winners. When a single winner is desired, a tie-breaking
rule can be used to select the one from f(p). Or f is required to be single-valued. In social choice
theory terminology, when f(p) can be a set of outcomes, it is called a social choice correspondence,
and when f(p) is always single-valued, it is called a social choice function.

Most of the popular voting rules can be defined using a score vector (s, So, - - -, Sy,), Where m
is the number of candidates, and Vi < m, s; > s;41. Given such a score vector, for each voter ¢ and
preference ordering p;, the kth ranked candidate according to p; receives the score sy, from the voter.
Given a preference profile p, a candidate’s score is then the sum of of the scores that she receives
from each voter, and the winners are those that have the highest score. Such voting rules are called
scoring rules.

For instance, the plurality voting rule uses the score vector (1,0, - -,0), the veto rule uses the
score vector (1,---,1,0), and the Borda rule uses the score vector (m,m — 1,---,1).

As mentioned in the introduction, we consider the situation when the preference ordering of
a voter may not be total, either because the onlooker who is studying the voting does not have a
complete knowledge of the voter’s preference or that the voter herself is not certain of her own
preferences.

Formally a partial preference ordering p; of voter i is a partial order on the set O of candidates:

for each 0 € O, (0,0) € p; (reflexivity), if both (01, 02) and (02, 01) are in p;, then 0; = 09
(antisymmetry), and if (01, 02) and (02, 03) are in p;, then (01,03) € p; (transitivity). A partial
preference profile is then a tuple of partial preference orderings, one for each voter.

Given a partial preference ordering p;, an extension of p; is a partial preference ordering p; such
that p; C p}. An extension of p; that is a total order is called a completion of p;. Similarly, an
extension of a partial preference profile p is a partial preference profile p’ such that for each i, p; is
an extension of p;, and a completion of a partial preference profile p is a preference profile that is an
extension of p.

Under a voting rule f, a candidate o is said to be a necessary winner of a partial preference
profile p, if for all completion p’ of p, 0 € f(p’). If there exists such a completion, then o is said to
be a possible winner [Konczak and Lang, 2005]. Furthermore, if o is not a possible winner, then we
call o a necessary loser; and if o is not a necessary winner, then we call o a possible loser.

3 Deciding sets, possible winning sets, and possible losing sets of
queries

As mentioned in the introduction, our interest in this paper is on getting additional information to
decide the outcome of a vote. This additional information will be in the form of comparison queries
[Conitzer, 2009] to voters.

Definition 1 A (comparison) query to voter i is one of the form i:{a, b} that asks i to rank candidates
a and b.

When presented with the query i:{a, b}, the voter i has to answer either “a” (she prefers a over
b) or “b” (she prefers b over a).

Definition 2 An answer to a set QQ of questions is a function o from Q to O such that for any

i{a,b} € Q, 0(i:{a,b}) € {a,b}.

Intuitively, if an answer o maps i:{a, b} to “a”, then the preference (a,b) (a > b) is added to
voter ¢’s partial preference ordering, and this may entail some new preferences for ¢, and may even
lead to a contradiction. In the following, we require an answer to be consistent with the preferences
that the voters already have.

Definition 3 Let p be a partial preference profile and Q a set of queries. An answer o to Q is legal
under p if for each voter i, the transitive closure of the following set

p; U{(a,b) | ©:{a,b} € Q ANo(i{a,b}) = a}

which we denote by p;(c, Q), is a partial order on O, the set of candidates. Given a legal answer o
to Q under p, the resulting partial preference profile is then

p(0,Q) = (p1(0,Q), -, pn(0,Q)),

In the following, unless stated otherwise, we always assume that answers to sets of questions are
legal under the given partial preference profile.

We can now define the sets of questions that we are interested in this paper. A deciding set of
queries for a candidate o determines the outcome of the vote for o no matter how the queries in the
set are answered.

Definition 4 Let p be a partial preference profile, o a candidate, and f a voting rule. A set Q) of
queries is a deciding set for o (in p under f) if for every answer o, o is either a necessary winner or
a necessary loser in the new partial profile o(p, Q) under f. Q is a minimal deciding set for o if it
is a deciding set and there is no other deciding set Q' such that Q' C Q.

Consider the incomplete profile in Table 1. If we take plurality as the voting rule, the minimal
deciding set for candidate a is {2:{a, b}, 3:{b, c}}. Firstly, it is a deciding set: if 0(2:{a,b}) = a
then a is necessary winner; otherwise if 0(2:{a,b}) = b and o(3:{b,c}) = ¢, then a is also a
necessary winner; and otherwise if o(2:{a,b}) = b and o(3:{b, c}) = b, then a is a necessary loser.

Next we prove that all its proper subsets are not deciding sets. To prove this we only need to
look at its subsets with size one. For {2:{a, b}}, a counterexample is when o (2:{a, b}) = b. Given
this answer, a is both a possible winner and a possible loser in the new partial preference profile.
Similarly for {3:{b, c} }, we get a counterexample when o (3:{b, c}) = b.

Notice here that the comparison queries 2:{a, ¢} and 3:{a, b} are not in the minimal deciding set.

a > c

b

[SSIN S
V VvV V
o

Table 1: Partial preference profile

Sometimes one may also be interested in knowing the ways to make a candidate a winner or a
loser in a vote. In this case, one may want to find sets of queries that when answered properly will
lead to the candidate being a winner (or loser).

Definition 5 Let p be a partial preference profile, o a candidate, and f a voting rule. A set Q) of
queries is a possible winning (losing) set for o (in p under f) if there is an answer o such that o
is a necessary winner (loser) in the new partial profile o(p, Q) under f. @Q is a minimal possible
winning (losing) set for o if it is a possible winning (losing) set for o, and there is no other possible
winning (losing) set Q' for a such that Q' C Q.

For the example in Table 1, if we still use plurality as the voting rule, then Q1 = {2:{a,b}} isa
possible winning set for a to win because if we set o1 (2:{a,b}) = a then in the new partial profile
p(o1, Q1) as shown in Table 2, a is a necessary winner. Notice that it is not a deciding set. And this
possible winning set is obviously minimal because its only proper subset) is not a possible winning
set for a.

The set Q2 = {3:{a,b}} is also a minimal possible winning set because when o2(3:{a,b}) = a
as shown in Table 3, then in the new partial profile a is again a necessary winner. From this we can
see that there could be multiple minimal possible winning sets for a candidate. Also notice that the
query 3:{a, b} is not in the minimal deciding set. So a minimal possible winning set may not have
any overlap with the minimal deciding set.

1 a > b > ¢
2 a > b > ¢
3 ¢ >

Table 2: o1(p, Q1)
1 a > b > ¢
2 b >
3 > > b

Table 3: o2(p, Q2)

It is easy to see that deciding sets always exist, and if () is a deciding set, and @ C ', then Q'
is also a deciding set. Furthermore, if Q # (), and Q is a deciding set for o, then Q) is both a possible
winning set and a possible losing set for a. But the converse is obviously not true in general.

In the following, we consider computing minimal deciding sets under the plurality and Borda
rules. The case for the veto voting rule is similar to that of plurality.

4 Computing minimal deciding sets

If @ is a deciding set for candidate o, then for any query ¢ not in @, as far as the outcome for o
is concerned, the answer to ¢ is immaterial, thus can be totally ignored. This suggests that for any
voting rule, any partial preference profile, and any candidate, there is a unique minimal deciding set
for the candidate. This is indeed the case.

Theorem 1 For any voting rule f, partial preference profile p, and candidate o, there is a unique
minimal deciding set for o in p under f.

To prove this theorem, we need the following lemma about partial orders.

Lemma 1 Let R be a partial order on S, and a # b two elements in S that are not comparable in
R. Then there are two total orders Ry and Ry such that they both extend R, and are exactly the
same except on a and b: for any x and y, (x,y) € Ry iff (x,y) € Ra provided {x,y} # {a, b}, and
(a,b) € Ry but (b,a) € Rs.

Proof of Theorem Since the number of voters is finite, there exists a minimal deciding set () for o.
Let Q' be any other deciding set for o. If @ is not a subset of)’, then thereisa g € Q but g &€ Q.
Let Qo = @ \ {¢}. We show that Q) is also a deciding set. To show this, suppose ¢ is an answer
to Qg under p. We need to show that o is either a necessary winner or a necessary loser in the new
partial profile p(o, Qo). Suppose ¢ is i:{x, y} for some voter ¢ and candidates = # y. There are two
cases:

1. The answer o already entails an answer to g, that is, either (z, y) or (y, z) is in p; (o, Qo). This
basically means that o is also an answer to). Thus o must be either a necessary winner or a
necessary loser in the new partial profile p(c, Qo) as p(o, Qo) = p(o, Q) and @ is a deciding
set.

2. Otherwise, by applying Lemma 1 to the partial order p;(c,Qp), we see that there are two
answers o1 and o3 to Q U Q' such that o1 and o are the same except on g where we have
o1(q) = x and 02(q) = y. Since ¢ € Q', o1 and o are the same answer when restricted to
Q’'. Since Q' is a deciding set, this means that o must be either a necessary winner in p(o1, Q)
or a necessary loser in p(o1, @’). Suppose o is a necessary winner in p(oq, Q). Then o is also
a necessary winner in p(og, Q') as p(o1, Q') is the same as p(os, Q'). It follows then that o
must also be a necessary winner in both p(oq, Q@ U Q') and p(o2, Q U Q’). Since @ is also a
deciding set, o is also a necessary winner in both p(o1, Q) and p(o2, Q). This means that o is
anecessary winner in p(o, Qp). Similarly, if a is a necessary loser in p(o1, @'), then o is also
a necessary loser in p(c, Qo).

From this theorem, we get the following corollary.

Corollary 2 If Q) and Q5 are both deciding sets for a candidate o, then Q1 N Q> is also a deciding
set for o.

Our next result provides a way to check if a query is in a minimal deciding set.

Suppose S is the set of all comparison queries. Then trivially, S is a deciding set for any candi-
date in any partial preference profile under any voting rule. Now consider any query ¢ € S, and any
given candidate o and partial profile p. Since there is a unique minimal deciding set for o in p, it is
clear that ¢ is in the minimal deciding set iff S\ {q} is not a deciding set.

We thus have the following proposition.

Proposition 1 Let S be the set of all (comparison) queries. For any candidate o, and any partial
preference profile p, a query ¢ = i:{a,b} is in the minimal deciding set if and only if there is an
answer o to S\ {q} such that it can be extended to two answers o1 and o9 to S such that o1(q) = a,
o2(q) = b, and the outcome of o is different in p(o1, S) and p(o2, S) (answer to the question “is o
is necessary winner or loser?” is different).

This proposition will be used in our algorithm for computing the minimal deciding sets under
the plurality rule.

4.1 Plurality

For the plurality and the veto rules, computing the minimal deciding set can be done in polynomial
time. We show this for the plurality rule.

Based on Proposition 1, it suffices to check each query independently. Now, for a given query
q = i:{01, 02}, one may think that we need to check if there are two extensions ¢; and o5 that are
different only for ¢, with a and b ranked top by ¢ respectively, for every pair of candidates a and b.
Actually as plurality only concerns the number of times a candidate is ranked first, the answer to ¢
can affect the score vector only when o; and o5 are ranked top in i’s vote in o; and o3. Now we
come down to a problem of whether there exists an extension of all votes except #’s such that when
1’s vote is considered, the “outcome” for the targeted candidate o changes (when ¢’s top choice is 01
or 0z). This problem is not solely a flow problem because it concerns the score of two candidates.
However, it can be reduced to a flow problem, as shown in EqualScore procedure below. Here is a
detailed description of our algorithm.

Our algorithm makes use of an algorithm for MAX-FLOW problem introduced in [Cormen
et al., 2001]. The problems is, given a graph with capacity as numbers assigned to every edge,
to determine the maximal amount of flow going from node s to ¢ with the flow in each edge not
exceeding its capacity. Here we use MAX-FLOW(G, s, t) to denote the maximal flow from s to ¢ in
the flow graph G. Note that there are polynomial algorithms for MAX-FLOW(G, s, t).

Given a partial preference profile p, we use a >; b to stand for (a,b) € p;. When we add some
new preferences a >; b, c >; d, etc, to p, we mean that we get a new partial preference profile p’
such that p; = p; for every j # i, and p is the transitive closure of p; U {(a,b), (¢, d),---}. When
we delete some voters i1, 4o, - - - , i from p, we mean that we get a new partial preference profile p’
such that the set of voters is V\{i1, 2, -,ix}, and p}; = p; forall j & {i1,i,---,4x}. When we
delete some candidates 01, 02, - - -, 0 from p, we mean that we get a new partial profile p’ such that
the set of candidates is O" = O\{o1, 02, - - -, 01}, and pj is just p; constrained to O’

Algorithm:QueryInMDS(i:{01, 02}, a, p)

Input: a query i:{01, 02}, a candidate a and a partial preference profile p.
Output: yes or no of whether i:{o1, 02} is in the minimal deciding set of a in p.

1. Ifin p there is a w in O\{o1, 02} s.t. w >; 01 or w >; 09, then return no.

2. Else if a ¢ {o1, 02}, then we do the following. First, let p! be the profile we get by adding
01 >; 03 and 0o >; c for every ¢ ¢ {01, 02} to p. If EqualScore(a, 02, p*) = yes, then return
yes, else let p® be the profile we get by adding 02 >; 01 and 01 >; ¢ for every ¢ # 01, 02 into
p. If EqualScore(a, o1, p?) = yes, then return yes, else return no.

3. Else, a € {o01,02}. W.L.O.G, let a = 01. The case for a = o0, is exactly the same. Let p> be
the profile we get by adding a >; c for all alternative ¢ # a to p. If EqualScore(a, m, p?) =
yes for some candidate m € O, m # a, then return yes, else let p* be the profile we get by
deleting voter i from p. p* has one less voter than p. If EqualScore(a, o2, p*) = yes, then
return yes, else return no.

Algorithm:EqualScore(a, b, p)

Input: candidates a and b and a partial preference profile p.
Output: yes or no of whether there is a completion p’ of p s.t. the scores of a and b in p’ are the same
and the maximal among all candidates.

Let S, = {¢ | -3w € O\{a},w >; a € p}, S, = {i | ~Fw € O\{b},w >; b € p},
Si = Sa NSy, sa = |Sal, sb = |S], si = |Sil.

1. If |sq — sp| < s; and |s, + sp — s;| mod 2 = 0, then let p’ be the new profile we get by
deleting all the voters in S, U S, and candidates a and b from p, and T' = |s, + sp — s;|/2. If
Graph(p’, T') = yes, return yes, else return no.

2. Elseif |sq — sp| < s; and |sq + sp — s;| mod 2 #£ 0, then let T = (|s, + sp — 8;| — 1) /2. For
every i € S, U Sy, let p’ be the profile we get from deleting all the voters in S, U Sp\{¢} and
candidates a and b from p. If Graph(p’, T') = yes then return yes. If none of these return yes,
then return no.

3. Else we have |s, — sp| > s;. WL.O.G., let s, > s,. The case for s, > sy is exactly the same.
Let p’ be the profile obtained by deleting all the votes in S, and candidate a from p and set
T = s,. If Graph(p’, T') = yes, then return yes, else return no.

Algorithm:Graph(p, T').

Input: a partial preference profile p and a threshold 7'.
Output: yes or no of to indicate whether there is a completion p’ of p, in which the maximal score
of all candidates in p’ is < 7.

Let N be the set of voters and O the set of candidates in p. Let s and ¢ be two new atoms not in
N U O. Construct a flow graph G with {s,t} U N U O as the set of nodes, and the following three
layers of edges:

1. For every node in IV, an edge from s to it with capacity one.

2. For every node ¢ € N and every node o € O s.t. =30’ € O, 0’ >; o, an edge from i to o with
capacity one.

3. Forevery o € O, an edge from it to ¢ with capacity 7.

If MAX-FLOW(G, s,t) = |N|, then return yes, else return no.

Lemma 2 Graph(p, T) returns yes iff p has a completion with every candidate getting at most score
T under plurality.

Lemma 3 EqualScore(a,b, p) returns yes iff there is a completion p. of p s.t. the scores of a and b
in p. are both the maximal score under plurality.

We omit the proofs of these two lemmas here because of the page limit.

Corollary 3 QueryInMDS(i:{01, 02}, a,p) returns yes iff i:{01, 02} is in the minimal deciding set
of a in p under plurality, and it runs in polynomial time.

The number of edges in the graph in procedure Graph is O(mn), and the max flow found by Graph
is O(n). So if we use FORD-FULKERSON algorithm in [Cormen e al., 2001] to implement MAX-
FLOW, Graph runs in O(mn?) time. EqualScore calls Graph for at most n times, so the complexity
of EqualScore is O(mn?). QueryInMDS calls EqualScore for O(m) times, so QueryInMDS runs
in O(m?n3) time.

As plurality only concerns the candidate ranked first by every voter, according to Proposition 1,
1:{01, 02} is in the minimal deciding set of a iff there are two assignments of a top choice for every
voter, 71 and 72, which are consistent with p s.t. {71(¢), (i)} = {01,02}, and Vj # i, 71(j) =
T9(7) and a is winner under assignment 71 but loser under 7». Firstly, we prove the “=-" part of the
corollary. In step 1, if the procedure does not return no then o; and oy are both legal top choices
for i in p. In step 2, if the algorithm returns yes, then w.l.o.g we have EqualScore(a, o2, p*) =
yes so there is an evidence 77 assigning the maximal number of votes to both a and 02 with 01
the top choice of voter ¢. This is just the evidence 7; in which a is a winner. And we can change
71(7) into 0y to get 7o, in which a is a loser. Notice that only 75 and 77 are different only on i. So
i:{01,02} is in the minimal deciding set of a. In step 3, the algorithm returns yes in two cases:
EqualScore(a, m, p?) is true for some m € O or EqualScore(a, o2, p*) is true. Here w.l.o.g we
suppose a = o1. If EqualScore(a,m, p?) is true, then we have an assignment 7; in which a and
m both have the maximal score among all candidates and 71 (i) = a. We can just change voter
1’s top choice from a into o5 to get 7. And a is winner under 7, but loser under 7. So, again
i:{01,02} is in the minimal deciding set of a in p. If EqualScore(a, o2, p*) returns yes, then we
have an assignment of candidates to every voter except ¢, such that a and o, have equal maximal
score. This is an incomplete assignment of top choices 7. Combining 7" with 71 (i) = a we get 71
in which a wins, while combining it with 75(7) = 02 we get 2 in which a loses. So we can conclude
{01, 02} is in the minimal deciding set of a.

Then we prove the “<=" part of the corollary. As we just argued in the previous paragraph, there
are two assignments of top choice 7; and 7, for every voter as we described. Suppose we record
score of a candidate ¢ under 7; and 7 as s! and s2, and the maximal score among all candidates

under 71 and 75 as s}, and s2 .. Notice that we always have |s. — s2| < 1,[s},. —s2..] <1
and s = sl and s2 < s2_ . Ifa ¢ {01,002}, then s} = 52,502, — sl =1, and
st =sl Asthes? > sl andw.lo.gonly oy has a higher score in 73 than in 71, so we have
that s}, = s}, = si and s2, = s2,,.. Notice that under 7; which is consistent with p, 03 and a

both have maximal score among all candidates, so EqualScore(a, 02, p?) = yes and so our algorithm
will return yes in step 2.

If a € {01, 02}, then by a similar analysis we could conclude that our algorithm will also return
yes. So we have proven Corollary 3. As there are only polynomial such queries, computing the
minimal deciding set is also in P.

If a € {01,02}, then w.l.o.g, we suppose a = o1. Similarly, s} = s2 + 1 and s2, = s} + 1.

Also, |sL . —s2.. | <lands! =sl ands? < s2 . If a has unique maximal score in 77, then
we have 511)2 = s! — 1 because only 0, has a higher score under 75 than under 77. So our algorithm

will return yes because EqualScore(a, 02, p*) = yes. If some other candidate m also has maximal
score under 71, then it will also return yes because EqualScore(a, m, p®) = yes for candidate m.

4.2 Borda and other scoring voting rules

On the other hand, under the Borda voting rule and other scoring rules, computing minimal deciding
sets is NP-complete.

The Borda voting rule uses the score vector W = {m, m — 1,---, 1}, where m is the number of
candidates. Given a partial preference profile p, and a candidate o, it is known that checking if o is a
possible winner in p under Borda is an NP-complete problem [Xia and Conitzer, 2011]. It came as
no surprise that checking whether a query ¢ is in the minimal deciding set is also an NP-complete
problem.

Theorem 4 The problem of checking if a query q is in the minimal deciding set for a candidate o in
a partial profile p under the Borda voting rule is NP-complete.

Proof The problem is in NP follows from Proposition 1 as checking whether an answer o to S\ {¢}
is legal in p, whether it can be extended to two different answers to ¢ such that the outcomes of o in
the two extensions are different under the Borda rule can all be done in polynomial time, where S is
the set of all queries.

The problem is NP-hard because o is a possible winner iff either o is a necessary winner or the
minimal deciding set for o is not empty. Notice that checking if o is a necessary winner under Borda
can be done in polynomial time [Konczak and Lang, 2005].

In fact, the proof of this theorem gives a more general result:

Theorem 5 For any polynomial time voting rule under which the possible winner problem is NP-
complete and the necessary winner problem is in P, the problem of checking if a query is in the
minimal deciding set is NP-complete.

It is known that except for plurality and veto rules, all scoring rules have the property in the
above theorem [Xia and Conitzer, 2011; Betzler and Britta, 2010; Baumeister and Rothe, 2010]. We
thus have the following corollary.

Corollary 6 For any scoring voting rule that is different from the plurality and the veto rules, check-
ing if a query is in the minimal deciding set is NP-complete.

S Computing possible winning sets

We have seen that there may be multiple minimal possible winning sets. This makes the problem of
computing these sets harder.

Proposition 2 A candidate o is a possible winner in a partial preference profile p iff the set of all
queries is a possible winning set for a. A candidate o is a possible loser iff she is not a necessary
winner iff the set of all queries is a possible losing set for a.

Thus just like Corollary 6, we have the following result.

Theorem 7 For any scoring voting rule that is different from the plurality and the veto rules, check-
ing if a set of queries is a possible winning set is NP-complete.

We do not at present know the complexity of computing a minimal possible winning set. Our
guess is that it is T2’ -complete, same as the complexity of computing minimal models (circumscrip-
tion) in propositional logic [Eiter and Gottlob, 1993].

Neither do we know the exact complexity of checking if a set of queries is a possible losing set
for a candidate. While Proposition 2 implies that checking if the set of all queries is a possible losing
set for a candidate is in P, the problem seems to be harder in general as it requires checking whether
an answer has enough information to conclude that the candidate is a necessary loser, which is a
coNP-complete problem for voting rules such as Borda.

We now show that for the plurality voting rule, deciding whether a query set is a minimal possible
winning set is in P.

5.1 Plurality

Algorithm: PossibleWinningSet(Q, p, a):

Input: A query set @), a partial profile p and a candidate a, and we assume that Vi:{b, c} € Q, (b, ¢) ¢

pi; (¢,b) & pi.
Output: yes or no of whether () is a possible winning set of @ in p.

1. For every voter i, let G; be the undirected graph with O as nodes and {(b, ¢) | i:{b, c} € Q} as
edges and .S; be the set of all strongly connected components of G;. For a strongly connected
component u, we use V' (u) to represent the set of vertices of u. For every voter i, for every
strongly connected component u € S; s.t. a € V(u) and =Jo € O,0 >; a,adda >; ctop
for every ¢ # a in V(u). Set s, = the minimal score of a in p.

2.Vie NNU;={u€eS; | VoeV(u), Fwe O,w>;0},U=U,U---UU,

3. Let O be the set of candidates in p and U as defined. Let s and ¢ be two new atoms not in
U UO. Construct a graph G with {s,t} UU U O\{a} as set of nodes, and the following three
layers of edges:

(a) for every node in U an edge from s to it with capacity one.

(b) for every node u € U and every candidate 0 s.t. 0 € O\{a} and 0 € V (u), an edge from
u to o with capacity one.

(c) forevery o € O\{a} an edge from it to ¢ with capacity s.

If MAX-FLOW(G, s,t) = |U|, then return yes, else return no.

Corollary 8 PossibleWinningSet(Q, p, a) returns yes iff Q is a possible winning set of a in p, and it
runs in polynomial time.

As proven in [Konczak and Lang, 20051, a is a necessary winner in p iff the minimal score of a
is higher than the maximal score of any other candidate ¢ € O.

Intuitively, our algorithm tries to maximize the min score of a and see whether the max score of
other candidates can be less than the min score of a under some answer of (). The detailed proof of
the correctness of the algorithm is omitted due to page limit.

The graph constructed has O(mn) edges, and the flow found by the algorithm is O(mn). So
if we use FORD-FULKERSON alogrithm to implement MAX-FLOW, the flow calculation takes
O(m?n?) time. And the strongly connected components part runs in O(m?n) time as SCC is
O(|V| + |E|) and the size of the graph is O(m?). So PossibleWinningSet runs in O(m?n?) time.

To determine whether () is a minimal possible winning set, we just need |Q|+1 calls of the above
algorithm. So determining whether a query set is a minimal possible winning set under plurality is
alsoin P.

6 Related works

We have mentioned that this work generalizes the notions of necessary and possible winners [Kon-
czak and Lang, 2005]. It is also closely related to work on vote elicitation (e.g. [Conitzer and
Sandholm, 2002; Procaccia, 2008]). In vote elicitation, one is often interested in a dynamic question
and answering process [Conitzer and Sandholm, 2002]. Here we are looking at statically, in the
current state, how many possible questions one needs to ask in order to determine the outcome of a
vote w.r.t. to a particular candidate. These two approaches are closely related. For instance, given

our notion of minimal deciding sets, we can proceed in the following way to decide the outcome
for a candidate x: in the current state, find a query that is in the minimal deciding set of x, ask the
query and add the answer to the current partial preference profile; repeat this in the new state until
one reaches a state where x is either a necessary winner or a necessary loser. The dynamic process
thus obtained seems to be new, and we plan to explore its properties and connections with existing
dynamic approaches in our future work.

Following the theoretical study of vote elicitation, researchers are recently doing some experi-
mental studies of elicitation processes (e.g. [Lu and Boutilier, 2011a; 2011b; Kalech er al., 2011]).
In the these work, the focus is mainly to save the number of questions in and rounds of the elicita-
tion process, and to develop approximations when the partial information is not enough to decide
the winner. In contrast to these approaches, ours may be more easily parallelised and more efficient
when we only care about one candidate.

7 Concluding remarks

We have considered sets of questions to ask the voters about in order to determine the outcome of a
vote with partial information.

A deciding set is one that will determine the outcome of a vote for a candidate no matter how
the queries in the set are answered. One fundamental property about this notion is that among
these sets, there is a unique minimal one. Thus as far as a candidate is concerned, a comparison
between two candidates is irrelevant to her if the associated query is not in her minimal deciding
set. Computationally we have shown that the minimal deciding set can be computed in polynomial
time for the plurality and veto rules, and is NP-complete to compute for other scoring rules. We will
study complexity for other voting rules in our future work.

On the other hand, a possible winning (losing) set for a candidate is one that has an answer that
will lead to the candidate being a necessary winner (loser). For a manipulator, these sets may be
of more interest as they could tell her how to influence the voters to make the candidate a winner
or a loser of the vote. We have shown that for plurality and veto rules, a minimal possible winning
set can be computed in polynomial time. We believe that the same is true for computing a minimal
possible losing set as well. For scoring voting rules such as Borda, the problem is again NP-hard for
checking if a set of queries is a possible winning set.

References

[Baumeister and Rothe, 2010] Dorothea Baumeister and Jorg Rothe. Taking the final step to a full
dichotomy of the possible winner problem in pure scoring rules. In ECAI-10, pages 1019-1020,
Amsterdam, The Netherlands, The Netherlands, 2010. IOS Press.

[Betzler and Britta, 2010] Nadja Betzler and Dorn Britta. Towards a dichotomy for the possible
winner problem in elections based on scording rule. Journal of Computer and System Sciences,
76:812-836, 2010.

[Boutilier et al., 2004] Craig Boutilier, Ronen I. Brafman, Carmel Domshlak, Holger H. Hoos, and
David Poole. Cp-nets: A tool for representing and reasoning with conditional Ceteris Paribus
preference statements. JAIR, 21:135-191, 2004.

[Chevaleyre et al., 2007] Yann Chevaleyre, Ulle Endriss, Jrme Lang, and Nicolas Maudet. A short
introduction to computational social choice. In Jan van Leeuwen, Giuseppe Italiano, Wiebe
van der Hoek, Christoph Meinel, Harald Sack, and Frantiek Plil, editors, SOFSEM 2007: Theory
and Practice of Computer Science, volume 4362 of Lecture Notes in Computer Science, pages
51-69. Springer Berlin / Heidelberg, 2007.

[Conitzer and Sandholm, 2002] Vincent Conitzer and Tuomas Sandholm. Vote elicitation: Com-
plexity and strategy-proofness. In AAAI-02, pages 392-397. AAALI 2002.

[Conitzer ef al., 2011] Vincent Conitzer, Toby Walsh, and Lirong Xia. Dominating manipulations
in voting with partial information. In IJCAI-2011 Workshop on Social Choice and Artificial
Intelligence, 2011.

[Conitzer, 2009] Vincent Conitzer. Eliciting single-peaked preferences using comparison queries,
2009.

[Cormen et al., 2001] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms, Second Edition, chapter 26. MIT Press, 2001.

[Eiter and Gottlob, 1993] Thomas Eiter and Georg Gottlob. Propositional circumscription and ex-
tended closed world reasoning are I15-complete. Theoretical Computer Science, 114:231-245,
1993.

[Kalech et al., 2011] Meir Kalech, Sarit Kraus, Gal A. Kaminka, and Claudia V. Goldman. Practical
voting rules with partial information. Autonomous Agents and Multi-Agent Systems, 22(1):151-
182, January 2011.

[Konczak and Lang, 2005] Kathrin Konczak and Jerome Lang. Voting procedures with incomplete
preferences. In Proc. IJCAI- 05 Multidisciplinary Workshop on Advances in Preference Handling,
2005.

[Lu and Boutilier, 2011a] Tyler Lu and Craig Boutilier. Robust approximation and incremental
elicitation in voting protocols. In IJCAI-11, pages 287-293, 2011.

[Lu and Boutilier, 2011b] Tyler Lu and Craig Boutilier. Vote elicitation with probabilistic prefer-
ence models: empirical estimation and cost tradeoffs. In Proceedings of the Second international
conference on Algorithmic decision theory, ADT 11, pages 135-149, Berlin, Heidelberg, 2011.
Springer-Verlag.

[Pini et al., 2007] M.S. Pini, F. Rossi, K. B. Venable, and T. Walsh. Incompleteness and incompa-
rability in preference aggregation. IJCAI-07, pages 1464-1469, 2007.

[Procaccia, 2008] Ariel D. Procaccia. Computational Voting Theory: Of the Agents, By the Agents,
For the Agents. PhD thesis, The Hebrew University of Jerusalem, Sep. 2008.

[Xia and Conitzer, 2011] Lirong Xia and Vincent Conitzer. Determining possible and necessary
winners under common voting rules given partial orders. JAIR, 41:25-67, May 2011.

Ning Ding

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong

Email: dning@cse.ust.hk

Fangzhen Lin

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong

Email: f1in@cse.ust.hk

