
Housing Markets with Indifferences: a Tale of

Two Mechanisms

Haris Aziz and Bart de Keijzer

Abstract

The (Shapley-Scarf) housing market is a well-studied and fundamental model of an
exchange economy. Each agent owns a single house and the goal is to reallocate the
houses to the agents in a mutually beneficial and stable manner. Recently, Alcalde-
Unzu and Molis [2011] and Jaramillo and Manjunath [2011] independently examined
housing markets in which agents can express indifferences among houses.They pro-
posed two important families of mechanisms, known as TTAS and TCR respectively.
We formulate a family of mechanisms which not only includes TTAS and TCR but
also satisfies many desirable properties of both families. As a corollary, we show
that TCR is strict core selecting (if the strict core is non-empty). Finally, we settle
an open question regarding the computational complexity of the TTAS mechanism.
Our study also raises a number of interesting research questions.

1 Introduction

Housing markets are fundamental models of exchange economies of goods where the goods
could range from dormitories to kidneys [Sönmez and Ünver, 2011]. The classic housing
market (also called the Shapley-Scarf Market) consists of a set of agents each of which owns
a house and has strict preferences over the set of all houses. The goal is to redistribute
the houses to the agents in the most desirable fashion. Shapley and Scarf [1974] showed
that a simple yet elegant mechanism called Gale’s Top Trading Cycle (TTC) is strategy-
proof and finds an allocation which is in the core. TTC is based on multi-way exchanges of
houses between agents. Since the basic assumption in the model is that agents have strict
preferences over houses, TTC is also strict core selecting and therefore Pareto optimal.

Indifferences in preferences are not only a natural relaxation but are also a practical real-
ity in many cases. Many new challenges arise in the presence of indifferences: core stability
does not imply Pareto optimality; the strict core can be empty [Quint and Wako, 2004];
and strategic issues need to be re-examined. In spite of these challenges, Alcalde-Unzu and
Molis [2011] and Jaramillo and Manjunath [2011] proposed desirable mechanisms for hous-
ing markets with indifferences. Alcalde-Unzu and Molis [2011] presented the Top Trading
Absorbing Sets (TTAS) family of mechanisms which are strategy-proof, core selecting (and
therefore individually rational), Pareto optimal, and strict core selecting (if the strict core is
non-empty). Independently, Jaramillo and Manjunath [2011] came up with a different fam-
ily of mechanisms called Top Cycle Rules (TCR) which are strategy-proof, core selecting,
and Pareto optimal. Whereas it was shown in [Jaramillo and Manjunath, 2011] that each
TCR mechanism runs in polynomial time, the time complexity of TTAS was raised as an
open problem in [Alcalde-Unzu and Molis, 2011].

We first highlight the commonality of TCR and TTAS by describing a simple class of
mechanisms called Generalized Absorbing Top Trading Cycle (GATTC) which encapsulates
the TTAS and TCR families. It is proved that each GATTC mechanism is core selecting,
strict core selecting, and Pareto optimal. As a corollary, TCR is strict core selecting. We
note that whereas a GATTC mechanism satisfies a number of desirable properties, the
strategy-proofness of a particular GATTC mechanism hinges critically on the order and
way of choosing trading cycles. Finally, we settle the computational complexity of TTAS.



By simulating a binary counter, it is shown that a TTAS mechanism can take exponential
time to terminate.

2 Preliminaries

Let N be a set of n agents and H a set of n houses. The endowment function ω : N → H
assigns to each agent the house he originally owns. Each agent has complete and transitive
preferences %i over the houses and %= (%1, . . . ,%n) is the preference profile of the agents.
The housing market is a quadruple M = (N,H, ω,%). For S ⊆ N , we denote ω(S) = {ω(i) :
i ∈ S} by ω(S). A function x : S → H is an allocation on S ⊆ N if there exists a bijection π
on S such that x(i) = ω(π(i)) for each i ∈ S. The goal in housing markets is to re-allocate
the houses in a mutually beneficial and efficient way. An allocation is individually rational
(IR) if x(i) %i ω(i). A coalition S ⊆ N blocks an allocation x on N if there exists an
allocation y on S such that for all i ∈ S, y(i) ∈ ω(S) and y(i) �i x(i). An allocation x on
N is in the core (C) of market M if it admits no blocking coalition. An allocation that is in
the core is also said to be core stable. An allocation is weakly Pareto optimal (w-PO) if N
is not a blocking coalition. A coalition S ⊆ N weakly blocks an allocation x on N if there
exists an allocation y on S such that for all i ∈ S, y(i) ∈ ω(S), y(i) %i x(i), and there exists
an i ∈ S such that y(i) �i x(i). An allocation x on N is in the strict core (SC) of market M
if it admits no weakly blocking coalition. An allocation that is in the strict core is also said
to be strict core stable. An allocation is Pareto optimal (PO) if N is not a weakly blocking
coalition. It is clear that strict core implies core and also Pareto optimality. Core implies
weak Pareto optimality and also individual rationality.

A mechanism that always returns a Pareto optimal and (strict) core stable allocation is
said to be Pareto optimal and (strict) core-selecting respectively. A mechanism is strategy-
proof if for each agent, reporting false preferences to the mechanism will not be beneficial
to the agent (i.e., when the agent reports false preferences, he will not end up with a house
that he prefers more than the house he would get when he reports his true preferences to
the mechanism).

Desirable allocations of housing markets can be computed via a graph-theoretic ap-
proach. Each housing market M = (N,H, ω,%) has a corresponding simple digraph
G(%) = (N ∪ H,E) such that for each i ∈ N and h ∈ H, (i, h) ∈ E if h % h′ for all
h′ ∈ H, and (h, i) if h = ω(i). In other words, each agent points to his maximally preferred
houses and each house points to his owner. An absorbing set of a digraph is a strongly
connected component from which there are no outgoing edges. Two nodes constitute a
symmetric pair if there are edges from each node to the other. Both nodes are then called
paired-symmetric. An absorbing set is paired-symmetric if each node belongs to a symmetric
pair.

3 GATTC

In this section, we formulate a simple family of mechanisms called Generalized Absorbing
Top Trading Cycle (GATTC) which is designed for housing markets with indifferences and
extends not only TTC but also includes the two families TTAS and TCR. It is based on
multi-way exchanges of houses between agents. We will show that GATTC satisfies many
desirable properties of housing mechanisms such as being core-selecting and Pareto optimal.

Before we describe GATTC, we will introduce the original TTC mechanism which is
for the domain of housing markets with strict preferences. TTC works as follows. For a
housing market M with strict preferences, we first construct the corresponding graph G(%)
as defined above. Then, we start from an agent and walk arbitrarily along the edges until



a cycle is completed. A cycle starting from any agent is of course guaranteed to exist as
each node in G(%) has positive outdegree. This cycle is removed from G(%). Within the
removed cycle, each agent gets the house he was pointing to. The graph G(%) is adjusted so
that the remaining agents point to the most preferred houses among the remaining houses.
The process is repeated until all the houses and agents are deleted from the graph.1

For a housing market with indifferences, TTC can still be used to return a core selecting
allocation: break ties arbitrarily and then run TTC [see e.g., Ehlers, 2012]. However such
an allocation may not be Pareto optimal [see e.g., Alcalde-Unzu and Molis, 2011, Jaramillo
and Manjunath, 2011]. GATTC achieves Pareto optimality and is based on absorbing sets
and the concept of a ‘good cycle’. A good cycle is any cycle in G(%) which contains at
least one node that is not paired-symmetric. By implementing a cycle we mean reallocating
the houses along the cycle. For example consider the cycle a0, h1, a1, . . . , hm, am, h0, a0.
Then for all i ∈ {0, . . . ,m}, house hi+1 mod m is made to point to ai. The following is the
description of a GATTC mechanism.

GATTC

Let G = G(%) and repeat the following until G is empty.

1. Repeat the following a finite number of times on G:

1.1. Either implement a non-good cycle (if G is not empty), or do nothing.

1.2. Either remove a paired-symmetric absorbing set and adjust2 G (if a

paired-symmetric absorbing set exists), or do nothing.

2. Repeatedly remove paired-symmetric absorbing sets and adjust G, until there

are no paired-symmetric absorbing sets in G.

3. If G is not empty, implement a good cycle.

We stress that the choices that a GATTC mechanism makes in steps 1.1. and 1.2. are
allowed to be different each time the mechanism executes these steps during the same run.
The same holds for the number of times that steps 1.1. and 1.2. are repeated, each time
that step 1 is executed. It is not even required that a GATTC mechanism is deterministic:
as long as it has the property that the output can always be obtained by a procedure that
respects the form above, it is part of the GATTC family.

Example 1 Consider a housing market M = (N,H, ω,%) where N = {a1, . . . , a5}, H =
{h1, . . . , h5}, ω is such that ω(ai) = hi for all i ∈ {1, . . . , 5}, and preferences % are defined
as follows:

agent a1 a2 a3 a4 a5

preferences h2 h3 h4, h5 h1 h2
h1 h2 h3 h5 h4

h4 h5
Then, if ties are broken in any way, TTC does not return a Pareto op-

timal allocation. However, GATTC (or TTAS/TCR) returns the follow-
ing Pareto optimal allocations: {{a1, h2}, {a2, h3}, {a3, h5}, {a4, h1}, {a5, h4}} or
{{a1, h1}, {a2, h3}, {a3, h4}, {a4, h5}, {a5, h2}}. Figure 2 (placed at the end of this pa-
per, due to space constraints) illustrates the first steps in the execution of a GATTC
mechanism on this housing market.

Illustration of the first steps of a GATTC mechanism applied to the housing market in
Example 1.

1Please see Section 2.2 of [Sönmez and Ünver, 2011] for an elegant illustration of how TTC works.
2Adjusting is defined here in the same way as for the TTC mechanism.
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Figure 1: Illustration of the first steps of a GATTC mechanism applied to the housing
market in Example 1. The top figure shows the graph as initialized. The algorithm proceeds
by executing step 1 zero times, removing no paired-symmetric absorbing sets in step 2
(as there are none), and implementing the cycle (a1, h2, a2, h3, a3, h4, a4, h1, a1) in step 3.
The graph after implementing this cycle is shown in the middle figure. Subsequently, the
mechanism removes the paired-symmetric absorbing sets, forcing a5 to point to his second-
most preferred houses, i.e., house h4.

We say that a housing market mechanism is valid if it terminates and returns a proper
allocation.

Theorem 1 GATTC is valid, core-selecting, and Pareto optimal.

Proof: We prove each property separately:

• Valid: At the beginning of every step, G has the property that each node has positive
out-degree. For non-empty graphs with this property, an absorbing set of cardinality
greater than 1 is guaranteed to exist [Kalai and Schmeidler, 1977]. Therefore, if G is
not empty, then at step 1.1. there is guaranteed to be a cycle, and at step 3. there
is guaranteed to be a good cycle (because there must be an absorbing set that is
not paired-symmetric). In each iteration (of steps 1, 2, and 3), if paired-symmetric
absorbing sets exist they are removed in Step 2.3 Also, at least one good cycle is
implemented in step 3 which reduces the number of non-paired-symmetric nodes.
Therefore, there can be a maximum of O(n) iterations until GATTC terminates. Since
each removed house is allocated to the agent it was last pointing to, GATTC returns
a proper allocation.

• Core selecting: When any agent i is removed from the graph along with his allocated
house h, then h is a maximal house for i from among the remaining houses. Therefore
i cannot be in a blocking coalition with the agents remaining in the graph.

• Pareto optimal : Let Sk be the kth paired-symmetric absorbing set that arises at some
point in the GATTC mechanism (and is thus removed from the graph by the GATTC
mechanism, and is included accordingly in the allocation produced by the GATTC
mechanism). In any allocation x in which none of the players in S1 are worse off than
in the allocation produced by GATTC, the players in S1 must be allocated to houses
in S1. Taking this as the base case, it follows by easy induction that in x, the players
of Sk must be allocated to houses in the kth paired-symmetric absorbing set. Next,
suppose that i is a player in Sk for some k. Then no house in Sk is more preferred
by i than the house that the GATTC mechanism assigns him to. It follows that no
player is strictly better off in x than in the allocation produced by GATTC.

This completes the proof. �

3An absorbing set of a graph can be computed in linear time via the algorithm of Tarjan [1972].



Theorem 2 GATTC is strict core selecting in case the strict core is non-empty.

Proof: We prove the statement by proving two claims.

Claim 1 GATTC ensures that if each agent in an absorbing set A can get his maximal
house within A, then it will.

Proof: Define an inward set as a set of vertices without edges pointing outward from A.
An absorbing set is by definition an inward set. We prove this claim for the more general
notion of inward sets. Let A be an inward set that arises at some point in time t during
execution of the GATTC mechanism, and assume that each agent can simultaneously get
a maximal house in A. If A eventually becomes paired-symmetric, then every agent in A
surely gets a maximal house within A. Let us thus assume that A does not eventually
become paired-symmetric. Consider the first point in time t′ where vertices are removed
from A by the mechanism. This point t′ exists because the mechanism terminates. All
cycles that are implemented in between t and t′ either lie completely inside A or completely
outside A, because there are no edges pointing from outside A to a vertex in A. It follows
that at point t′, the removed paired-symmetric absorbing set A′ is a strict subset of A. Note
that agents in A \ A′ cannot get a house from within A′ without some agent in A′ getting
a worse house. Hence, by the assumption that each agent in A can get his maximal house
within A, it follows that agents in A\A′ can still all get a maximal house from within A\A′.
The proof follows by induction; repeating the same argument on the inward set A \A′ that
arises when removing A′ from the graph. �

Claim 2 The returned allocation x is in the strict core if and only if for each absorbing set
A encountered in the algorithm, each agent in A will get his maximal house in A.

Proof: (⇒) Assume there is an agent i ∈ A such that there exists a house h in A for which
h %i x(i). But then i can be involved in a weakly blocking coalition by forming a cycle
within A.

(⇐) Assume that each agent i in A gets a maximal house from within A. Thus i cannot
be part of a blocking coalition. It could still be part of a weakly blocking coalition if an
agent i in A had a maximal house h outside A within the remaining graph and there exists
a cycle of the form i, h, . . . , i. But this is not possible since A is absorbing. �

From the two claims, the theorem follows. �

We also observe that on the domain of strict preferences, GATTC is equivalent to TTC.
The reason is that implementation of any cycle results in a paired-symmetric absorbing set
which is then removed from the graph. Ma [1994] proved that for housing markets with
strict preferences, a mechanism is strict core selecting if and only if it is individually rational,
Pareto optimal, and strategy-proof. On the other hand, we note that in the presence of ties,
even if a mechanism is (strict) core selecting, and Pareto optimal, it is not necessarily
strategy-proof.

Theorem 3 Not every GATTC mechanism is strategy-proof.

Proof Sketch: Consider the following GATTC mechanism in which no non-good cycle is
implemented and every good cycle is found in the following way. Consider ai ∈ N , hj ∈ H
such that (ai, hj) ∈ E , (hj , ai) /∈ E, and ai and hj are in a strongly connected component.
Then, there exists a shortest path P from hj to ai. Find this path P by Dijkstra’s shortest
path algorithm. Path P gives us a good cycle ai, hj , P, ai.



For this subclass of GATTC, it can be shown that an agent may have incentive to lie
about his preferences to obtain a better allocation. Informally, there exist instances of a
housing market in which if an agent a does not lie, it may only get a third most preferred
house. However, if a points to his second most preferred house h in the graph, it can manage
to influence which good cycle is selected and be included in that good cycle. Agent a then
gets allocated h. �

4 TTAS and TCR

We now describe the two families of mechanisms in the literature — TTAS [Alcalde-Unzu
and Molis, 2011] and TCR [Jaramillo and Manjunath, 2011] — designed for housing markets
with indifferences. Both families of mechanisms are extensions of TTC. We will later show
that both families are subclasses of GATTC.

TTAS

Fix a priority ranking of the houses; i.e., a complete, transitive and

antisymmetric binary relation over H. Construct the graph G(%), and run the

following procedure on it (starting with i = 1, incrementing i every iteration)

until no more agents are remaining in the graph.

Step i

(i.1) Let each remaining agent point to her maximal houses among the remaining

ones. Select the absorbing sets of this digraph.

(i.2) Consider the paired-symmetric absorbing sets. Their agents are allocated

the house that the agents currently point to in the graph. These

absorbing sets are removed from the graph.

(i.3) Consider the remaining absorbing sets. Select for each agent a unique

house to point to by using the following criterion: each agent i
currently owning house h provisionally points only to the house that i
likes most (according to %i) among the houses remaining. Ties are broken

by selecting among the candidate houses the one that comes after h in the

priority order (if there is no such house, then select among the candidate

houses the first house in the priority order).

(i.4) Then, in this subgraph, there is necessarily at least one cycle and no two

cycles intersect. Assign (provisionally) to each agent in these cycles

the house that he is pointing to, but do not remove them from the graph.

The algorithm terminates when no agents and houses remain, and the outcome is the
assignment formed during its execution.

TCR

Consider a priority ranking of the agents; i.e., a complete, transitive and

antisymmetric binary relation over A. Do the following until no more agents

are left.

1. Departure: A group of agents is chosen to ‘‘depart’’ if two conditions are

met: i) What each agent in the group holds is among his most preferred

houses (among the remaining ones), and ii) All of the most preferred houses

(among the remaining ones) of the group are held by them. Once a group

departs, each agent in it is assigned what he holds and is removed from the

set of remaining agents. In addition, their houses are removed from the

remaining houses. There may be another group that can be chosen to depart.



The process continues until there are no more groups that can depart. If the

two conditions are not met by any group, then nobody departs.

2. Pointing: Each agent points to an agent holding one of his top houses (among

the remaining ones). Since there may be more than one such agent, the problem

of figuring whom each agent points to is a complicated one.

We solve it in stages as follows:

Stage 1 For each remaining j such that j holds the same house that he held in the

previous step, each i that pointed at j in the previous step points to j

in the current step. Of course, this does not apply for the very first

step.

Stage 2 Each i with a unique top house (among the remaining ones) points to the

agent holding it.

Stage 3 Each agent who has at least one of his top houses (among the remaining

ones) held by an unsatisfied agent points to whomever has the highest

priority among such unsatisfied agents.

Stage 4 Each agent who has at least one of his top houses (among the remaining

ones) held by a satisfied agent who points to an unsatisfied agent points

to whomever points to the unsatisfied agent with highest priority. If

two or more of his satisfied ‘‘candidates’’ point to the unsatisfied

agent with highest priority, he points to the satisfied candidate with the

highest priority.

Stage ... And so on.

3. Trading: Since each remaining agent points to someone, there is at least

one cycle of remaining agents. For each such cycle, agents trade according

to the way that they point and what they hold for the next step is updated

accordingly.

Note that TTAS and TCR mechanisms depend on the priority ordering over H and A
respectively. The variation in priority rankings leads to classes of mechanisms rather than a
single mechanism. Next, we show that TTAS and TCR are subclasses of GATTC in which
cycles are selected via the strict order over houses and agents respectively.

Theorem 4 GATTC generalizes both the TTAS and TCR families of mechanisms.

Proof: (GATTC generalizes TTAS ). (GATTC generalizes TTAS ). Step i.2 of TTAS corre-
sponds to repeatedly executing step 1.2. (and skipping step 1.1). After that, TTAS may
implement a number of non-good cycles. This corresponds in GATTC to executing step
1.1 (skipping step 1.2). However, the proof of Proposition 1 in [Alcalde-Unzu and Molis,
2011] shows that TTAS can never perpetually implement non-good cycles: Either the graph
becomes empty, or eventually a good cycle is found and implemented. So executing in TTAS
step i.2 to i.4 on iterations where a good cycle is implemented, corresponds to executing
steps 3 and 4 of GATTC.

(GATTC generalizes TCR). A TCR rule reduces to the GATTC mechanism if zero
non-good cycles are implemented in Step 1. and if in Step 3 of GATTC, a good cycle is
implemented in the particular way as outlined in the definition as TCR. It is clear from the
Step 2 (pointing) of TCR that the way agents are made to point, the cycle induced involves
at least one node which is not paired-symmetric. Therefore the cycle in question is a good
cycle. �

In contrast to TTAS (which is strict core-selecting), it was not known whether TCR is
also strict core-selecting. As a corollary of Theorems 2 and 4, we obtain the following.



Corollary 1 Each TCR mechanism is strict core selecting (if the strict core is non-empty).

In the next section, we answer an open question concerning the running time of the
TTAS mechanism.

5 Complexity of TTAS

An important property of TTAS is that if an agent i is reallocated a house h during the
running of TTAS but i and h are not yet deleted from the graph, then agent i is guaranteed
to be finally allocated a house h′ ∈ H such that h ∼i h

′ [Lemma 1, Alcalde-Unzu and Molis,
2011]. Therefore the number of symmetric pairs can only increase during the running of the
algorithm although it may stay constant in a number of iterations. Alcalde-Unzu and Molis
[2011] showed that despite a number of stages in which no obvious progress is being made,
TTAS eventually terminates [Proposition 1, Alcalde-Unzu and Molis, 2011]. Although, we
know that TTAS terminates and results in a proper allocation, the proof of [Proposition 1,
Alcalde-Unzu and Molis, 2011] does not help shed light on how many steps are taken in the
running of TTAS.We will show the following.

Theorem 5 There exists a family of housing markets {Mk = (Nk, Hk, ωk,�k) : k ∈ N>0}
with |Nk| = |Hk| = 2k + 1, and corresponding priority rankings {Rk : k ∈ N>0} such that
if the TTAS mechanism receives input Mk and chooses Rk as its priority ranking in step 0,
then the TTAS mechanism runs for at least 2k = 2(|Nk|−1)/2 steps until it terminates.

This theorem shows thus that the TTAS mechanism, according to its current description,
does not run in polynomial time. It still might be that for each instance, there is some
priority ranking such that the TTAS mechanism runs in polynomial time, but then at least
some additional details are needed in the description on how to choose the priority ranking.
The algorithm described in Alcalde-Unzu and Molis [2011] is not sufficient.

Proof: The houses and agents of housing market Mk are named as Hk =
{h1, h′1, h2, h′2, . . . , hk, h′k, hk+1} and {a1, a′1, a2, a′2, . . . , ak, a′k, ak+1} respectively. In the ini-
tial endowment, house hj is assigned to agent aj for all j ∈ [k+1],4 and house h′j is assigned
to agent a′j for all j ∈ [k]. The preference profile of agent aj , j ∈ [k] is described by two
equivalence classes: his class of most preferred houses is {h′j , hj , hj+1}, and the remainder
of the houses is in his other equivalence class, i.e., his class of least preferred houses. The
preference profile of agent a′j , j ∈ [k], is also described by two equivalence classes: His
class of most preferred houses is {hj , h′j , h1} (so for j = 1, this set has cardinality 2), and
the remainder of the houses are in the other equivalence class, i.e., his class of least pre-
ferred houses. The preference profile of agent ak+1 is also described by two equivalence
classes: His class of most preferred houses is {h1}, and the remainder of the houses is in his
other equivalence class, i.e., his class of least preferred houses. The priority ranking R is
(h1, h

′
1, h2, h

′
2, . . . , hk, h

′
k, hk+1).

The high level idea of this example is to simulate a binary counter. The graph that the
TTAS mechanism maintains will contain a single absorbing set at every step: the entire
graph. At every step except the last one, the only agent that prevents the graph from being
paired-symmetric will be agent ak+1. We associate bit-strings of length k to the graphs that
may arise in some of the steps of the TTAS algorithm: Let b ∈ {0, 1}k be any bit-string of
length k, then we define the graph Gb as the graph where for all j,

• aj and a′j all point to their set of most preferred houses,

4Suppose x ∈ N, then [x] stands for the set {1, . . . , x}.



• if bj = 0, then hj points to aj and h′j points to a′j .

• if bj = 1, then hj points to a′j and h′j points to aj .

We prove that for all bit-strings b of length k there is a step ib such that the graph at the
beginning of step ib is equal to Gb. Because there are 2k possible bit-strings, it then follows
that there are at least 2k steps before the algorithm terminates.

In order to understand what happens during the execution of the TTAS algorithm on
an instance Mj , it will be helpful to look at the example of Figure 2, where the graph at
the beginning of every step is shown when we run the TTAS mechanism on M3.

Let us assume that at the beginning of step i of the execution of the TTAS mechanism,
the graph is equal to Gb for some b. We can prove that Gb is strongly connected:

Claim 3 For each length k bit-string b, Gb is strongly connected.

Proof: We first show that there is a path from h1 to every other vertex v.
If b1 = 0, then h1 points to a1 and h′1 points to a′1. If b2 = 0, then there exists a path

(h1, a1, h2, a2, h
′
2, a
′
2). If b2 = 1, then there exists a path (h1, a1, h2, a2, h

′
2, a2).

If b1 = 1, then h1 points to a′1 and h′1 points to a1. If b2 = 0, then there exists a path
(h1, a

′
1, h
′
1, a1, h2, a2, h

′
2, a
′
2). If b2 = 1, then there is a path (h1, a

′
1, h
′
1, a1, h2, a

′
2, h
′
2, a2).

Therefore h1 has a path to each of the following vertices: a1, a2, h1, h2, a
′
1, a
′
2, h
′
1, h
′
2.

Using the same argument, we can see that for each aj , there is a path to aj+1; for each
a′j , there is a path to a′j+1; for each hj there is a path to hj+1; for each h′j , there is a path
to h′j+1. Therefore, it holds that: From h1, there is a path to each aj for j ∈ [k + 1]; From
h1, there is a path to each a′j for j ∈ [k]; From h1, there is a path to each hj for j ∈ [k+ 1];
and from h1, there is a path to each h′j for j ∈ [k].

Similarly, it can be shown that from every vertex, there is a path to h1. This completes
the argument of the claim.

�

Therefore, Gb has only one absorbing set: the whole of Gb.
Also observe that for all b, Gb is not paired symmetric, because of player k + 1. From

this we conclude that if the graph at the beginning of a step i is equal to Gb, for some
b ∈ {0, 1}k, then the TTAS mechanism does not terminate at step i, and the mechanism
will certainly reach step i+ 1.

For some step i of the TTAS mechanism, and for every agent a ∈ N , let Si
a denote the

set of most preferred houses of a that are ranked lower than the house assigned to a in step
i. However, if this set is empty, then define Si

a to be the set of most preferred houses of a.
Let us assume that for step i, the following property holds, which we will call Property Ai:
for every agent a ∈ N , it holds that the set of most preferred houses of a that have been
provisionally assigned to a the least number of times (including 0 times), is Si

a.
We define a straightforward bijection c : {0, 1}k → [2k − 1] ∪ {0} as follows: bit-string b

corresponds to the integer
∑k

j=1 2j−1bj . We then see that the following happens:

Claim 4 Let b be a bit-string of length k, suppose that i is a step in the TTAS mechanism
such that the graph at step i is equal to Gb, and suppose that Property Ai holds.

• If c(b) is even, then the graph at step i + 1 of the TTAS algorithm is equal to Gb+1,
and Property Ai+1 holds.

• If c(b) is odd and not equal to 2k−1, then the graph at step i+2 of the TTAS algorithm
is equal to Gb+1, and Property Ai+2 holds.



Proof: If c(b) is even, it is easy to see that at the beginning of step i+ 1, the graph will be
Gc−1(c(b)+1): the only cycle found in part 3 of step i is (h1, a1, h

′
1, a
′
1, h1). Any other cycles

would have to make use of one of the arcs pointing toward h′1, but that is not possible by
the vertex-disjointness property of the cycles in the subgraph used at part 3 of step i. After
augmenting Gb according to cycle (h1, a1, h

′
1, a
′
1, h1), it is easy to check that the graph is

equal to Gb+1. Also, observe that Property Ai+1 holds.
If c(b) is odd and not equal to 2k − 1, then define j to be the largest in-

dex such that bj′ = 1 for all j′ ≤ j. Then, in part 3 of step i, the cy-
cle (h1, a

′
1, h
′
1, a1, h2, a

′
2, h
′
2, a2, . . . , hj , a

′
j , h
′
j , aj , hj+1, aj+1, h

′
j+1, a

′
j+1, h1) is found, and no

other cycle is found, because otherwise h1 would be in such a cycle: a contradiction. It
is not hard to verify that property Ai+1 holds, and the graph that now arises at the be-
ginning of step i + 1 is again a single absorbing set that is not paired symmetric, because
of ak+1. Step i + 2 will therefore certainly be reached, and it can be verified by similar
reasoning as before that again a single cycle is found in part 3 of step i + 1. This cycle
is (h1, a

′
j+1, hj+1, aj , hj , aj−1, hj−1, aj−2, hj−2, . . . , a1, h1). Augmenting the graph on this

cycle makes the graph exactly equal to Gc−1(c(b)+1). Moreover, Property Ai+2 holds. �

Property A1 is certainly satisfied, and the graph at step 1 is G000.... By straightforward
induction, using the claim above, it follows that for all bit-strings b of length k there is
indeed a step ib such that the graph at the beginning of step ib is equal to Gb. �

6 Discussion

Properties TTAS TCR GATTC

Core, Pareto optimal X X 4Th. 1

Strict core (if non-empty) X 4 Cor. 1 4Th. 2

Strategy-proof X X 7 Th. 3

Polynomial-time 7 Th. 5 X 7 Th. 5

Table 1: Housing market mechanisms: new results are in a bolder font.

We analyzed and compared two recently introduced housing market mechanisms.
Whereas it was shown that TTAS may take exponential time, TCR was shown to be strict
core selecting just like TTAS. The new and old results are summarized in Table 1. Our ab-
straction from TTAS and TCR to GATTC helps identify the crucial higher level details and
commonality of both TTAS and TCR. This leads to simple proofs for properties satisfied
by any GATTC mechanism. Whereas core, strict core, and Pareto optimality are properties
that can be fulfilled by any GATTC mechanism, additionally satisfying strategy-proofness
requires subtlety in choosing which cycles are implemented in which order. This additional
complexity leads to an exponential time lower bound in the case of TTAS and a difficulty in
having a very simple description in the case of TCR. It is easily seen that GATTC, and in
particular TTAS and TCR not only apply to housing markets but also to other extensions
such as agents having multiple number of initial endowments or no endowments or there
being some social endowments i.e., not owned initially by any agent.

Our study leads to a number of further research questions. It will be interesting to charac-
terize the subset of GATTC mechanisms which are strategy-proof or are both strategy-proof
and polynomial-time. Another question is to see whether being a GATTC mechanism is
a necessary condition to simultaneously achieve core stability, Pareto optimality and strict
core stability. We have seen that all known housing market mechanisms which are core



selecting and Pareto optimal are also strict core selecting (if the strict core is non-empty).
This raises the question whether every housing market mechanism which is core selecting
and Pareto optimal is also strict core selecting (if the strict core is non-empty).
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