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Abstract

The original possible winner problem is: Given an unweidhekection with partial preferences
and a distinguished candidatecan the preferences be extended to total ones sucbwias?
We introduce a novel variant of this problem in which not soofiehe voters’ preferences
are uncertain but some of their weights. Not much has beewrkmeviously about the
weighted possible winner problem. We present a generaleinark to study this problem,
both for integer and rational weights, with and without upipeunds on the total weight to be
distributed, and with and without ranges to choose the weifjom. We study the complexity
of these problems for important voting systems such asrsgoules, Copeland, ranked pairs,
plurality with runoff, and (simplified) Bucklin and fallb&oroting.

1 INTRODUCTION

Much of the previous work in computational social choicefoasised on the complexity of manipu-
lation, control, and bribery problems in voting (see theseys by Faliszewski et al. [18, 21]). More
recently, many papers studied the possible winner problenich generalizes the (unweighted)
coalitional manipulation problem. The original possiblamer problem was introduced by Kon-
czak and Lang [24]. The inputto this problemis an electiathartial (instead of total) preferences
and a distinguished candidate, and the question is whetiepossible to extend the partial pref-
erences to total ones such that the distinguished candidase Xia and Conitzer [28] studied this
and also the necessary winner problem. Betzler and Dormi@Baumeister and Rothe [5] estab-
lished a dichotomy result for the possible winner problend Betzler et al. [8, 6] investigated the
parameterized complexity of this problem.

A number of variants of the possible winner problem have stedied as well. Bachrach, Betz-
ler, and Faliszewski [1] investigated a probabilistic gatithereof. Chevaleyre et al. [10] introduced
the possible winner with respect to the addition of new altefrrestproblem, which is related to,
yet different from the problem of control via adding cand&&(see [2, 23]) and is also similar, yet
not identical to the cloning problem in elections [16]. Theariant was further studied by, e.g.,
Xia, Lang, and Monnot [29] and Baumeister, Roos, and Rothe The latter paper in particular
considered a weighted variant of the possible winner prapknd it also introduced and studied
this problem under voting rule uncertainty, an approachwtaa followed up recently by Elkind and
Erdélyi [14] who applied it to coalitional manipulation]]L Baumeister et al. [3] studied variants of
the possible winner problem with truncated ballots. Langl€f25] and Pini et al. [27] investigated
the possible and necessary winner problem for voting tredswaulti-round election systems such
as STV. Most of the papers listed above consider amiyweightecelections. We present a general
framework to study theveightedpossible winner problem, and we focus on elections where not
some of the voters’ preferences, but some of thights are uncertain. The problems we study
in our framework come with integer or rational weights, wathwithout upper bounds on the total
weight to be assigned, and with or without given ranges tmsadhe weights from. An interesting
point in this regard is that while the original possible weénmproblem generalizes the coalitional
manipulation problem [11], certain variants of the possivinner problem with uncertain weights
generalize constructive control by adding/deleting v®f2r 23].
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The following situation may motivate why it is interestirgstudy the possible winner problem
with uncertain weights. Imagine a company that is going wdkeon its future strategy by voting at
the annual general assembly of stockholders. Among theepaniolved, everybody’s preferences
are common knowledge. However, who will succeed with itfgsred alternative for the future
company strategy depends on the stockholders’ weightspnéow many stocks they each own, and
there is uncertainty about these weights. Is it possiblss@a weights to the parties involved (e.g.,
by them buying new stocks) such that a given alternative WiAs another example, suppose we
want to decide which university is the best in the world basedlifferent criteria (e.g., graduation
and retention rates, faculty resources, student selsgtiwic.). Each criterion can be seen as a
voter who gives a ranking over all universities (candidat&uppose the voting rule is fixed (e.qg.,
plurality), but the chair can determine the weights of th@#eria. It is interesting to know whether
a given university can win if the chair chooses the weightefcdly.

2 PRELIMINARIES

An electionis a pair(C,V) consisting of a finite se€ of candidates and a finite list of voters
that are represented by their preferences over the caedide and are occasionally denoted by
V1,...,Vjy|- A voting system?’ is a set of rules determining the winning candidates acogrtti the
preferences iv. The voting systems considered here are all preferencedbtimt is, the votes are
given as linear orders ovéx. For example, iC = {a,b,c,d} then a votea > ¢ > b > d means that
this voter (strictly) preferato c, cto b, andb to d. If such an order is not total (e.g., when a voter
only specifiesa > ¢ > d as her preference over these four candidates), we say itastialporder.
For winner determination in weighted voting systems, a vaiéweightw is considered as if there
werew unweighted (i.e., unit-weight) votes

For a given electioriC,V), theweighted majority graph (WMG$ defined as a directed graph
whose vertices are the candidates, and we have ancedgd of weightN(c,d) between any two
verticesc andd, whereN(c, d) is the number of voters preferrirmgo d minus the number of voters
preferringd to c. Note thatin the WMG of any election, all weights on the eduas the same parity
(and whether it is odd or even depends on the parity of the eawftvotes), andN(c,d) = —N(d,c)
(which is why it is enough to give only one of these two edgedieitly).

We will consider the following voting rules.

e Positional Scoring Rules:These rules are defined byseoring vectord = (a1,02,...,0m),
wheremis the number of candidates, tbeare nonnegative integers, angd> a, > --- > 0.
Let pi(c) denote the position of candidaten votervi’s vote. Thenc receivesay, ) points
fromyv;, and the total score afis 31 ; a,, ) for nvoters. All candidates with the largest score
are thed winners. In particular, we will considdérapproval electionk < m, whose scoring
vector has a 1 in the firé positions, and the remainig— k entries are all 0. The special
case of 1-approval is also knownplsrality and that ofm— 1)-approval aveta The scoring
vector(m—1,m—2,...,2,1 0) defines thdBordarule.

e Copeland” (for each rational number a, 0 < a < 1):3 For any two alternativesandc’, we
can simulate @airwise electiorbetween them, by seeing how many voters preterc’, and
how many prefer’ to c; the winner of the pairwise election is the one preferrederaiten.
Then, an alternative receives one point for each win in axpsér electiona points for each
tie, and zero points for each loss. This is the Copeland sufuitee alternative. A Copeland
winner maximizes the Copeland score.

e Ranked pairs: This rule first creates an entire ranking of all the candislale each step,
we consider a pair of candidatex’ that we have not previously considered; specifically, we

3The original Copeland system [12] is defined for the specilue ofa = 1/2; the generalization to other values is due
to Faliszewski et al. [20].



choose among the remaining pairs one with the higRéstc’') value (in case of ties, we use
some tie-breaking mechanism) and then fix the ooderc’, unless this contradicts previous
orders already fixed (i.e., unless this order violates ttizitg). We continue until we have
considered all pairs of candidates (and so we have a fullimghkA candidate at the top of
the ranking for some tie-breaking mechanism is a winner.

e Plurality with runoff:  This rule proceeds in two rounds. First, all alternativesegit those
two with the highest plurality score are eliminated; in tleeand round (the runoff), the
plurality rule is used to select a winner among these two. &Steabreaking rule is applied in
both rounds if needed.

e Bucklin and fallback voting (both simplified): In a Bucklin election, the voters’ preferences
are linear orders and the levetcore of a candidateis the number of voters rankirsgpmong
their top ¢ positions. The Bucklin score of a candidatés the smallest numbersuch that
more than half of the voters rarksomewhere in their top positions. A Bucklin winner
minimizes the Bucklin scoré.In (simplified) fallback elections, on the other hand, naaito
(more specifically, “top-truncated” as defined in [3]) prefiece orders are allowed. Every
Bucklin winner is also a fallback winner, but if no Bucklinmvier exists (which may happen
due to the voters’ partial orders) a#ds the length of a longest preference order among the
votes, all candidates with the greatest lef/store are the fallback winners. Throughout this
paper we will refer to “simplified Bucklin” and “simplified fdback” simply as Bucklin and
fallback voting.

We will use the following notation. If the set of candidatessay,C = BUDU {c}, then we
mean byc > D > --- thatcis preferred to all candidates, wheleis an arbitrarily fixed ordering
of the candidates occurring I, and “ - -” indicates that the remaining candidates (those fBbm
this example) can be ranked in an arbitrary order afterwards

Some proofs in this paper ubcGarvey’s trick[26] (applied to WMGSs), which constructs a list
of votes whose WMG is the same as some targeted weightedeatirgcaph. This will be helpful
because when we present our proofs, we only need to speeiffy MG instead of the whole list of
votes, and then by using McGarvey’s trick for WMGs, a votssdan be constructed in polynomial
time. More specifically, McGarvey showed that for every uighted majority graph, there is a
particular list of preferences that results in this majogtaph. Extending this to WMGs, the trick
works as follows. For any pair of candidatés,d), if we add two votes¢ >d > ¢z > --- > ¢y and
Cm > Cm_1 > -+ > C3 > C > d, to a vote list, then in the WMG, the weight on the edge: d is
increased by 2 and the weight on the edge: c is decreased by 2, while the weights on all other
edges remain unchanged.

3 PROBLEM DEFINITIONS AND DISCUSSION

We now define our variants of the possible winner problem witbertain weights. Lef be a given
voting system ané € {Q",N}.

&-Possible-Winner-with-Uncertain-Weighists-PWUW-F)

Given: An & election(C,VoUVy), VoNVy = 0, where the weights of the voters\ip are
not specified yet and weight zero is allowed for them, yet alexs inV; have
weight one, and a designated candida¢eC.

Question: Is there an assignment of weighise [F to the votesy; in Vg such that is an&
winner of election(C, Vo UV1) whenv;'s weight isw; for 1 <i < |Vo|?

4We consider only this simplified version of Bucklin voting: the full version (see, e.g., [17]), among all candidatet wi
smallest Bucklin score, sdyfor c to win it is also required that's levelt score is largest.



We distinguish between allowing nonnegative rational Weidi.e., weights inQ*) and non-
negative integer weights (i.e., weightshi¥). In particular, we allow weight-zero votersVfy. Note
that for inputs withvp = 0 (which is not excluded in the problem definition), we obtie ordinary
unweighted (i.e., unit-weight) winner problem 6t Allowing weight zero for voters ivp in some
sense corresponds to control by deleting voters (see [£,1283r in this section we also briefly dis-
cuss the relationship with control by adding voters. Thesoeavhy we distinguish between votes
with uncertain weights and unit-weight votes in our problestances is that we want to capture
these problems in their full generality; just as votes witak preferences are allowed to occur in
the instances of the original possible winner problem. Hgirement of normalizing the weights
in V; to unit-weight, on the other hanis,a restriction (that doesn't hurt) and is chosen at will. This
will somewhat simplify our proofs.

We also consider the following restrictions&fPWUW-F:

e In &-PWUW-RW-F, an&-PWUW-F instance and regions (i.e., interva®)C T, 1 <i < [V,
are given, and the question is the same a§“RWUW-F, except that each weight; must
be chosen fronf; in addition.

e In &£-PWUW-BW-F, an&-PWUW-F instance and a positive boude F is given, and the
guestion is the same as MPWUW-F, except thatzi‘\fl‘wi < B must hold in addition (i.e.,

the total weight that can be assigned must be boundds).by

e In £-PWUW-BwW-RW-F, an &£-PWUW-Bw-IF instance and regions (i.e., intervaR)C F,
1<i < |V, are given, and the question is the same as-RWUW-Bw-F, except that each
weightw; must be chosen fromR; in addition.

One could also define other variants &fPWUW-F (e.g., thedestructivevariant where the
guestion is whethet's victory can be prevented by some weight assignment) agrothriants of
&-PWUW-BwW-RwW-F and &£-PWUW-RwW-F (e.g., by allowingsets of intervaldor each weight),
but here we focus on the eight problems defined above. We facusewinner model (aka. the
co-winneror thenonunigue-winnemodel) where the question is whethleecan be made winner
by assigning appropriate weights. By minor proof adjustisemost of our results can be shown to
also hold in theunique-winnemodel where we ask whetheican be made the only winner.

We assume that the reader is familiar with common compldkigpretic notions, such as the
complexity classes P and NP, and the notions of hardnessangleteness with respect to the
polynomial-time many-one reducibility, which we denote<;.

The following reductions hold trivially among our probleny setting the bound on the total
weight allowed to the sum of the highest possible weightsHeffirst two reductions and by setting
the intervals td0, B] (whereB is the bound on the total weight) for the last two reductions:

PWUW-RW-QF <k PWUW-BW-RW-Q" (1)
PWUW-RW-N <k PWUW-B8W-RW-N 2)
PWUW-BwW-Qt <P PWUW-BW-RW-Q* (3)
PWUW-aBW-N <P PWUW-BwW-RW-N. (4)

Related to our variants of the PWUW problem is the problenoafstructive control by adding
voters (see [2]), CCAV for short. Here, a €&bf candidates with a distinguished candidateC,
a listV of registered voters, an additional \ét of as yet unregistered voters, and a positive integer
k are given. The question is whether it is possible to maken the election by adding at mokt
voters fromV’ to the election.

Obviously, there is a direct polynomial-time many-one &thn from CCAV to PWUWBw-
Rw-N. The voters iV, are the registered voters frormand the voters iNg are those fronv’, where
the weights can be chosen frof@,1} for all votes inVp, and the total bound on the weigbis set



Scoring Rules,  Plurality, 3-AV k-AV, Bucklin, Copeland,

PWUW- Plurality 2-AV, k>4 Fallback Ranked
with runoff Veto Pairs
Q* P P P P P ?
N ? P P P NP-c. NP-c.
BW-RW-QT P P P P P ?
BW-RW-N ? P ? NP-c. NP-c. NP-c.
BW-QT P P P P P ?
BW-N ? P ? NP-c. NP-c. NP-c.
RW-Q " P P P P P ?
RW-N ? P P P NP-c. NP-c.

Table 1: Overview of results. “NP-c.” stands for NP-comelet

to k. If succinct representation is assuntetthere is also a polynomial-time many-one reduction in
the other direction. The registered voters are those Wpnand the unregistered voters are those
from Vy, where each vote is added according to its maximal weighténRWUW instance. The
numberk of voters who may be added equals the boBruh the total weight.

Since there are reductions in both directions, complex@sults carry over from CCAV to
PWUW-s8w-RW-N when we assume succinct representation. For the votingragstonsidered
in this paper, this implies that PWUWw-Rw-N is NP-complete for Copelafdand Copelant
and is solvable in polynomial time for plurality (see [20).2]Note that the NP-hardness results on
CCAV for Bucklin and fallback voting from [17] concern thelfunot the simplified versions of
these voting rules.) These already known cases are nelessheovered by our proofs in the next
section, since they handle several restrictions of the PWdklems at the same time. Conversely,
the results from the next section for PWUEBW-RwW-N all carry over to CCAV if we assume suc-
cinct representation.

4 RESULTS AND SELECTED PROOFS

Table 1 gives an overview of our results. In the next sectiamwill provide or sketch some of the
proofs for these results. Due to space constraints, not@difp can be presented in full detail.

4.1 Integer Weights
We begin with the results for the integer cases.

Proposition1 1. Each of the four variants gblurality-PWUW-N, vetoPWUW-N, and 2-
approvalPWUW-N studied in this paper is if.

2. For each k> 1, k-approvalPWUW-N and kapprovalPWUW-Rw-N are inP.

PROOFE For the first statement, we present the proof details fop@-@val-PWUWBW-RW-N,
where for each vote ik the range of allowed weights {9, 1}. The proof can be adjusted to also
work when other ranges are given.

Given a 2-approval-PWUVgw-Rw-N instance as above, we construct the following max-flow
instance. LeV; denote the list of votes b wherec is ranked among the top two positions. We
may assume, without loss of generality, that the given bl the total weight satisfie® < |V{)| 6
The vertices ar¢s, s, t} UVyU (C\ {c}) with the following edges:

5This means that when there are several identical votes, we i them all but rather store a number in binary saying
how often this vote occurs.
60therwise, the optimal strategy is to let the weights of thies inV{ be 1 and to let the weights of all other votes be 0.



e Thereis an edge— s with capacityB and an edge frord to each node il with capacity 1.

e There is an edge from a notlén V{ to a noded in C\ {c} with capacity 1 if and only ifl is
ranked besidesamong the top two positions In

e Thereis an edge from each nadle C\ {c} tot with capacityB-+ scorec, V1) — scordd,Vy),
wherescorge V;) is the 2-approval score of amy C in vote listV;.”

In the max-flow problem, we are asked whether there exists\afloose value i8. We note that in
the PWUW instance, it is always optimal to chodseotes inVy and to let their weights be 1. The
bound ord — t for d € C\ {c} ensures that the 2-approval scorela$ no more than the 2-approval
score ofc.

The claims for 2-approval-PWUWw-N and 2-approval-PWUWsw-N follow from (2)
and (4).

For the second statement, it suffices to maximize the wedaflitge votes inV; that rankc among
their topk positions, and to minimize the weights of the other votes.

O

In particular, it is open whether 3-approval-PWU8W-Rw-N and 3-approval-PWUWsw-N
are also in P. Fok > 4, however, we can show that these problems are NP-complete.

Theorem 2 For each k> 4, k-approvalPWUW-Bw-Rw-N and kapprovalPWUW-sw-N are NP-
complete.

PROOE lItis easy to see that both problems belong to NP. For pravipdhardness, we give a proof
for 4-approval-PWUWBW-N by a reduction from the NP-complete problemA€T COVER BY
3-SETS(X3C): Given a setZ = {by,..., bz} and a collection” = {Sy,...,S} with |S| = 3 and
S C %4, 1<i<n, does” contain an exact cover faB, i.e., a subcollection”’ C . such that
every element ofZ occurs in exactly one member of'?

Construct an instance &fapproval-PWUWsw-N with the set

C={c.by,...,bsqbi,..., b3, b%,... b3, b3, ... b3}

of candidates, whereis the designated candidate, and with the\gedf n votes of the fornt >
S > ..., the seV; of g— 1 votes of the fornb; > b} > b? > b? > ... for eachj, 1< j < 3q, and the
boundB = g on the total weight of the votes Wy. Recall that the votes i, all have fixed weight
one, and those of the votes\f are fromN. We show that? has an exact cover fo® if and only
if we can set the weights of the voters in this election suelhdlis a winner.

Assume that there is an exact cov&t C . for 4. By setting the weights of the votes>
§) > --- to one for thosey subsetsS contained ins”’, and to zero for all other votes W, cis a
winner of the election, asand allbj, 1 < j < 3q, receive exactly points, whereabl, bJZ, andbj3,
1< j < 3q, receiveq— 1 points each.

Conversely, assume thatan be made a winner of the election by choosing the weightseof
votes inVg appropriately. Note that the bound on the total weight fentbtes invg is B= q. Every
b; getsq— 1 points from the votes iW;, andc gets points only from the votes Wfy. Since there are
always somd; getting points if a vote fronvp has weight one, there are at least thogdavingq
points if a vote fromVy has weight one. Henaemust getq points from the votes iV by setting
the weight ofg votes to one. Furthermore, evdsycan occur only once in the votes having weight
one inVp, as otherwise would not win. Thus, th& corresponding to the votes of weight oné/n
must form an exact cover fog.

“Note that if this capacity is negative, the given 2-apprdvsV UW-Bw-rRw-N instance is trivially a no-instance, since
can never be made a winner.



By adding dummy candidates to fill the positions receivingq\fs we can adapt this proof for
k-approval for any fixedk > 4. NP-hardness fdeapproval-PWUWBwW-RW-N, k > 4, then follows
from the trivial reduction (4) stated in Section 3. O

We now show that all variants of PWUW with integer weightsdFe-complete for Copelafd
ranked pairs, Bucklin, and fallback elections.

Theorem 3 For each rational numbea, 0 < a < 1, every variant ofCopeland-PWUW-N stud-
ied in this paper isNP-complete.

PrROOF NP membership is easy to see for all problem variants. Wedims/e NP-hardness for
Copeland-PWUW-N, and then show how to modify the proof for the variants of thebfem.
Given an X3C instancé#,.”) with 2 = {by,...,bzy} and.” = {S,,..., S}, we construct the
following PWUW instance for Copelafid where the set of candidatesd8U {c,d,e}. Without
loss of generality we assume tltpt 4 and we are asked whethecan be made a winner.

The votes orC are defined as follows/y will encode the X3C instance and will be used to
implement McGarvey'’s trickVy consists of the followingy votes: For eacl), 1 < j < n, there is a

voted > e > § >c>---. Vi is the vote list whose WMG has the following edges:
e ¢ — d with weightg+ 1, d — ewith weightq+ 1, ande — ¢ with weightq+ 1.

e For everyi, 1<i < 3q,d— by ande — b; each with weighg+ 1, andb; — ¢ with weight
q—3.

e The weight on any other edge not defined above is no more than 1.

It follows that no matter what the weights of the votesvinare, d beatse ande beatsc in
pairwise elections, and bothande beat all candidates i in pairwise elections. Fat to be a
winner,c must bead in their pairwise election, which means that the total weafhhe votes in/
is no more tham. On the other hand; must beat all candidates iw. This happens if and only if
the votes invy that have positive weights correspond to an exact cove#,adnd all of these votes
must have weight one. This means that CopefaRVUW-N is NP-hard.

For thesw andBw-Rw variants, we leB = q; for therw andBw-Rw variants, we let the range
of each vote i be{0, 1}. O

Theorem 4 All variants ofrankedpairs PWUW-N studied in this paper ardlP-complete.

PROOF The proof is similar to the proof of Theorem 3. That the peoh$ are in NP is easy
to see. For the hardness proof, given an X3C instaiges’) with % = {by,...,bsq} and
7 =1S,...,S}, we construct the following ranked-pairs-PWUMW/instance, where the set of
candidates is#U{c,d}. We are asked whetheican be made a winnévy consists of the following
nvotes: For each,1 < j < n, there is a vote > § >c>d>---.Vyisthe vote list whose WMG
has the following edges, and is constructed by applying Me&és trick:

e c— d with weight 21+ 1,d — e with weight 44+ 1, ande — ¢ with weight 21+ 1.

e Foreveryi, 1<i < 3q,d — bj ande — b; each with weight 8§+ 1, andb; — ¢ with weight
4q9—1.

e The weight on any other edge not defined above is 1.

If the total weight of votes in/ is larger tharg, then the weight o — ¢ ande — b in the
WMG is at least §+ 2, and the weight ol — e is no more than § which means that is not
a winner for ranked pairs. Moreover,dfis a winner, then the weight on ay — ¢ should not
be strictly higher than the weight an— d, otherwiseb; — c will be fixed in the final ranking. It



follows that if c is a winner, then the votes W that have positive weights correspond to an exact
cover of 4, and all of these votes must have weight one. This meansahkéd-pairs-PWUWN
is NP-hard.

For theBw andBw-Rw variants, we leB = q; for theRw andBw-Rw variants, we let the range
of each vote i be{0, 1}. O

Theorem 5 All variants of Bucklin-PWUW-N studied in this paper ardlP-complete.

PrROOFE NP membership is easy to see for all problem variants. Wegdisve NP-hardness for
Bucklin-PWUW-, and then show how to modify the proof for the variants of thebfem. Given
an X3C instanc¢%,.”) with % = {by,...,b3q} and” = {S,,..., S}, we construct the following
Bucklin-PWUW-N instance. The set of candidates#sJ {c,d} UDUD’, whereD = {d,...,d3q}
andD’ = {dj,...,dy,} are sets of auxiliary candidates. We are asked whetlean be made a

wmner \/y consists of the following votes: Foreacm 1< j<n,thereis avotel > SJ >c>D >

D’ -. Vp consists ofj— 1 copies of% >Cc> D’ ~ D >dandone copy olD’ >Cc> % ~d>D.

If the total weight of votes iy is larger tharg, thend is the unique candidate that is ranked in
top positions for more than half of the votes, which meanschsnot a winner. Suppose the total
weight of the votes iV is at mosty. Then, the Bucklin score afis 3g+ 1 and the Bucklin score
of any candidate if> andD’ is larger than §+ 1. Thereforeg is a Bucklin winner if and only if
the Bucklin score of any candidate i is at least §+ 1. This happens if and only if the votes in
Vp that have positive weights correspond to an exact cove¥ ,0and all of these votes must have
weight one. This means that Bucklin-PWUWis NP-hard.

For theBw andBw-Rw variants, we leB = q; for theRw andBw-Rw variants, we let the range
of each vote in/g be{0,1}. 0

Bucklin voting can be seen as the special case of fallbadkgethere all voters give complete
linear orders over all candidates. So the NP-hardnesgsdsuBucklin voting transfer to fallback
voting, while the upper NP bounds are still easy to see.

Corollary 6 All variants offallback PWUW-N studied in this paper arblP-complete.

4.2 Rational Weights and Voting Systems that Can Be Represtad by Linear
Inequalities

Chamberlin and Cohen [9] observed that various voting reaede represented by systems of linear
inequalitites, see also [19]. We use this property to foateilinear programs, thus being able to
solve the PWUW problem variants with rational weights fazgé voting rules efficiently, provided
that the size of the systems describing the voting rules lignpoially bounded. Note that an LP
with rational instead of integer values can be solved in poigial time [22].

What voting rules does this technique apply to? The cruequirement a voting rule needs
to satisfy is that the scoring function used for winner deieation can be described by linear
inequalities and that this description is in a certain séndependent of the voters’ weights. By
“independent of the voters’ weights” we mean that the pomtsandidate gains from a vote are
determined essentially in the same way in both a weightechanthweighted electorate, but in the
former we have a weighted sum of these points that gives tididate’s score, whereas in the latter
we have a plain sum. Scoring functions satisfying this cimdiare said to baveight-independent
This requirement is fulfilled by, e.qg., the scoring funcBaf all scoring rules, Bucklin, and fallback
voting. Copeland’s scoring function, on the other hand sduat satisfy it. In a Copeland election,
every candidate gets one point for each other candidate esits ln a pairwise contest. Who of
the two candidates wins a pairwise contest and thus gainspel@ud point depends directly on



the voters’ weights. Thus, the Copeland score in a weigheatien is not a weighted sum of the
Copeland scores in the corresponding unweighted electitrei above sense.

In what follows, we have elections where the voter list csigsof the two sublist¥y andV;.
We have to assign weights, ..., Xy, to the voters in. We don’t exclude the case where weight
zero can be assigned, but we will seek to find solutions wheveegghts are strictly positive, since
assigning weight zero to a voter is equivalent to excludimg) toter entirely from the election. For
c € C, let p°(c) denote the position af in the preference of thigh voter inVp, 1 < i < |Vp|, and let
pjl(c) denote the position af in the preference of thgth voter inVy, 1 < j < |Vq|.

Lemma 7 Let& be a voting rule with a weight-independent scoring functloat can be described
by a system A of polynomially many linear inequalities. THeRWUW-Q*, £-PWUW-BwW-Q™,
&-PWUW-RW-QT, and&-PWUW-BwW-Rw-Q* are each inP.

PROOF Letxy,Xo,...,X, be the variables of the systefithat describeg’ for an& election withn
voters. The following linear program can be used to sgiveWUW-Bw-Rw-Q*. Let an instance
of this problem be given: an electid@, Vo UV1) with as yet unspecified weightsf, a designated
candidatec € C, a boundB € Q*, and region®R} C Q*, 1 <i < |Vy|. Thevector of variablesf
our linear program i€ = (X1,X2, - - -, X, X) € RMI+1 and we maximize thebjective functior- X"
with €= (0,0,...,0,1) and the following constraints:

A ()
X—x>0 forl<i<|V (6)
x>0 )

[Vol
i;m <B (8)
X < T for 1 <i< |Vl 9)
—x <=4 forl<i< |Vl (20)

Constraint (5) gives the linear inequalitites that haveaduffilled for the designated candidate
¢ to win under&. By maximizing the additional variablg in the objective function we try to
find solutions where the weights are positive, this is acdgd by constraint (6). Constraint (8)
implements our given upper bouBdor the total weight to be assigned and constraints (9) a@j (1
implement our given rangdg = [¢;,r;] C Q for each weight.

Omit (8) for £-PWUW-Rw-Q*, omit (9) and (10) for&-PWUW-8w-Q*, and omit (8), (9),
and (10) for&-PWUW-Q™.

A solution inQ for a linear program with polynomially bounded constraicas be found in
polynomial time. O

In the following theorems we present the specific systemiseél inequalities describing scor-
ing rules in general, and the voting systems Bucklin, falkpand plurality with runoff. These can
be used to formally specify the complete linear progranestat the proof of Lemma 7.

Theorem 8 For each scoring rulet, a-PWUW-Q*, a-PWUW-Bw-Q*, d-PWUW-Rw-Q™, and
a-PWUW-BW-RW-Q™T are inP.

PROOF We are given an election witin different candidates i€, wherec € C is the distinguished
candidate. Recall thg®(c) denote’s position in the preference of voter € Vo, and thata o
denotes the number of pointgyets for this position according to the scoring vediorLet Sy, (c)
denote the number of points candidatgains from the voters i¥; (recall that those have all weight
one). Then the distinguished candidates a winner if and only if for all candidates € C with



c #c, we have((apjo(c) - apio(d))l<j<vo) X' > Sy, () — Sy (c), wherex = (X1,Xz,....Xy,)) €

RMl are the weights that will be assigned to the votersgnThe linear program for scoring rule
d is of the following form. As in the proof of Lemma 7, we have thector of variableX =
(X1, X2, -, X[, X) € R+ and we maximize the objective functi@nx™ with ¢= (0,0,...,0,1)
and the following constraints:

Vol

- i; (apio(c) - apio(c')) X < Sy(c)—Syu(c) Ve #c (11)
xXi—x>0 for 1<i <|Vy| (12)
xX=0 (13)

Vol
Z\Xi <B (14)

i=
Xi <[ for 1<i < |Vl (15)
=X < —¢ forl<i< |V (16)

Here again, constraints (14) to (16) are needed only forahkticted variants.
Since we have at mosn— 1)|Vo| + 3|Vo| + 2 = (M+ 2)|Vp| + 2 constraints, this linear program
can be solved in polynomial time. O

Note that by adding to the left-hand side of (11), a solution whegés positive is an assignment
of weights making the distinguished candidate a unique &rinn

Being level-based voting rules, for Bucklin and fallbackimg we have to slightly expand the
presented approach. Due to space constraints, we omit tied @f Theorem 9 and only briefly
sketch the idea. Intuitively, it is clear that we first try t@ke the distinguished candidate a level 1
winner; if this attempt fails, we try the second level; anaso So the linear program in the proof of
Theorem 9 has to be solved for each level beginning with teetfirtil a solution has been found. For
Bucklin voting, the representation by linear inequaliiesiue to Dorn and Schlotter [13], and we
adapt it for the simplified version of Bucklin and fallbacktvagy. For the latter, we add appropriate
constraints if the approval stage is reached.

Theorem 9 Let & be either Bucklin or fallback voting&-PWUW-Q", &-PWUW-BW-Q™, &-
PWUW-RW-Q™, and&-PWUW-BW-RW-Q™ are each inP.

Note that the proof of Theorem 9 does not work in the uniquerer case.

For plurality with runoff we can take a similar approach: Each candidatd different fromc,
we use a set of linear inequalities to figure out whether thgigts a set of weights such that ()
andd enter the runoff (i.e., the plurality scores@&ndd are at least the plurality score of any other
candidate), and (2) beatsd in their pairwise election. Therefore, we have the follogvaorollary
whose proof does not work in the unique-winner case.

Theorem 10 Let PR be the plurality with runoff rulePR-PWUW-Q*, PRPWUW-BW-Q", PR-
PWUW-Rw-QT, andPR-PWUW-BW-RW-QT are each inP.

PrROOFE For each candidaté different fromc, there exists a set of linear inequalities that are
similar to those in the proof of Theorem 8 such thandd enter the runoff if and only if these

inequalities can be satisfied. We also add the followingraity: z{i [ X +|{k|c>p,, d} >

Z{i|d>p0.c} X+ |{k|d >, c}|, where{i| c >, d} denotes those votews < V; for j € {0,1} that

preferctod. Then, for each candidatkdifferent fromc we construct an LP that is similar to the LP
in the proof of Theorem 8. It follows thatis a possible winner if and only if at least one of these
LPs has a feasible solution. O



5 CONCLUSIONS AND OPEN QUESTIONS

We introduced the possible winner problem with uncertaiigivs, where not the preferences but
the weights of the voters are uncertain, and we studied tlolsl@m and its variants in a general
framework. We showed that some of these problem variantsasgto solve and some are hard to
solve for some of the most important voting rules. Interegyi, while the original possible winner
problem (in which there is uncertainty about the votersf@mences) generalizes the coalitional
manipulation problem and is a special case of swap bribély ftie possible winner problem with
uncertain weights generalizes the problem of constructiverol by adding or deleting voters.

Some interesting issues remain open, as indicated in Tabkedl, regarding 3-approval,
Copeland voting, positional scoring rules, and pluralitghwunoff. Also, it would be interest-
ing to study an even more general variant: the weighted plasgiinner problem with uncertainty
about both the voters’ preferences and their weights.
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