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Abstract

The complexity of the winner determination problem has been studied for almost
all common voting rules. A notable exception, possibly caused by some confusion
regarding its exact definition, is the method of ranked pairs. The original version of
the method, due to Tideman, yields a social preference function that is irresolute and
neutral. A variant introduced subsequently uses an exogenously given tie-breaking
rule and therefore fails neutrality. The latter variant is the one most commonly
studied in the area of computational social choice, and it is easy to see that its winner
determination problem is computationally tractable. We show that by contrast,
computing the set of winners selected by Tideman’s original ranked pairs method
is NP-complete, thus revealing a trade-off between tractability and neutrality. In
addition, several results concerning the hardness of manipulation and the complexity
of computing possible and necessary winners are shown to follow as corollaries from
our findings.

1 Introduction

The fundamental problem of social choice theory can be concisely described as follows:
given a number of individuals, or voters, each having a preference ordering over a set of
alternatives, how can we aggregate these preferences into a collective, or social, preference
ordering that is in some sense faithful to the individual preferences? By a preference ordering
we here understand a (transitive) ranking of all alternatives, and a function aggregating
individual preference orderings into social preference orderings is called a social preference
function (SPF).1

A natural idea to construct an SPF is by letting an alternative a be socially preferred
to another alternative b if and only if a majority of voters prefers a to b. However, it was
observed as early as the 18th century that this approach might lead to paradoxical situations:
the collective preference relation may be cyclic even when all individual preferences are
transitive [7].

To remedy this situation, a large number of SPFs have been suggested, together with
a variety of criteria that a reasonable SPF should satisfy. Neutrality and anonymity, for
instance, are basic fairness criteria which require, loosely speaking, that all alternatives and
all voters are treated equally. Another criterion we will be interested in is the computational
effort required to evaluate an SPF. Computational tractability of the winner determination
problem is obviously a significant property of any SPF: the inability to efficiently compute
social preferences would render the method virtually useless, at least for large problem in-
stances that do not exhibit additional structure. As a consequence, computational aspects of
preference aggregation have received tremendous interest in recent years (see, e.g., [9, 5, 4]).

In this paper, we study the computational complexity of the ranked pairs method [15]. To
the best of our knowledge, this question has not been considered before, which is particularly

∗An earlier version of this paper has appeared in the proceedings of AAAI-2012.
1In contrast to a social welfare function as studied by Arrow [1], an SPF can output multiple social

preference orderings with the interpretation that all those rankings are tied for winner. The rationale
behind this is to allow for a symmetric outcome when individual preferences are symmetric, like in the case
of two individuals with diametrically opposed preferences.



surprising given the extensive literature that is concerned with computational aspects of
ranked pairs.2 A possible reason for this gap might be the confusion of two variants of the
method, only one of which satisfies neutrality. In Section 2, we address this confusion and
describe both variants. After introducing the necessary notation in Section 3, we show in
Section 4 that deciding whether a given alternative is a ranked pairs winner for the neutral
variant is NP-complete. Section 5 presents a number of corollaries, and Section 6 discusses
variants of the ranked pairs method that are not anonymous.

2 Two Variants of the Ranked Pairs Method

In this section we address the difference between two variants of the ranked pairs method
that are commonly studied in the literature. Both variants are anonymous, i.e., treat all
voters equally. Non-anonymous variants of the ranked pairs method have been suggested
by Tideman [15] and Zavist and Tideman [20], and will be discussed in Section 6.

The ranked pairs method is most easily described as the result of the following procedure.
First define a “priority” ordering over the set of all unordered pairs of alternatives by giving
priority to pairs with a larger majority margin. Then, construct a ranking of the alternatives
by starting with the empty ranking and iteratively considering pairs in order of their priority.
When pair {a, b} is considered, the ranking is extended by fixing that the majority-preferred
alternative precedes the other alternative in the ranking, unless this would create a cycle
together with the previously fixed pairs, in which case the opposite precedence between a
and b is fixed. Clearly, this procedure is guaranteed to terminate with a complete ranking
of all alternatives.

What is missing from the above description is a tie-breaking rule for cases where two
or more pairwise comparisons have the same support from the voters. This turns out to
be a rather intricate issue. In principle, it is possible to employ an arbitrary tie-breaking
rule. However, each fixed tie-breaking rule biases the method in favor of some alternative
and thereby destroys neutrality.3 In order to avoid this problem, Tideman [15] originally
defined the ranked pairs method to return the set of all those rankings that result from the
above procedure for some tie-breaking rule.4 We will henceforth denote this variant by RP.

In a subsequent paper, Zavist and Tideman [20] showed that tie-breaking rules of a
certain kind are in fact necessary in order to achieve the property of independence of clones,
which was the main motivation for introducing the ranked pairs method. While Zavist and
Tideman [20] proposed a way to define a tie-breaking rule based on the preferences of a
distinguished voter (see Section 6 for details), the variant that is most commonly studied
in the literature considers the tie-breaking rule to be exogenously given and fixed for all
profiles. This variant of ranked pairs will be denoted by RPT. Whereas RP may output a
set of rankings, with the interpretation that all the rankings in the set are tied for winner,
RPT always outputs a single ranking. In social choice terminology, RP is an irresolute SPF,
and RPT is a resolute one. It is straightforward to see that RP is neutral, i.e., treats all
alternatives equally, and that RPT is not. An easy example for the latter statement is the
case of two alternatives and two voters who each prefer a different alternative.

Rather than completely ranking all alternatives, it is often sufficient to identify the
socially “best” alternatives. This is the purpose of a social choice function (SCF). An SCF

2Typical problems include the hardness of manipulation [3, 18, 14] and the complexity of computing
possible and necessary winners [19, 12].

3Neutrality can be maintained if the tie-breaking rule varies with the individual preferences (Section 6).
4This definition, sometimes called parallel universes tie-breaking (PUT), can also be used to “neutralize”

other voting rules that involve tie-breaking [6]. PUT can be interpreted as a possible winner notion: if the
ranked pairs method is used with an unknown tie-breaking rule, the PUT version of ranked pairs selects
exactly those alternatives that have a chance to be chosen in the actual election.



has the same input as an SPF, but returns alternatives instead of rankings. Each SPF gives
rise to a corresponding SCF that returns the top elements of the rankings instead of the
rankings themselves, and we will frequently switch between these two settings. Interestingly,
deciding whether a given ranking is chosen by an SPF can be considerably easier than
deciding whether a given alternative is chosen by the corresponding SCF.

From a computational perspective, RPT is easy: constructing the ranking for a given
tie-breaking rule takes time polynomial in the size of the input (see Proposition 1). For RP,
however, the picture is different: as the number of tie-breaking rules is exponential, executing
the iterative procedure for every single tie-breaking rule is infeasible. Of course, this does
not preclude the existence of a clever algorithm that efficiently computes the set of all
alternatives that are the top element of some chosen ranking.5 Our main result states that
such an algorithm does not exist unless P equals NP.6

3 Preliminaries

For a finite set X, let L(X) denote the set of all rankings of X, where a ranking of X
is a complete, transitive, and asymmetric relation on X. The top element of a ranking
L ∈ L(X), denoted by top(L), is the unique element x ∈ X such that x L y for all
y ∈ X \ {x}. Furthermore,

(
X
2

)
denotes the set of all two-element subsets of X.

Let N = {1, . . . , n} be a set of voters with preferences over a finite set A of alternatives.
The preferences of voter i ∈ N are represented by a ranking Ri ∈ L(A). The interpretation
of a Ri b is that voter i strictly prefers a to b. A preference profile is an ordered list
containing a ranking for each voter.

A social choice function (SCF) f associates with every preference profile R a non-empty
set f(R) ⊆ A of alternatives. A social preference function (SPF) f associates with every
preference profile R a non-empty set f(R) ⊆ L(A) of rankings of A.

An SCF or SPF is neutral if permuting the alternatives in the individual rankings also
permutes the set of chosen alternatives, or the set of chosen rankings, in the exact same way.
Formally, f is neutral if f(π(R)) = π(f(R)) for all preference profiles R and all permutations
π of A. An SCF or SPF is anonymous if the set of chosen alternatives, or the set of chosen
rankings, does not change when the voters are permuted.

For a given preference profile R = (R1, . . . , Rn) and two distinct alternatives a, b ∈ A,
the majority margin mR(a, b) is defined as the difference between the number of voters who
prefer a to b and the number of voters who prefer b to a, i.e.,

mR(a, b) = |{i ∈ N : a Ri b}| − |{i ∈ N : b Ri a}|.

Thus, mR(b, a) = −mR(a, b) for all distinct a, b ∈ A.
The resolute variant of the ranked pairs method takes as input a preference profile R

and a tie-breaking rule τ ∈ L(A×A). It constructs a priority ordering of
(
A
2

)
by ordering all

two-element subsets by the size of their majority margin, using τ to break ties: {a, b} has
priority over {c, d} if |mR(a, b)| > |mR(c, d)|, or if |mR(a, b)| = |mR(c, d)| and (a, b) τ (c, d).7

The priority ordering is then used to obtain a ranking �Rτ ∈ L(A) by way of the following
iterative procedure. Initialise �Rτ as the empty relation. Iteratively consider the pair {a, b}

5As the number of chosen rankings might be exponential, it immediately follows that computing all of
them requires exponential time in the worst case.

6A similar discrepancy can be observed for an SCF known as the Banks set [2]. Whereas Woeginger [17]
has proven that computing Banks winners is NP-complete, Hudry [10] has shown that an arbitrary Banks
winner can be found efficiently.

7Here we assume without loss of generality that the pairs (a, b) and (c, d) are ordered in such a way that
(a, b) τ (b, a) and (c, d) τ (d, c).



with the highest priority among all pairs in
(
A
2

)
that have not been considered so far. There

are two cases.

• Case 1: |mR(a, b)| 6= 0. Without loss of generality assume mR(a, b) > 0. If the
relation �Rτ ∪{(a, b)} is acyclic, the (ordered) pair (a, b) is added to the relation �Rτ .
Otherwise, the pair (b, a) is added to �Rτ .

• Case 2: |mR(a, b)| = 0. Without loss of generality assume (a, b) τ (b, a). If the relation
�Rτ ∪{(a, b)} is acyclic, the pair (a, b) is added to the relation �Rτ . Otherwise, the pair
(b, a) is added to �Rτ .

After all pairs in
(
A
2

)
have been considered, �Rτ is a ranking of A. The resolute variant of

ranked pairs, interpreted as an SCF, returns the top element of �Rτ .

Definition 1. RPT(R, τ) = {top(�Rτ )}.

RPT depends on the choice of τ , and it is not neutral. Tideman [15] defined an irresolute
and neutral variant that chooses all alternatives that are at the top of �Rτ for some tie-
breaking rule τ .

Definition 2. RP(R) = {a ∈ A : there exists τ ∈ L(A×A) such that a = top(�Rτ )}.

The alternatives in RP(R) are called ranked pairs winners for R. In the SPF setting, RP
returns the rankings {�Rτ : τ ∈ L(A×A)}, which are henceforth called ranked pairs rankings
for R.

We will work with an alternative characterization of ranked pairs rankings that was
introduced by Zavist and Tideman [20]. Given a preference profile R, a ranking L of A,
and two alternatives a and b, we say that a attains b through L if there exists a sequence of
distinct alternatives a1, a2, . . . , at, where t ≥ 2, such that a1 = a, at = b, ai L ai+1, and

mR(ai, ai+1) ≥ mR(b, a) for all i with 1 ≤ i < t.

In this case, we will say that a attains b via (a1, a2, . . . , at). A ranking L is called a stack if
for any pair of alternatives a and b it holds that a L b implies that a attains b through L.

Lemma 1 (Zavist and Tideman [20]). A ranking of A is a ranked pairs ranking if and only
if it is a stack.

It follows that an alternative is a ranked pairs winner if and only if it is the top element
of a stack.

4 Complexity of Winner Determination

We are now ready to study the computational complexity of RP. We first consider the
SPF setting and observe that finding and checking ranked pairs rankings is easy. This also
provides an efficient way to find some ranked pairs winner, i.e., some alternative that is
chosen in the SCF setting. The problem of deciding whether a particular alternative is a
ranked pairs winner, on the other hand, turns out to be NP-complete. Finally, we extend
the hardness result to a variant of the winner determination problem that asks for unique
winners.



4.1 Ranked Pairs Rankings

It can easily be seen that an arbitrary ranked pairs ranking can be found efficiently.

Proposition 1. Finding a ranked pairs ranking is in P.

Proof. We fix some arbitrary tie-breaking rule τ ∈ L(A × A) and compute �Rτ , which, by
definition, is a ranked pairs ranking. When constructing �Rτ , in each round we have to check
whether the addition of a pair (a, b) to the relation �Rτ creates a cycle. This can efficiently
be done with a depth-first search.

Deciding whether a given ranking is a ranked pairs ranking is also feasible in polynomial
time, by checking whether the given ranking is a stack.

Proposition 2. Deciding whether a given ranking is a ranked pairs ranking is in P.

Proof. By Lemma 1, it suffices to check whether the given ranking L is a stack. This reduces
to checking, for every pair (a, b) with a L b, whether a attains b through L. Let a and b with
a L b be given, and define w = mR(b, a). We construct a directed graph with vertex set A as
follows. For all x, y ∈ A, there is an edge from x to y if and only if x L y and mR(x, y) ≥ w.
It is easily verified that a attains b through L if and only if there exists a path from a to b
in this graph. The latter property can be efficiently checked with a depth-first search. Since
the number of pairs in L is polynomial, this proves the statement.

4.2 Ranked Pairs Winners

We now consider the SCF setting. As every ranked pairs ranking yields a ranked pairs
winner, Proposition 1 immediately implies that an arbitrary element of RP(R) can be found
efficiently.

Corollary 1. Finding a ranked pairs winner is in P.

Deciding whether a given alternative is a ranked pairs winner, on the other hand, turns
out to be NP-complete.

Theorem 1. Deciding whether a given alternative is a ranked pairs winner is NP-complete.

Membership in NP follows from Proposition 2. For hardness, we give a reduction from
the NP-complete Boolean satisfiability problem (SAT, see, e.g., [13]). An instance of SAT
consists of a Boolean formula ϕ = C1 ∧ · · · ∧ Ck in conjunctive normal form over a finite
set V = {v1, . . . , vm} of variables. Denote by X = {v1, v1, . . . , vm, vm} the set of all literals,
where a literal is either a variable or its negation. Each clause Cj is a set of literals. An
assignment α ⊆ X is a subset of the literals with the interpretation that all literals in α are
set to “true.” Assignment α is valid if ` ∈ α implies ` /∈ α for all ` ∈ X, and α satisfies
clause Cj if Cj ∩ α 6= ∅. A valid assignment that satisfies all clauses of ϕ is a satisfying
assignment for ϕ, and a formula that has a satisfying assignment is called satisfiable.

For a particular Boolean formula ϕ = C1 ∧ · · · ∧ Ck over a set V = {v1, . . . , vm} of
variables, we will construct a preference profile Rϕ over a set Aϕ of alternatives such that a
particular alternative d ∈ Aϕ is a ranked pairs winner for Rϕ if and only if ϕ is satisfiable.

Let us first define the set Aϕ of alternatives. For each variable vi ∈ V , 1 ≤ i ≤ m,
there are four alternatives vi, v̄i, v

′
i, and v̄′i. For each clause Cj , 1 ≤ j ≤ k, there is one

alternative yj . Finally, there is one alternative d for which we want to decide membership
in RP(Rϕ).
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Figure 1: Graphical representation of mRϕ(·, ·) for the Boolean formula ϕ = {v1, v̄2} ∧
{v1, v2} ∧ {v̄1, v2}. The relation �2 is represented by arrows, and �4 is represented by
double-shafted arrows. For all pairs (a, b) that are not connected by an arrow, we have
m(a, b) = m(b, a) = 0.

Instead of constructing Rϕ explicitly, we will specify a number m(a, b) for each pair
(a, b) ∈ Aϕ × Aϕ. Debord [8] has shown that there exists a preference profile R such
that mR(a, b) = m(a, b) for all a, b, as long as m(a, b) = −m(b, a) for all a, b and all the
numbers m(a, b) have the same parity.8 In order to conveniently define m(·, ·), the following
notation will be useful: for a natural number w, a �w b denotes setting m(a, b) = w and
m(b, a) = −w.

For each variable vi ∈ V , 1 ≤ i ≤ m, let vi �4 v̄′i �2 v̄i �4 v′i �2 vi. For each
clause Cj , 1 ≤ j ≤ k, let vi �2 yj if variable vi ∈ V appears in clause Cj as a positive literal,
and v̄i �2 yj if variable vi appears in clause Cj as a negative literal. Finally let yj �2 d
for 1 ≤ j ≤ k and d �2 v′i and d �2 v̄′i for 1 ≤ i ≤ m. For all pairs (a, b) for which m(a, b)
has not been specified so far, let m(a, b) = m(b, a) = 0. An example is shown in Figure 1.

Asm(a, b) ∈ {−4,−2, 0, 2, 4} for all a, b ∈ Aϕ, Debord’s theorem guarantees the existence
of a preference profile Rϕ with mRϕ

(a, b) = m(a, b) for all a, b ∈ Aϕ, and such a profile can
in fact be constructed efficiently, i.e., in polynomial time.

The following two lemmata show that alternative d is a ranked pairs winner for Rϕ if
and only if the formula ϕ is satisfiable.

Lemma 2. If d ∈ RP(Rϕ), then ϕ is satisfiable.

Proof. Assume that d is a ranked pairs winner for Rϕ and let L be a stack with top(L) = d.
Consider an arbitrary j with 1 ≤ j ≤ k. As L is a stack and d L yj , d attains yj through L,
i.e., there exists a sequence Pj = (a1, a2, . . . , at) with a1 = d and at = yj such that ai L ai+1

and m(ai, ai+1) ≥ 2 for all i with 1 ≤ i < t. If d attains yj via several sequences, fix one of
them arbitrarily.

8Also see the article by Le Breton [11].



The definition of m(·, ·) implies that

Pj = (d, `
′
, `, `′, `, yj) or

Pj = (d, `′, `, yj),

where ` is some literal. The former is in fact not possible because m(`, `
′
) = 4 implies that `

′

does not attain ` through L. Therefore, each Pj is of the form Pj = (d, `′, `, yj) for some
` ∈ X.

Now define assignment α as the set of all literals that are contained in one of the sequences
Pj , 1 ≤ j ≤ k, i.e., α = X ∩ (

⋃k
j=1 Pj). We claim that α is a satisfying assignment for ϕ.

In order to show that α is valid, suppose there exists a literal ` ∈ X such that both `
and ` are contained in α. This implies that there exist i and j such that d attains yi via

Pi = (d, `′, `, yi) and d attains yj via Pj = (d, `
′
, `, yj). In particular, `′ L ` and `

′
L `.

It follows that either `′ L ` or `
′
L `, as otherwise (`, `

′
, `, `′) would form an L-cycle,

contradicting the transitivity of L. However, neither does `′ attain ` through L, nor does `
′

attain ` through L, a contradiction.
In order to see that α satisfies ϕ, consider an arbitrary clause Cj . As d attains yj via

Pj = (d, `′, `, yj) and m(yj , d) = 2, we have that m(`, yj) ≥ 2. By definition of m(·, ·), this
implies that ` ∈ Cj .

Lemma 3. If ϕ is satisfiable, then d ∈ RP(Rϕ).

Proof. Assume that ϕ is satisfiable and let α be a satisfying assignment. Let Vi =
{vi, v̄i, v′i, v̄′i}, 1 ≤ i ≤ m, and Y = {y1, y2, . . . , yk}. We define a ranking L of Aϕ as
follows, using B L C as shorthand for b L c for all b ∈ B and c ∈ C.

• For all 1 ≤ i ≤ m, let d L Vi and Vi L Y .

• For all 1 ≤ i < j ≤ m, let Vi L Vj .

• For the definition of L within Vi, we distinguish two cases. If vi ∈ α, i.e., if vi is
set to “true” under α, let vi L v′i L vi L v′i. If, on the other hand, vi /∈ α, let
vi L v

′
i L vi L v

′
i.

• Within Y , define L arbitrarily.

We now prove that L is a stack. For each pair (a, b) with a L b, we need to verify that
a attains b through L. If m(b, a) ≤ 0, it is easily seen that a attains b through L. We can
therefore assume that m(b, a) > 0. By definition of L and m(·, ·), a particular such pair
(a, b) satisfies either

a = d and b ∈ Y , or

a, b ∈ Vi for some i with 1 ≤ i ≤ m.

First consider a pair of the former type, i.e., (a, b) = (d, yj) for some j with 1 ≤ j ≤ k.
As α satisfies Cj , there exists ` ∈ Cj with ` ∈ α. Consider the sequence Pj = (d, `′, `, yj).
As m(yj , d) = 2 and d �2 `′ �2 ` �2 yj , d attains yj via Pj .

Now consider a pair of the latter type, i.e., a, b ∈ Vi for some i with 1 ≤ i ≤ m. Assume
that vi ∈ α and, therefore, vi L v

′
i L vi L v

′
i. The only non-trivial case is the pair (vi, v

′
i) with

vi L v′i and m(v′i, vi) = 2. But vi attains v′i via (vi, v
′
i, vi, v

′
i) because vi �4 v′i �2 vi �4 v′i.

The case vi /∈ α is analogous.
We have shown that L is a stack. Lemma 1 now implies that d ∈ RP(Rϕ), which

completes the proof.

Combining Lemma 2 and Lemma 3, and observing that both Aϕ and Rϕ can be con-
structed efficiently, completes the proof of Theorem 1.



4.3 Unique Winners

An interesting variant of the winner determination problem concerns the question whether a
given alternative is the unique winner for a given preference profile. Despite its similarity to
the original winner determination problem, this problem is sometimes considerably easier.9

For RP, the picture is different: verifying unique winners is not feasible in polynomial time,
unless P equals coNP.

Theorem 2. Deciding whether a given alternative is the unique ranked pairs winner is
coNP-complete.

Proof. Membership in coNP follows from the observation that for every “no” instance there
is a stack whose top element is different from the alternative in question.

For hardness, we modify the construction from Section 4.2 to obtain a reduction from
the problem UNSAT, which asks whether a given Boolean formula is not satisfiable. For a
Boolean formula ϕ, define A′ϕ = Aϕ∪{d∗}, where d∗ is a new alternative and Aϕ is defined as
in Section 4.2. R′ϕ is defined such that d �2 d∗ and d∗ �4 a for all a ∈ Aϕ \{d}. Within Aϕ,
R′ϕ coincides with Rϕ. We show that RP(R′ϕ) = {d∗} if and only if ϕ is unsatisfiable.

For the direction from left to right, assume for contradiction that RP(R′ϕ) = {d∗} and ϕ
is satisfiable. Consider a satisfying assignment α and let L be the ranking of Aϕ defined in
the proof of Lemma 3. Define the ranking L′ of A′ϕ by

L′ = L ∪ {(d, d∗)} ∪ {(d∗, a) : a ∈ Aϕ \ {d}}.

That is, L′ extends L by inserting the new alternative d∗ in the second position. As in the
proof of Lemma 3, it can be shown that L′ is a stack. It follows that top(L′) = d ∈ RP(R′ϕ),
contradicting the assumption that RP(R′ϕ) = {d∗}.

For the direction from right to left, assume for contradiction that ϕ is unsatisfiable and

RP(R′ϕ) 6= {d∗}. Then there exists a tie-breaking rule τ such that top(�R
′
ϕ

τ ) = a 6= d∗.
From the definition of R′ϕ it follows that a = d, as d∗ �4 b for all b ∈ Aϕ \ {d} and there are
no �4-cycles. By the same argument as in the proof of Lemma 2, it can be shown that ϕ is
satisfiable, contradicting our assumption.

5 New Proofs for Old and New Results

In this section we briefly consider computational problems other than winner determination.
We show that our findings imply several hardness results, some of which are already known.
We also point out some errors in the literature that are due to the assumption that winner
determination for ranked pairs is in P. By Theorem 1, this assumption is incorrect unless
P=NP. All results concern the neutral variant RP, and we refer to the respective papers for
formal definitions of the computational problems.

An alternative a is a possible winner for a partially specified preference profile R if there
exists a completion R′ of R such that a is a winner for R′. It is a necessary winner if it is
a winner for every completion of R. Both the possible and the necessary winner problem
have a variant that requires an alternative to be the unique winner for the completions.

Corollary 2. Computing possible ranked pairs winners is NP-complete. Computing possible
unique ranked pairs winners is both NP-hard and coNP-hard.

9The Banks set, discussed in Footnote 6, constitutes an example: although deciding membership is NP-
complete in general, it can be checked in polynomial time whether an alternative is the unique Banks winner.
The reason for the latter is that an alternative is the unique Banks winner if and only if it is a Condorcet
winner.



Proof. NP-completeness of the non-unique variant was already shown by Xia and Conitzer
[18]. Membership in NP holds because for every “yes” instance there exists a completion
and a tie-breaking rule that yields the alternative in question. Hardness also follows from
Theorem 1, because the possible winner problem is equivalent to the winner determination
problem in the special case when the preference profile is completely specified.

NP-hardness of the unique variant was shown by Xia and Conitzer [18]; coNP-hardness
follows from Theorem 2, because the possible unique winner problem is equivalent to the
unique winner determination problem in the special case when the preference profile is
completely specified. Xia and Conitzer [18] in fact claimed NP-completeness, but their
argument for membership in NP assumes that winner determination is in P.

Corollary 3. Computing necessary ranked pairs winners is both NP-hard and coNP-hard.
Computing necessary unique ranked pairs winners is coNP-complete.

Proof. Hardness of the non-unique variant for coNP was shown by Xia and Conitzer [18];
NP-hardness follows from Theorem 1, because the necessary winner problem is equivalent
to the winner determination problem in the special case when the preference profile is
completely specified. Xia and Conitzer [18] in fact claim coNP-completeness, but their
argument for membership in coNP assumes that winner determination is in P.

Completeness of the unique variant for coNP was shown by Xia and Conitzer [18].
Membership in coNP holds because for every “no” instance there is a completion and a
tie-breaking rule that produces a different winner. Hardness also follows from Theorem 2,
because the necessary unique winner problem is equivalent to the unique winner determi-
nation problem in the special case when the preference profile is completely specified.

The unweighted coalitional manipulation (UCM) problem asks whether it is possible for
a group of voters to cast their votes in such a way that a distinguished alternative becomes
a (non-unique or unique) winner.

Corollary 4. The non-unique UCM problem under ranked pairs is NP-complete. The
unique UCM problem under ranked pairs is both NP-hard and coNP-hard.

Proof. NP-completeness of the non-unique variant was already shown by Xia et al. [19].10

Membership in NP holds because for every “yes” instance there is a preference profile for
the manipulators and a tie-breaking rule that outputs the alternative in question. Hardness
also follows from Theorem 1, because the non-unique UCM problem with zero manipulators
is equivalent to the winner determination problem.

NP-hardness of the unique variant was shown by Xia et al. [19]; coNP-hardness follows
from Theorem 2, because the unique UCM problem with zero manipulators is equivalent to
the unique winner determination problem. Xia et al. [19] in fact claimed NP-completeness,
but their argument for membership in NP assumes that winner determination is in P.

6 Non-Anonymous Variants

As mentioned in Section 2, Tideman [15] and Zavist and Tideman [20] suggested ways to
use the preferences of a distinguished voter, say, a chairperson, to render the ranked pairs
method resolute. There are essentially two ways to achieve this, which differ in the point in
time when ties are broken. For the sake of simplicity, we only consider the SCF setting in
this section.

10The proof of Theorem 4.1 by Xia et al. [19] actually works for both RP and RPT (Xia, personal com-
munication, March 29, 2012).



The a priori variant uses the preferences of the chairperson to construct a tie-breaking
rule τ ∈ L(A × A), which is then used to compute RPT(·, τ). The a posteriori variant
first computes RP(·) and then chooses the alternative from this set that is most preferred
by the chairperson. Both variants are neutral: if the alternatives are permuted in each
ranking, including the ranking of the chairperson, the tie-breaking rule and thus the chosen
alternative will change accordingly.

Whereas the a priori variant is a special case of RPT and therefore efficiently com-
putable, the a posteriori variant is intractable by the results in Section 4. It follows that
neutrality and tractability can be reconciled at the expense of anonymity. By moving to
non-deterministic SCFs, one can even regain anonymity: choosing the chairperson for the
a priori variant uniformly at random results in a procedure that is neutral, anonymous,
and tractable, for appropriate generalizations of anonymity and neutrality to the case of
non-deterministic SCFs. The winner determination problem for the a posteriori variant
remains intractable when the chairperson is chosen randomly.

7 Conclusion

We have studied the complexity of the ranked pairs method. While some ranked pairs
winner is easy to find, deciding whether a given alternative is a winner turns out to be NP-
complete. If one is interested in ranked pairs rankings, both problems are computationally
easy.

From a practical point of view, the ranked pairs method is easier than most other in-
tractable SCFs. The reason is that the expected number of ties among two or more pairs
is rather small. This is particularly true when the number of voters is large compared to
the number of alternatives, which is the case in many realistic settings. It is therefore to
be expected that ranked pairs winners are easy to compute on average for most reasonable
distributions of individual preferences.

Our results reveal a trade-off between neutrality and tractability in the context of the
ranked pairs method: while the efficiently computable variant RPT fails neutrality, the
neutral variant RP is intractable. A very similar trade-off can be observed for the single
transferable vote rule [6, 16].

We have finally discussed variants of the ranked pairs method that achieve neutrality at
the expense of anonymity, by using individual preferences to break ties. The tractability of
those variants depends on the point in time ties are broken.
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