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Abstract

In this paper, we propose a framework to study a general class of strategic behavior in voting,
which we call vote operations. Our main theorem is the following: if we fix the number of
alternatives, generate n votes i.i.d. according to a distribution π, and let n go to infinity, then,
for any ε > 0, with probability at least 1 − ε, the minimum number of operations that are
necessary for the strategic individual to achieve her goal falls into one of the following four
categories: (1) 0, (2) Θ(

√
n), (3) Θ(n), and (4) ∞. This theorem holds for any set of vote

operations, any individual vote distribution π, and any integer generalized scoring rule, which
includes (but is not limited to) most commonly studied voting rules, e.g., approval voting, all
positional scoring rules (including Borda, plurality, and veto), plurality with runoff, Bucklin,
Copeland, maximin, STV, and ranked pairs.
We also show that many well-studied types of strategic behavior fall under our framework,
including (but not limited to) constructive/destructive manipulation, bribery, and control by
adding/deleting votes, margin of victory, and minimum manipulation coalition size. Therefore,
our main theorem naturally applies to these problems.

1 Introduction
Voting is a popular method used to aggregate voters’ preferences to make a joint decision. One
of the most desired properties for voting rules is strategy-proofness, that is, no voter has incentive
to misreport her preferences to obtain a better outcome of the election. Unfortunately, strategy-
proofness is not compatible with some other natural desired properties, due to the celebrated
Gibbard-Satterthwaite theorem [14, 22], which states that when there are at least three alternatives,
no strategy-proof voting rule satisfies the following two natural properties: non-imposition (every al-
ternative can win) and non-dictatorship (no voter is a dictator whose top ranked alternative is always
the winner).

Even though manipulation is inevitable, researchers have set out to investigate whether com-
putational complexity can serve as a barrier against various types of strategic behavior, including
manipulation. The idea is, if we can prove that it is computationally too costly for a strategic in-
dividual to find a beneficial operation, she may give up doing so. Initiated by Bartholdi, Tovey,
and Trick [2], a fair amount of work has been done in the computational social choice community
to characterize the computational complexity of various types of strategic behavior, including the
following. See [10, 12, 21] for recent surveys.
• Manipulation: a voter or a coalition of voters cast false vote(s) to change the winner (and the

new winner is more preferred).
• Bribery: a strategic individual changes some votes by bribing the voters to make the winner

preferable to her [9]. The bribery problem is closely related to the problem of computing the margin
of victory [5, 16, 31].
• Control: a strategic individual adds or deletes votes to make the winner more preferable to

her [3]. Control by adding votes is equivalent to false-name manipulation [6].
Most previous results in “using computational complexity as a barrier against strategic behav-

ior” are worst-case analyses of computational complexity. Recently, an increasing number of results
show that manipulation, as a particular type of strategic behavior, is typically not hard to compute.
One direction, mainly pursued in the theoretical computer science community, is to obtain a quan-
titative version of the Gibbard-Satterthwaite theorem, showing that for any given voting rule that



is “far” enough from any dictatorships, an instance of manipulation can be found easily with high
probability. This line of research was initiated by Friedgut, Kalai, and Nisan [13], where they proved
the theorem for 3 alternatives and neutral voting rules. The theorem was extended to an arbitrary
number of alternatives by Isaksson, Kindler, and Mossel [15], and finally, the neutrality constraint
was removed by Mossel and Racz [17]. Other extensions include Dobzinski and Procaccia [8] and
Xia and Conitzer [33].

Another line of research is to characterize the “frequency of manipulability”, defined as the prob-
ability for a randomly generated preference-profile to be manipulable by a group of manipulators,
where the non-manipulators’ votes are generated i.i.d. according to some distribution (for example,
the uniform distribution over all possible types of preferences). Peleg [18], Baharad and Neeman [1],
and Slinko [23, 24] studied the asymptotic value of the frequency of manipulability for positional
scoring rules when the non-manipulators’ votes are drawn i.i.d. uniformly at random. Procaccia
and Rosenschein [20] showed that for positional scoring rules, when the non-manipulators votes are
drawn i.i.d. according to any distribution that satisfies some natural conditions, if the number of
manipulators is o(

√
n), where n is the number of non-manipulators, then the probability that the

manipulators can succeed goes to 0 as n goes to infinity; if the number of manipulator is ω(n), then
the probability that the manipulators can succeed goes to 1.

This dichotomy theorem was generalized to a class of voting rules called generalized scoring
rules (GSRs) by Xia and Conitzer [32]. A GSR is defined by two functions f, g, where f maps each
vote to a vector in multidimensional space, called a generalized scoring vector (the dimensionality
of the space is not necessarily the same as the number of alternatives). Given a profile P , let total
generalized scoring vector be the sum of f(V ) for each vote V in P . Then, g selects the winner
based on the total preorder of the components of the total generalized scoring vector. We call a GSR
a integer GSR, if the components of all generalized scoring vectors are integers. (Integer) GSRs are
a general class of voting rules. One evidence is: many commonly studied voting rules are integer
GSRs, including (but not limited to) approval voting, all positional scoring rules (which include
Borda, plurality, and veto), plurality with runoff, Bucklin, Copeland, maximin, STV, and ranked
pairs. 1 As another evidence, GSRs admit a natural axiomatic characterization [34].

While most of the aforementioned results are about manipulation, in this paper, we focus the
optimization variants of various types of strategic behavior, including manipulation, bribery, and
control. Despite being natural, to the best of our knowledge, such optimization variants have been
investigated for only three types of strategic behavior. The first is the unweighted coalitional op-
timization (UCO) problem, where we are asked to compute the minimum number of manipulators
who can make a given alternative win [37]. Approximation algorithms have been proposed for UCO
for specific voting systems, including positional scoring rules and maximin [35–37]. The second is
the margin of victory problem, where we are asked to compute the smallest number of voters who
can change their votes to change the winner [5, 16, 31]. The third is the minimum manipulation
coalition size problem, which is similar to the margin of victory, except that all voters who change
their votes must prefer the new winner to the old winner [19].

1.1 Our Contributions
In this paper, we introduce a unified framework to study a class of strategic behavior for generalized
scoring rules, which we call vote operations. In our framework, a strategic individual seeks to
change the winner by applying some operations, which are modeled as vectors in a multidimensional
space. We study three goals of the strategic individual: (1) making a favored alternative win, called
constructive vote operation (CVO), (2) making a disfavored alternative lose, called destructive vote
operation (DVO), and (3) change the winner of the election, called change-winner vote operation

1The definition of these commonly studied voting rules can be found in, e.g., [32]. In this paper, we define GSRs as
voting rules where the inputs are profiles of linear orders. GSRs can be easily generalized to include other types of voting
rules where the inputs are not necessarily linear orders, for example, approval voting.



(CWVO). The framework will be formally defined in Section 3. This is our main conceptual
contribution.

Our main technical contribution is the following asymptotical characterization of the number of
operations that are necessary for the strategic individual to achieve her goal.
Theorem 1 (informally put) Fix the number of alternatives and the set of vote operations. For any
integer generalized scoring rule and any distribution π over votes, we generate n votes i.i.d. accord-
ing to π and let n go to infinity. Then, for any VO ∈ {CVO,DVO,CWVO} and any ε > 0, with
probability at least 1 − ε, the minimum number of operations that are necessary for the strategic
individual to achieve VO is one of the following: (1) 0, (2) Θ(

√
n), (3) Θ(n), and (4)∞.

More informally, Theorem 1 states that in large elections, to achieve a specific goal (one of the
three goals described above), with probability that can be infinitely close to 1 the strategic individual
needs to either do nothing (the goal is already achieved), apply Θ(

√
n) vote operations, apply Θ(n)

vote operations, or the goal cannot be achieve no matter how many vote operations are applied. This
characterization holds for any integer generalized scoring rule, any set of vote operations, and any
distribution π for individual votes.

The proof of Theorem 1 is based on the Central Limit Theorem and on sensitivity analyses for
the integer linear programmings (ILPs). It works as follows. We will formulate each of the strategic
individual’s three goals as a set of ILPs in Section 4. By applying Central Limit Theorem, we
show that with probability that goes to 1 the random generated preference-profile satisfies a desired
property. Then, for each such preference-profile we apply the sensitivity analyses in [7] to show that
with high probability the number of operations that are necessary is either 0, Θ(

√
n), Θ(n), or∞.

While Theorem 1 looks quite abstract, we show later in the paper that many well-studied types
of strategic behavior fall under our vote operation framework, including constructive/destructive
manipulation, bribery, and control by adding/deleting votes, margin of victory, and minimum ma-
nipulation coalition size.2 Therefore, we naturally obtain corollaries of Theorem 1 for these types of
strategic behavior. Of course our theorem applies to other types of strategic behavior, for example
the mixture of any types mentioned above, which is known as multimode control attacks [11].

1.2 Related Work and Discussion
To the best of our knowledge, we are the first to do the following in the voting setting: (1) study
manipulation, bribery, and control under a unified framework and (2) in this unified framework,
model the strategic individual’s goals as ILPs and conduct sensitivity analyses. Our main theorem
applies to any integer generalized scoring rule for destructive manipulation, constructive and de-
structive bribery and control by adding/deleting votes, where no similar results were obtained even
for specific voting rules. Three previous papers obtained similar results for specific types of strate-
gic behavior. The applications of our main theorem to these types of strategic behavior are slightly
weaker, but we stress that our main theorem is significantly more general.

Three related papers. First, the dichotomy theorem in [32] implies that, (informally) when the
votes are drawn i.i.d. from some distribution, with probability that goes to 1 the solution to construc-
tive and destructive UCO is either 0 or approximately

√
n for some favored alternatives. However,

this result only works for the UCO problem and some distributions over the votes.
Second, it was proved in [31] that for any non-redundant generalized scoring rules that satisfy a

continuity condition, when the votes are drawn i.i.d. and we let the number of voters n go to infinity,
either with probability that can be arbitrarily close to 1 the margin of victory is Θ(

√
n), or with

probability that can be arbitrarily close to 1 the margin of victory is Θ(n). It is easy to show that for
non-redundant voting rules, the margin of victory is never 0 or∞. Though it was shown in [31] that
many commonly studied voting rules are GSRs that satisfy such continuity condition, in general it

2We defer the definition of these types of strategic behavior to Section 6.



is not clear how restrictive the continuity condition is. More importantly, the result only works for
the margin of victory problem.

Third, in [19], the authors investigated the distribution over the minimum manipulation coali-
tion size for positional scoring rules when the votes are drawn i.i.d. from the uniform distribution.
However, it is not clear how their techniques can be extended beyond the uniform distributions and
positional scoring rules, which are a very special case of generalized scoring rules. Moreover, the
paper only focused on the minimum manipulation coalition size problem.

Our results has both negative and positive implications. On the negative side, our results provide
yet another evidence that computational complexity is not a strong barrier against strategic behavior,
because the strategic individual now has some information about the number of operations that are
needed, without spending any computational cost or even without looking at the input instance.
Although the estimation of our theorem may not be very precise (because we do not know which of
the four cases a given instance belongs to), such estimation may be explored to designing effective
algorithms that facilitate strategic behavior. On the positive side, this easiness of computation is not
always a bad thing: sometimes we want to do such computation in order to test how robust a given
preference-profile is. For example, computing the margin of victory is an important component in
designing novel risk-limiting audit methods [5, 16, 25–29, 31].

While being quite general, our results have two main limitations. First, they are asymptotical
results, where we fix the number of alternatives and let the number of voters go to infinity. We do
not know the convergence rate, or equivalently, how many voters are needed for the observation
to hold. In fact, this is a standard setting in previous work, especially in the studies of “frequency
of manipulability”. We feel that our results work well in settings where there are small number of
alternatives and large number of voters, e.g., political elections. Second, our results show that with
high probability one of the four cases holds (0, Θ(

√
n), Θ(n),∞), but we do not know which case

holds more often. It is possible to refine our study for specific voting rules and specific types of
strategic behavior that fall under our framework, which we leave as future work.

2 Preliminaries
Let C denote the set of alternatives, |C| = m. We assume strict preference orders. That is, a vote is
a linear order over C. The set of all linear orders over C is denoted by L(C). A preference-profile P
is a collection of n votes for some n ∈ N, that is, P ∈ L(C)n. Let L(C)∗ =

⋃∞
n=1 L(C)n. A voting

rule r is a mapping that assigns to each preference-profile a single winner. That is, r : L(C)∗ → C.
Throughout the paper, we let n denote the number of votes andm denote the number of alternatives.

We now recall the definition of generalized scoring rules (GSRs) [32]. For anyK ∈ N, letOK =
{o1, . . . , oK}. A total preorder (preorder for short) is a reflexive, transitive, and total relation. Let
Pre(Ok) denote the set of all preorders overOK . For any ~p ∈ RK , we let Ord(~p) denote the preorder
D over OK where ok1 D ok2 if and only if pk1 ≥ pk2 . That is, the k1-th component of ~p is as large
as the k2-th component of ~p. For any preorder D, if o D o′ and o′ D o, then we write o =D o′. Each
preorderD naturally induces a (partial) strict orderB, where o B o′ if and only if o D o′ and o′ 4 o.

Definition 1 Let K ∈ N, f : L(C)→ RK and g : Pre(OK)→ C. f and g determine a generalized
scoring rule (GSR) GS(f, g) as follows. For any preference-profile P = (V1, . . . , Vn) ∈ L(C)n,
abusing the notation we let f(P ) =

∑n
i=1 f(Vi), and let GS(f, g)(P ) = g(Ord(f(P ))). We say

that GS(f, g) is of order K.
When for all V ∈ L(C), f(V ) ∈ ZK , we call GS(f, g) an integer GSR.

For any V ∈ L(C), f(V ) is called a generalized scoring vector, f(P ) is called a total generalized
scoring vector, and Ord(f(P )) is called the induced preorder of P . The class of integer GSRs is
equivalent to the class of rational GSRs, where the components of each generalized scoring vector
is in Q, because for any l > 0, GS(f, g) = GS(l · f, g).



Most commonly studied voting rules are generalized scoring rules, including (but not limited
to) approval voting, Bucklin, Copeland, maximin, plurality with runoff, ranked pairs, and multi-
stage voting rules that use GSRs in each stage to eliminate alternatives (including Nanson’s and
Baldwin’s rule). As an example, we recall the proof from [32] that the single transferable vote
(STV) rule (a.k.a. instant-runoff voting or alternative vote for single-winner elections) is an integer
generalized scoring rule.

Example 1 STV selects the winner in m rounds. In each round, the alternative that gets the lowest
plurality score (the number of times that the alternative is ranked in the top position) drops out, and
is removed from all of the votes (so that votes for this alternative transfer to another alternative in
the next round). Ties are broken alphabetically. The last-remaining alternative is the winner.

To see that STV is an integer GSR, we will use generalized scoring vectors with many compo-
nents. For every proper subset S of alternatives, for every alternative c outside of S, there is a
component in the vector that contains the number of times that c is ranked first if all of the alterna-
tives in S are removed. Let
• KSTV =

∑m−1
i=0

(
m
i

)
(m − i); the components are indexed by (S, j), where S is a proper subset

of C and j ≤ m, cj /∈ S.
• (fSTV (V ))(S,j) = 1, if after removing S from V , cj is at the top; otherwise (fSTV (V ))(S,j) = 0.
• gSTV selects the winners based on D as follows. In the first round, let j1 be the index such that
o(∅,j1) is ranked the lowest in D among all o(∅,j) (if there are multiple such j’s, then we break ties
alphabetically to select the least-preferred one). Let S1 = {cj1}. Then, for any 2 ≤ i ≤ m − 1,
define Si recursively as follows: Si = Si−1∪{ji}, where ji is the index such that o(Si−1,ji) is ranked
the lowest in D among all o(Si−1,j); finally, the winner is the unique alternative in (C \ Sm−1).

Another evidence on the generality of GSRs is that GSRs admit a natural axiomatic character-
ization [34]. That is, GSRs are the class of voting rules that satisfy anonymity, homogeneity, and
finite local consistency. Anonymity says that the winner does not depend on the name of the voters,
homogeneity says that if we duplicate the preference-profile multiple times, the winner does not
change, and finite local consistency is an approximation to the well-studied consistency axiom. Not
all voting rules are GSRs, for example, Dodgson’s rule is not a GSR because it does not satisfy
homogeneity [4], and the following skewed majority rule is also not a GSR because it also violates
homogeneity.

Example 2 For any 0 < γ < 1, the γ-majority rule is defined for two alternatives {a, b} as follows:
b is the winner if and only if the number of voters who prefer b is more than the number of voters
who prefer a by at least nγ .

Admittedly, these γ-majority rules are quite artificial. Later in this paper we will see that the obser-
vation made for GSRs in our main theorem (Theorem 1) does not hold for γ-majority rules for any
γ 6= 1/2.

3 The Unified Framework
All types of strategic behavior mentioned in the introduction have the following characteristics in
common. The strategic individual (who can be a group of manipulators, a briber, or a controller,
etc.) changes the winner by changing the votes in the preference-profile. Therefore, for generalized
scoring rules, any such an operation is uniquely represented by changes in the total generalized
scoring vector. This is in contrast to some other types of strategic behavior where the strategic
individual changes the set of alternatives or the voting rule [3, 30]. In this section, we first define
the set of operations the strategic individual can apply, then define her goals. Given a generalized
scoring rule of order K, we model the strategic behavior, called vote operations, as a set of vectors,
each of which hasK elements, representing the changes made to the total generalized scoring vector
if the strategic individual applies this operation. We focus on integer vectors in this paper.



Definition 2 Given a GSR GS(f, g) of order K, let ∆ = [~δ1 · · ·~δT ] denote the vote operations,
where for each i ≤ T , ~δi ∈ ZK represents the changes made to the generalized scoring vector by
applying the i-th vote operation. For each l ≤ K, let ∆l denote the l-th row of ∆.

We will show examples of these vote operations for some well-studied types of strategic be-
havior in Section 6. Given the set of available operations ∆, the strategic individual’s behavior is
characterized by a vector ~v ∈ NT≥0, where ~v is a row vector and for each i ≤ T , vi represents the
number of i-th operation (corresponding to ~δi) that she applies. Let (~v)′ denote the transpose of ~v
and let ‖~v‖1 =

∑T
i=1 vi denote the total number of operations in ~v, which is the L1-norm of ~v. It

follows that ∆ · (~v)′ is the change in the total generalized scoring vector introduced by the strategic
individual, where for any l ≤ K, ∆l · (~v)′ is the change in the l-th component.

Next, we give definitions of the strategic individual’s three goals and the corresponding compu-
tational problems studied in this paper.

Definition 3 In the CONSTRUCTIVE VOTE OPERATION (CVO) problem, we are given a generalized
scoring rule GS(f, g), a preference-profile P , a favored alternative c, and a set of vote operations
∆ = [~δ1 · · ·~δT ], and we are asked to compute the smallest number k, denoted by CVO(P, c), such
that there exists a vector ~v ∈ NT≥0 with ‖~v‖1 = k and g (Ord(f(P ) + ∆ · (~v)′)) = c. If such ~v does
not exist, then we denote CVO(P, c) =∞.

The DESTRUCTIVE VOTE OPERATION (DVO) problem is defined similarly, where c is the disfa-
vored alternative, and we are asked to compute the smallest number k, denoted by DVO(P, c), such
that there exists a vector ~v ∈ NT≥0 with ‖~v‖1 = k and g (Ord(f(P ) + ∆ · (~v)′)) 6= c.

In the CHANGE-WINNER VOTE OPERATION (CWVO) problem, we are not given c and we are
asked to compute DVO(P,GS(f, g)(P )), denoted by CWVO(P ).

In CVO, the strategic individual seeks to make c win; in DVO, the strategic individual seeks to
make c lose; and in CWVO, the strategic individual seeks to change the current winner.

For a given instance (P, r), CWVO is a special case of DVO, where c = GS(f, g)(P ). We
distinguish these two problems because in this paper, the input preference-profiles are generated
randomly, so the winners of these preference-profiles might be different. Therefore, when the
preference-profiles are randomly generated, the distribution for the solution to DVO does not im-
mediately give us a distribution for the solution to CWVO.

4 The ILP Formulation
Let us first put aside the strategic individual’s goal for the moment (i.e., making a favored alterna-
tive win, making a disfavored alternative lose, or changing the winner) and focus on the following
question: given a preference-profile P and a preorder D over the K components of the generalized
scoring vector, that is, D∈ Pre(OK), how many vote manipulations are needed to change the order
of the total generalized scoring vector to D? Formally, given a GS(f, g), a preference-profile P and
D∈ Pre(OK), we are interested in min{‖~v‖1 : ~v ∈ NK≥0,Ord(f(P ) + ∆ · (~v)′) =D}.

This can be computed by the following integer linear programming ILPD, where vi represents
the ith component in ~v, which must be a nonnegative integer. We recall that ∆l denotes the l-th row
vector of ∆.

min ‖~v‖1
s.t. ∀oi =D oj : (∆i −∆j) · (~v)′ = [f(P )]j − [f(P )]i

∀oi B oj : (∆i −∆j) · (~v)′ ≥ [f(P )]j − [f(P )]i + 1
∀i : vi ≥ 0

(LPD)

Now, we take the strategic individual’s goal into account. We immediately have the following lemma
as a warmup, whose proofs are straightforward and are thus omitted.



Lemma 1 Given a GSR GS(f, g), an alternative c, and a preference-profile P ,
• CVO(P, c) < ∞ if and only if there exists D such that g(D) = c and LPD has an integer

solution;
• DVO(P, c) < ∞ if and only if there exists D such that g(D) 6= c and LPD has an integer

solution;
• CWVO(P ) <∞ if and only if there exists D such that g(D) 6= GS(f, g)(P ) and LPD has an

integer solution. (We do not need the input c for this problem.)

Moreover, the solution to each of the three problems is the minimum objective value in all LPs
corresponding to the problem. For example, if CVO(P, c) <∞, then

CVO(P, c) = min‖~v‖1{~v is the solution to some LPD where g(D) = c}

5 The Main Theorem
In this section we prove the main theorem, which states that for a fixed m, for any generalized scor-
ing rules and any set of vote operations ∆, if n votes are generated i.i.d., then for CVO (respectively,
DVO, CWVO), with probability that can be infinitely close to 1, the solution is either 0, Θ(

√
n),

Θ(n), or∞.

Theorem 1 Let GS(f, g) be an integer generalized scoring rule, let π be a distribution over all
linear orders, and let ∆ be a set of vote operations. Suppose we fix the number of alternatives,
generate n votes i.i.d. according to π, and let Pn denote the preference-profile. Then, for any
alternative c, VO ∈ {CVO,DVO,CWVO3}, and any ε > 0, there exists β∗ > 1 such that as
n goes to infinity, the total probability for the following four events sum up to more than 1 − ε:
(1) VO(Pn, c) = 0, (2) 1

β∗
√
n < VO(Pn, c) < β∗

√
n, (3) 1

β∗n < VO(Pn, c) < β∗n, and (4)
VO(Pn, c) =∞.

Proof of Theorem 1: Let f(Pπ) =
∑
V ∈L(C) π(V ) · f(V ), and Dπ= Ord(f(Pπ)). We first prove

the theorem for CVO, and then show how to adjust the proof for DVO and CWVO. The theorem
is proved in the following two steps. Step 1: we show that as n goes to infinity, with probability that
goes to one we have the following: in a randomly generated Pn, the difference between any pair
of components in f(Pn) is either Θ(

√
n) or Θ(n). Step 2: we apply sensitivity analyses to ILPs

that are similar to the ILP given in Section 4 to prove that for any such preference-profile and any
VO ∈ {CVO,DVO,CWVO}, VO(Pn, c) is either 0, Θ(

√
n), Θ(n), or∞. The idea behind Step 2

is, for any preference-profile Pn, if the difference between a pair of components in f(Pn) is Θ(
√
n),

then we consider this pair of components (not alternatives) to be “almost tied”; if the difference is
Θ(n), then we consider them to be “far away”. Take CVO as an example, we can easily identify the
cases where CVO(Pn, c) is either 0 (when GS(f, g) = c) or∞ (by Lemma 1). Then, we will first try
to break these “almost tied” pairs by using LPs that are similar to LPD introduced in Section 4, and
show that if there exists an integer solution ~v, then the objective value ‖~v‖1 is Θ(

√
n). Otherwise,

we have to change the orders between some “far away” pairs by using LPD’s, and show that if there
exists an integer solution to some LPD with g(D) = c, then the objective value is Θ(n).

Formally, given n ∈ N and β > 1, let Pβ denote the set of all n-vote preference-profiles P that
satisfy the following two conditions (we recall that f(Pπ) =

∑
V ∈L(C) π(V ) · f(V )): for any pair

i, j ≤ K,
1. if [f(Pπ)]i = [f(Pπ)]j then 1

β

√
n < |[f(P )]i − [f(P )]j | < β

√
n;

2. if [f(Pπ)]i 6= [f(Pπ)]j then 1
βn < |[f(P )]i − [f(P )]j | < βn.

The following lemma was proved in [31], which follows from the Central Limit Theorem.

Lemma 2 For any ε > 0, there exists β such that limn→∞ Pr (Pn ∈ Pβ) > 1− ε.
3When VO = CWVO, we let VO(Pn, c) denote CWVO(Pn).



For any given ε, in the rest of the proof we fix β to be a constant guaranteed by Lemma 2. The
next lemma (whose proof can be found on the author’s homepage) will be frequently used in the rest
of the proof.

Lemma 3 Fix an integer matrix A. There exists a constant βA that only depends on A, such that if
the following LP has an integer solution, then the solution is no more than βA · ‖~b‖∞.

min ‖~x‖1, s.t. A · ~x ≥ ~b

To prove that with high probability CVO(Pn, c) is either 0, Θ(
√
n), Θ(n), or∞, we introduce

the following notation. A preorder D′ is a refinement of another preorder D, if B′ extends B. That
is, B⊆B′. We note that D is a refinement of itself. Let D′ 	 D denote the strict orders that are in
B′ but not in B. That is, (oi, oj) ∈ (D′ 	 D) if and only if oi B′ oj and oi =D oj . We define the
following LP that is similar to LPD defined in Section 4, which will be used to check whether there
is a way to break “almost tied” pairs of components to make c win. For any preorder D and any of
its refinement D′, we define LPD′	D as follows.

min ‖~v‖1
s.t. ∀oi =D′ oj : (∆i −∆j) · (~v)′ = [f(P )]j − [f(P )]i

∀(oi, oj) ∈ (D′ 	 D) : (∆i −∆j) · (~v)′ ≥ [f(P )]j − [f(P )]i + 1
∀i : vi ≥ 0

(LPD′	D)

LPD′	D is defined with a little abuse of notation because some of its constraints depend on D
(not only the pairwise comparisons in (D′ 	 D)). This will not cause confusion because we will
always indicate D in the subscript. We note that there is a constraint in LPD′	D for each pair of
components oi, oj with oi =D oj . Therefore, LPD′	D is used to find a solution that breaks ties inD.
It follows that LPD′	D has an integer solution ~v if and only if the strategic individual can make the
order between any pairs of oi, oj with oi =D oj to be the one in D′ by applying the i-th operation
vi times, and the total number of vote operations is ‖~v‖1.

The following two claims identify the preference-profiles in Pβ for which CVO is Θ(
√
n) and

Θ(n), respectively, whose proofs can be found on the author’s homepage.

Claim 1 There exists N ∈ N and β′ > 1 such that for any n ≥ N , any P ∈ Pβ , if (1) c is not the
winner for P , and (2) there exists a refinement D∗ of Dπ= Ord(f(Pπ)) such that g(D∗) = c and
LPD∗	Dπ has an integer solution, then 1

β′
√
n < CVO(P, c) < β′

√
n.

Claim 2 There exists β′ > 1 such that for any P ∈ Pβ , if (1) c is not the winner for P , (2) there does
not exist a refinement D∗ of Dπ= Ord(f(Pπ)) such that LPD∗	Dπ has an integer solution, and (3)
there exists D such that g(D) = c and LPD has an integer solution, then 1

β′n < CVO(P, c) < β′n.

Lastly, for any P ∈ Pβ such that GS(f, g)(P ) 6= c, the only case not covered by Claim 1 and
Claim 2 is that there does not exist D with GS(f, g)(D) = c such that LPD has an integer solution.
It follows from Lemma 1 that in this case CVO(P, c) =∞. We note that β′ in Claim 1 and Claim 2
does not depend on n. Let β∗ be an arbitrary number that is larger than the two β′s. This proves the
theorem for CVO.

For DVO, we only need to change g(D∗) = c to g(D∗) 6= c in Claim 1, and change g(D) = c to
g(D) 6= c in Claim 2. For CWVO, CWVO(P ) is never 0 and we only need to change g(D∗) = c
to g(D∗) 6= GS(f, g)(P ) in Claim 1, and change g(D) = c to g(D) 6= GS(f, g)(P ) in Claim 2. �

Remark. The intuition in Lemma 2 is quite straightforward and naturally corresponds to a random
walk in multidimensional space. However, we did not find an obvious connection between random
walk theory and observation made in Theorem 1 for general voting rules. We believe that it is
unlikely that an obvious connection exists. One evidence is that the observation made in Theorem 1



does not hold for some voting rules. For example, consider the γ-majority rule defined in Example 2.
It is not hard to see that as n goes to infinity, with probability that goes to 1 we have CVO(Pn, b) =
DVO(Pn, a) = CWVO(Pn) = nγ/2, which is not any of the four cases described in Theorem 1 if
γ 6= 1/2. (This means that for any γ 6= 1/2, γ-majority is not a generalized scoring rule, which we
already know because they do not satisfy homogeneity.)

The main difficulty in proving Theorem 1 is, for generalized scoring rules we have to handle
the cases where some components of the total generalized scoring vector are equivalent. This only
happens with negligible probability for the randomly generated preference-profile Pn, but it is not
clear how often the strategic individual can make some components equivalent in order to achieve
her goal. This is the main reason for us to convert the vote manipulation problem to multiple ILPs
and conduct sensitivity analyses.

6 Applications of The Main Theorem
In this section we show how to apply Theorem 1 to some well-studied types of strategic behavior,
including constructive and destructive unweighted coalitional optimization, bribery and control, and
margin of victory and minimum manipulation coalition size. In the sequel, we will use each subsec-
tion to define these problems and describe how they fit in our vote operation framework, and how
Theorem 1 applies. In the end of the section we present a unified corollary for all these types of
strategic behavior.

6.1 Unweighted Coalitional Optimization
Definition 4 In a constructive (respectively, destructive) UNWEIGHTED COALITIONAL OPTIMIZA-
TION (UCO) problem, we are given a voting rule r, a preference-profile PNM of the non-
manipulators, and a (dis)favored alternative c ∈ C. We are asked to compute the smallest
number of manipulators who can cast votes PM such that c = r(PNM ∪ PM ) (respectively,
c 6= r(PNM ∪ PM )).

To see how UCO fits in the vote operation model, we view the group of manipulators as the
strategic individual, and each vote cast by a manipulator is a vote operation. Therefore, the set
of operations is exactly the set of all generalized scoring vectors {f(V ) : V ∈ L(C)}. To apply
Theorem 1, for constructive UCO we let VO = CVO and for destructive UCO we let VO = DVO.

6.2 Bribery
In this paper we are interested in the optimization variant of the bribery problem [9].

Definition 5 In a constructive (respectively, destructive) OPT-BRIBERY problem, we are given a
preference-profile P and a (dis)favored alternative c ∈ C. We are asked to compute the smallest
number k such that the strategic individual can change no more than k votes such that c is the
winner (respectively, c is not the winner).

To see how OPT-BRIBERY falls under the vote operation framework, we view each action of
“changing a vote” as a vote operation. Since the strategic individual can only change existing votes
in the preference-profile, we define the set of operations to be the difference between the generalized
scoring vectors of all votes and the generalized scoring vectors of votes in the support of π, that is,
{f(V )−f(W ) : V,W ∈ L(C) s.t. π(W ) > 0}. Then, similarly the constructive variant corresponds
to CVO and the destructive variant corresponds to DVO. In both cases Theorem 1 cannot be directly
applied, because in the ILPs we did not limit the total number of each type of vote operations that
can be used by the strategic individual. Nevertheless, we can still prove a similar proposition by



taking a closer look at the relationship between CVO (DVO) and OPT-BRIBERY as follows: For
any preference-profile, the solution to CVO (respectively, DVO) is a lower bound on the solution
to constructive (respectively, destructive) OPT-BRIBERY, because in CVO and DVO there are no
constraints on the number of each type of vote operations. We have the following four cases.

1. If the solution to CVO (DVO) is 0, then the solution to constructive (destructive) OPT-
BRIBERY is also 0.

2. If the solution to CVO (DVO) is Θ(
√
n), as n become large enough, with probability that

goes to 1 each type of votes in the support of π will appear Θ(n), which is > Θ(
√
n), times in the

randomly generated preference-profile, which means that there are enough votes of each type for the
strategic individual to change.

3. If the solution to CVO (DVO) is Θ(n), then the solution to constructive (destructive) OPT-
BRIBERY is either Θ(n) (when the strategic individual can change all votes to achieve her goal), or
∞.

4. If the solution to CVO (DVO) is ∞, then the solution to constructive (destructive) OPT-
BRIBERY is also∞.

It follows that the observation made in Theorem 1 holds for OPT-BRIBERY.

6.3 Margin of Victory (MoV)
Definition 6 Given a voting rule r and a preference-profile P , the margin of victory (MoV) of P is
the smallest number k such that the winner can be changed by changing k votes in P . In the MOV
problem, we are given r and P , and are asked to compute the margin of victory.

For a given instance (P, r), MOV is equivalent to destructive OPT-BRIBERY, where c = r(P ).
However, when the input preference-profiles are generated randomly, the winners in these profiles
might be different. Therefore, the corollary of Theorem 1 for OPT-BRIBERY does not directly imply
a similar corollary for MOV. This relationship is similar to the relationship between DVO and
CWVO.

Despite this difference, the formulation of MOV in the vote operation framework is very similar
to that of OPT-BRIBERY: The set of all operations and the argument to apply Theorem 1 are the same.
The only difference is that for MOV, we obtain the corollary from the CWVO part of Theorem 1,
while the corollary for OPT-BRIBERY is obtained from the CVO and DVO parts of Theorem 1.

6.4 Minimum Manipulation Coalition Size (MMCS)
The MINIMUM MANIPULATION COALITION SIZE (MMCS) problem is similar to MOV, except that
in MMCS the winner must be improved for all voters who change their votes [19].

Definition 7 In an MMCS problem, we are given a voting rule r and a preference-profile P . We
are asked to compute the smallest number k such that a coalition of k voters can change their votes
to change the winner, and all of them prefer the new winner to r(P ).

Unlike MOV, MMCS falls under the vote operation framework in the following dynamic way.
For each preference-profile, suppose c is the current winner. For each adversarial d 6= c, we use
{f(V ) − f(W ) : V,W ∈ L(C) s.t. d �W c and π(W ) > 0} as the set of operations. That is, we
only allow voters who prefer d to c to participate in the manipulative coalition. We also replace each
of LPD and LPD∗	Dπ by multiple LPs, each of which is indexed by a pair of alternatives (d, c) and
the constraints are generated by using the corresponding set of operations. Then, the corollary for
MMCS follows after a similar argument to that of CVO in Theorem 1.



6.5 Control by Adding/Deleting Votes (CAV/CDV)
Definition 8 In a constructive (respectively, destructive) OPTIMAL CONTROL BY ADDING VOTES
(OPT-CAV) problem, we are given a preference-profile P , a (dis)favored alternative c ∈ C, and a
set N ′ of additional votes. We are asked to compute the smallest number k such that the strategic
individual can add k votes in N ′ such that c is the winner (respectively, c is not the winner).

For simplicity, we assume that |N ′| = n and the votes in N ′ are drawn i.i.d. from a distribution
π′. To show how OPT-CAV falls under the vote operation model, we let the set of operations to
be the generalized scoring vectors of all votes that are in the support of π′, that is, {f(V ) : V ∈
L(C) and π′(V ) > 0}. Then, the corollary follows from the CVO and DVO parts of Theorem 1 via
a similar argument to the argument for OPT-BRIBERY.

Definition 9 In a constructive (respectively, destructive) OPTIMAL CONTROL BY DELETING VOTES
(OPT-CDV) problem, we are given a preference-profile P and a (dis)favored alternative c ∈ C. We
are asked to compute the smallest number k such that the strategic individual can delete k votes in
P such that c is the winner (respectively, c is not the winner).

To show how OPT-CDV falls under the vote operation framework, we let the set of operations to
be the negation of generalized scoring vectors of votes in the support of π′, that is, {−f(V ) : V ∈
L(C) and π′(V ) > 0}. Then, the corollary follows from the CVO and DVO parts of Theorem 1 via
a similar argument to the argument for OPT-BRIBERY.

6.6 A Unified Corollary
The next corollary of Theorem 1 summarizes the results obtained for all types of strategic behavior
studied in this section.

Corollary 1 For any integer generalized scoring rule, any distribution π over votes, and any X ∈(
{constructive, destructive}×{UCO, OPT-BRIBERY, OPT-CAV, OPT-CDV}

)
∪{MOV, MMCS},

suppose the input preference-profiles are generated i.i.d. from π.4 Then, for any alternative c and
any ε > 0, there exists β∗ > 1 such that the total probability for the solution to X to be one of the
following four cases is more than 1 − ε as n goes to infinity: (1) 0, (2) between 1

β∗
√
n and β∗

√
n,

(3) between 1
β∗n and β∗n, and (4)∞.
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