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106-112 Bd de l’Hôpital, 75647 Paris, France

agnieszka.rusinowska@univ-paris1.fr

Agnieszka Rusinowska c©2010 Different approaches to influence in social networks



Aim and context of the tutorial

◮ The aim of this tutorial is to deliver a short overview of
different approaches to influence applied in several scientific
domains, e.g., in the economics and game-theoretic literature,
with a particular focus on studying influence in networks.
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Aim and context of the tutorial

◮ The aim of this tutorial is to deliver a short overview of
different approaches to influence applied in several scientific
domains, e.g., in the economics and game-theoretic literature,
with a particular focus on studying influence in networks.

◮ Context of the tutorial:
◮ Selected works on influence in sociology, social psychology,

political science, marketing (short notes)
◮ Studying influence in economics

◮ Leadership in economics
◮ Game-theoretic (cooperative and non-cooperative) approaches

to influence - influence relation in simple games and in voting
games with abstention, command games

◮ Research on influence in social networks
◮ The Hoede-Bakker framework of influence and model of

influence functions
◮ Relation-algebraic approach and applications of RelView to

the influence concepts
◮ The DeGroot model and its variations
◮ Social learning, “Herd behavior”, “Informational cascades”
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Different approaches to influence

◮ Influence is faced in all kinds of real life situations, and as a
consequence it has been studied in many scientific areas: in
sociology and social psychology, in political science, in
economics, in management and business science, etc.
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Different approaches to influence

◮ Influence is faced in all kinds of real life situations, and as a
consequence it has been studied in many scientific areas: in
sociology and social psychology, in political science, in
economics, in management and business science, etc.

◮ Different approaches are applied to study influence concepts:
theoretical investigations, empirical study, experiments.
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Social influence in social psychology

◮ Influence = force of change that comes from the outside of
the person or thing that is influenced by it
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Social influence in social psychology

◮ Influence = force of change that comes from the outside of
the person or thing that is influenced by it

◮ Social influence occurs when an individual’s thoughts or
actions are affected by other people, and it may take many
forms, e.g., it can be seen in conformity and leadership.

◮ Deutsch & Gerard (1955) describe two psychological needs
that lead humans to conform:

◮ “our need to be right” (informational social influence)
◮ “our need to be liked” (normative social influence).

◮ Kelman (1958) identifies three varieties of social influence:
◮ Compliance = people appear to agree with others, but actually

keep their dissenting opinions private (normative conformity)
◮ Identification = people are influenced by someone who is liked

and respected
◮ Internalization = people accept a belief or behavior and agree

both publicly and privately (informational conformity).
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Experiments in sociology and social psychology

◮ Sherif’s autokinetic experiment (Sherif, 1936) - first
experiment on informational social influence. Participants
placed in a dark room are asked to estimate the amount a
small dot of light moved. How many people change their
opinions to bring them in line with the opinion of a group?
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placed in a dark room are asked to estimate the amount a
small dot of light moved. How many people change their
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◮ Asch (1955) - first experiment on normative social influence.
A modification of Sherif’s study (when the situation is very
clear, conformity will be drastically reduced). But, his results
show a surprisingly high degree of conformity.
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Experiments in sociology and social psychology

◮ Sherif’s autokinetic experiment (Sherif, 1936) - first
experiment on informational social influence. Participants
placed in a dark room are asked to estimate the amount a
small dot of light moved. How many people change their
opinions to bring them in line with the opinion of a group?

◮ Asch (1955) - first experiment on normative social influence.
A modification of Sherif’s study (when the situation is very
clear, conformity will be drastically reduced). But, his results
show a surprisingly high degree of conformity.

◮ McKelvey & Kerr (1988) - using similar procedures they find
significantly less conformity in groups of friends as compared
to groups of strangers.
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Other examples in sociology and social psychology

◮ Latane (1981) - normative influence is a function of social
impact theory with three components:
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Other examples in sociology and social psychology

◮ Latane (1981) - normative influence is a function of social
impact theory with three components:

◮ number of people in the group (the higher the number, the
less of an impact each person has)

◮ importance of the group to a person (groups valued higher
have more social influence)

◮ immediacy (how close the group is in time and space when the
influence is taking place).

◮ Latane & Bourgeois (2001) - using these three factors, they
construct a mathematical model to predict the amount of
conformity that occurs with some degree of accuracy.
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Theoretical models in sociology (1/2)

◮ Models of social influence and persuasion - French (1956),
Harary (1959)
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◮ Measures of prestige and centrality in a network - Katz
(1953), Bonacich (1972, 1987), Bonacich & Lloyd (2001)
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◮ The prestige of a node is a sum of the prestige of its neighbors

divided by their respective degrees.
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centrality of its neighbors.

◮ Threshold models of collective behavior - Granovetter (1978)
◮ Agents have two alternatives and the costs and benefits of each

depend on how many other agents choose which alternative.
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Theoretical models in sociology (1/2)

◮ Models of social influence and persuasion - French (1956),
Harary (1959)

◮ Measures of prestige and centrality in a network - Katz
(1953), Bonacich (1972, 1987), Bonacich & Lloyd (2001)

◮ How important, central, or influential a node’s neighbors are.
◮ The prestige of a node is a sum of the prestige of its neighbors

divided by their respective degrees.
◮ The centrality of a node is proportional to the sum of the

centrality of its neighbors.

◮ Threshold models of collective behavior - Granovetter (1978)
◮ Agents have two alternatives and the costs and benefits of each

depend on how many other agents choose which alternative.
◮ The author focuses on the effect of the individual thresholds

(i.e., the proportion or number of others that make their
decision before a given agent) on the collective behavior, he
discusses an equilibrium in a process occurring over time and
the stability of equilibrium outcomes.
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Theoretical models in sociology (2/2)

◮ A sociological model of interactions on networks by Conlisk
(1976, 1978, 1992)
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Theoretical models in sociology (2/2)

◮ A sociological model of interactions on networks by Conlisk
(1976, 1978, 1992)

◮ The author introduces the interactive Markov chain, a certain
deterministic and discrete-time dynamical system, in which
each entry in a state vector at each time represents the
fraction of the population with some attribute. The matrix
depends on the current state vector which means that the
current social structure is taken into account for evolution in
sociological dynamics.
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Theoretical models in sociology (2/2)

◮ A sociological model of interactions on networks by Conlisk
(1976, 1978, 1992)

◮ The author introduces the interactive Markov chain, a certain
deterministic and discrete-time dynamical system, in which
each entry in a state vector at each time represents the
fraction of the population with some attribute. The matrix
depends on the current state vector which means that the
current social structure is taken into account for evolution in
sociological dynamics.

◮ Interpersonal influence model - Friedkin (1999), Friedkin &
Johnsen (1990, 1999), Friedkin & Cook (1990).
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Theoretical models in sociology (2/2)

◮ A sociological model of interactions on networks by Conlisk
(1976, 1978, 1992)

◮ The author introduces the interactive Markov chain, a certain
deterministic and discrete-time dynamical system, in which
each entry in a state vector at each time represents the
fraction of the population with some attribute. The matrix
depends on the current state vector which means that the
current social structure is taken into account for evolution in
sociological dynamics.

◮ Interpersonal influence model - Friedkin (1999), Friedkin &
Johnsen (1990, 1999), Friedkin & Cook (1990).

◮ The authors study a framework, in which social attitudes
depend on the attitudes of neighbors and evolve over time. In
their model, agents start with initial attitudes and then mix in
some of their neighbors’ recent attitudes with their starting
attitudes.
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Studying influence in political science

◮ van Winden (2004) - nice survey of interest group behavior
and influence. In particular, the author investigates two
influence channels of affecting policies by interest groups:
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Studying influence in political science

◮ van Winden (2004) - nice survey of interest group behavior
and influence. In particular, the author investigates two
influence channels of affecting policies by interest groups:

◮ directly by influencing the behavior of policymakers (the
influence function models)

◮ indirectly by influencing the behavior of voters (the vote
function models).

◮ For more surveys of theoretical and empirical literature on this
issue, see, e.g., Sloof (1998), Drazen (2000), Persson &
Tabellini (2000), Grossman & Helpman (2001); see also
Potters & Sloof (1996), and Austen-Smith (1997).
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Leadership in sociology and marketing (1/2)

◮ One of the concepts closely related to influence is the concept
of leadership; see, e.g., Burns (1978) and Bass (1985) for
books on the behavioral theory of leadership.

Agnieszka Rusinowska c©2010 Different approaches to influence in social networks



Leadership in sociology and marketing (1/2)

◮ One of the concepts closely related to influence is the concept
of leadership; see, e.g., Burns (1978) and Bass (1985) for
books on the behavioral theory of leadership.

◮ Opinion leaders form an attractive group for marketing and
policy purposes, because their existence (or non-existence) in
a society and their relations to their followers may have a
considerable impact on market behavior.
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Leadership in sociology and marketing (2/2)

◮ The two-step flow of communication theory - the
communication process is a two-step process, in which
information distributed by mass media first reaches the
opinion leaders; see Lazarsfeld et al. (1944), Katz &
Lazarsfeld (1955).
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◮ The two-step flow of communication theory - the
communication process is a two-step process, in which
information distributed by mass media first reaches the
opinion leaders; see Lazarsfeld et al. (1944), Katz &
Lazarsfeld (1955).

◮ Lazarsfeld et al. (1944) investigate the influence of mass
communication on the 1940 presidential election campaign in
the US. They find that the voters’ choices were more
influenced by the opinion leaders than by mass communication.
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Lazarsfeld (1955).

◮ Lazarsfeld et al. (1944) investigate the influence of mass
communication on the 1940 presidential election campaign in
the US. They find that the voters’ choices were more
influenced by the opinion leaders than by mass communication.

◮ Troldahl (1966) introduces a modified version called the
two-cycle flow of communication model which distinguishes
between two phases in the communication process:
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Leadership in sociology and marketing (2/2)

◮ The two-step flow of communication theory - the
communication process is a two-step process, in which
information distributed by mass media first reaches the
opinion leaders; see Lazarsfeld et al. (1944), Katz &
Lazarsfeld (1955).

◮ Lazarsfeld et al. (1944) investigate the influence of mass
communication on the 1940 presidential election campaign in
the US. They find that the voters’ choices were more
influenced by the opinion leaders than by mass communication.

◮ Troldahl (1966) introduces a modified version called the
two-cycle flow of communication model which distinguishes
between two phases in the communication process:

◮ flow of information from the mass media to the members of
the society (one-step process);
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Leadership in sociology and marketing (2/2)

◮ The two-step flow of communication theory - the
communication process is a two-step process, in which
information distributed by mass media first reaches the
opinion leaders; see Lazarsfeld et al. (1944), Katz &
Lazarsfeld (1955).

◮ Lazarsfeld et al. (1944) investigate the influence of mass
communication on the 1940 presidential election campaign in
the US. They find that the voters’ choices were more
influenced by the opinion leaders than by mass communication.

◮ Troldahl (1966) introduces a modified version called the
two-cycle flow of communication model which distinguishes
between two phases in the communication process:

◮ flow of information from the mass media to the members of
the society (one-step process);

◮ flow of influence on beliefs and behavior (two-step process) -
opinion leaders form their own opinion based on additional
information provided by experts, and then they try to influence
the behavior of their followers.
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Studying influence in economics

◮ Studying influence can find its place in different fields of
economics, like, e.g., in labor economics, political and public
economics, experimental economics, industrial organization,
game and contract theory ...
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Studying influence in economics

◮ Studying influence can find its place in different fields of
economics, like, e.g., in labor economics, political and public
economics, experimental economics, industrial organization,
game and contract theory ...

◮ “Yes Men” Theory (Prendergast, 1993) - one of the leading
works on conformity. A trade-off between inducing workers to
tell the truth and inducing them to exert effort is shown. The
author illustrates an incentive for subordinates to conform to
the opinion of their superiors’ opinions when firms use
subjective performance evaluation, and shows that such an
incentive implies inefficiencies, even if workers are risk-neutral.
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Studying influence in economics

◮ Studying influence can find its place in different fields of
economics, like, e.g., in labor economics, political and public
economics, experimental economics, industrial organization,
game and contract theory ...

◮ “Yes Men” Theory (Prendergast, 1993) - one of the leading
works on conformity. A trade-off between inducing workers to
tell the truth and inducing them to exert effort is shown. The
author illustrates an incentive for subordinates to conform to
the opinion of their superiors’ opinions when firms use
subjective performance evaluation, and shows that such an
incentive implies inefficiencies, even if workers are risk-neutral.

◮ Similar approach is applied in works on:
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Studying influence in economics

◮ Studying influence can find its place in different fields of
economics, like, e.g., in labor economics, political and public
economics, experimental economics, industrial organization,
game and contract theory ...

◮ “Yes Men” Theory (Prendergast, 1993) - one of the leading
works on conformity. A trade-off between inducing workers to
tell the truth and inducing them to exert effort is shown. The
author illustrates an incentive for subordinates to conform to
the opinion of their superiors’ opinions when firms use
subjective performance evaluation, and shows that such an
incentive implies inefficiencies, even if workers are risk-neutral.

◮ Similar approach is applied in works on:
◮ influence activities by Milgrom and Roberts (1988)

Agnieszka Rusinowska c©2010 Different approaches to influence in social networks



Studying influence in economics

◮ Studying influence can find its place in different fields of
economics, like, e.g., in labor economics, political and public
economics, experimental economics, industrial organization,
game and contract theory ...

◮ “Yes Men” Theory (Prendergast, 1993) - one of the leading
works on conformity. A trade-off between inducing workers to
tell the truth and inducing them to exert effort is shown. The
author illustrates an incentive for subordinates to conform to
the opinion of their superiors’ opinions when firms use
subjective performance evaluation, and shows that such an
incentive implies inefficiencies, even if workers are risk-neutral.

◮ Similar approach is applied in works on:
◮ influence activities by Milgrom and Roberts (1988)
◮ conformity by Bernheim (1994) - a model of social interaction

in which individuals are assumed to care about status
(popularity, esteem, respect) and about actions (consumption);
see also Akerlof (1980) and Jones (1984).
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Leadership in economics (1/5)

◮ Calvert (1992) and Wilson & Rhodes (1997) - studies of the
leader’s ability to solve social dilemmas and coordination
games
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Leadership in economics (1/5)

◮ Calvert (1992) and Wilson & Rhodes (1997) - studies of the
leader’s ability to solve social dilemmas and coordination
games

◮ DeMarzo (1992) - examines the set of outcomes sustainable
by a leader with the power to make suggestions which are
important even if players can communicate and form
coalitions. The author considers both finite-horizon games
and infinite-horizon two-player repeated games.
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Leadership in economics (2/5)

◮ Different scores and measures for analyzing collective
decision-making situations with an influence between the
actors:
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Leadership in economics (2/5)

◮ Different scores and measures for analyzing collective
decision-making situations with an influence between the
actors:

◮ Some measures for arbitrary digraphs are studied in van den
Brink & Borm (2002) and van den Brink & Gilles (2000)
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Leadership in economics (2/5)

◮ Different scores and measures for analyzing collective
decision-making situations with an influence between the
actors:

◮ Some measures for arbitrary digraphs are studied in van den
Brink & Borm (2002) and van den Brink & Gilles (2000)

◮ Van den Brink et al. (2009) define the satisfaction and power
scores for opinion leaders - followers structures and examine
common properties of these scores.
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Leadership in economics (2/5)

◮ Different scores and measures for analyzing collective
decision-making situations with an influence between the
actors:

◮ Some measures for arbitrary digraphs are studied in van den
Brink & Borm (2002) and van den Brink & Gilles (2000)

◮ Van den Brink et al. (2009) define the satisfaction and power
scores for opinion leaders - followers structures and examine
common properties of these scores.

◮ This research is in some respect also related to work on
opinion leaders and the Condorcet Jury Theorem (Estlund,
1994) and to models on organizational hierarchies based on
subordinates and their superiors, where an organizational
choice is to be made; see, e.g., Hammond & Thomas (1990).
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Leadership in economics (3/5)

◮ Hermalin (1998) - an important contribution to the literature
on leadership, which has been tested in several experiments.
The author presents a model of leadership which captures the
feature that following is a voluntary activity. He considers:
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Leadership in economics (3/5)

◮ Hermalin (1998) - an important contribution to the literature
on leadership, which has been tested in several experiments.
The author presents a model of leadership which captures the
feature that following is a voluntary activity. He considers:

◮ “leading-by-example” - the leader’s effort is observable by the
followers (the leader works first publicly on an activity and
convinces the followers that the activity is indeed worthwhile)
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Leadership in economics (3/5)

◮ Hermalin (1998) - an important contribution to the literature
on leadership, which has been tested in several experiments.
The author presents a model of leadership which captures the
feature that following is a voluntary activity. He considers:

◮ “leading-by-example” - the leader’s effort is observable by the
followers (the leader works first publicly on an activity and
convinces the followers that the activity is indeed worthwhile)

◮ “leading by sacrifice” - the leader gives up a part of his payoff.
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Leadership in economics (3/5)

◮ Hermalin (1998) - an important contribution to the literature
on leadership, which has been tested in several experiments.
The author presents a model of leadership which captures the
feature that following is a voluntary activity. He considers:

◮ “leading-by-example” - the leader’s effort is observable by the
followers (the leader works first publicly on an activity and
convinces the followers that the activity is indeed worthwhile)

◮ “leading by sacrifice” - the leader gives up a part of his payoff.
◮ Hermalin (1998) proves that leading by example can support

more efficient outcomes; see also, e.g., Arce (2001).
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Leadership in economics (3/5)

◮ Hermalin (1998) - an important contribution to the literature
on leadership, which has been tested in several experiments.
The author presents a model of leadership which captures the
feature that following is a voluntary activity. He considers:

◮ “leading-by-example” - the leader’s effort is observable by the
followers (the leader works first publicly on an activity and
convinces the followers that the activity is indeed worthwhile)

◮ “leading by sacrifice” - the leader gives up a part of his payoff.
◮ Hermalin (1998) proves that leading by example can support

more efficient outcomes; see also, e.g., Arce (2001).

◮ Meidinger & Villeval (2002) test these two signaling devices:
leadership-by-example and leadership-by-sacrifice.
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Leadership in economics (4/5)

◮ Potters et al. (2007) conduct an experiment on the effect of
leadership in a voluntary contribution game both in an
asymmetric and full information environment. They find that
leading by example increases contributions if the leader has
private information about the returns from contributing.
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Leadership in economics (4/5)

◮ Potters et al. (2007) conduct an experiment on the effect of
leadership in a voluntary contribution game both in an
asymmetric and full information environment. They find that
leading by example increases contributions if the leader has
private information about the returns from contributing.

◮ Potters et al. (2005) show that the followers choose to
contribute sequentially and the contributions are larger in the
sequential-move then in the simultaneous-move game.
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Leadership in economics (4/5)

◮ Potters et al. (2007) conduct an experiment on the effect of
leadership in a voluntary contribution game both in an
asymmetric and full information environment. They find that
leading by example increases contributions if the leader has
private information about the returns from contributing.

◮ Potters et al. (2005) show that the followers choose to
contribute sequentially and the contributions are larger in the
sequential-move then in the simultaneous-move game.

◮ Andreoni (1998), List & Lucking-Reiley (2002), Vesterlund
(2003), Shang & Croson (2007) - an asymmetric information
with informed leaders and uninformed followers, and a positive
effect of early contributions on later contributions.
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Leadership in economics (5/5)

◮ Moxnes & van der Heijden (2003) observe in a public bad
experiment that the presence of a leader improves the overall
outcome.

Agnieszka Rusinowska c©2010 Different approaches to influence in social networks



Leadership in economics (5/5)

◮ Moxnes & van der Heijden (2003) observe in a public bad
experiment that the presence of a leader improves the overall
outcome.

◮ Gächter & Renner (2006) test a sequential public good game
and show that leaders exert a long-lasting influence on
followers’ beliefs.
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Research on influence in cooperative game theory (CGT)

◮ A simple game is an ordered pair (N,W), where
N = {1, 2, . . . , n} denotes the set of players and W is a subset
of the powerset 2N .
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Research on influence in cooperative game theory (CGT)

◮ A simple game is an ordered pair (N,W), where
N = {1, 2, . . . , n} denotes the set of players and W is a subset
of the powerset 2N .

◮ Any element of 2N is called a coalition.
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Research on influence in cooperative game theory (CGT)

◮ A simple game is an ordered pair (N,W), where
N = {1, 2, . . . , n} denotes the set of players and W is a subset
of the powerset 2N .

◮ Any element of 2N is called a coalition.

◮ A coalition S with S ∈ W is called winning, while those with
S /∈ W are called losing.
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Research on influence in cooperative game theory (CGT)

◮ A simple game is an ordered pair (N,W), where
N = {1, 2, . . . , n} denotes the set of players and W is a subset
of the powerset 2N .

◮ Any element of 2N is called a coalition.

◮ A coalition S with S ∈ W is called winning, while those with
S /∈ W are called losing.

◮ A simple game (N,W) is monotone if W is an up-set in the
order (2N ,⊆), i.e., for all S ,T ∈ 2N

if S ⊆ T and S ∈ W, then T ∈ W.
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Research on influence in cooperative game theory (CGT)

◮ A simple game is an ordered pair (N,W), where
N = {1, 2, . . . , n} denotes the set of players and W is a subset
of the powerset 2N .

◮ Any element of 2N is called a coalition.

◮ A coalition S with S ∈ W is called winning, while those with
S /∈ W are called losing.

◮ A simple game (N,W) is monotone if W is an up-set in the
order (2N ,⊆), i.e., for all S ,T ∈ 2N

if S ⊆ T and S ∈ W, then T ∈ W.

◮ A voting game is a monotone simple game (N,W) with
W 6= ∅ and ∅ /∈ W.
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Research on influence in CGT - Influence relation in simple
games

◮ Isbell (1958) introduces the concept of influence relation to
qualitatively compare the a priori influence of voters in a
simple game, where players can vote either ‘yes’ or ‘no’.
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Research on influence in CGT - Influence relation in simple
games

◮ Isbell (1958) introduces the concept of influence relation to
qualitatively compare the a priori influence of voters in a
simple game, where players can vote either ‘yes’ or ‘no’.

◮ This influence relation is defined as follows:
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Research on influence in CGT - Influence relation in simple
games

◮ Isbell (1958) introduces the concept of influence relation to
qualitatively compare the a priori influence of voters in a
simple game, where players can vote either ‘yes’ or ‘no’.

◮ This influence relation is defined as follows:
◮ Voter i is said to be at least as influential as voter j , if

whenever j can transform a loosing coalition into a winning
one by joining it, i can achieve the same ceteris paribus.
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Research on influence in CGT - Influence relation in VGAs

◮ Tchantcho et al. (2008) extend this influence relation to
voting games with abstention (VGAs).
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Research on influence in CGT - Influence relation in VGAs

◮ Tchantcho et al. (2008) extend this influence relation to
voting games with abstention (VGAs).

◮ A VGA consists of a non-empty set W of tripartitions of a set
of voters, and (S1, S2, S3) ∈ W means that if the players of S1
vote in favor of a social alternative, the players of S2 abstain or
are neutral, and the members of S3 vote against it, then this
alternative will be adopted as the social choice.
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Research on influence in CGT - Influence relation in VGAs

◮ Tchantcho et al. (2008) extend this influence relation to
voting games with abstention (VGAs).

◮ A VGA consists of a non-empty set W of tripartitions of a set
of voters, and (S1, S2, S3) ∈ W means that if the players of S1
vote in favor of a social alternative, the players of S2 abstain or
are neutral, and the members of S3 vote against it, then this
alternative will be adopted as the social choice.

◮ (S1, S2, S3) ∈ W is called a winning partition or a majority.
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Research on influence in CGT - Influence relation in VGAs

◮ Tchantcho et al. (2008) extend this influence relation to
voting games with abstention (VGAs).

◮ A VGA consists of a non-empty set W of tripartitions of a set
of voters, and (S1, S2, S3) ∈ W means that if the players of S1
vote in favor of a social alternative, the players of S2 abstain or
are neutral, and the members of S3 vote against it, then this
alternative will be adopted as the social choice.

◮ (S1, S2, S3) ∈ W is called a winning partition or a majority.

◮ The influence relation of a VGA is defined as follows:
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Research on influence in CGT - Influence relation in VGAs

◮ Tchantcho et al. (2008) extend this influence relation to
voting games with abstention (VGAs).

◮ A VGA consists of a non-empty set W of tripartitions of a set
of voters, and (S1, S2, S3) ∈ W means that if the players of S1
vote in favor of a social alternative, the players of S2 abstain or
are neutral, and the members of S3 vote against it, then this
alternative will be adopted as the social choice.

◮ (S1, S2, S3) ∈ W is called a winning partition or a majority.

◮ The influence relation of a VGA is defined as follows:
◮ Assuming that voters i and j have the same initial degree of

approval, i is said to be at least as influential as j if whenever j
can transform a losing partition into a winning one by an
upward shift in her level of approval, i can achieve the same by
the identical shift ceteris paribus.
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Research on influence in CGT - Command games (1/3)

◮ Hu & Shapley (2003a, 2003b) use the command structure to
model players’ interaction relations by simple games.
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Research on influence in CGT - Command games (1/3)

◮ Hu & Shapley (2003a, 2003b) use the command structure to
model players’ interaction relations by simple games.

◮ Let N = {1, ..., n} be the set of players (voters). For k ∈ N
and S ⊆ N \ k :
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Research on influence in CGT - Command games (1/3)

◮ Hu & Shapley (2003a, 2003b) use the command structure to
model players’ interaction relations by simple games.

◮ Let N = {1, ..., n} be the set of players (voters). For k ∈ N
and S ⊆ N \ k :

◮ S is a boss set for k if S determines the choice of k ;
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Research on influence in CGT - Command games (1/3)

◮ Hu & Shapley (2003a, 2003b) use the command structure to
model players’ interaction relations by simple games.

◮ Let N = {1, ..., n} be the set of players (voters). For k ∈ N
and S ⊆ N \ k :

◮ S is a boss set for k if S determines the choice of k ;
◮ S is an approval set for k if k can act with an approval of S .
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Research on influence in CGT - Command games (1/3)

◮ Hu & Shapley (2003a, 2003b) use the command structure to
model players’ interaction relations by simple games.

◮ Let N = {1, ..., n} be the set of players (voters). For k ∈ N
and S ⊆ N \ k :

◮ S is a boss set for k if S determines the choice of k ;
◮ S is an approval set for k if k can act with an approval of S .

◮ For each k ∈ N, where N is the set of players, a simple game
(N,Wk) is built, called the command game for k , with the set
of winning coalitions defined by

Wk := {S | S is a boss set for k} ∪ {S ∪ k | S is a boss or approval set for k
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Research on influence in CGT - Command games (1/3)

◮ Hu & Shapley (2003a, 2003b) use the command structure to
model players’ interaction relations by simple games.

◮ Let N = {1, ..., n} be the set of players (voters). For k ∈ N
and S ⊆ N \ k :

◮ S is a boss set for k if S determines the choice of k ;
◮ S is an approval set for k if k can act with an approval of S .

◮ For each k ∈ N, where N is the set of players, a simple game
(N,Wk) is built, called the command game for k , with the set
of winning coalitions defined by

Wk := {S | S is a boss set for k} ∪ {S ∪ k | S is a boss or approval set for k

◮ We can recover the boss and approval sets for k

Bossk = {S ⊆ N \ k | S ∈ Wk} = Wk ∩ 2N\k

Appk = {S ⊆ N \ k | S ∪ k ∈ Wk but S /∈ Wk}.

We have Bossk ∩ Appk = ∅.
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Research on influence in CGT - Command games (2/3)

◮ Given {(N,Wk), k ∈ N}, the command function ω : 2N → 2N

is defined as

ω(S) := {k ∈ N | S ∈ Wk}, ∀S ⊆ N.

ω(S) is the set of all members that are ‘commandable’ by S ,
and ω(∅) = ∅, ω(N) = N, and ω(S) ⊆ ω(S ′) if S ⊂ S ′.
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Research on influence in CGT - Command games (2/3)

◮ Given {(N,Wk), k ∈ N}, the command function ω : 2N → 2N

is defined as

ω(S) := {k ∈ N | S ∈ Wk}, ∀S ⊆ N.

ω(S) is the set of all members that are ‘commandable’ by S ,
and ω(∅) = ∅, ω(N) = N, and ω(S) ⊆ ω(S ′) if S ⊂ S ′.

◮ How to define a fair distribution of “power” in an organization
(N, {(N,Wk) | k ∈ N})?
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Research on influence in CGT - Command games (3/3)

◮ The authors define an authority distribution π = (π1, ..., πn),
where πi ≥ 0 and

∑

i∈N πi = 1, and create the power
transition matrix of the organization, which is the stochastic
matrix P = [P(j , k)]nj ,k=1 such that

P(j , k) := Shk(N,Wj)

and Shk(N,Wj) is the Shapley-Shubik index of k in the
command game for j . If P(j , k) > 0, then some of j ’s
“power” transfers to k . P(j , j) is j ’s personal discretion.
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Research on influence in CGT - Command games (3/3)

◮ The authors define an authority distribution π = (π1, ..., πn),
where πi ≥ 0 and

∑

i∈N πi = 1, and create the power
transition matrix of the organization, which is the stochastic
matrix P = [P(j , k)]nj ,k=1 such that

P(j , k) := Shk(N,Wj)

and Shk(N,Wj) is the Shapley-Shubik index of k in the
command game for j . If P(j , k) > 0, then some of j ’s
“power” transfers to k . P(j , j) is j ’s personal discretion.

◮ They use a Markov chain to describe the organization’s
long-run authority π. The authority distribution π is assumed
to satisfy the authority equilibrium equation given by

π = πP , i .e., πk =
∑

j∈N

πjP(j , k), ∀k ∈ N.

πjP(j , k) is the authority flowing from j to k . The existence
of π is known from the Markovian theory.
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Research on influence in CGT - Confucian model (1/2)

Four players in the society, i.e., N = {1, 2, 3, 4}, with the king (1),
the man (2), the wife (3), and the child (4). The rules are:

(i) The man follows the king;

(ii) The wife and the child follow the man;

(iii) The king should respect his people.

By virtue of the rules (i) and (ii), we have:

W2 = {1, 12, 13, 14, 123, 124, 134, 1234}

W3 = W4 = {2, 12, 23, 24, 123, 124, 234, 1234}

Boss2 = {1, 13, 14, 134}, Boss3 = {2, 12, 24, 124}

Boss4 = {2, 12, 23, 123}, App2 = App3 = App4 = ∅.

How can we translate the rule (iii) into the set W1 of winning
coalitions in the command game for player 1?
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Research on influence in CGT - Confucian model (2/2)

If W1 = {1234}, then Boss1 = ∅, App1 = {234}, and

ω(1) = ω(13) = ω(14) = ω(134) = {2}

ω(2) = ω(23) = ω(24) = ω(234) = {3, 4}

ω(3) = ω(4) = ω(34) = ∅, ω(12) = ω(123) = ω(124) = {2, 3, 4}.

P = [Shk(N,Wj)]
n
j ,k=1 =









1
4

1
4

1
4

1
4

1 0 0 0
0 1 0 0
0 1 0 0































π1 =
1
4π1 + π2

π2 =
1
4π1 + π3 + π4
π3 =

1
4π1

π4 =
1
4π1

π1 + π2 + π3 + π4 = 1

Hence, the authority distribution π = 1
9(4, 3, 1, 1).
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Research on influence in social networks

◮ Koller & Milch (2003) - a different approach; the authors
propose a graphical representation for non-cooperative games
called multi-agent influence diagrams (MAIDs), which
represent decision problems involving multiple agents.
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Research on influence in social networks

◮ Koller & Milch (2003) - a different approach; the authors
propose a graphical representation for non-cooperative games
called multi-agent influence diagrams (MAIDs), which
represent decision problems involving multiple agents.

◮ Game theoretic approach to influence based on using social
networks:
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Research on influence in social networks

◮ Koller & Milch (2003) - a different approach; the authors
propose a graphical representation for non-cooperative games
called multi-agent influence diagrams (MAIDs), which
represent decision problems involving multiple agents.

◮ Game theoretic approach to influence based on using social
networks:

◮ Social networks play a central role in the formation of opinions.
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Research on influence in social networks

◮ Koller & Milch (2003) - a different approach; the authors
propose a graphical representation for non-cooperative games
called multi-agent influence diagrams (MAIDs), which
represent decision problems involving multiple agents.

◮ Game theoretic approach to influence based on using social
networks:

◮ Social networks play a central role in the formation of opinions.
◮ It is therefore critical to have a good understanding of how the

structure of such networks affects the diffusion of information.
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The Hoede-Bakker index (1/3)

SOCIAL NETWORK, PLAYERS, INFLUENCE
inclinations i → → decisions Bi → group decision
(‘yes’ or ‘no’) influence function B gd(Bi)

◮ A social network with the set of players N := {1, ..., n}
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The Hoede-Bakker index (1/3)

SOCIAL NETWORK, PLAYERS, INFLUENCE
inclinations i → → decisions Bi → group decision
(‘yes’ or ‘no’) influence function B gd(Bi)

◮ A social network with the set of players N := {1, ..., n}
◮ The players (agents, actors, voters) make a YES-NO decision.
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The Hoede-Bakker index (1/3)

SOCIAL NETWORK, PLAYERS, INFLUENCE
inclinations i → → decisions Bi → group decision
(‘yes’ or ‘no’) influence function B gd(Bi)

◮ A social network with the set of players N := {1, ..., n}
◮ The players (agents, actors, voters) make a YES-NO decision.

◮ Each agent has an inclination either to say YES (+1) or NO
(-1).
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The Hoede-Bakker index (1/3)

SOCIAL NETWORK, PLAYERS, INFLUENCE
inclinations i → → decisions Bi → group decision
(‘yes’ or ‘no’) influence function B gd(Bi)

◮ A social network with the set of players N := {1, ..., n}
◮ The players (agents, actors, voters) make a YES-NO decision.

◮ Each agent has an inclination either to say YES (+1) or NO
(-1).

◮ i = (i1, ..., in) inclination vector, where ik ∈ {0, 1}, k ∈ N
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SOCIAL NETWORK, PLAYERS, INFLUENCE
inclinations i → → decisions Bi → group decision
(‘yes’ or ‘no’) influence function B gd(Bi)

◮ A social network with the set of players N := {1, ..., n}
◮ The players (agents, actors, voters) make a YES-NO decision.

◮ Each agent has an inclination either to say YES (+1) or NO
(-1).

◮ i = (i1, ..., in) inclination vector, where ik ∈ {0, 1}, k ∈ N

◮ I = {+1,−1}n the set of all inclination vectors

◮ Due to influence in the network, the decision of a player may
be different from his inclination.

◮ B : I → I influence function Bi - decision vector

◮ gd : B(I ) → {+1,−1} group decision function, where
B(I ) - the set of all decision vectors under B .
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The Hoede-Bakker index (2/3)

◮ The Hoede-Bakker index (Hoede and Bakker, 1982)

HB(k) =
1

2n−1
·

∑

{i : ik=+1}

gd(Bi)

where for each i ∈ I ∈ {−1,+1}n, gd(B(−i)) = −gd(Bi).
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·

∑

{i : ik=+1}

gd(Bi)

where for each i ∈ I ∈ {−1,+1}n, gd(B(−i)) = −gd(Bi).
◮ Rusinowska & de Swart (2007) - Investigating properties of

the index (postulates for power indices and paradoxes)
◮ Rusinowska & de Swart (2006) - Generalization and

modifications of the index that coincide with other power
indices

GHB(k) =
1

2n
·





∑

{i : ik=+1}

gd(Bi)−
∑

{i : ik=−1}

gd(Bi)





◮ Rusinowska (2008) - the not-preference-based GHB
◮ Rusinowska (2009) - other modifications of the GHB.
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◮ decision to be made : to go or not to go for a bicycle trip
◮ rules:

◮ influence: if the parents have the same opinion, the child
follows them, otherwise he follows his own inclination

◮ group decision: majority vote

◮ this gives:
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◮ The Hoede-Bakker index does NOT measure influence!

◮ N = {1 = child, 2 = mother, 3 = father}

◮ decision to be made : to go or not to go for a bicycle trip
◮ rules:

◮ influence: if the parents have the same opinion, the child
follows them, otherwise he follows his own inclination

◮ group decision: majority vote

◮ this gives:
i (1, 1, 1) (1, 1,−1) (1,−1, 1) (−1, 1, 1) (1,−1,−1) (−1, 1,−1) (−1,−1, 1) (−1,−1,−1)

B(i) (1, 1, 1) (1, 1,−1) (1,−1, 1) (1, 1, 1) (−1,−1,−1) (−1, 1,−1) (−1,−1, 1) (−1,−1,−1)
gd(Bi) 1 1 1 1 −1 −1 −1 −1

◮ computation of GHB index gives:

GHB1 = GHB2 = GHB3 =
1

2
(!)

◮ What does the index really measure?
‘net Success’ = Success − Failure, not always Decisiveness!
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Measuring influence

◮ Grabisch & Rusinowska (2009, 2010a - 2010f)
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Measuring influence

◮ Grabisch & Rusinowska (2009, 2010a - 2010f)
◮ Introducing influence indices and tools to analyze the influence

function, studying properties of some influence functions
◮ Generalization of the yes-no model to multi-choice games
◮ Comparing the influence model to command games
◮ Studying the exact relations between:

◮ an influence function and a follower function (sufficient and
necessary conditions for a function to be the follower function
of some influence function)

◮ a command game and a command function (sufficient and
necessary conditions for a function to be the command
function of some command game)

◮ a command game and an influence function (sufficient and
necessary condition for the equivalence between an influence
function and a normal command game)

◮ A model of influence with a continuum of actions
◮ Work in progress: iterating influence.
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Basic influence index of a coalition on a player

◮ For S ⊆ P such that |S | ≥ 2:

IS := {i ∈ I | ∀ k , j ∈ S : ik = ij}

For each i ∈ IS , let iS := ik for some k ∈ S .
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◮ For S ⊆ P such that |S | ≥ 2:

IS := {i ∈ I | ∀ k , j ∈ S : ik = ij}

For each i ∈ IS , let iS := ik for some k ∈ S .
◮ For each S ⊆ N and j ∈ P :

IS→j := {i ∈ IS | ij = ¬iS}

I ∗S→j(B) := {i ∈ IS→j | (Bi)j = iS}

IS→j = set of inclination vectors of potential influence of S
on j
I ∗S→j(B) = set of inclination vectors of influence of S on j
under the given B

◮ The possibility influence index of coalition S on player j :

d(B , S → j) :=
|I ∗S→j(B)|

|IS→j |

◮ Weighted influence indices - definitions and properties.
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Applying relational algebra & RelView to networks

◮ Relation algebra is used successfully to formal problem
specification, prototyping, and algorithm development - Brink
et al. (1997), Schmidt and Ströhlein (1993), de Swart et al.
(2003, 2006).
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Applying relational algebra & RelView to networks

◮ Relation algebra is used successfully to formal problem
specification, prototyping, and algorithm development - Brink
et al. (1997), Schmidt and Ströhlein (1993), de Swart et al.
(2003, 2006).

◮ Relations are well suited for modeling and reasoning about
many discrete structures (graphs, games, Petri nets, orders
and lattices) and, due to the easy and/or efficient
mechanization using, e.g., Boolean matrices, successor lists or
binary decision diagrams (BDDs), for computations on them.

◮ RelView (University of Kiel, 1993) - BDD-based tool for the
visualization and manipulation of relations and for relational
programming

◮ Berghammer, Rusinowska, de Swart - applying relational
algebra and RelView to:

◮ coalition formation (2007, 2009a, 2009b)
◮ measures in networks (2010a)
◮ simple games (2010b, with Stefan Bolus).
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Relation Algebra (1/2)

◮ R is a relation with domain X and range Y :

R : X ↔Y

X ↔Y is the type of R .

◮ Instead of (x , y) ∈ R we use Boolean matrix notation:

Rx ,y (or Rx if the range is a singleton set)

◮ Signature of relation algebra:
◮ Constants: O, L, I.
◮ Operations: R ∪ S ,R ∩ S ,R S , R ,RT.
◮ Tests: R ⊆ S ,R = S .

◮ A relation v : X ↔Y is a column vector if v = v L.

◮ The normal case is v : X ↔ 1, where 1 := {⊥} is a singleton
set. Then we define for subsets Y of X :

v represents Y ⇐⇒ Y = {x ∈ X : vx}
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Relation Algebra (2/2)

◮ A non-empty column vector v is a column point if vvT ⊆ I.

◮ Further relational modeling of sets via membership relation
M : X ↔ 2X , such that for all x ∈ X and subsets Y of X :

Mx ,Y ⇐⇒ x ∈ Y

◮ Projection relations π : X×Y ↔X and ρ : X×Y ↔X :

πu,x ⇐⇒ u1 = x ρu,y ⇐⇒ u2 = x

◮ Given a column vector v : X ↔ 1, one can compute the
injective embedding mapping

inj(v) : Y ↔X

which describes Y as a subset of X in such a way that
inj(v)y ,x holds iff y = x for all y ∈ Y and x ∈ X .
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Dependency graph

N - set of players
D : N ↔ N the dependency relation, where

Dj ,k holds iff there is an arc from j to k
(k is dependent on j)

N = {1, 2, 3, 4, 5, 6}, D62, D12, D52, D54, D23, D24
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Modeling inclination vectors

Membership Relation M : N↔ 2N :

∀ k ∈ N,X ∈ 2N : k ∈ X ↔ Mk,X

If we consider inclination vectors as relational column vectors, then
the membership relation M : N↔ 2N column-wisely enumerates
the set I of all inclination vectors.
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Computing decision vectors

Let N be the set of players and D : N↔N be the relation of the
dependency graph. Then the set of the dependent players
relation-algebraically is described by the column vector

depend(D) := DTL

of type [N↔ 1], where the used L has type [N↔ 1] too.

Theorem

Let d := depend(D). Given the influence rule ‘following only
unanimous trend-setters’, the relation

Dvec(D) = (M ∩ ( dL ∪ (dL ∩ DTM ∩ DTM))) ∪ (dL ∩ DTM )

of type [N↔ 2N ] column-wisely enumerates the set B(I ).

For all X ∈ 2N , if the X -column of M equals i : N↔ 1 then, under
the assumed rule, the X -column of Dvec(D) equals Bi : N↔ 1.
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Computing group decisions (1/2)

For the group decisions under majority, we need a row vector
m : 1↔ 2N such that for all X ∈ 2N we have

m⊥,X iff |X | ≥ [
|N|

2
] + 1.

In RelView such a vector can be easily obtained with the help of
the base operation cardfilter

m := cardfilter(L,w)
T

where the first argument L : 2N ↔ 1 describes the entire powerset
2N , and the second argument w : W ↔ 1 determines the threshold
for majority by its length, i.e., fulfills |W | = [ |N|

2 ] + 1.

Agnieszka Rusinowska c©2010 Different approaches to influence in social networks



Computing group decisions (2/2)

Theorem

Let the row vector gdv(D) of type [1↔ 2N ] be defined by

gdv(D) := m syq(M,Dvec(D))

where syq(R , S) := RT S ∩ R
T
S is by definition the symmetric

quotient of R and S . Then for all X ∈ 2N :

If the decision vector Bi : N↔ 1 equals the X -column of Dvec(D),
then gdv(D)⊥,X holds iff the number of 1-entries in Bi is at least

[ |N|
2 ] + 1 (group decision by majority).
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Example - Decision vectors and group decisions

Inclination vectors:

D62, D12, D52, D54, D23, D24. Applied to the relation D, we get
the following representation of Dvec(D) in RelView:

Applied to the relation D and a column vector w of length 4 (the
threshold of majority), we get the following row vector gdv(D):
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The generalized Hoede-Bakker index

Here YES = 1, NO = 0.
Given B and gd , we define:

I+(B , gd) := {i ∈ I | gd(Bi) = 1}

I−(B , gd) := {i ∈ I | gd(Bi) = 0}

and for each k ∈ N:

I++
k (B , gd) := {i ∈ I | ik = 1 ∧ gd(Bi) = 1}

I+−
k (B , gd) := {i ∈ I | ik = 1 ∧ gd(Bi) = 0}

I−+
k (B , gd) := {i ∈ I | ik = 0 ∧ gd(Bi) = 1}

I−−
k (B , gd) := {i ∈ I | ik = 0 ∧ gd(Bi) = 0}

The generalized Hoede-Bakker index of a player k ∈ N:

GHBk(B , gd) :=
|I++
k | − |I+−

k |+ |I−−
k | − |I−+

k |

2n
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Modifications of the Hoede-Bakker index

M1GHBk(B , gd) :=
|I++
k | − |I−+

k |

|I+|

M2GHBk(B , gd) :=
|I−−
k | − |I+−

k |

|I−|

M3GHBk(B , gd) :=
|I++
k |+ |I−−

k |

2n

M4GHBk(B , gd) :=
|I++
k |

|I+|
MGHB(B , gd) :=

|I+|

2n

M1GHB - Coleman’s index ‘to prevent action’
M2GHB - Coleman’s index ‘to initiate action’
M3GHB - Rae index M4GHB - König-Bräuninger index
MGHB - Coleman’s ‘power of a collectivity to act’
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Computing power indices

Theorem

Let a player k ∈ N be described by a column point p : N↔ 1 in
the relational sense. Let g := gdv(D) be the group decision row
vector. Let the four vectors ipp(p, g), ipm(p, g), imp(p, g) and
imm(p, g) of type [1↔ 2P ] be defined as follows:

ipp(p, g) := pTM ∩ g ipm(p, g) := pTM ∩ g

imp(p, g) := pTM ∩ g imm(p, g) := pTM ∩ g

Then we have for all X ∈ 2N : If the X -column of M equals the
inclination vector i : N↔ 1, then we have that

ipp(p, g)⊥,X holds iff i ∈ I++
k ipm(p, g)⊥,X holds iff i ∈ I+−

k

imp(p, g)⊥,X holds iff i ∈ I−+
k imm(p, g)⊥,X holds iff i ∈ I−−

k

(i.e., the row vector ipp(p, g) precisely designates those columns of
the membership relation M which belong to the set I++

k , etc.)
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Example - Computing power indices

Player 2, ‘following only unanimous trend-setters’ as influence rule,
gd given by simple majority

In the following 4× 64 RelView-matrix:

the first row depicts the row vector ipp(p, g), i.e., precisely
designates those columns of the membership relation M : N↔ 2N

that belong to the set I++
2 (B , gd).

The second, third and fourth rows of the matrix do the same for
I+−
2 (B , gd), I−+

2 (B , gd) and I−−
2 (B , gd) respectively.

Counting the 1-entries of the single rows, one can easily obtain

GHB2(B , gd) =
5

8
.
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Computing influence indices (1/2)

Theorem

Assume s : N↔ 1 as description of the coalition S ⊆ N and the
row vector is(s) of type [1↔ 2N ] to be defined as

is(s) := [sT, sT] (πM ∪ ρM) ∩ ( ρM ∪ πM)

where M : N↔ 2N is the membership relation, and π : N×N↔P
and ρ : N×N↔P are the projection relations.
Then we have for all X ∈ 2N : If the X -column of M equals the
inclination vector i : N↔ 1, then is(s)⊥,X holds iff i ∈ IS .

Hence, the row vector is(s) precisely designates those columns of
the membership relation M which belong to the set IS .
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Computing influence indices (2/2)

Theorem

Assume s : N↔ 1 to describe the coalition S ⊆ N, the column
point p : N↔ 1 to describe the player j ∈ N, the column point
q ⊆ s to describe some player k ∈ S , and the row vector
potinf (s, p) of type [1↔ 2N ] to be defined as

potinf (s, p) := ((r ∪ r ′) ∩ r ∩ r ′ ) inj(is(s)T)

where r := pTM inj(is(s)T)
T
, r ′ := qTM inj(is(s)T)

T
.

Then we have for all X ∈ 2N : If the X -column of M equals the
inclination vector i : N↔ 1, then potinf (s, p)⊥,X holds iff i ∈ IS→j .

Consequently, the set I ∗S→j(B) is described by the row vector

inf (s, p,D) := potinf (s, p) ∩ (r ∪ r ′) ∩ r ∩ r ′ inj(is(s)T)

now with r := pTDvec(D) inj(is(s)T)
T
and

r ′ := qTM inj(is(s)T)
T
.
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Example - Influence indices (1/2)

The RelView-representations of I , IS , IS→j and I ∗S→j(B), for
S = {2, 3, 5}, j = 1 and B = ‘following only unanimous
trend-setters’.
The first picture is M : N↔ 2N , the second one is the row vector
is(s) : 1↔ 2N , where the column vector s : N↔ 1 describes S .
The row vector precisely designates those columns of the matrix
where the entries 2, 3 and 5 have the same color.

Because I ∗S→1(B) = ∅, it follows that d(B , 235 → 1) = 0.
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Example - Influence indices (2/2)

For j = 4, S = {2, 3, 5} and B = ‘following only unanimous
trend-setters’, the RelView-representations of the sets I , IS , IS→j

and I ∗S→j(B) are respectively:

Hence,
d(B , 235 → 4) = 1.
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Sets of followers

The set of followers of coalition ∅ 6= S ⊆ N under the influence
function B is defined as

FB(S) := {j ∈ N | ∀ i ∈ IS : (Bi)j = iS}.

Theorem

Assume s : N↔ 1 to describe the coalition S ⊆ N, and the column
point q ⊆ s to describe some player k ∈ S . Furthermore, let
M : P ↔ 2N be the membership relation. If the column vector
follow(D, s) of type [N↔ 1] is defined as

follow(D, s) := syq(QT,RTq)

with relations R := M inj(is(s)T)
T
and

Q := Dvec(D) inj(is(s)T)
T
, then for all j ∈ P we have

follow(D, s)j ,⊥ iff j ∈ FB(S).
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Example - Sets of followers

The left column vector describes the set of followers of
S = {2, 3, 5} under the influence rule ‘following only unanimous
trend-setters’ and the right column vector does the same with
‘following the majority of the trend-setters’.
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The Dutch Parliament Example (1/2)

N := {CDA,CU,D66,GL,PvdA,PvdD,PVV, SGP, SP,VVD}

GL SP PvdA D66 PvdD CDA VVD CU SGP PVV

7 25 33 3 2 41 22 6 2 9

CDA - Christen-Democratisch Appel (Christian Democrats)
CU - Christen Unie (Christian Union)
D66 - Democraten66 (Democrats 66)
GL - GroenLinks (Green Left)
PvdA - Partij van de Arbeid (Labor Party)
PvdD - Partij voor de Dieren (Animal Party)
PVV - Partij voor de Vrijheid (Party for Freedom)
SGP - Staatkundig Gereformeerde Partij (Political Reformed Party)
SP - Socialistische Partij (Socialist Party)
VVD - Volkspartij voor Vrijheid en Democratie (People’s Party for Freedom
and Democracy)
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The Dutch Parliament Example (2/2)

The RelView-representation of the dependency relation and the
coalition S = {CDA,CU,PvdA}
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Advantages of applying the RelView approach to
networks

◮ The algorithms used are expressed by the extremely short
RelView programs.
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Advantages of applying the RelView approach to
networks

◮ The algorithms used are expressed by the extremely short
RelView programs.

◮ Usefulness of our approach with respect to applying the tools
to organizations and trend-setter structures with a larger
number of players.

Agnieszka Rusinowska c©2010 Different approaches to influence in social networks



Advantages of applying the RelView approach to
networks

◮ The algorithms used are expressed by the extremely short
RelView programs.

◮ Usefulness of our approach with respect to applying the tools
to organizations and trend-setter structures with a larger
number of players.

◮ Although all problems are hard since they deal with sets of
exponential size, the BDD based implementation of
RelView is of immense help.
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Advantages of applying the RelView approach to
networks

◮ The algorithms used are expressed by the extremely short
RelView programs.

◮ Usefulness of our approach with respect to applying the tools
to organizations and trend-setter structures with a larger
number of players.

◮ Although all problems are hard since they deal with sets of
exponential size, the BDD based implementation of
RelView is of immense help.

◮ Example of the very efficient BDD-implementation of relations
- RelView needs on a Sun Fire-280R workstation (750 MHz,
4 GByte main memory, running Solaris) only 0.04 seconds to
compute the group decision vector in the case of the Dutch
parliament. Note the symmetric quotient syq(M,WDvec(D))
used here has type [2N ↔ 2N ]. Regarded as a Boolean matrix,
this means that it has 2150 rows and columns.
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The DeGroot model

◮ The seminar network interaction model of information
transmission, opinion formation, and consensus formation is
presented in DeGroot (1974), see also Jackson (2008).
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The DeGroot model

◮ The seminar network interaction model of information
transmission, opinion formation, and consensus formation is
presented in DeGroot (1974), see also Jackson (2008).

◮ Each individual in a society has an initial opinion on a subject.
The opinions are represented by a vector
p(0) = (p1(0), ..., pn(0))

T of probabilities, and each pi (0) can
be seen as the probability that a given statement is true, or
the quality of a given product, etc.
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The DeGroot model

◮ The seminar network interaction model of information
transmission, opinion formation, and consensus formation is
presented in DeGroot (1974), see also Jackson (2008).

◮ Each individual in a society has an initial opinion on a subject.
The opinions are represented by a vector
p(0) = (p1(0), ..., pn(0))

T of probabilities, and each pi (0) can
be seen as the probability that a given statement is true, or
the quality of a given product, etc.

◮ The interactions are determined by a stochastic matrix T ,
where Tij represents the weight or trust that agent i places on
the current belief of agent j in forming i ’s belief for the next
period.
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The DeGroot model

◮ The seminar network interaction model of information
transmission, opinion formation, and consensus formation is
presented in DeGroot (1974), see also Jackson (2008).

◮ Each individual in a society has an initial opinion on a subject.
The opinions are represented by a vector
p(0) = (p1(0), ..., pn(0))

T of probabilities, and each pi (0) can
be seen as the probability that a given statement is true, or
the quality of a given product, etc.

◮ The interactions are determined by a stochastic matrix T ,
where Tij represents the weight or trust that agent i places on
the current belief of agent j in forming i ’s belief for the next
period.

◮ The beliefs are updated over time so that

p(t) = Tp(t − 1) = T tp(0)

Agnieszka Rusinowska c©2010 Different approaches to influence in social networks



Updating process in the DeGroot model (1/2)

Example - Updating in the DeGroot model (Jackson, 2008)

T =





1/3 1/3 1/3
1/2 1/2 0
0 1/4 3/4





11/3

3

3/4

2

1/2

1/3

1/2

1/3

1/4

Let the vector of beliefs be initially p(0) =





1
0
0



.
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Updating process in the DeGroot model (2/2)

p(1) = Tp(0) =





1/3 1/3 1/3
1/2 1/2 0
0 1/4 3/4









1
0
0



 =





1/3
1/2
0





p(2) = Tp(1) =





1/3 1/3 1/3
1/2 1/2 0
0 1/4 3/4









1/3
1/2
0



 =





5/18
5/12
1/8





Iterating the process leads to beliefs that converge

p(t) = Tp(t − 1) = T tp(0) →





3/11
3/11
3/11



 .

Agnieszka Rusinowska c©2010 Different approaches to influence in social networks



Updating process in the DeGroot model (2/2)

p(1) = Tp(0) =





1/3 1/3 1/3
1/2 1/2 0
0 1/4 3/4









1
0
0



 =





1/3
1/2
0





p(2) = Tp(1) =





1/3 1/3 1/3
1/2 1/2 0
0 1/4 3/4









1/3
1/2
0



 =





5/18
5/12
1/8





Iterating the process leads to beliefs that converge

p(t) = Tp(t − 1) = T tp(0) →





3/11
3/11
3/11



 .

◮ Under what conditions does the updating process converge to
a well-defined limit?
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Updating process in the DeGroot model (2/2)

p(1) = Tp(0) =





1/3 1/3 1/3
1/2 1/2 0
0 1/4 3/4









1
0
0



 =





1/3
1/2
0





p(2) = Tp(1) =





1/3 1/3 1/3
1/2 1/2 0
0 1/4 3/4









1/3
1/2
0



 =





5/18
5/12
1/8





Iterating the process leads to beliefs that converge

p(t) = Tp(t − 1) = T tp(0) →





3/11
3/11
3/11



 .

◮ Under what conditions does the updating process converge to
a well-defined limit?

◮ A social influence matrix T is convergent if limt T
tp exists for

all initial vectors of beliefs p.
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Convergence in the DeGroot model (1/5)

Example - Convergence (Jackson, 2008)

T =





0 1/2 1/2
1 0 0
0 1 0





1

3

2

1/2

1

1/2

1

T 2 =





1/2 1/2 0
0 1/2 1/2
1 0 0



 , T 3 =





1/2 1/4 1/4
1/2 1/2 0
0 1/2 1/2
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Convergence in the DeGroot model (2/5)

T t →





2/5 2/5 1/5
2/5 2/5 1/5
2/5 2/5 1/5





No matter what initial beliefs p(0) are, the agents end up with
limiting beliefs corresponding to the entries of

p(∞) = lim
t
T tp(0)

where

p1(∞) = p2(∞) = p3(∞) =
2

5
p1(0) +

2

5
p2(0) +

1

5
p3(0).
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Convergence in the DeGroot model (2/5)

T t →





2/5 2/5 1/5
2/5 2/5 1/5
2/5 2/5 1/5





No matter what initial beliefs p(0) are, the agents end up with
limiting beliefs corresponding to the entries of

p(∞) = lim
t
T tp(0)

where

p1(∞) = p2(∞) = p3(∞) =
2

5
p1(0) +

2

5
p2(0) +

1

5
p3(0).

The example
◮ shows that beliefs converge over time
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Convergence in the DeGroot model (2/5)

T t →





2/5 2/5 1/5
2/5 2/5 1/5
2/5 2/5 1/5





No matter what initial beliefs p(0) are, the agents end up with
limiting beliefs corresponding to the entries of

p(∞) = lim
t
T tp(0)

where

p1(∞) = p2(∞) = p3(∞) =
2

5
p1(0) +

2

5
p2(0) +

1

5
p3(0).

The example
◮ shows that beliefs converge over time
◮ illustrates that the agents reach a consensus and that agents

1 and 2 have twice as much influence over the limiting beliefs
as agent 3 does.
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Convergence in the DeGroot model (3/5)

Example - Nonconvergence (Jackson, 2008)

T =





0 1/2 1/2
1 0 0
1 0 0





1

3

2

1/2

1

1/2

1

T 2 =





1 0 0
0 1/2 1/2
0 1/2 1/2



 , T 3 =





1/2 1/2 1/0
1 0 0
1 0 0



 , T 4 = T 2, ...
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Convergence in the DeGroot model (4/5)

◮ A directed graph (network) of the updating (interaction)
matrix T is the directed graph, where a directed link (i , j)
exists from i to j if and only if Tij > 0.
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Convergence in the DeGroot model (4/5)

◮ A directed graph (network) of the updating (interaction)
matrix T is the directed graph, where a directed link (i , j)
exists from i to j if and only if Tij > 0.

◮ A walk is a sequence of nodes (j1, j2, ..., jK ), not necessarily
distinct, such that link (jk , jk+1) exists for all 1 ≤ k < K , and
the length of the walk is K − 1.
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◮ A directed graph (network) of the updating (interaction)
matrix T is the directed graph, where a directed link (i , j)
exists from i to j if and only if Tij > 0.

◮ A walk is a sequence of nodes (j1, j2, ..., jK ), not necessarily
distinct, such that link (jk , jk+1) exists for all 1 ≤ k < K , and
the length of the walk is K − 1.

◮ A path is a walk consisting of distinct nodes.
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Convergence in the DeGroot model (4/5)

◮ A directed graph (network) of the updating (interaction)
matrix T is the directed graph, where a directed link (i , j)
exists from i to j if and only if Tij > 0.

◮ A walk is a sequence of nodes (j1, j2, ..., jK ), not necessarily
distinct, such that link (jk , jk+1) exists for all 1 ≤ k < K , and
the length of the walk is K − 1.

◮ A path is a walk consisting of distinct nodes.

◮ A cycle is a walk (j1, j2, ..., jK ) such that j1 = jK .
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Convergence in the DeGroot model (4/5)

◮ A directed graph (network) of the updating (interaction)
matrix T is the directed graph, where a directed link (i , j)
exists from i to j if and only if Tij > 0.

◮ A walk is a sequence of nodes (j1, j2, ..., jK ), not necessarily
distinct, such that link (jk , jk+1) exists for all 1 ≤ k < K , and
the length of the walk is K − 1.

◮ A path is a walk consisting of distinct nodes.

◮ A cycle is a walk (j1, j2, ..., jK ) such that j1 = jK .

◮ A cycle is simple if the only node appearing twice in the
sequence is the starting (ending) node.
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Convergence in the DeGroot model (4/5)

◮ A directed graph (network) of the updating (interaction)
matrix T is the directed graph, where a directed link (i , j)
exists from i to j if and only if Tij > 0.

◮ A walk is a sequence of nodes (j1, j2, ..., jK ), not necessarily
distinct, such that link (jk , jk+1) exists for all 1 ≤ k < K , and
the length of the walk is K − 1.

◮ A path is a walk consisting of distinct nodes.

◮ A cycle is a walk (j1, j2, ..., jK ) such that j1 = jK .

◮ A cycle is simple if the only node appearing twice in the
sequence is the starting (ending) node.

◮ The matrix T is aperiodic if the greatest common divisor of
the lengths of its simple cycles is 1.
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Convergence in the DeGroot model (4/5)

◮ A directed graph (network) of the updating (interaction)
matrix T is the directed graph, where a directed link (i , j)
exists from i to j if and only if Tij > 0.

◮ A walk is a sequence of nodes (j1, j2, ..., jK ), not necessarily
distinct, such that link (jk , jk+1) exists for all 1 ≤ k < K , and
the length of the walk is K − 1.

◮ A path is a walk consisting of distinct nodes.

◮ A cycle is a walk (j1, j2, ..., jK ) such that j1 = jK .

◮ A cycle is simple if the only node appearing twice in the
sequence is the starting (ending) node.

◮ The matrix T is aperiodic if the greatest common divisor of
the lengths of its simple cycles is 1.

◮ The matrix T is strongly connected (irreducible) if there is
path relative to T from any node to any other node.
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Convergence in the DeGroot model (4/5)

◮ A directed graph (network) of the updating (interaction)
matrix T is the directed graph, where a directed link (i , j)
exists from i to j if and only if Tij > 0.

◮ A walk is a sequence of nodes (j1, j2, ..., jK ), not necessarily
distinct, such that link (jk , jk+1) exists for all 1 ≤ k < K , and
the length of the walk is K − 1.

◮ A path is a walk consisting of distinct nodes.

◮ A cycle is a walk (j1, j2, ..., jK ) such that j1 = jK .

◮ A cycle is simple if the only node appearing twice in the
sequence is the starting (ending) node.

◮ The matrix T is aperiodic if the greatest common divisor of
the lengths of its simple cycles is 1.

◮ The matrix T is strongly connected (irreducible) if there is
path relative to T from any node to any other node.

◮ If T is strongly connected and aperiodic, then it is convergent.
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Convergence in the DeGroot model (5/5)

◮ Frequently it is assumed that T is strongly connected and
Tii > 0 for some i , which implies that T is aperiodic, and
hence convergent.
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Convergence in the DeGroot model (5/5)

◮ Frequently it is assumed that T is strongly connected and
Tii > 0 for some i , which implies that T is aperiodic, and
hence convergent.

◮ However, to ensure convergence it is NOT necessary to have
Tii > 0 for even one i . (see Example)
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Convergence in the DeGroot model (5/5)

◮ Frequently it is assumed that T is strongly connected and
Tii > 0 for some i , which implies that T is aperiodic, and
hence convergent.

◮ However, to ensure convergence it is NOT necessary to have
Tii > 0 for even one i . (see Example)

◮ If a stochastic matrix is strongly connected, then it is
convergent if and only if it is aperiodic. (Golub & Jackson,
2010)
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Convergence in the DeGroot model (5/5)

◮ Frequently it is assumed that T is strongly connected and
Tii > 0 for some i , which implies that T is aperiodic, and
hence convergent.

◮ However, to ensure convergence it is NOT necessary to have
Tii > 0 for even one i . (see Example)

◮ If a stochastic matrix is strongly connected, then it is
convergent if and only if it is aperiodic. (Golub & Jackson,
2010)

◮ A group of nodes N ′ is closed relative to T if i ∈ N ′ and
Tij > 0 implies that j ∈ N ′, i.e., there is no directed link from
a node in N ′ to a node outside N ′.
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Convergence in the DeGroot model (5/5)

◮ Frequently it is assumed that T is strongly connected and
Tii > 0 for some i , which implies that T is aperiodic, and
hence convergent.

◮ However, to ensure convergence it is NOT necessary to have
Tii > 0 for even one i . (see Example)

◮ If a stochastic matrix is strongly connected, then it is
convergent if and only if it is aperiodic. (Golub & Jackson,
2010)

◮ A group of nodes N ′ is closed relative to T if i ∈ N ′ and
Tij > 0 implies that j ∈ N ′, i.e., there is no directed link from
a node in N ′ to a node outside N ′.

◮ The matrix T is convergent if and only if every set of nodes
that is strongly connected and closed is aperiodic. (Golub &
Jackson, 2010)
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Consensus in the DeGroot model

◮ A group of agents A reaches a consensus under T for an
initial vector of beliefs p(0) if

lim
t
pi (t) = lim

t
pj(t) for each i , j ∈ A.
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Consensus in the DeGroot model

◮ A group of agents A reaches a consensus under T for an
initial vector of beliefs p(0) if

lim
t
pi (t) = lim

t
pj(t) for each i , j ∈ A.

◮ Under T , any strongly connected and closed group of
individuals reaches a consensus for every initial vector of
beliefs if and only if it is aperiodic. (Jackson, 2008)
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Consensus in the DeGroot model

◮ A group of agents A reaches a consensus under T for an
initial vector of beliefs p(0) if

lim
t
pi (t) = lim

t
pj(t) for each i , j ∈ A.

◮ Under T , any strongly connected and closed group of
individuals reaches a consensus for every initial vector of
beliefs if and only if it is aperiodic. (Jackson, 2008)

◮ A consensus is reached in the DeGroot model if and only if
there is exactly one strongly connected and closed group of
agents and T is aperiodic on that group.
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Consensus in the DeGroot model

◮ A group of agents A reaches a consensus under T for an
initial vector of beliefs p(0) if

lim
t
pi (t) = lim

t
pj(t) for each i , j ∈ A.

◮ Under T , any strongly connected and closed group of
individuals reaches a consensus for every initial vector of
beliefs if and only if it is aperiodic. (Jackson, 2008)

◮ A consensus is reached in the DeGroot model if and only if
there is exactly one strongly connected and closed group of
agents and T is aperiodic on that group.

◮ see also Berger (1981).
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Generalizations of the DeGroot model (1/2)

◮ The updating can vary with time and circumstances.
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Generalizations of the DeGroot model (1/2)

◮ The updating can vary with time and circumstances.
◮ DeMarzo et al. (2003) (Time-Varying Weight on Own Beliefs)

The updating rule is

p(t) = [(1− λt)I + λtT̂ ]p(t − 1)

I = identity matrix, λt ∈ (0, 1] = adjustment factor, T̂ =
stochastic matrix
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Generalizations of the DeGroot model (1/2)

◮ The updating can vary with time and circumstances.
◮ DeMarzo et al. (2003) (Time-Varying Weight on Own Beliefs)

The updating rule is

p(t) = [(1− λt)I + λtT̂ ]p(t − 1)

I = identity matrix, λt ∈ (0, 1] = adjustment factor, T̂ =
stochastic matrix

◮ For λt constant over time, this corresponds to the DeGroot
model;
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Generalizations of the DeGroot model (1/2)

◮ The updating can vary with time and circumstances.
◮ DeMarzo et al. (2003) (Time-Varying Weight on Own Beliefs)

The updating rule is

p(t) = [(1− λt)I + λtT̂ ]p(t − 1)

I = identity matrix, λt ∈ (0, 1] = adjustment factor, T̂ =
stochastic matrix

◮ For λt constant over time, this corresponds to the DeGroot
model;

◮ Otherwise the updating varies over time and an agent places
more (or less) weight on his own belief over time.
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Generalizations of the DeGroot model (1/2)

◮ The updating can vary with time and circumstances.
◮ DeMarzo et al. (2003) (Time-Varying Weight on Own Beliefs)

The updating rule is

p(t) = [(1− λt)I + λtT̂ ]p(t − 1)

I = identity matrix, λt ∈ (0, 1] = adjustment factor, T̂ =
stochastic matrix

◮ For λt constant over time, this corresponds to the DeGroot
model;

◮ Otherwise the updating varies over time and an agent places
more (or less) weight on his own belief over time.

◮ Krause (2000) (Only Weighting Those with Similar Beliefs)
An agent pays attention only to other agents whose beliefs do
not differ much from his own, i.e., he places equal weight on
all opinions that are within some distance of his own current
opinion, and weight zero otherwise.
For consensus reaching, see Lorenz (2005), Jackson (2008).
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Generalizations of the DeGroot model (2/2)

Friedkin and Johnsen (1990, 1997) (Time-Varying Weight on Own
Beliefs)

◮ The updating always mixes in some weight on an agent’s
initial beliefs. The rule is

p(t) = DT̂p(t − 1) + (I − D)p(0)

D is an n × n matrix with positive entries only along the
diagonal, Dii ∈ (0, 1) indicates the extent to which i pays
attention to others’ attitudes.
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Generalizations of the DeGroot model (2/2)

Friedkin and Johnsen (1990, 1997) (Time-Varying Weight on Own
Beliefs)

◮ The updating always mixes in some weight on an agent’s
initial beliefs. The rule is

p(t) = DT̂p(t − 1) + (I − D)p(0)

D is an n × n matrix with positive entries only along the
diagonal, Dii ∈ (0, 1) indicates the extent to which i pays
attention to others’ attitudes.

◮ Consensus may never be reached (e.g., n = 2, Dii = 1/2,
T̂12 = T̂21 = 1)
An agent is always averaging his original belief with the latest
belief of the other agent:

pi (t) =
pj(t − 1)

2
+

pi (0)

2
.

If p1(0) = 1, p2(0) = 0, then p1(t) → 2/3, p2(t) → 1/3.
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Social influence in the DeGroot model (1/3)

◮ How does each agent in the social network influence the
limiting belief? (Jackson, 2008)
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Social influence in the DeGroot model (1/3)

◮ How does each agent in the social network influence the
limiting belief? (Jackson, 2008)

◮ Consider a closed and strongly connected group of agents. Let
T be aperiodic. Hence, all beliefs converge and a consensus is
reached. Let p(0) be an arbitrary starting belief vector and
p(∞) = (p∞, ..., p∞) be the vector of limiting consensus
beliefs. We search for an influence vector s ∈ [0, 1]n such that
∑

i si = 1 and

p∞ = s · p(0) =
∑

i

sipi (0).

If such an s exists, then the limiting beliefs would be weighted
averages of the initial beliefs, and the relative weights would
be the influences of the agents on the final consensus beliefs.

Agnieszka Rusinowska c©2010 Different approaches to influence in social networks



Social influence in the DeGroot model (2/3)

◮ Suppose that an influence vector exists. Since starting with
p(0) or with p(1) = Tp(0) yields the same limit, we have
s · p(1) = s · p(0), and therefore s · (Tp(0)) = s · p(0), which
has to hold for every p(0). Hence,

sT = s.

Thus s is a left-hand unit eigenvector of T (eigenvector with
eigenvalue 1).
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Social influence in the DeGroot model (2/3)

◮ Suppose that an influence vector exists. Since starting with
p(0) or with p(1) = Tp(0) yields the same limit, we have
s · p(1) = s · p(0), and therefore s · (Tp(0)) = s · p(0), which
has to hold for every p(0). Hence,

sT = s.

Thus s is a left-hand unit eigenvector of T (eigenvector with
eigenvalue 1).

◮ When T is strongly connected, aperiodic, and row stochastic,
there is a unique such unit eigenvector that has all positive
values.
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Social influence in the DeGroot model (2/3)

◮ Suppose that an influence vector exists. Since starting with
p(0) or with p(1) = Tp(0) yields the same limit, we have
s · p(1) = s · p(0), and therefore s · (Tp(0)) = s · p(0), which
has to hold for every p(0). Hence,

sT = s.

Thus s is a left-hand unit eigenvector of T (eigenvector with
eigenvalue 1).

◮ When T is strongly connected, aperiodic, and row stochastic,
there is a unique such unit eigenvector that has all positive
values.

◮ Since s · p(0) must lead to the same belief as any entry of
p(∞) = (p∞, ..., p∞) = T∞p(0), each row of T∞ must
converge to s.
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Social influence in the DeGroot model (3/3)

◮ Example (contd) (Jackson, 2008)

T =





0 1/2 1/2
1 0 0
0 1 0



 , T t →





2/5 2/5 1/5
2/5 2/5 1/5
2/5 2/5 1/5





s = (2/5, 2/5, 1/5) is a unit eigenvector of T , i.e.,

sT = (2/5, 2/5, 1/5)





0 1/2 1/2
1 0 0
0 1 0



 = (2/5, 2/5, 1/5) = s.
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Social influence in the DeGroot model (3/3)

◮ Example (contd) (Jackson, 2008)

T =





0 1/2 1/2
1 0 0
0 1 0



 , T t →





2/5 2/5 1/5
2/5 2/5 1/5
2/5 2/5 1/5





s = (2/5, 2/5, 1/5) is a unit eigenvector of T , i.e.,

sT = (2/5, 2/5, 1/5)





0 1/2 1/2
1 0 0
0 1 0



 = (2/5, 2/5, 1/5) = s.

◮ This social influence measure is related to the
eigenvector-based centrality measures - Katz’s prestige
measure (1953), eigenvector centrality of Bonacich (1972,
1987), Bonacich & Lloyd (2001).

Agnieszka Rusinowska c©2010 Different approaches to influence in social networks



Research on influence in social networks (contd 1)

◮ Other questions in the context of the DeGroot model, e.g.,
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Research on influence in social networks (contd 1)

◮ Other questions in the context of the DeGroot model, e.g.,
◮ Convergence speed - How quickly beliefs reach their limit
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Research on influence in social networks (contd 1)

◮ Other questions in the context of the DeGroot model, e.g.,
◮ Convergence speed - How quickly beliefs reach their limit
◮ Are consensus beliefs “correct”- Do beliefs converge to the

right probability?
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Research on influence in social networks (contd 1)

◮ Other questions in the context of the DeGroot model, e.g.,
◮ Convergence speed - How quickly beliefs reach their limit
◮ Are consensus beliefs “correct”- Do beliefs converge to the

right probability?

◮ For related work see, e.g., Seneta (1973), DeMarzo et al.
(2003), Jackson (2008), Golub & Jackson (2010).
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Research on influence in social networks (contd 1)

◮ Other questions in the context of the DeGroot model, e.g.,
◮ Convergence speed - How quickly beliefs reach their limit
◮ Are consensus beliefs “correct”- Do beliefs converge to the

right probability?

◮ For related work see, e.g., Seneta (1973), DeMarzo et al.
(2003), Jackson (2008), Golub & Jackson (2010).

◮ DeMarzo et al. (2003) - the agents in a network try to
estimate some unknown parameter, which allows updating to
vary over time, i.e., an agent may place more or less weight on
his own belief over time. Moreover, the authors show the
phenomenon of unidimensional opinions: they study the case
of multidimensional opinions, in which each agent has a
vector of beliefs, and they show that often the individuals’
opinions can be well approximated by a one-dimensional line,
where an agent’s position on the line determines his position
on all issues.
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Research on influence in social networks (contd 2)

◮ Krackhardt (1987) collected data regarding a small (100
employees, 21 managers) manufacturing firm in the US. He
collected information from the managers about who sought
advice from whom.

Agnieszka Rusinowska c©2010 Different approaches to influence in social networks



Research on influence in social networks (contd 2)

◮ Krackhardt (1987) collected data regarding a small (100
employees, 21 managers) manufacturing firm in the US. He
collected information from the managers about who sought
advice from whom.

◮ For an application of the DeGroot model to Krackhardt’s
advice network; see Jackson (2008).
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Research on influence in social networks (contd 2)

◮ Krackhardt (1987) collected data regarding a small (100
employees, 21 managers) manufacturing firm in the US. He
collected information from the managers about who sought
advice from whom.

◮ For an application of the DeGroot model to Krackhardt’s
advice network; see Jackson (2008).

◮ A model of influence by Asavathiratham (2000) - it consists of
a network of nodes, each with a status evolving over time.
The evolution of the status is according to an internal Markov
chain, but transition probabilities depend not only on the
current status of the node, but also on the statuses of the
neighboring nodes.
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Research on influence in social networks (contd 2)

◮ Krackhardt (1987) collected data regarding a small (100
employees, 21 managers) manufacturing firm in the US. He
collected information from the managers about who sought
advice from whom.

◮ For an application of the DeGroot model to Krackhardt’s
advice network; see Jackson (2008).

◮ A model of influence by Asavathiratham (2000) - it consists of
a network of nodes, each with a status evolving over time.
The evolution of the status is according to an internal Markov
chain, but transition probabilities depend not only on the
current status of the node, but also on the statuses of the
neighboring nodes.

◮ Koster, Lindner, Napel (2010)
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Social learning models

◮ Literature on social learning in the context of social networks -
Banerjee (1992), Ellison (1993), Ellison & Fudenberg (1993,
1995), Bala & Goyal (1998, 2001), Gale & Kariv (2003),
Celen & Kariv (2004), Banerjee & Fudenberg (2004).

Agnieszka Rusinowska c©2010 Different approaches to influence in social networks



Social learning models

◮ Literature on social learning in the context of social networks -
Banerjee (1992), Ellison (1993), Ellison & Fudenberg (1993,
1995), Bala & Goyal (1998, 2001), Gale & Kariv (2003),
Celen & Kariv (2004), Banerjee & Fudenberg (2004).

◮ In social learning models agents observe choices over time and
update their beliefs accordingly (different from the models in
which the choices depend on the influence of others).
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Social learning models

◮ Literature on social learning in the context of social networks -
Banerjee (1992), Ellison (1993), Ellison & Fudenberg (1993,
1995), Bala & Goyal (1998, 2001), Gale & Kariv (2003),
Celen & Kariv (2004), Banerjee & Fudenberg (2004).

◮ In social learning models agents observe choices over time and
update their beliefs accordingly (different from the models in
which the choices depend on the influence of others).

◮ Bayesian learning model - Bala & Goyal (1998), also Jackson
(2008) - Agents are connected in an undirected social network
and in each period they simultaneously choose among a finite
set of actions. The payoffs to the actions are random, and
their distribution depends on an unknown state of nature.
The agents have identical tastes and face the same
uncertainty about the actions. In each period, besides
observing his own outcome, an agent also observes choices
and outcomes of the neighbors.
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Herd behavior, Informational cascades

◮ Lopez-Pintado (2008) studies a network of interacting agents
whose actions are determined by the actions of their
neighbors.
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Herd behavior, Informational cascades

◮ Lopez-Pintado (2008) studies a network of interacting agents
whose actions are determined by the actions of their
neighbors.

◮ The “herd behavior” literature (Banerjee, 1992; Scharfstein &
Stein, 1990) or the “informational cascades” study
(Bikhchandani et al., 1992) - it is assumed that people get
information by observing others’ actions and are inclined to
imitate those who are supposed to be better informed.
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Herd behavior, Informational cascades

◮ Lopez-Pintado (2008) studies a network of interacting agents
whose actions are determined by the actions of their
neighbors.

◮ The “herd behavior” literature (Banerjee, 1992; Scharfstein &
Stein, 1990) or the “informational cascades” study
(Bikhchandani et al., 1992) - it is assumed that people get
information by observing others’ actions and are inclined to
imitate those who are supposed to be better informed.

◮ Informational cascades form quickly as people decide to ignore
their internal signals and follow what other people are doing
(Bikhchandani et al., 1992; Anderson & Holt, 1997).
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Herd behavior, Informational cascades

◮ Lopez-Pintado (2008) studies a network of interacting agents
whose actions are determined by the actions of their
neighbors.

◮ The “herd behavior” literature (Banerjee, 1992; Scharfstein &
Stein, 1990) or the “informational cascades” study
(Bikhchandani et al., 1992) - it is assumed that people get
information by observing others’ actions and are inclined to
imitate those who are supposed to be better informed.

◮ Informational cascades form quickly as people decide to ignore
their internal signals and follow what other people are doing
(Bikhchandani et al., 1992; Anderson & Holt, 1997).

◮ Grabisch & Rusinowska (2010a) formalize a similar
phenomenon as the mass psychology function.
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Long time ago ...

Hamlet: Do you see yonder cloud that’s almost in shape of a
camel?

Polonius: By th’mass, and ’tis: like a camel, indeed.
Hamlet: Methinks it is like a weasel.
Polonius: It is back’d like a weasel.
Hamlet: Or like a whale.
Polonius: Very like a whale.

William Shakespeare (1600) Hamlet, Act 3, Scene 2
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