Impartial decision making among peers

Herve Moulin, Rice University

COMSOC 2010, University of Dusseldorf September 15, 2010 conflict of interest in collective decision making:

my selfish interest corrupts the report of my subjective opinion

non corrupted information is more valuable: it produces an *impartial evaluation* conflict of interests pervasive in collective decisions by and about peers

example: evaluate the merit of a peer's work, choose a winner among us, a ranking of us all

a necessary condition for the possibility of an impartial process:

 separate aspects of the decision related to self interest versus opinions/views

then a decision rule creates no conflict of interest if it only elicits opinions, and an agent's report **does not affect** her self interest examples where the separation is plausible

	self-interest	opinions
division of a dollar	my share	division of the remainder
award of a prize	do I win?	who wins if not me?
ranking by peers	what is my rank?	ranking of the others
biased jury	does one of mine win?	who wins among mine/others?

- Impartial division of a dollar, G. de Clippel, H. Moulin and N. Tideman, Journal of Economic Theory, 2008.
- Impartial award of a prize, R. Holzman and H. Moulin, mimeo September 2010
- strategyproof and efficient allocation of private goods: Kato and Ohseto (building on the work of Hurwicz, Zhou, Serizawa and Weymark,...)

model 1: award of a prize

$$i \in N = \{1, 2, \cdots, n\}$$

i's message $m_i \in M_i$

award rule:
$$M_N \ni m \to f(m) \in N$$

$$ightarrow$$
 Impartiality: $f(m|^im_i) = i \Leftrightarrow f(m|^im_i') = i$, for all i, m_i, m_i'

additional requirements:

- No Discrimination: $\forall i \exists m \ f(m) = i$
- No Dummy: $\forall i \exists m_i, m'_i, m_{-i} : f(m|^i m_i) \neq f(m|^i m'_i)$

both are (very) weak forms of symmetry among participants

note: full Anonymity impossible

Lemma (easy):

For $n \leq 3$ Impartiality \cap No Discrimination = Impartiality \cap No Dummy = \varnothing

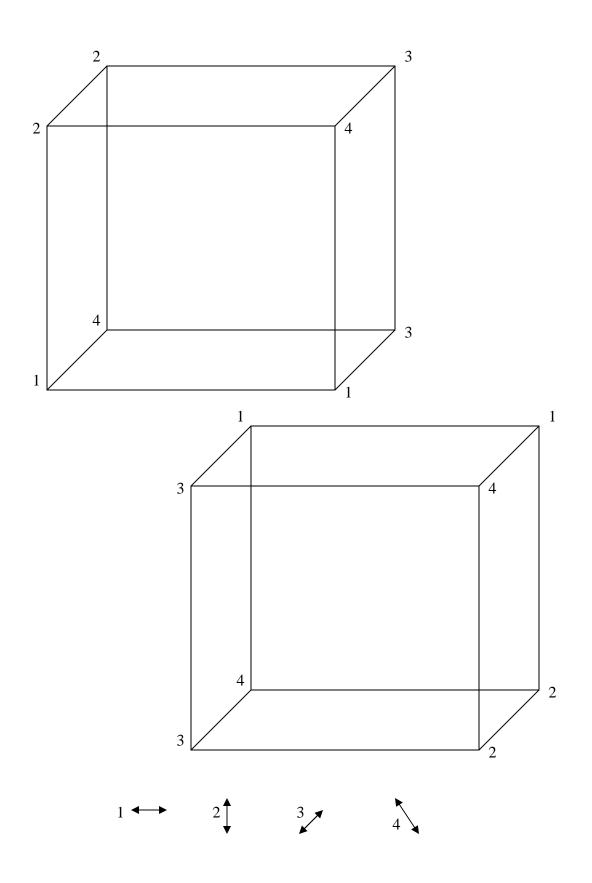
For n=4 , assume binary messages $m_i=0,1$

Impartiality \cap No Discrimination \cap No Dummy = $\{f^4\}$ up to relabeling agents and messages

$$f^4(\cdot, 0, 0, 0) = f^4(\cdot, 1, 1, 1) = 1; \ f^4(0, \cdot, 1, 0) = f^4(1, \cdot, 0, 1) = 2$$

 $f^4(1, 1, \cdot, 0) = f^4(0, 0, \cdot, 1) = 3; \ f^4(0, 1, 0, \cdot) = f^4(1, 0, 1, \cdot) = 4$

for $n \geq 5$, there are many more rules



quota rules

everyone but the incumbent nominates someone (no self nomination)

 $q > \frac{n}{2}$: absolute quota rule $I^{ab}(q)$: i wins if score(i) $\geq q$

 $2 \leq q \leq \frac{n}{2}$ relative quota rule $I^{r}(q)$: i wins if score $(i) \geq score(j|N \setminus \{i\}) + q$ for all $j \neq i$

if no such winner, the incumbent wins

 \rightarrow Impartial, No Discrimination, but the incumbent is a *dummy*

combine two of these rules

partition $N = N_1 \cup N_2$; choose q_1, q_2

step 1:run $I^{\varepsilon_1}(q_1)$ in N_1 ; stop if there is a winner

otherwise go to

step 2: N_1 vote to choose the incumbent $j \in N_2$, then run $I^{\varepsilon_2}(q_2)$ in N_2

 \Rightarrow Impartial, No Discrimination, No Dummy

critique: unequal influence of N_1 versus N_2

a more precise description of an agent's decision power:

 $i \text{ influences } j \stackrel{def}{\Leftrightarrow} \exists m \in M^N, m'_i \in M^i : f(m|^i m_i) = j \neq f(m|^i m'_i)$

Full mutual Influence: $\forall i, j \in N$: *i* influences *j*

Full Influence \Rightarrow No Dummy and No Discrimination

nomination rules

simple and natural messages: $M_i = N \setminus \{i\}$ agent *i* nominates *j*

Monotonicity: $\forall i, j, i \neq j \ \forall m \in M_N : f(m) = j \Rightarrow f(m|^i j) = j$

Anonymous ballots: for all $m, m' \in M_N$

$$\{\forall i \ |\{j \in M^i | m_j = i\}| = |\{j \in M^i | m'_j = i\}|\} \Rightarrow f(m) = f(m')$$

Lemma (easy): the only impartial nomination rules with anonymous ballots are the constant rules

eschewing the impossibility: restrict the legitimate ballots $M_i \subseteq N \setminus \{i\}$

 \Rightarrow *positional* nomination rules along a tree

example

order agents by *seniority*

everyone nominates someone more senior than himself

the youngest nominated agent wins

- impartial, monotonic, anonymous ballots
- discriminates against the most junior
- the most senior is a dummy

the family of median nomination rules ($n \text{ odd}, n \ge 5$)

the agents are the nodes of a tree Γ

 Γ is neither a line nor a simple star

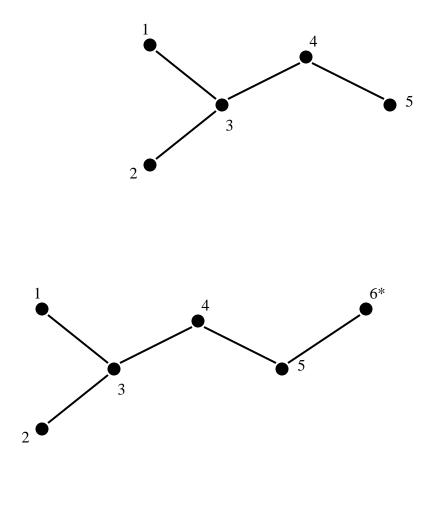
 i^* is the median node/agent of Γ

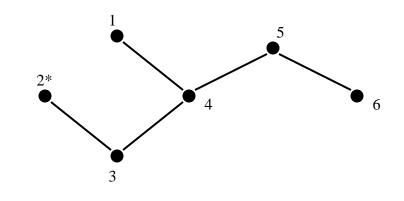
 M_i is the largest subtree rooted at j adjacent to i, away from i

 M_{i^*} is one of the largest subtrees at j^* adjacent to i^* , away from i^*

 \rightarrow winner: the median vote

n even: add (carefully) a fixed ballot





Theorem:

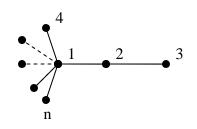
The median nomination rule on Γ is impartial, monotonic, unanimous and has anonymous ballots; and *i* influences $j \Leftrightarrow j \in M_i$

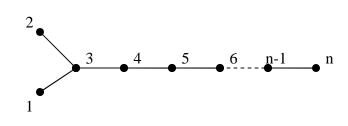
• Unanimity: if all $j \in N \setminus \{i\}$ such that $i \in M_j$ nominate i, then i wins

the two extreme methods: the quasi-star and the quasi-line

tradeoff: maximize min $|M_i| \leftrightarrow \sum_N |M_i|$

critique: unequal influence





Open question: can we construct an impartial, monotonic nomination rule meeting No Discrimination and No Dummy?

voting rules

the most natural messages: $M_i = \mathcal{L}(N \setminus \{i\})$ linear ordering of other agents

- Monotonicity: lifting j in i's ranking does not threaten j's win
- Unanimity: $\{i = top\{m_j\} \text{ for all } j \in N \setminus \{i\}\} \Rightarrow i \text{ wins}$

the family of partition voting rules $(n \ge 7)$

partition $N = \bigcup_{k=1}^{K} N_k$ in districts s. t. $|N_1| \ge 4$ and $|N_k| \ge 3$ for $k \ge 2$

for each k choose a quota rule $I^{\varepsilon_k}(N_k, q_k), \varepsilon_k = ab, r$

choose a default agent i^* in district 1

two equivalent definitions: direct voting, or two steps voting

Step 1

run $I^{\varepsilon_k}(N_k, q_k)$ in each district $k \ge 2$: call i a local winner if she wins call i^* a local winner if he wins in $I^{\varepsilon_1}(N_1, q_1)$ call $i \in N_1 \setminus \{i^*\}$ a local winner if she wins without i^* 's support if $\varepsilon_1 = ab : s_i(N_1 \setminus \{i, i^*\}) \ge q_1$ if $\varepsilon_1 = r : s_i(N \setminus \{i, i^*\}) \ge s_j(N \setminus \{i, j\}) + q_1$ for all $j \in N_1 \setminus \{i\}$ If there is no local winner anywhere, i^* wins

if there is a single local winner, she wins; otherwise go to

Step 2 All the non local winners use a standard voting rule to award the prize to one of the local winners.

Theorem

A partition voting rule is impartial, unanimous, and has full mutual influence. If it uses an absolute quota in district 1, or if $|N_1| = 4$, the rule is monotonic.

under *Impartial Culture* the probability that at least a local winner exists goes to 1 if the district size remains bounded while n increases.

 \Rightarrow the advantage of the default agent vanishes

variant: strengthen Full Influence to Full Pivots:

```
agent i can be pivotal between j and k, for all i,j,k
```

 \rightarrow more complex variants of the partition rules

two vague open questions

- what is the *special role* of median rules among anonymous monotonic nomination rules?
- can we find impartial rules *more equitable* than the partition voting rules?

model 2: peer ranking

assign n ranks to n agents

private consumption of one's rank

 $i \in N, a \in A$

 $\Sigma(N, A) \ni \sigma$: bijection $N \to A$

i's message $m_i \in M_i$

assignment mechanism: $M_N \ni m \to \theta(m) \in \Sigma(N, A)$

- Impartiality: $\theta(m|^i m_i)[i] = \theta(m|^i m_i')[i]$, for all i, m_i, m_i'
- Full Ranks : for all $i \in N$, $a \in A$, for some $m \in M_N : \theta(m)[i] = a$
- Full Range: for all $\sigma \in \Sigma(N, A)$ for some $m \in M_N : \sigma = \theta(m)$

Lemma (easy):

For n = 3, Impartiality \cap Full Ranks = \varnothing

For
$$n = 4$$
, Impartiality () Full Ranks $\neq \emptyset$
 $M^i = \{0, 1\}$ for all $i, A^* = \{1, 2, 3, 4\}$
 $\theta^4(0, 0, 0, 0) = 1234; \ \theta^4(1, 0, 0, 0) = 1432; \ \theta^4(0, 0, 0, 1) = 1324; \ \theta^4(1, 0, 0, 1) = 1324; \ \theta^4(1, 0, 0, 1) = 1324; \ \theta^4(0, 1, 1, 1) = 1324; \ \theta^4(1, 1, 1, 1) = 1324; \ \theta^4(1, 1, 1, 0) = 13142; \ \theta^4(1, 1, 1, 0) = 13142; \ \theta^4(1, 1, 1, 1) = 13424; \ \theta^4(1, 1, 1, 1) = 1344; \ \theta^4(1,$

fairly symmetric treatment of the agents

range is not full (15 assignments)

use $\theta^4 \to \text{an impartial mechanism with full ranks for any <math>n$ divisible by 4 fix a partition $N = N_1 \cup N_2 \cup N_3 \cup N_4$ with $|N_i| = \frac{n}{4}$ and an order τ of Aplay θ^4 with agents in N_i jointly playing the 1st coordinate 0 or 1 N_i gets rank/object 1 \Rightarrow the first $|N_i|$ ranks in τ go to N_i ; etc.. agents in $N \setminus N_i$ jointly choose the assignment of these $|N_i|$ ranks inside N_i

construct an impartial mechanism with full range

 \rightarrow *separating family* in $A : S \subset 2^A$ such that

for all $a, b \in A, a \neq b$, there exists $S \in S : a \in S, b \notin S$

 \rightarrow separating family of size k: for all $S \in \mathcal{S}$: |S| = k

Lemma:

For $n = |A| \ge 6$, we can find three **pairwise disjoint** separating families in A, all of identical size.

For $n \leq 5$, we can find at most two such disjoint families.

 $|A| \ge 7, A = \{1, 2, \cdots, n\} \Rightarrow$ for $1 \le t < \frac{n}{2}$ $S_t = \{(a, a + t) | a \in A\}$ are separating and pairwise disjoint

choose three "leaders' agents 1, 2, 3

step 1: the leaders choose impartially three ranks for themselves

key: all assignments of $\{1, 2, 3\}$ to A are in the range

step 2: the leaders choose $i \in N \setminus \{1, 2, 3\}$ and assign her one of the free ranks;

agent i chooses $j \in N \setminus \{1, 2, 3, i\}$ and assign him one of the free ranks;

etc...

step 1 explained:

choose three separating families S_i , i = 1, 2, 3, of identical size, pairwise disjoint

each leader chooses $S_i \in S_i$; given $(S_1, S_2, S_3) \in S_1 \times S_2 \times S_3$ assign 1 to a rank in $S_3 \cap S_2^c \neq \emptyset$ assign 2 to a rank in $S_1 \cap S_3^c \neq \emptyset$ assign 3 to a rank in $S_2 \cap S_1^c \neq \emptyset$ break ties in $S_3 \cap S_2^c$ by an onto vote of leaders 2 and 3 break ties in $S_1 \cap S_3^c$ by an onto vote of leaders 1 and 3

- many variants in step 2
- critique: the three leaders influence the rest of the agents, but not vice versa

Mutual Influence:

$$\forall i, j \in N \exists m_i, m'_i \in M^i, m_{-i} \in M^{N \setminus i} : \theta(m|^i m_i)[j] \neq \theta(m|^i m'_i)[j]$$

we can find an impartial assignment mechanism with full range, satisfying Mutual Influence

its definition is more complex

Open question: in the ranking interpretation (as opposed to assignment), the natural message space is $M_i = \mathcal{L}(N \setminus \{i\})$. Can we achieve the same properties in that format? and Unanimity?