Parameterized Control Complexity in Bucklin Voting and in Fallback Voting

Gábor Erdélyi¹ Michael R. Fellows²

¹Institut für Informatik, Heinrich-Heine-Universität Düsseldorf, Germany

²Charles Darwin University, Australia

Düsseldorf, September 2010

< □ > < 同 > < 回 > < 回 > < 回 >

Outline Introduction

Outline

- Introduction
- Preliminaries
- Voting Theory
 - Fallback voting (FV)
 - Bucklin voting (BV)
 - Control

ヘロン 人間 とくほど 不良と

æ.

Outline Introduction

- Preference aggregation and collective decision-making.
- Political science, economics, social choice theory, and operations research.
- In computer science:
 - artificial intelligence (multiagent systems)
 - planning
 - similarity search
 - design of ranking algorithms

Dealing with NP-Hardness

Worst-case complexity vs.

- approximation algorithms
- algorithms that are always efficient although not always correct
- algorithms that are always correct, but not always efficient
- average-case complexity
- parameterized complexity

< ロ > < 同 > < 回 > < 回 > .

Parameterized Complexity

- Fixed-parameter tractability: Membership in FPT.
- Fixed-parameter intractability:

$$FPT = W[0] \subseteq W[1] \subseteq W[2] \dots$$

• Reductions from Dominating Set.

< □ > < 同 > < 回 > < 回 > < 回 >

How to Affect the Outcome of an Election

• The Bad Guy knows everybody else's votes.

G. Erdélyi and M. R. Fellows Control in Bucklin Voting and in Fallback Voting

< ロ > < 同 > < 回 > < 回 > .

How to Affect the Outcome of an Election

- The Bad Guy knows everybody else's votes.
- The Bad Guy can have two different intentions:
 - to make a desired candidate win (constructive),
 - to prevent a despised candidate from winning (destructive).

< 回 > < 回 > < 回 >

How to Affect the Outcome of an Election

- The Bad Guy knows everybody else's votes.
- The Bad Guy can have two different intentions:
 - to make a desired candidate win (constructive),
 - to prevent a despised candidate from winning (destructive).
- Computational barrier to prevent cheating in elections.
 - Control: The Chair modifies the election's structure.
 - Bribery: (Not considered here) An external agent bribes a group of voters.
 - Manipulation: (Not considered here) An evil coalition of voters strategically change their votes.

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Fallback Voting Bucklin Voting

Elections & Voting Systems

• Set of candidates and multiset of voters:

•
$$\mathbf{C} = \{\mathbf{c}_1, \ldots, \mathbf{c}_m\},$$

•
$$V = \{v_1, \ldots, v_n\}.$$

- Voter preferences over C can be represented as
 - preference lists (rankings),
 - approval/disapproval vectors.
- Voting rule aggregates the preferences and outputs the set of winners:
 - unique-winner model,
 - nonunique-winner model.

< 回 > < 回 > < 回 >

Fallback Voting Bucklin Voting

Candidate Control:

- Adding candidates
- Deleting candidates
- Partition of candidates
 - With runoff
 - Without runoff

< □ > < 同 > < 回 > < 回 > < 回 >

Fallback Voting Bucklin Voting

Control

Candidate Control:

- Adding candidates
- Deleting candidates
- Partition of candidates
 - With runoff
 - Without runoff

- Voter Control:
 - Adding voters
 - Deleting voters

< □ > < 同 > < 回 > < 回 > < 回 >

э

Partition of voters

Fallback Voting Bucklin Voting

Control

Candidate Control:

- Adding candidates
- Deleting candidates
- Partition of candidates
 - With runoff
 - Without runoff

- Voter Control:
 - Adding voters
 - Deleting voters
 - Partition of voters
- Tie Handling:
 - Ties eliminate (TE)
 - Ties promote (TP)

< □ > < 同 > < 回 > < 回 > < 回 >

Fallback Voting Bucklin Voting

Name: Constructive Control by Adding Voters.

Instance: An election $(C, V \cup W)$, a designated candidate $c \in C$, and a positive integer k.

Parameter: k.

Question: Is it possible to choose a subset $W' \subseteq W$ with $||W'|| \le k$ such that *c* is the unique winner of the resulting $(C, V \cup W')$?

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Fallback Voting Bucklin Voting

Control

- Candidate Control:
 - Adding candidates
 - Deleting candidates

- Voter Control:
 - Adding voters
 - Deleting voters

< □ > < 同 > < 回 > < 回 > < 回 >

Fallback Voting Bucklin Voting

Contrast

Table

Number of resistances, immunities, and vulnerabilities to the 22 common control types.

Number of	AV	Llull	Copeland	Plurality	BV	SP-AV	FV
resistances	4	14	15	16	\geq 18	19	\geq 19
immunities	9	0	0	0	0	0	0
vulnerabilities	9	8	7	6	\leq 4	3	\leq 3

3

Fallback Voting Bucklin Voting

Fallback Voting

- Proposed by Brams and Sanver (2009).
- Line between acceptable and inacceptable candidates:

 $\{c_4,c_1\} \ | \ \{c_2,c_3,c_5,c_6\}.$

< ロ > < 同 > < 回 > < 回 > .

Fallback Voting Bucklin Voting

Fallback Voting

- Proposed by Brams and Sanver (2009).
- Line between acceptable and inacceptable candidates:

 $\{c_4,c_1\} \ | \ \{c_2,c_3,c_5,c_6\}.$

 In addition each voter has a preference ranking, a tie-free linear ordering of all approved candidates:

$$c_4 > c_1 | \{c_2, c_3, c_5, c_6\}.$$

< ロ > < 同 > < 回 > < 回 > .

Fallback Voting Bucklin Voting

Example for Fallback Voting

Example

Preferences:

- $v_1 = a > b > c > \{d, e\}$
- $v_2 = a > b > \{c, d, e\}$
- *v*₃ = *c* > {*a*, *b*, *d*, *e*}
- $v_4 = d > e > b > \{a, c\}$
- $v_5 = c > a > e > b > \{d\}$

200

Fallback Voting Bucklin Voting

Example for Fallback Voting

Example	
Preferences:	<u>Votes:</u>
• $v_1 = a > b > c > \{d, e\}$	• a b c {d,e}
• $v_2 = a > b > \{c, d, e\}$	• a b {c, d, e}
• <i>v</i> ₃ = <i>c</i> > { <i>a</i> , <i>b</i> , <i>d</i> , <i>e</i> }	• c {a,b,d,e}
• $v_4 = d > e > b > \{a, c\}$	• d e b {a,c}
• $v_5 = c > a > e > b > \{d\}$	● caeb {d}

Sac

Fallback Voting Bucklin Voting

Example for Fallback Voting

Example	
references:	Votes:
• $v_1 = a > b > c > \{d, e\}$	• a b c {d,e}
• $v_2 = a > b > \{c, d, e\}$	• a b {c,d,e}
• $v_3 = c > \{a, b, d, e\}$	• c {a,b,d,e}
• $v_4 = d > e > b > \{a, c\}$	● d e b {a,c}
• $v_5 = c > a > e > b > \{d\}$	● caeb {d}

	а	b	С	d	е
Level 1 score	2	0	2	1	0

G. Erdélyi and M. R. Fellows Contro

Control in Bucklin Voting and in Fallback Voting

200

Fallback Voting Bucklin Voting

Example for Fallback Voting

Example	
Preferences:	<u>Votes:</u>
• $v_1 = a > b > c > \{d, e\}$	• a b c {d,e}
• $v_2 = a > b > \{c, d, e\}$	• a b {c, d, e}
• $v_3 = c > \{a, b, d, e\}$	• c {a, b, d, e}
• $v_4 = d > e > b > \{a, c\}$	● d e b {a,c}
• $v_5 = c > a > e > b > \{d\}$	• c a e b {d}

	а	b	С	d	е
Level 2 score	3	2	2	1	1

G. Erdélyi and M. R. Fellows Cor

Control in Bucklin Voting and in Fallback Voting

Sac

Fallback Voting Bucklin Voting

Bucklin Voting

• Each voter has a tie-free linear ordering of all candidates:

$c_4 > c_1 > c_3 > c_5 > c_2 > c_6$

G. Erdélyi and M. R. Fellows Control in Bucklin Voting and in Fallback Voting

3

Fallback Voting Bucklin Voting

Bucklin Voting

• Each voter has a tie-free linear ordering of all candidates:

$c_4 > c_1 > c_3 > c_5 > c_2 > c_6$

- scoreⁱ_(C,V)(c) = number of voters who rank c on level i or higher.
- $M_t = \lfloor n/2 \rfloor + 1$

ヘロト 人間 ト イヨト イヨト

э.

Fallback Voting Bucklin Voting

Bucklin Voting

• Each voter has a tie-free linear ordering of all candidates:

$c_4 > c_1 > c_3 > c_5 > c_2 > c_6$

- scoreⁱ_(C,V)(c) = number of voters who rank c on level i or higher.
- $M_t = \lfloor n/2 \rfloor + 1$
- $score_B(c) = min\{i \mid score^i_{(C,V)}(c) \ge M_t\}$
- Winner: The candidate with the lowest Bucklin score.

< □ > < 同 > < 回 > < 回 > < 回 >

Fallback Voting Bucklin Voting

Example for Bucklin Voting

Example					
Preferences:	Scores:				
• $v_1 = a > b > c > d > e$	• $score_B(a) = 2$				
• $v_2 = a > b > c > e > d$	• $score_B(b) = 2$				
• $v_3 = c > b > a > d > e$	• $score_B(c) = 3$				
• v ₄ = d > b > e > a > c	• $score_B(d) = 4$				
• $v_5 = c > a > e > b > d$	• $score_B(e) = 4$				
$\mathit{score}^2_{(C,V)}(a) = 3 < 4 = \mathit{score}^2_{(C,V)}(b)$					

(日) (圖) (E) (E)

æ.

Previous Results

Theorem

Fallback Voting		Bucklin	
Constructive	Destructive	Constructive	Destructive
NP-complete	NP-complete	NP-complete	NP-complete
NP-complete	NP-complete	NP-complete	NP-complete
NP-complete	Р	NP-complete	Р
NP-complete	Р	NP-complete	Р
	Constructive NP-complete NP-complete NP-complete	Constructive Destructive NP-complete NP-complete NP-complete NP-complete NP-complete P	Constructive Destructive Constructive NP-complete NP-complete NP-complete NP-complete NP-complete NP-complete NP-complete P NP-complete

G. Erdélyi and M. R. Fellows Control in Bucklin Voting and in Fallback Voting

・ロト ・聞 ト ・ ヨト ・ ヨト

∃ 990

Results

Theorem

	Fallback Voting		Bucklin	
Control by	Constructive	Destructive	Constructive	Destructive
Adding a Limited Number of Candidates	W[2]-hard	W[2]-hard	W[2]-hard	W[2]-hard
Deleting Candidates	W[2]-hard	W[2]-hard	W[2]-hard	W[2]-hard
Adding Voters	W[2]-hard	FPT	W[2]-hard	FPT
Deleting Voters	W[2]-hard	FPT	W[2]-hard	FPT

G. Erdélyi and M. R. Fellows Control in Bucklin Voting and in Fallback Voting

・ロト ・聞 ト ・ ヨト ・ ヨト

∃ 990

Conclusions and Open Questions

- The problems remain hard for the natural parameterization.
- What is the complexity if parameterized by the amount of action and the number of voters/candidates?
- Partition cases are still open.

< ロ > < 同 > < 回 > < 回 > .

Thank you very much!

G. Erdélyi and M. R. Fellows Control in Bucklin Voting and in Fallback Voting

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

æ