Multivariate Complexity of SWAP BRIBERY

Britta Dorn¹

joint work with Ildikó Schlotter²

¹Eberhard-Karls-Universität Tübingen/Universität Ulm, Germany ²Budapest University of Technology and Economics, Hungary

COMSOC 2010, Düsseldorf

spending money to influence the voters' preferences

- pay money to voters/to chair
- campaigning
- \implies bad/good phenomenon both hardness and tractability results interesting!

BRIBERY

Input: \mathcal{E} -Election E = (C, V), preferred candidate $p \in C$, cost function, budget β . **Question:** Is it possible to bribe voters such that p wins, respecting the budget?

In the following:
$$m = |C| = \#$$
 candidates
 $n = |V| = \#$ votes.

Special model considered here:

SWAP BRIBERY [ELKIND, FALISZEWSKI, SLINKO, SAGT 2009] cost function: every voter assigns certain price for swapping the positions of two *consecutive* candidates in his preference list.

Example:
$$v: a > b > p$$

 v 's list of costs of swaps:
 $c(a \frown b) = 2$ $c(a \frown p) = 3$ $c(b \frown p) = 1$
briber wants $\tilde{v}: p > b > a$
cost of a set of swaps:
 $v: a > b > p$. swap $a \frown b$ at cost 2
 $\tilde{v}: b > a > p$. swap $a \frown p$ at cost 3
 $b > p > a$. swap $b \frown p$ at cost 1
 $p > b > a$. total cost: 6

SWAP BRIBERY

Input: \mathcal{E} -Election E = (C, V), preferred candidate $p \in C$, cost functions, budget β . **Question:** Is there a set of swaps with total cost $\leq \beta$, such that p wins the bribed election?

for costs in $\{0, \delta > 0\}$, budget $\beta = 0$: POSSIBLE WINNER.

Some known results for $\operatorname{SWAP}\,\operatorname{Briberry}$

[Elkind, Faliszewski, Slinko, SAGT 2009]

• hardness results for Borda: NP-c

(from Possible Winner [XIA, CONITZER, AAAI, 2008]), Copeland $^{\alpha}:$ NP-c , Maximin: NP-c

- case study for k-approval $(1, 1, \ldots, 1, 0, \ldots, 0)$
 - *k* = 1 (Plurality): **P** *k* = *m* 1 (Veto): **P**
 - $1 \le k \le m$, *m* or *n* constant: **P**
 - *k* = 2: **NP-c**

(from Possible Winner, [Betzler, Dorn, J.Comput.Syst.Sci., 2010])

k

- $3 \le k \le m 2$, k fixed, costs in $\{0, 1, 2\}$: **NP-c**
- k part of the input: **NP-c** even for 1 voter!

- 4 個 ト - 4 三 ト - 4 三 ト

so far: complexity measured in size of the input (1-dimensional)

now: complexity measured in size of the input and certain 'parameters' (multi-dimensional)

e.g.: # candidates # votes # candidates with special property cost budget

Which parameters have a significant influence on the hardness of the problem?

(日) (周) (三) (三)

Multivariate complexity analysis of $\operatorname{SWAP}\,\operatorname{BRIBERY}$

t - parameter

NP-hard problems: presumably cannot avoid exp. running times.

But: Maybe we can restrict exponential part of running time to a certain parameter! E.g. $2^t \cdot |x|^2$

 \Rightarrow If value of t ist small in certain settings: efficient algorithm!

fixed-parameter tractability

A problem is *fixed-parameter tractable* if it can be solved in

 $f(t) \cdot poly(|x|)$ time

(|x| - size of the input)

corresponding complexity class: FPT

What about running time $|x|^{t}$? **not** in **FPT**!

Intractability results

Hardness classes

First level of fixed-parameter intractability: class W[1]

hardness/completeness via parameterized reduction.

Goal: Analyze complexity of ${\rm SWAP}~{\rm BRIBERY}$ from a parameterized/multivariate point of view.

Special focus on *k*-approval.

Our investigations

Complexity depending on (1) cost function, budget (2) combined parameter $(n = \# \text{ votes}, \beta = \text{budget})$ k-approval (3) m = # candidates

1. Complexity depending on cost function

k-approval

Theorem 1

Costs uniform (every swap has the same cost): SWAP BRIBERY for k-approval is in **P**

 \rightarrow network flow problem

Theorem 2

As soon as there are two different costs: SWAP BRIBERY for *k*-approval is **NP-c**. SWAP BRIBERY for *k*-approval is **W[1]-hard** with respect to β

 \rightarrow (parameterized) reduction from MULTICOLORED CLIQUE

・ロン ・四 ・ ・ ヨン ・ ヨン

k-approval

Theorem 3

If minimum cost of a swap is 1:

SWAP BRIBERY for k-approval is in **FPT** with respect to (n, β)

2. Complexity depending on combined parameter (n, β)

minimum cost of a swap = 1: only candidates that can be swapped within budget β from 1- to 0-position or vice versa are interesting.

 \Rightarrow cut votes (such that only relevant candidates stay)

some more votes that take into account points of 'lost' positions

2. Complexity depending on combined parameter (n, β)

some more votes that take into account points of 'lost' positions

remaining profile is much smaller:

- only $O(n^2\beta^2)$ candidates left
- new votes, but only $O(n^2\beta)$ many of them

 \rightarrow brute force on the smaller instance ('problem kernel'), leads to an FPT running time

3. Complexity depending on m = number of candidates

Any voting system that can be described by *linear inequalities*, e.g. scoring rules, Maximin, Copeland^{α}, Bucklin, Ranked Pairs, ...

Theorem 4

For all voting rules that can be described by linear inequalities: SWAP BRIBERY is in **FPT** with respect to *m*.

\rightarrow ILP formulation

In a similar way:

Many other problems are in FPT with respect to m as well, e.g.

- Possible Winner
- MANIPULATION
- Control
- Lobbying

Results

Complexity depending on (1) cost function, budget: P/NP-c, W[1]-hard (β) (2) (n = # votes, $\beta =$ budget): FPT (3) m = # candidates: FPT What else is interesting?

- different parameters
- different voting systems
- destructive case
- o different models?