T alance	tenzeu Algoritims	Results	Conclusion + References

Partial Kernelization for Rank Aggregation: Theory and Experiments

Nadja Betzler, Robert Bredereck, Rolf Niedermeier

Friedrich-Schiller-Universität Jena, Germany

Third International Workshop on Computational Social Choice Düsseldorf, Germany, September 14, 2010

Kemeny Ranking	Parameterized Algorithms	Results	Conclusion + References
●0000	00	00000000	00
Rank Aggregat	ion		

Election

Set of votes V, set of candidates C. A vote is a ranking (total order) over all candidates.

Example: $C = \{a, b, c\}$ vote 1: a > b > cvote 2: a > c > bvote 3: b > c > a

How to aggregate the votes into a "consensus ranking"?

3

(B) < B)</p>

Kemeny Ranking	Parameterized Algorithms	Results	Conclusion + References
0●000	00	00000000	
Kemeny score:	KT-distance		

KT-distance (between two votes v and w)

$$\mathsf{KT}\operatorname{-dist}(v,w) = \sum_{\{c,d\}\subseteq C} d_{v,w}(c,d),$$

where $d_{v,w}(c,d)$ is 0 if v and w rank c and d in the same order, 1 otherwise.

Example:

.

3

(B)

Kemeny Ranking	Parameterized Algorithms	Results	Conclusion + References
00000			
Kemeny Conser	2010		

Kemeny score of a ranking *r*:

Sum of KT-distances between r and all votes

Kemeny consensus r_{con}:

A ranking that minimizes the Kemeny score

<i>v</i> ₁ :	a > b > c	$KT\operatorname{-dist}(r_{con},v_1)=0$
<i>v</i> ₂ :	a > c > b	KT -dist $(r_{con}, v_2) = 1$ because of $\{b, c\}$
<i>V</i> 3:	b > c > a	KT -dist $(r_{con}, v_3) = 2$ because of $\{a, b\}$ and $\{a, c\}$

 r_{con} : $\mathbf{a} > \mathbf{b} > \mathbf{c}$ Kemeny score: 0 + 1 + 2 = 3

Kemeny Ranking	Parameterized Algorithms	Results	Conclusion + References
000●0	00	00000000	
Decision problem	m		

Kemeny Score

Input: An election (V, C) and a positive integer k. **Question:** Is there a Kemeny consensus of (V, C) with Kemeny score at most k?

3

()

Kemeny Ranking	Parameterized Algorithms	Results	Conclusion + References
000●0	00	00000000	
Decision probler	n		

Kemeny Score

Input: An election (V, C) and a positive integer k. **Question:** Is there a Kemeny consensus of (V, C) with Kemeny score at most k?

Applications:

- Ranking of web sites (meta search engine)
- Sport competitions
- Databases
- Voting systems

3

Kemeny Ranking	Parameterized Algorithms	Results	Conclusion + References
00000	00	0000000	
Known results			

• KEMENY SCORE is NP-complete (even for 4 votes) [Bartholdi et al., SCW 1989], [Dwork et al., WWW 2001]

Algorithms:

- factor 8/5-approximation, randomized: factor 11/7 [VAN ZUYLEN AND WILLIAMSON, WAOA 2007], [AILON ET AL., JACM 2008]
- PTAS [Kenyon-Mathieu and Schudy, STOC 2007]
- Heuristics; greedy, branch and bound (experimental) [DAVENPORT AND KALAGNANAM, AAAI 2004],
 - [V. CONITZER, A. DAVENPORT, AND J. KALAGNANAM, AAAI 2006],
 - [F. Schalekamp and A. van Zuylen, ALENEX 2009]

Kemeny Ranking	Parameterized Algorithms	Results	Conclusion + References
00000	●0	0000000	
Parameterized	Complexity		

Given an NP-hard problem with input size n and a parameter kBasic idea: Confine the combinatorial explosion to k

Definition

A problem of size *n* is called **fixed-parameter tractable** with respect to a parameter *k* if it can be solved exactly in $f(k) \cdot n^{O(1)}$ time.

Parameters: # votes, # candidates, average KT-distance, ...

Kemeny Ranking	Parameterized Algorithms	Results	Conclusion + References
00000	○●	00000000	
Data reduction	rule		

You can see data reduction rules as preprocessing step to solve a problem:

Basic idea

A data reduction rule shrinks an instance of a problem to an "equivalent" instance by cutting away easy parts of the original instance.

We focus on **polynomial-time** data reduction rules for **Kemeny Score**.

Kemeny Ranking	Parameterized Algorithms	Results	Conclusion + References
00000	00	●0000000	
Simple reductio	n rules		

Condorcet winner: (weak) A candidate *c* beating every other candidate in at least half of the votes, that is, $c \ge_{1/2} c'$ for every candidate $c' \ne c$, is called (weak) *Condorcet winner*. A Condorcet winner takes the first position in at least one Kemeny consensus (Condorcet property).

Reduction Rule

If there is a (weak) Condorcet winner in an election provided by a KEMENY SCORE instance, then delete this candidate.

Kemeny Ranking 00000	Parameterized Algorithms	Results ●0000000	Conclusion + References
Simple reductio	n rules		

Condorcet winner: (weak) A candidate *c* beating every other candidate in at least half of the votes, that is, $c \ge_{1/2} c'$ for every candidate $c' \ne c$, is called (weak) *Condorcet winner*. A Condorcet winner takes the first position in at least one Kemeny consensus (Condorcet property).

Reduction Rule

If there is a (weak) Condorcet winner in an election provided by a KEMENY SCORE instance, then delete this candidate.

Reduction Rule

If there is a subset $C' \subset C$ of candidates with $c' \geq_{1/2} c$ for every $c' \in C'$ and every $c \in C \setminus C'$, then replace the original instance by the two subinstances "induced" by C' and $C \setminus C'$.

Note: A subset C' can be found in polynomial time.

Kemeny Ranking	Parameterized Algorithms	Results	Conclusion + References
00000	00	0●000000	
Back to our init	cial example		

Condorcet looser

Condorcet looser and Condorcet looser sets are analogously defined.

э

Rock to our ini	tial example		
Kemeny Ranking	Parameterized Algorithms	Results	Conclusion + References
00000	00	0●000000	00

Condorcet looser

Condorcet looser and Condorcet looser sets are analogously defined.

Are there Condorcet candidates or Condorcet sets in our initial example?

<i>v</i> 1:	а	>	b	>	С
<i>v</i> ₂ :	а	>	С	>	b
V3:	b	>	с	>	а

3

Kemeny Ranking	Parameterized Algorithms	Results	Conclusion + References
00000	00	0●000000	
Back to our init	ial example		

Condorcet looser

Condorcet looser and Condorcet looser sets are analogously defined.

Are there Condorcet candidates or Condorcet sets in our initial example?

3

 Keeneny Ranking
 Parameterized Algorithms
 Results
 Conclusion + References

 00000
 00
 00
 00
 00

A candidate c is **non-dirty** if for every other candidate c' either $c' \ge_{3/4} c$ or $c \ge_{3/4} c'$. Otherwise c is **dirty**.

Lemma

For a non-dirty candidate c and candidate $c' \in C \setminus \{c\}$: If $c \ge_{3/4} c'$, then $c > \cdots > c'$ in every Kemeny consensus. If $c' \ge_{3/4} c$, then $c' > \cdots > c$ in every Kemeny consensus.

Reduction Rule

If there is a non-dirty candidate, then delete it and partition the instance into two subinstances accordingly.

 Keemeny Ranking
 Parameterized Algorithms
 Results
 Conclusion + References

 000
 00
 00
 00

 Reduction rules using "dirty candidates"

A candidate c is **non-dirty** if for every other candidate c' either $c' \ge_{3/4} c$ or $c \ge_{3/4} c'$. Otherwise c is **dirty**.

Lemma

For a non-dirty candidate c and candidate $c' \in C \setminus \{c\}$: If $c \ge_{3/4} c'$, then $c > \cdots > c'$ in every Kemeny consensus. If $c' \ge_{3/4} c$, then $c' > \cdots > c$ in every Kemeny consensus.

Reduction Rule

If there is a non-dirty candidate, then delete it and partition the instance into two subinstances accordingly.

Further rule: an "extended" reduction rule based on "non-dirty sets of candidates" ...

 Kemeny Ranking 00000
 Parameterized Algorithms 00
 Results 00000000
 Conclusion + References 00

 Dealerations of locations of the second black of

Reduction rules using "dirty candidates"

A candidate c is **non-dirty** if for every other candidate c' either $c' \ge_{3/4} c$ or $c \ge_{3/4} c'$. Otherwise c is **dirty**.

Lemma

For a non-dirty candidate c and candidate $c' \in C \setminus \{c\}$: If $c \ge_{3/4} c'$, then $c > \cdots > c'$ in every Kemeny consensus. If $c' \ge_{3/4} c$, then $c' > \cdots > c$ in every Kemeny consensus.

Reduction Rule

If there is a non-dirty candidate, then delete it and partition the instance into two subinstances accordingly.

 $\begin{array}{l} a_1 > a_2 > a_3 > c > b_1 > b_2 \\ a_3 > a_2 > c > a_1 > b_2 > b_1 \\ a_1 > c > a_2 > b_2 > b_1 > a_3 \\ a_2 > a_3 > a_1 > b_1 > b_2 > c \end{array}$

$$a_i \ge_{3/4} c \text{ and } c \ge_{3/4} b_i$$

$$\Rightarrow$$

in every Kemeny consensus:

$$\{a_1, a_2, a_3\} > c > \{b_1, b_2\}$$

通 ト イヨ ト イヨ ト

3

 Keeneny Ranking 00000
 Parameterized Algorithms 00
 Results 000000000
 Conclusion + References 00

 Reduction rules using "dirty candidates"

A candidate c is **non-dirty** if for every other candidate c' either $c' \ge_{3/4} c$ or $c \ge_{3/4} c'$. Otherwise c is **dirty**.

Lemma

For a non-dirty candidate c and candidate $c' \in C \setminus \{c\}$: If $c \ge_{3/4} c'$, then $c > \cdots > c'$ in every Kemeny consensus. If $c' \ge_{3/4} c$, then $c' > \cdots > c$ in every Kemeny consensus.

Reduction Rule

If there is a non-dirty candidate, then delete it and partition the instance into two subinstances accordingly.

Lemma does not hold for any "majority ratio" below 3/4. (Proof by construction of a counterexample.)

くほと くほと くほと

Parameter: average KT-distance between the input votes

$$d := \frac{2}{n(n-1)} \cdot \sum_{\{u,v\} \subseteq V} \mathsf{KT-dist}(u,v).$$

Known fixed-parameter tractability results:

- dynamic programming with running time O(16^d · poly(n))
 [Betzler, Fellows, Guo, Niedermeier, and Rosamond, AAMAS 2009]
- branching algorithm with running time $O(5.83^d \cdot \text{poly}(n))$ [SIMJOUR, IWPEC 2009]

Kemeny Ranking	Parameterized Algorithms	Results	Conclusion + References
00000	00	000000€0	00
Average	KT-distance as param	eter for Kemen	y Score

Main (theoretical) result:

Theorem

A KEMENY SCORE instance with average KT-distance d can be reduced in polynomial time to an "equivalent" instance with less than $11 \cdot d$ candidates.

In parameterized terms: KEMENY SCORE yields a partical vertex linear kernel with respect to the parameter average KT-distance.

Kemeny Ranking 00000	Parameteriz 00	ed Algorithms	Results 0000000●	Conclusion + References
Experimental	results:	Meta search	engines	

Four votes: Google, Lycos, MSN Live Search, and Yahoo! top

			•••	ŭ		
search term	#cand.	time [s]	structu	structure of reduced instance solved/unsolved		
affirmative action	127	0.41	[27]	> 41 >	[59]	
alcoholism	115	0.21	[115]			
architecture	122	0.47	[36]	> 12 > [30] > 17 >	[27]	
blues	112	0.16	[74]	> 9 >	[29]	
cheese	142	0.39	[94]	> 6 >	[42]	
classical guitar	115	1.12	[6]	> 7 > [50] > 35 >	[17]	
Death Valley	110	0.25	[15]	> 7 > [30] > 8 >	[50]	
field hockey	102	0.21	[37]	> 26 > [20] > 4 >	[15]	
gardening	106	0.19	[54]	> 20 > [2] > 9 > [8] > 4 >	[9]	
HIV	115	0.26	[62]	> 5 > [7] > 20 >	[21]	
lyme disease	153	2.61	[25]	> 97 >	[31]	
mutual funds	128	3.33	[9]	> 45 > [9] > 5 > [1] > 49 >	[10]	
rock climbing	102	0.12	[102]			
Shakespeare	163	0.68	[100]	> 10 > [25] > 6 >	[22]	
telecommuting	131	2.28	[9]	> 109 >	[13]	

1000	hits	each,	candidates	that	appear	in	all	four	rankings
------	------	-------	------------	------	--------	----	-----	------	----------

3 x 3

Kemeny Ranking	Parameterized Algorithms	Results	Conclusion + References
00000	00	0000000	●○
Conclusion			

In practice:

Data reduction should be applied whenever possible. There are many real-world instances that are only (exactly) solvable with data reduction rules.

In theory:

Parameterized algorithmics offer a framework to analyze the effectiveness of data reduction rules.

Still open:

- more (structural) parameters
- bound also number of votes
- more data reduction rules

Kemeny Ranking	Parameterized Algorithms	Results	Conclusion + References
00000	00	0000000	○●
Literature			

General literature on parameterized algorithms

- R. G. Downey and M. R. Fellows, Parameterized Complexity, Springer, 1999
- J. Flum and M. Grohe. Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series), Springer, 2006
- R. Niedermeier, Invitation to Fixed-Parameter Algorithms, Oxford University Press, 2006