

Partial Kernelization for Rank Aggregation: Theory and Experiments

Nadja Betzler, Robert Bredereck, Rolf Niedermeier

Friedrich-Schiller-Universität Jena, Germany

Third International Workshop on Computational Social Choice Düsseldorf, Germany, September 14, 2010

Election

Set of votes V, set of candidates C. A vote is a ranking (total order) over all candidates.

Example: $C = \{a, b, c\}$ vote 1: $a > b > c$ vote 2: $a > c > b$ vote 3: $b > c > a$

How to aggregate the votes into a "consensus ranking"?

画

 QQ

KT-distance (between two votes v and w)

KT-dist
$$
(v, w)
$$
 =
$$
\sum_{\{c,d\} \subseteq C} d_{v,w}(c,d),
$$

where $d_{v,w}(c, d)$ is 0 if v and w rank c and d in the same order, 1 otherwise.

Example:

$$
v_1: a > b > c
$$

\n
$$
v_2: a > c > b
$$

\n
$$
v_3: b > c > a
$$

\n
$$
KT\text{-}dist(v_1, v_2) = d_{v_1, v_2}(a, b) + d_{v_1, v_2}(a, c) + d_{v_1, v_2}(b, c)
$$

\n
$$
= 0 + 0 + 1
$$

\n
$$
= 1
$$

 \leftarrow

Biskin \mathbb{B} is 画

Kemeny score of a ranking r:

Sum of KT-distances between r and all votes

Kemeny consensus r_{con} :

A ranking that minimizes the Kemeny score

 299

 r_{con} : $a > b > c$ Kemeny score: $0+1+2=3$

Kemeny Score

Input: An election (V, C) and a positive integer k . **Question:** Is there a Kemeny consensus of (V, C) with Kemeny score at most k ?

э

Kemeny Score

Input: An election (V, C) and a positive integer k . **Question:** Is there a Kemeny consensus of (V, C) with Kemeny score at most k ?

Applications:

- Ranking of web sites (meta search engine)
- Sport competitions
- **o** Databases
- Voting systems

 Ω

• KEMENY SCORE is NP-complete (even for 4 votes) [Bartholdi et al., SCW 1989], [Dwork et al., WWW 2001]

Algorithms:

- factor $8/5$ -approximation, randomized: factor $11/7$ [van Zuylen and Williamson, WAOA 2007], [Ailon et al., JACM 2008]
- **PTAS** [KENYON-MATHIEU AND SCHUDY, STOC 2007]
- Heuristics; greedy, branch and bound (experimental) [Davenport and Kalagnanam, AAAI 2004],
	- [V. Conitzer, A. Davenport, and J. Kalagnanam, AAAI 2006],
	- [F. Schalekamp and A. van Zuylen, ALENEX 2009]

Given an NP-hard problem with input size n and a parameter k **Basic idea:** Confine the combinatorial explosion to k

Definition

A problem of size n is called fixed-parameter tractable with respect to a parameter k if it can be solved exactly in $f(k)\cdot n^{O(1)}$ time.

Parameters: $\#$ votes, $\#$ candidates, average KT-distance, ...

You can see data reduction rules as preprocessing step to solve a problem:

Basic idea

A data reduction rule shrinks an instance of a problem to an "equivalent" instance by cutting away easy parts of the original instance.

We focus on **polynomial-time** data reduction rules for **Kemeny** Score.

Condorcet winner: (weak) A candidate c beating every other candidate in at least half of the votes, that is, $\,c\geq_{1/2} c'$ for every candidate $c' \neq c$, is called (weak) Condorcet winner. A Condorcet winner takes the first position in at least one Kemeny consensus (Condorcet property).

Reduction Rule

If there is a (weak) Condorcet winner in an election provided by a Kemeny Score instance, then delete this candidate.

Condorcet winner: (weak) A candidate c beating every other candidate in at least half of the votes, that is, $\,c\geq_{1/2} c'$ for every candidate $c' \neq c$, is called (weak) Condorcet winner. A Condorcet winner takes the first position in at least one Kemeny consensus (Condorcet property).

Reduction Rule

If there is a (weak) Condorcet winner in an election provided by a Kemeny Score instance, then delete this candidate.

Reduction Rule

If there is a subset $\mathcal{C}' \subset \mathcal{C}$ of candidates with $\mathcal{c}' \geq_{1/2} \mathcal{c}$ for every $c' \in C'$ and every $c \in C \setminus C'$, then replace the original instance by the two subinstances "induced" by C' and $C \setminus C'.$

 299

Not[e](#page-9-0): A subset C' can be found in polynom[ial](#page-9-0) [ti](#page-11-0)[m](#page-8-0)e[.](#page-10-0)

Condorcet looser

Condorcet looser and Condorcet looser sets are analogously defined.

 \Box

э

Condorcet looser

Condorcet looser and Condorcet looser sets are analogously defined.

Are there Condorcet candidates or Condorcet sets in our initial example?

э

 QQ

Condorcet looser

Condorcet looser and Condorcet looser sets are analogously defined.

Are there Condorcet candidates or Condorcet sets in our initial example?

 v_1 : a $>$ b $>$ c v_2 : a $>$ c $>$ b v_3 : $b > c > a$ The candidate a is a condorcet winner.

The set $\{b, c\}$ is a condorcet looser set.

 200

A candidate c is non-dirty if for every other candidate c^\prime either $c' \geq_{3/4} c$ or $c \geq_{3/4} c'$. Otherwise c is **dirty**.

Lemma

For a non-dirty candidate c and candidate $c' \in \mathcal{C} \setminus \{c\}$: If $c \geq_{3/4} c'$, then $c > \cdots > c'$ in every Kemeny consensus. If $c' \geq_{3/4} c$, then $c' > \cdots > c$ in every Kemeny consensus.

Reduction Rule

If there is a non-dirty candidate, then delete it and partition the instance into two subinstances accordingly.

A candidate c is non-dirty if for every other candidate c^\prime either $c' \geq_{3/4} c$ or $c \geq_{3/4} c'$. Otherwise c is **dirty**.

Lemma

For a non-dirty candidate c and candidate $c' \in \mathcal{C} \setminus \{c\}$: If $c \geq_{3/4} c'$, then $c > \cdots > c'$ in every Kemeny consensus. If $c' \geq_{3/4} c$, then $c' > \cdots > c$ in every Kemeny consensus.

Reduction Rule

If there is a non-dirty candidate, then delete it and partition the instance into two subinstances accordingly.

Further rule: an "extended" reduction rule based on "non-dirty sets of candidates"... ..

 Ω

Reduction rules using "dirty candidates"

A candidate c is non-dirty if for every other candidate c^\prime either $c' \geq_{3/4} c$ or $c \geq_{3/4} c'$. Otherwise c is **dirty**.

Lemma

For a non-dirty candidate c and candidate $c' \in \mathcal{C} \setminus \{c\}$: If $c \geq_{3/4} c'$, then $c > \cdots > c'$ in every Kemeny consensus. If $c' \geq_{3/4} c$, then $c' > \cdots > c$ in every Kemeny consensus.

Reduction Rule

If there is a non-dirty candidate, then delete it and partition the instance into two subinstances accordingly.

 $a_1 > a_2 > a_3 > c > b_1 > b_2$ $a_3 > a_2 > c > a_1 > b_2 > b_1$ $a_1 > c > a_2 > b_2 > b_1 > a_3$ $a_2 > a_3 > a_1 > b_1 > b_2 > c$

$$
a_i \geq_{3/4} c \text{ and } c \geq_{3/4} b_i
$$

\n
$$
\Rightarrow
$$

\nin every Kemeny consensus:
\n
$$
\{a_1, a_2, a_3\} > c > \{b_1, b_2\}
$$

←何 ▶ イヨ ▶ イヨ ▶ │

÷

A candidate c is non-dirty if for every other candidate c^\prime either $c' \geq_{3/4} c$ or $c \geq_{3/4} c'$. Otherwise c is **dirty**.

Lemma

For a non-dirty candidate c and candidate $c' \in \mathcal{C} \setminus \{c\}$: If $c \geq_{3/4} c'$, then $c > \cdots > c'$ in every Kemeny consensus. If $c' \geq_{3/4} c$, then $c' > \cdots > c$ in every Kemeny consensus.

Reduction Rule

If there is a non-dirty candidate, then delete it and partition the instance into two subinstances accordingly.

Lemma does not hold for any "majority ratio" below 3/4. (Proof by construction of a counterexample.)

Parameter: average KT-distance between the input votes

$$
d := \frac{2}{n(n-1)} \cdot \sum_{\{u,v\} \subseteq V} \text{KT-dist}(u,v).
$$

Known fixed-parameter tractability results:

- dynamic programming with running time $O(16^d \cdot \text{poly}(n))$ [Betzler, Fellows, Guo, Niedermeier, and Rosamond, AAMAS 2009]
- branching algorithm with running time $O(5.83^d \cdot \text{poly}(n))$ [Simjour, IWPEC 2009]

 200

Main (theoretical) result:

Theorem

A KEMENY SCORE instance with average KT-distance d can be reduced in polynomial time to an "equivalent" instance with less than $11 \cdot d$ candidates.

In parameterized terms: KEMENY SCORE yields a partical vertex linear kernel with respect to the parameter average KT-distance.

 Ω

Four votes: Google, Lycos, MSN Live Search, and Yahoo! top

 \leftarrow

画

In practice:

Data reduction should be applied whenever possible. There are many real-world instances that are only (exactly) solvable with data reduction rules.

In theory:

Parameterized algorithmics offer a framework to analyze the effectiveness of data reduction rules.

Still open:

- more (structural) parameters
- **•** bound also number of votes
- • more data reduction rules

General literature on parameterized algorithms

- R. G. Downey and M. R. Fellows, Parameterized Complexity, Springer, 1999
- J. Flum and M. Grohe. Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series), Springer, 2006
- R. Niedermeier, Invitation to Fixed-Parameter Algorithms, Oxford University Press, 2006