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Rank Aggregation

Election

Set of votes V, set of candidates C.
A vote is a ranking (total order) over all candidates.

Example: C = {a, b, c}
votel: a > b >
vote2: a > ¢ >
vote3: b > ¢ >
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How to aggregate the votes into a “consensus ranking”?
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Kemeny score: KT-distance

KT-distance (between two votes v and w)

KT-dist(v, w) Z dy.w(c,d),
{c,d}CC

where d, (¢, d) is 0 if v and w rank ¢ and d in the same order, 1
otherwise.

Example:
vi. a
V! a

vs: b

0O 0 T

>
>
>

KT-dist(vi,v2) = dy w(a,b)
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Kemeny Consensus

Kemeny score of a ranking r:

Sum of KT-distances between r and all votes

Kemeny consensus rco,:

A ranking that minimizes the Kemeny score

vi: a>b>c KT-dist(reon, va) =0

vw: a>c>b KT-dist(reon, v2) = 1 because of {b, c}

v3: b>c>a KT-dist(reon, v3) = 2 because of {a, b} and {a, c}
feon: a>b>c Kemeny score: 0 +1+4+2=3
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Decision problem

KEMENY

Input: An election (V, C) and a positive integer k.
Question: |s there a Kemeny consensus of (V, C) with Kemeny
score at most k?
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Decision problem

KEMENY SCORE

Input: An election (V, C) and a positive integer k.
Question: |s there a Kemeny consensus of (V, C) with Kemeny
score at most k?

Applications:

e Ranking of web sites (meta search engine)
@ Sport competitions

@ Databases

e Voting systems
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Known results

e KEMENY SCORE is NP-complete (even for 4 votes)
[BARTHOLDI ET AL., SCW 1989], [DWORK ET AL., WWW 2001]

Algorithms:

e factor 8/5-approximation, randomized: factor 11/7
[VAN ZUYLEN AND WILLIAMSON, WAOA 2007],
[AILON ET AL., JACM 2008]

e PTAS [KENYON-MATHIEU AND SCHUDY, STOC 2007]

@ Heuristics; greedy, branch and bound (experimental)

[DAVENPORT AND KALAGNANAM, AAAT 2004],

[V. CONITZER, A. DAVENPORT, AND J. KALAGNANAM, AAAT 2006],
[F. SCHALEKAMP AND A. VAN ZUYLEN, ALENEX 2009]
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Parameterized Complexity

Given an NP-hard problem with input size n and a parameter k
Basic idea: Confine the combinatorial explosion to k

n instead of

Definition

A problem of size n is called fixed-parameter tractable with
respect to a parameter k if it can be solved exactly in f(k) - n®(®)
time.

Parameters: # votes, # candidates, average KT-distance, ...
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Data reduction rule

You can see data reduction rules as preprocessing step to solve a
problem:

Basic idea

A data reduction rule shrinks an instance of a problem to an

“equivalent” instance by cutting away easy parts of the original
instance.

We focus on polynomial-time data reduction rules for Kemeny
Score.
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Simple reduction rules

Condorcet winner: (weak) A candidate ¢ beating every other
candidate in at least half of the votes, that is, ¢ >y, ¢’ for every
candidate ¢’ # c, is called (weak) Condorcet winner.

A Condorcet winner takes the first position in at least one Kemeny
consensus (Condorcet property).

If there is a (weak) Condorcet winner in an election provided by a
KEMENY SCORE instance, then delete this candidate.

Reduction Rule
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Simple reduction rules

Condorcet winner: (weak) A candidate ¢ beating every other
candidate in at least half of the votes, that is, ¢ >y, ¢’ for every
candidate ¢’ # c, is called (weak) Condorcet winner.

A Condorcet winner takes the first position in at least one Kemeny
consensus (Condorcet property).

Reduction Rule

If there is a (weak) Condorcet winner in an election provided by a
KEMENY SCORE instance, then delete this candidate.

Reduction Rule

If there is a subset C’ C C of candidates with ¢’ >1/2 ¢ for every
¢’ € C" and every c € C\ C’, then replace the original instance by
the two subinstances “induced” by C’ and C\ C'.

Note: A subset C’ can be found in polynomial time.
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Back to our initial example

Condorcet looser

Condorcet looser and Condorcet looser sets are analogously
defined.
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Back to our initial example

Condorcet looser
Condorcet looser and Condorcet looser sets are analogously

defined.

Are there Condorcet candidates or Condorcet sets in our initial
example?

vi: a > b > c

w. a > ¢ > b

vi: b > ¢ > a
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Back to our initial example

Condorcet looser

Condorcet looser and Condorcet looser sets are analogously
defined.

Are there Condorcet candidates or Condorcet sets in our initial
example?
vi: a > b > c
w. a > ¢ > b
vi: b > ¢ > a
The candidate a is a condorcet winner.
The set {b, c} is a condorcet looser set.
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Reduction rules using “dirty candidates”

A candidate c is non-dirty if for every other candidate ¢’ either
c >3/4 C OF C >34 c’. Otherwise c is dirty.

Lemma

For a non-dirty candidate ¢ and candidate ¢’ € C \ {c}:
If ¢ >3/4 ¢/, then ¢ > --- > ¢’ in every Kemeny consensus.
If ¢/ >3/4 C, then ¢’ > .-+ > c in every Kemeny consensus.

Reduction Rule

If there is a non-dirty candidate, then delete it and partition the
instance into two subinstances accordingly.
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Reduction rules using “dirty candidates”

A candidate c is non-dirty if for every other candidate ¢’ either
c >3/4 C OF C >34 c’. Otherwise c is dirty.

Lemma

For a non-dirty candidate ¢ and candidate ¢’ € C \ {c}:
If ¢ >3/4 ¢/, then ¢ > --- > ¢’ in every Kemeny consensus.
If ¢/ >3/4 C, then ¢’ > .-+ > c in every Kemeny consensus.

Reduction Rule

If there is a non-dirty candidate, then delete it and partition the
instance into two subinstances accordingly.

Further rule: an “extended” reduction rule based on “non-dirty
sets of candidates” ...
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Reduction rules using “dirty candidates”

A candidate c is non-dirty if for every other candidate ¢’ either
¢’ >3/4 c or ¢ >3/4 ¢’. Otherwise c is dirty.

Lemma

For a non-dirty candidate ¢ and candidate ¢’ € C \ {c}:
If ¢ >3/4 ¢/, then ¢ > --- > ¢’ in every Kemeny consensus.
If ¢’ >3/4 C, then ¢’ > ... > cin every Kemeny consensus.

Reduction Rule

If there is a non-dirty candidate, then delete it and partition the
instance into two subinstances accordingly.

31>32>33>C>b1>b2 3;23/4candc23/4b,-
aa>a>c>a; >b>b =
ap>c>axy>by> by > a3 in every Kemeny consensus:
ap>a3>a; >b >by>c {a1,a2,a3} > ¢ > {b1, by}
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Reduction rules using “dirty candidates”

A candidate c is non-dirty if for every other candidate ¢’ either
c >3/4 C OF C >34 c’. Otherwise c is dirty.

Lemma

For a non-dirty candidate ¢ and candidate ¢’ € C \ {c}:
If ¢ >3/4 ¢/, then ¢ > --- > ¢’ in every Kemeny consensus.
If ¢ >3/4 C, then ¢’ > .-+ > cin every Kemeny consensus.

Reduction Rule

If there is a non-dirty candidate, then delete it and partition the
instance into two subinstances accordingly.

Lemma does not hold for any “majority ratio” below 3/4.
(Proof by construction of a counterexample.)
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Average KT-distance as parameter for Kemeny Score

Parameter: average KT-distance between the input votes
2

S (e

> KT-dist(u, v).

{uvicV

Known fixed-parameter tractability results:

e dynamic programming with running time O(16< - poly(n))
[BETZLER, FELLOWS, GUO, NIEDERMEIER, AND ROSAMOND, AAMAS 2009]

e branching algorithm with running time O(5.83¢ - poly(n))
[SimioUR, IWPEC 2009]
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Average KT-distance as parameter for Kemeny Score

Main (theoretical) result:

Theorem

A KEMENY SCORE instance with average KT-distance d can be
reduced in polynomial time to an “equivalent” instance with less
than 11 - d candidates.

In parameterized terms: KEMENY SCORE vyields a partical vertex
linear kernel with respect to the parameter average KT-distance.
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Experimental results: Meta search engines

Four votes: Google, Lycos, MSN Live Search, and Yahoo! top
1000 hits each, candidates that appear in all four rankings

search term #cand. time [s]  structure of reduced instance solved/unsolved
affirmative action 127 0.41 [27] > 41 > [59]
alcoholism 115 021  [115]

architecture 122 0.47 [36] >12 > [30] > 17 > [27]
blues 112 0.16 [74] >9> [29]
cheese 142 0.39 [94] >6 > [42]
classical guitar 115 1.12 [6] >7>[50] >35> [17]
Death Valley 110 0.25 [15] >7>[30] >8> [50]
field hockey 102 021  [37] > 26> [20] >4 > [15]
gardening 106 0.19 [54] >20>[2]>9>[8]>4> [9]
HIV 115 026  [62] >5>[7]>20> [21]
lyme disease 153 2.61 [25] > 97 > [31]
mutual funds 128 3.33 [9] >45>[9] >5>[1] >49 > [10]
rock climbing 102 0.12 [102]

Shakespeare 163 0.68 [100] > 10 > [25] > 6 > [22]
telecommuting 131 2.28 [9] > 109 > [13]

Robert Bredereck (Universitat Jena) Partial Kernelization for Rank Aggregation: Theory and Experiments



Conclusion + References
®0

Conclusion

In practice:

Data reduction should be applied whenever possible. There are
many real-world instances that are only (exactly) solvable with
data reduction rules.

In theory:

Parameterized algorithmics offer a framework to analyze the
effectiveness of data reduction rules.
Still open:

@ more (structural) parameters

@ bound also number of votes

@ more data reduction rules
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