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Rank Aggregation

Election

Set of votes V , set of candidates C .
A vote is a ranking (total order) over all candidates.

Example: C = {a, b, c}
vote 1: a > b > c
vote 2: a > c > b
vote 3: b > c > a

How to aggregate the votes into a “consensus ranking”?
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Kemeny score: KT-distance

KT-distance (between two votes v and w)

KT-dist(v ,w) =
∑

{c,d}⊆C

dv ,w (c , d),

where dv ,w (c , d) is 0 if v and w rank c and d in the same order, 1
otherwise.

Example:

v1: a > b > c
v2: a > c > b
v3: b > c > a

KT-dist(v1, v2) = dv1,v2(a, b) + dv1,v2(a, c) + dv1,v2(b, c)
= 0 + 0 + 1
= 1
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Kemeny Consensus

Kemeny score of a ranking r :

Sum of KT-distances between r and all votes

Kemeny consensus rcon:

A ranking that minimizes the Kemeny score

v1 : a > b > c .. KT-dist(rcon, v1) = 0
v2 : a > c > b KT-dist(rcon, v2) = 1 because of {b, c}
v3 : b > c > a KT-dist(rcon, v3) = 2 because of {a, b} and {a, c}

rcon : a > b > c Kemeny score: 0 + 1 + 2 = 3
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Decision problem

Kemeny Score

Input: An election (V ,C ) and a positive integer k.
Question: Is there a Kemeny consensus of (V ,C ) with Kemeny
score at most k?

Applications:

Ranking of web sites (meta search engine)

Sport competitions

Databases

Voting systems
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Known results

Kemeny Score is NP-complete (even for 4 votes)
[Bartholdi et al., SCW 1989], [Dwork et al., WWW 2001]

Algorithms:

factor 8/5-approximation, randomized: factor 11/7
[van Zuylen and Williamson, WAOA 2007],
[Ailon et al., JACM 2008]

PTAS [Kenyon-Mathieu and Schudy, STOC 2007]

Heuristics; greedy, branch and bound (experimental)
[Davenport and Kalagnanam, AAAI 2004],
[V. Conitzer, A. Davenport, and J. Kalagnanam, AAAI 2006],
[F. Schalekamp and A. van Zuylen, ALENEX 2009]
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Parameterized Complexity

Given an NP-hard problem with input size n and a parameter k
Basic idea: Confine the combinatorial explosion to k

n
k

instead of
k

n

Definition

A problem of size n is called fixed-parameter tractable with
respect to a parameter k if it can be solved exactly in f (k) · nO(1)

time.

Parameters: # votes, # candidates, average KT-distance, ...
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Data reduction rule

You can see data reduction rules as preprocessing step to solve a
problem:

Basic idea

A data reduction rule shrinks an instance of a problem to an
“equivalent” instance by cutting away easy parts of the original
instance.

We focus on polynomial-time data reduction rules for Kemeny
Score.
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Simple reduction rules

Condorcet winner: (weak) A candidate c beating every other
candidate in at least half of the votes, that is, c ≥1/2 c ′ for every
candidate c ′ 6= c , is called (weak) Condorcet winner.
A Condorcet winner takes the first position in at least one Kemeny
consensus (Condorcet property).

Reduction Rule

If there is a (weak) Condorcet winner in an election provided by a
Kemeny Score instance, then delete this candidate.

Reduction Rule

If there is a subset C ′ ⊂ C of candidates with c ′ ≥1/2 c for every
c ′ ∈ C ′ and every c ∈ C \ C ′, then replace the original instance by
the two subinstances “induced” by C ′ and C \ C ′.

Note: A subset C ′ can be found in polynomial time.
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Back to our initial example

Condorcet looser

Condorcet looser and Condorcet looser sets are analogously
defined.

Are there Condorcet candidates or Condorcet sets in our initial
example?
v1: a > b > c
v2: a > c > b
v3: b > c > a

The candidate a is a condorcet winner.
The set {b, c} is a condorcet looser set.
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Reduction rules using “dirty candidates”

A candidate c is non-dirty if for every other candidate c ′ either
c ′ ≥3/4 c or c ≥3/4 c ′. Otherwise c is dirty.

Lemma

For a non-dirty candidate c and candidate c ′ ∈ C \ {c}:
If c ≥3/4 c ′, then c > · · · > c ′ in every Kemeny consensus.
If c ′ ≥3/4 c , then c ′ > · · · > c in every Kemeny consensus.

Reduction Rule

If there is a non-dirty candidate, then delete it and partition the
instance into two subinstances accordingly.

Further rule: an “extended” reduction rule based on “non-dirty
sets of candidates”... ..
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Lemma

For a non-dirty candidate c and candidate c ′ ∈ C \ {c}:
If c ≥3/4 c ′, then c > · · · > c ′ in every Kemeny consensus.
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Reduction Rule

If there is a non-dirty candidate, then delete it and partition the
instance into two subinstances accordingly.

a1 > a2 > a3 > c > b1 > b2 ai ≥3/4 c and c ≥3/4 bi
a3 > a2 > c > a1 > b2 > b1 ⇒
a1 > c > a2 > b2 > b1 > a3 in every Kemeny consensus:
a2 > a3 > a1 > b1 > b2 > c {a1, a2, a3} > c > {b1, b2}
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Lemma does not hold for any “majority ratio” below 3/4.
(Proof by construction of a counterexample.)
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Average KT-distance as parameter for Kemeny Score

Parameter: average KT-distance between the input votes

d :=
2

n(n − 1)
·

∑
{u,v}⊆V

KT-dist(u, v).

Known fixed-parameter tractability results:

dynamic programming with running time O(16d · poly(n))
[Betzler, Fellows, Guo, Niedermeier, and Rosamond, AAMAS 2009]

branching algorithm with running time O(5.83d · poly(n))
[Simjour, IWPEC 2009]
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Average KT-distance as parameter for Kemeny Score

Main (theoretical) result:

Theorem

A Kemeny Score instance with average KT-distance d can be
reduced in polynomial time to an “equivalent” instance with less
than 11 · d candidates.

In parameterized terms: Kemeny Score yields a partical vertex
linear kernel with respect to the parameter average KT-distance.
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Experimental results: Meta search engines

Four votes: Google, Lycos, MSN Live Search, and Yahoo! top

1000 hits each, candidates that appear in all four rankings

search term #cand. time [s] structure of reduced instance solved/unsolved

affirmative action 127 0.41 [27] > 41 > [59]
alcoholism 115 0.21 [115]
architecture 122 0.47 [36] > 12 > [30] > 17 > [27]
blues 112 0.16 [74] > 9 > [29]
cheese 142 0.39 [94] > 6 > [42]
classical guitar 115 1.12 [6] > 7 > [50] > 35 > [17]
Death Valley 110 0.25 [15] > 7 > [30] > 8 > [50]
field hockey 102 0.21 [37] > 26 > [20] > 4 > [15]
gardening 106 0.19 [54] > 20 > [2] > 9 > [8] > 4 > [9]
HIV 115 0.26 [62] > 5 > [7] > 20 > [21]
lyme disease 153 2.61 [25] > 97 > [31]
mutual funds 128 3.33 [9] > 45 > [9] > 5 > [1] > 49 > [10]
rock climbing 102 0.12 [102]
Shakespeare 163 0.68 [100] > 10 > [25] > 6 > [22]
telecommuting 131 2.28 [9] > 109 > [13]
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Conclusion

In practice:

Data reduction should be applied whenever possible. There are
many real-world instances that are only (exactly) solvable with
data reduction rules.

In theory:

Parameterized algorithmics offer a framework to analyze the
effectiveness of data reduction rules.

Still open:

more (structural) parameters

bound also number of votes

more data reduction rules
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