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Doctrinal Paradox (Unpacking the court/
Kornhauser and Sager 1986)

Suppose a defendant is accused in court of murder. In
order to prove his guiltiness, one should convince the
judge of two independent issues:
(A) The defendant killed the victim
(B) The defendant is sane
Conviction is defined to be the conjunction of the first two
issues

(A ∧B) The defendant is guilty.
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Doctrinal Paradox (Unpacking the court/
Kornhauser and Sager 1986)

A B A ∧B
(Killed) (Sane) (Guilty)

Agenda



0 1 0
1 0 0
1 1 1
0 0 0

0 1 1 ← inconsistent
1 0 1 ← inconsistent
1 1 0 ← inconsistent
0 0 1 ← inconsistent
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Doctrinal Paradox (Unpacking the court/
Kornhauser and Sager 1986)

A B A ∧B
(Killed) (Sane) (Guilty)

Judge 1 1 0 0
Judge 2 1 1 1
Judge 3 0 1 0
Majority 1 1 0
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Notations

A profile X ∈ {0, 1}n×m
(

n : Number of voters
m = 3 : Number of issues

)
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The opinion of the ith

voter on the 2nd issue
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Notations

A profile X ∈ {0, 1}n×m
(

n : Number of voters
m = 3 : Number of issues

)

F



X1
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i ∧X2
i
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...
X1
n X2

n X3
n = X1

n ∧X2
n


= (a1, a2, a3)

An aggregation mechanism returns for every profile an
aggregated opinion

F : {{0, 1}m}n → {0, 1}m
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= (a1, a2, a3)

Definition (Consistency)
F is consistent if it returns a consistent result whenever
all voters voted consistently

a3 = a1 ∧ a2
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Aggregation Mechanism - Examples
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Independence:
Consistency:

Are there any other consistent and independent
aggregation mechanisms?
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Issue-wise
Majority : Maj(X1) Maj(X2) Maj(X3)

Independence: X
Consistency: X

Are there any other consistent and independent
aggregation mechanisms?
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〈A,B,A ∧B〉 - Oligarchy

Definition (Oligarchy)
An oligarchy of S returns 1

iff all the members of S voted 1.

uS(x̄) =
∧
i∈S

xi

Proposition
For every oligarchy u, the aggregation mechanism
〈u, u, u〉 is consistent for the agenda 〈A,B,A ∧B〉 .

f(x) =
∧
i∈S

xi

Proof.
Let u be the oligarchy of all voters.
Let x̄, ȳ ∈ {0, 1}n

A B A ∧B

Voter 1: x1 y1 x1 ∧ y1
Voter 2: x2 y2 x2 ∧ y2

...
...

...
Voter n: xn yn xn ∧ yn

u(x̄) u(ȳ) u(x̄ ∧ ȳ)
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Theorem

Let δ > exp(n, ε)

Let F be an

δ-

independent and

δ-

consistent aggregation
mechanism for 〈A,B,A ∧B〉 .
Then there exists three boolean functions
f, g, h : {0, 1}n → {0, 1} s.t. F (X) = 〈f(X1), g(X2), h(X3)〉
and f = h ≡ 0

or g = h ≡ 0
or f = g = h and it is an oligarchy.

This theorem is a direct corollary from a series of works in
the more general framework of aggregation.
(E.g., Nehring&Puppe 2007, Holzman&Dokow 2008)
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Research Question

Theorem

Let δ > exp(n, ε)

Let F be a

n

δ-independent and δ-consistent aggregation
mechanism for 〈A,B,A ∧B〉 .
Then
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Research Question

Theorem

Let δ > exp(n, ε)

Let F be a

n

δ-independent and δ-consistent aggregation
mechanism for 〈A,B,A ∧B〉 .
Then

Definition (δ-consistent)
F is δ-consistent if the following test fails with probability
at most δ:

Choose a consistent profile X uniformly at random.
Check whether F (X) is a consistent opinion.
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Research Question

Theorem

Let δ > exp(n, ε)

Let F be a

n

δ-independent and δ-consistent aggregation
mechanism for 〈A,B,A ∧B〉 .
Then

Definition (δ-independent)
F is δ-independent if the following test fails with
probability at most δ:

Choose a consistent profile X uniformly at random.
Choose an issue j uniformly at random .
Choose a random consistent profile Y s.t. Xj = Y j.
Check whether (F (X))j equals (F (Y ))j
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Research Question

Theorem

Let δ > exp(n, ε)

Let F be a

n

δ-independent and δ-consistent aggregation
mechanism for 〈A,B,A ∧B〉 .
Then

Notice that

0-consistency≡Consistency
0-independence≡Independence
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Research Question

Theorem
Let δ > exp(n, ε)
Let F be a

n

δ-independent and δ-consistent aggregation
mechanism for 〈A,B,A ∧B〉 .
Then there exists an independent and consistent
aggregation mechanism G that agrees with F on at least
1− ε of the profiles.
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Research Question

Theorem

Let δ > exp(n, ε)

Let F be a

n

δ-independent and δ-consistent aggregation
mechanism for 〈A,B,A ∧B〉 .
Then there exists an independent and consistent
aggregation mechanism G that agrees with F on at least
1− ε of the profiles.

The other direction is trivial
Theorem
Let F and G be two aggregation mechanisms for
〈A,B,A ∧B〉 such that

G is independent and consistent
F and G agree on at least 1− ε of the profiles

then F is ε-independent and 6ε-consistent.
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Main result for 〈A,B,A ∧B〉

Theorem
For any ε > 0 and δ = poly(ε, n): (δ ≈ C·n−2ε5)
Let F be a

n

δ-independent and δ-consistent aggregation
mechanism for 〈A,B,A ∧B〉 .
Then there exists an independent and consistent
aggregation mechanism G that agrees with F on at least
1− ε of the profiles.
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Techniques - How did we get this result?

Restricting ourself to independent mechanisms.
Applying an (agenda independent) technique to
extend the result to δ-independence and
δ-consistency.
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Techniques - How did we get this result?

Given an independent δ-consistent aggregation
mechanism F = 〈f, g, h〉

Definition (Influence (Banzhaf Power Index))

The influence of the ith voter on f is the probability he
can change the result by changing his vote.

Ii(f) = Pr[f(x) 6= f(x⊕ ei)]

Definition (Ignorability)

The ignorability of the ith voter on f is the probability f
returns 1 although i voted 0.

Pi(f) = Pr[f(x) = 1|xi = 0]
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Techniques - How did we get this result?

Given an independent δ-consistent aggregation
mechanism F = 〈f, g, h〉
We show that

f is an oligarchy iff

∀i : Ii(f)Pi(f) = 0
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Techniques - How did we get this result?

Given an independent δ-consistent aggregation
mechanism F = 〈f, g, h〉
We show that

f is an oligarchy iff

∀i : Ii(f)Pi(f) = 0

∀i : Ii(f)Pi(g) 6 4δ

Let u be the oligarchy of the voters with small
ignorability (either Pi(f) or Pi(g)) Then,

f and g are close to u
F is close to 〈u, u, u〉.
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Other Agendas - Preference Aggregation

a > b b > c c > a
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
0 0 0 ← inconsistent
1 1 1 ← inconsistent

Theorem (Arrow’s Theorem 1950)
So is any other non-dictatorial aggregation mechanism

that satisfies independence and Pareto.

Theorem (Kalai 2002 , Mossel 2009)
For any ε > 0:
Let F be an independent, Kε-consistent (and balanced)
preference aggregation mechanism.
Then there exists an independent and consistent
aggregation mechanism G(i.e., dictatorship) that agrees
with F on at least 1− ε of the profiles.
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Other Agendas - Preference Aggregation

: a> b b> c c> a
Voter 1 : 1 1 0
Voter 2 : 0 1 1
Voter 3 : 1 0 1
Majority : 1 1 1

Theorem (Condorcet Paradox)
Pair-wise majority might lead to inconsistent outcome.
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Other Agendas - 〈A,B,A⊕B〉
A B A⊕B
0 1 1
1 0 1
1 1 0
0 0 0
0 1 0 ← inconsistent
1 0 0 ← inconsistent
1 1 1 ← inconsistent
0 0 1 ← inconsistent
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Other Agendas - 〈A,B,A⊕B〉

Theorem
For any ε > 0 and δ = poly(ε, n): (δ = C· ε)
Let F be a δ-independent and δ-consistent aggregation
mechanism for 〈A,B,A⊕B〉 .
Then there exists an independent and consistent
aggregation mechanism G that agrees with F on at least
1− ε of the profiles.
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Techniques - How did we get this result?

Restricting ourself to independent mechanisms.
Applying an (agenda independent) technique to
extend the result to δ-independence and
δ-consistency.
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Techniques - How did we get this result?

Given an independent δ-consistent aggregation
mechanism F = 〈f, g, h〉
We describe f ,g, and h using Fourier representation and
prove that

1− 2δ =
∑
χ

f̂(χ)ĝ(χ)ĥ(χ)

when
The summation is over all functions χ s.t. 〈χ, χ, χ〉 is
consistent∣∣∣f̂(χ)

∣∣∣ equals 1− 2d for d being the distance between
f and χ.

in order to get that F is ‘close to’ 〈χ, χ, χ〉.
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Main result

Theorem
For any ε > 0, m,n > 1, and δ = poly

(
1
n
, ε,m

)
:

Let X be a premise-conclusion agenda over m issues in
which each issue is either a premise, or a conclusion of at
most two premises.
Let F be a δ-independent and δ-consistent aggregation
mechanism for X .
Then there exists an independent and consistent
aggregation mechanism G that agrees with F on at least
1− ε of the profiles.
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〈A ∧B,B ∧ C,C ∧ A〉
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Main result

Theorem
For any ε > 0, m,n > 1, and δ = poly

(
1
n
, ε,m

)
:

Let X be a premise-conclusion agenda over m issues in
which each issue is either a premise, or a conclusion of at
most two premises.
Let F be a δ-independent and δ-consistent aggregation
mechanism for X .
Then there exists an independent and consistent
aggregation mechanism G that agrees with F on at least
1− ε of the profiles.

Technique: • ∧ and ⊕ represent all boolean
functions of two arguments.

• Induction over the number of issues.
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Summary

We defined the question of approximate aggregation.

We proved approximate aggregation theorems for
〈A,B,A ∧B〉 and 〈A,B,A⊕B〉 .
We proved approximate aggregation theorems for a
class of premise conclusion agendas.
Open question:

Find an agenda and an aggregation mechanism that
is δ-independent and δ-consistent but is far from any
independent consistent aggregation mechanism.

Thank You
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More information

email: ilan.nehama@mail.huji.ac.il
Homepage: www.cs.huji.ac.il/˜ilan_n
Paper: http://arxiv.org/abs/1008.3829

Please write me any comments/questions/suggestions
you have.
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